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“It’s hard to look for a black cat in a dark room, especially if there is no cat...”

Confucius

ABSTRACT. Algebraic combinatorics originated in algebra and representation theory, studying their
discrete objects and integral quantities via combinatorial methods which have since developed inde-
pendent and self-contained lives and brought us some beautiful formulas and combinatorial interpre-
tations. The flagship hook-length formula counts the number of Standard Young Tableaux, which
also gives the dimension of the irreducible Specht modules of the Symmetric group. The elegant
Littlewood-Richardson rule gives the multiplicities of irreducible GL-modules in the tensor products
of GL-modules. Such formulas and rules have inspired large areas of study and development beyond
algebra and combinatorics, becoming applicable to integrable probability and statistical mechanics,
and computational complexity theory.

We will see what lies beyond the reach of such nice product formulas and combinatorial inter-
pretations and enter the realm of computational complexity theory, that could formally explain
the beauty we see and the difficulties we encounter in finding further formulas and “combinatorial
interpretations”. An 85-year-old such problem asks for a positive combinatorial formula for the
Kronecker coefficients of the Symmetric group, another one pertains to the plethysm coefficients of
the General Linear group.

In the opposite direction, the study of Kronecker and plethysm coefficients leads to the disproof
of the wishful approach of Geometric Complexity Theory (GCT) towards the resolution of the
algebraic P vs NP Millennium problem, the VP vs VNP problem. In order to make GCT work and
establish computational complexity lower bounds, we need to understand representation theoretic
multiplicities in further detail, possibly asymptotically.

1. INTRODUCTION

It was the best of times, it was the worst of times, it was the epoch of unwavering faith in
mathematical conjectures, it was the era of crushing despair in the wake of disproofs. In the
realm of algebraic combinatorics, where beauty had long flourished in the form of graceful formulas
and elegant combinatorial interpretations, a shifting tide of uncanny difficulties now swept across
the landscape. The hope for solely aesthetic solutions would fade in the shadows of the rigorous
framework of computational complexity theory and the imprecision of asymptotic analysis.

What is algebraic combinatorics? According to Wikipedia, it “is an area of mathematics that
employs methods of abstract algebra, notably group theory and representation theory, in various
combinatorial contexts and, conversely, applies combinatorial techniques to problems in algebra.”
Here, we will narrow it down to the intersection of representation theory and discrete mathematics,
and in more concrete terms the area consisting of symmetric function theory, and representation
theory of S,, and G Ly which house our favorite standard and semi-standard Young tableaux.

The counterpart in our study, computational complexity theory, is about the classification of
computational problems by how efficiently with respect to the given resource (space or time) they

Partially supported by the NSF.



2 GRETA PANOVA

can be solved by an algorithm. It is home to the P vs NP problem, and its algebraic version the
VP vs VNP problem.

The two fields come together in two ways. Algebraic combinatorics has old classical quantities
(structure constants) resisting a formula or even a “combinatorial interpretation” for more than
80 years. Computational complexity can formalize these difficulties and explain what is [not]
happening. On the other side, these same structure constants appear central to the problem of
showing that VP # VNP using Geometric Complexity Theory, and in particular the search for
“multiplicity obstructions”.

1.1. Problems in Algebraic Combinatorics through the prism of Computational Com-
plexity. The dawn of algebraic combinatorics was lit by beautiful formulas and elegant combi-
natorial interpretations. The number f* of standard Young tableaux of shape \ is given by the
hook-length formula of Frame, Robinson and Thrall. From the representation theoretic corre-
spondences, this is also the dimension of the irreducible S, representation, the Specht module S).
The tensor product of two G Ly irreducibles V,, and V,, factors into irreducibles with multiplicities
given by the Littlewood-Richardson coefficients C;))u- While no “nice” formula is known for those
numbers, they are equal to the number of certain semi-standard Young tableaux, which is their
“combinatorial interpretation”.

Looking at the analogous structure constants for S, the Kronecker coefficients g(\, u,v) give
the multiplicities of S, -irreducible representations Sy in the tensor product of two others S, ® S,,.
Yet, despite their innocuous definition about 85 years ago, mimicking the Littlewood-Richardson
one, no formula nor positive combinatorial interpretation is known for them. Likewise, no positive
combinatorial interpretation is known for the plethysm coefficients of GL .

But what is a “combinatorial interpretation”? It would be a set of easily defined combinatorial
objects, whose cardinality gives our desired structure constants. Yet, what do we consider combi-
natorial objects? For the most part, we know them once we see them, just like the LR tableaux.
But could it be that no such nice objects exist, and, if so, could we prove that formally and save
ourselves the trouble of searching for black cats in dark rooms, an endeavor particularly difficult
when there is no cat.

This is when computational complexity theory comes into play and provides the formal framework
we can settle these questions in. In its classical origins, Computational complexity theory classifies
computational problems according to usage of resources (time and/or space) needed to obtain
an answer. In our context, the resource is time as measured by the number of elementary steps
needed to be performed by an algorithm solving that problem. Problems are thus divided into
computational complexity classes depending on how fast they can be solved. For decision problems,
that is when we are looking for a Yes/No answer, the main classes are P, of problems solvable in
polynomially (in the input size) many steps, and NP is the class of problems, for which if the
answer is Yes, then it could be verified in polynomial time. We have that P C NP and the P vs
NP Millennium problem asks whether P # NP, which is the widely believed hypothesis. The class
NP is characterized by its complete problems like 3 — SAT or HAMCY CLE, which asks, given a
graph G, whether it has a Hamiltonian cycle. If the graph has such a cycle, then one can specify it
by its sequence of vertices, and verify in linear time that there is an edge between two consecutive
ones.

For the counting problems, where the answer should be a nonnegative integer, the corresponding
classes are FP and #P. The class #P can also be defined as counting exponentially many poly-
nomially computable discrete objects, and a #P formula is a naturally nonnegative [exponentially
large] sum of counting objects computable in polynomial time.

When there are “nice” formulas, like the hook-length formula, or the determinantal formulas for
skew standard Young tableaux, the corresponding problem (e.g. to compute f*)is in FP. When we
have a “combinatorial interpretation”, the corresponding problem is in #P, see [Pak22+, Pan23].
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Thus, to show that a “reasonable combinatorial interpretation” does not exist, we may want to
show that the given problem is not in #P under some widely accepted assumptions, e.g. P % NP
or that the polynomial hierarchy PH does not collapse.

In our quest to compute the Kronecker or plethysm coefficients, we ask whether the corresponding
problem is in #P. As a proof of concept we show that a similar problem, the computation of the
square of an S, character, is not in #P, given that the polynomial hierarchy does not collapse to
second level, [IPP22].

1.2. Geometric Complexity Theory. In the opposite direction, algebraic combinatorics is used
in Geometric Complexity Theory, a program aimed at finding computational lower bounds and
distinguishing classes using algebraic geometry and representation theory.

In his landmark paper [Val79a] from 1979, Valiant defined algebraic complexity classes for com-
puting polynomials in formal variables. Later these classes were denoted by VP and VNP, and
represented the algebraic analogues of the original P and NP classes. The flagship problem in arith-
metic complexity theory is to show that VP # VNP and is closely related to P # NP, see [BiirO0b].
As with P vs NP, the general strategy is to identify complete problems for VNP, i.e. complete poly-
nomials, and show they do not belong to VP. Valiant identified such VNP-complete polynomials,
most notably the permanent of a n X n variable matrix. At the same time he showed that the
determinant polynomial is VP—universal, i.e. every polynomial from VP can be computed as a poly-
nomially sized determinant of a matrix whose entries are affine linear forms in the original variables.
This sets the general strategy of distinguishing VP from VNP by showing that the permanent is
not a determinant of some poly-sized matrix.

Geometric Complexity Theory aims to distinguish such algebraic complexity classes via the
algebro-geometric properties of the corresponding complete/universal polynomials. In two land-
mark papers [MS01, MS08] Mulmuley and Sohoni suggested distinguishing these polynomials by
studying the algebraic varieties arising from the group action corresponding to all the linear trans-
formations. In particular, to distinguish polynomials, one can consider the representation theoretic
structure of these varieties [’s coordinate rings| and find some irreducible representations appearing
with different multiplicities in the two. Because of the many symmetries of the polynomials and
the equivariant action of GLy, usually such multiplicities can be naturally expressed via the fun-
damental structure constants Kronecker, Littlewood—Richardson, plethysms etc. from §3, and the
methods to study them revolve around the combinatorics of Young Tableaux and generalizations.

Since such multiplicities are even harder than the Kronecker and plethysm coefficient, a simpler
approach would have been to study just the occurrence of irreducible representations rather than the
value of the multiplicity. If an irreducible GL module appears in the [coordinate ring orbit closure of
the| permanent of an m xm matrix, but not for the determinant of an nxn matrix, that would imply
a lower bound, namely the per,, cannot be equal to det,, (of affine linear forms). If this happens
for n > poly(m) (i.e. bigger than any polynomial in m), then VPys # VNP. Such irreducible
representations are called occurrence obstructions, and unfortunately do not exist [BIP19] for this
model.

Thus we have to compare the actual multiplicities or explore other models besides permanent
versus determinant. Understanding their growth starts with finding bounds and later asymptotics
for Kronecker and plethysm coefficients, see [Pan23] for further discussions.

1.3. Paper structure. In Section 2 we will define the basic objects in algebraic combinatorics and
representation theory and recall important facts on SYTs and symmetric functions. In Section 3
we define the structure constants Kronecker and plethysm coefficients and recall some of the major
open problems. In Section 4 we will discuss Computational Complexity Theory from the point of
view of a mathematician. In Section 5 we will discuss how computational complexity can be applied
in algebraic combinatorics, stating various hardness and completeness results and conjectures on
Kostka, LR, Kronecker coefficients and the characters of the symmetric group. In Section 6 we
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will discuss Geometric Complexity Theory in more detail, explain the connection with algebraic
combinatorics and some of the recent advances in the area, including the proof that there are no
occurrence obstructions using the positivity of Kronecker and plethysm coefficients. The text will
aim to be as self-contained as possible.

For other open problems on structure constants, in particular positivity and asymptotics, see [Pan23].

Disclaimer. The current paper is a detailed transcript of the author’s Current Developments in
Mathematics talks (April 2023). This work does not attempt to be a broad survey on the topic,
and is naturally concentrated on the author’s viewpoint and work.

Acknowledgments. The author is grateful to Christian Ikenmeyer and Igor Pak for the years
of fruitful collaborations on the subject addressed here. Many thanks also to Sara Billey, Allen
Knutson, Alex Yong for many useful questions and discussions on these topics.

2. ALGEBRAIC COMBINATORICS

Here we will describe the basic objects and facts from algebraic combinatorics which will be used
later. For further details on the combinatorial sides see [Sta99, Mac95] and for the representation
theoretic aspects see [Sag01, Ful97].

2.1. Partitions and Tableaux. Integer partitions A of n, denoted A F n, are sequences of non-
negative integers A = (A1, \g,...,\g), such that Ay > Ao > --- > 0and A\ +---+ A\ = n. We
denote by ¢(A\) = max{i : \; > 0} the length of the partition, which is the number of nonzero parts,
and by |A| = A1 + A2+ -+ -+ A its size. A partition can be represented as a Young diagram, which
is a left-justified array of squares, such that row i (indexing top to bottom) has exactly \; squares.
For example A = (4,3,1) F 8 has £(\) = 3 and its Young diagram is | Here we will denote

by [\] the Young diagram and think of it as a set of squares with coordinates (i,j) with (1,1)
being the topmost leftmost box, so the box at (2,3) is HJ We denote by (1) = (1,...,1)
k

the single column partition of k boxes, call one-row partition the partitions with only one nonzero
part, two-row partitions of the form (n — k, k), and hooks partitions of the kind (n — &, 1¥). We
denote by (a¥) = (a,...,a) the rectangular partition whose Young diagram is a k x a rectangle.
k
The transpose or conjugate partition of A is denoted A’ and is the one whose shape is obtained by
transposing along the main diagonal [A], e.g. for A = (4,3,1) we have X' = (3,2,2,1). The skew
partition A\/p is obtained by removing the squares occupied by p from A, so for example the Young
diagram of (5,4,3,1)/(2,1) is |

The set of partitions of n will be denoted by P(n) and its cardinality by p(n). While there is no
closed form formula for p(n), there is a nice generating function

oo oo 1
S o =TT 2
n=0

i=1

A standard Young tableauz (SYT) of shape A = n is a bijection T : [\] = {1,...,n}, such that
T(i,j) <T(i+1,j) and T(3,5) < T(i,7 + 1). For example, the SYTs of shape (2,2,1) are

12 1]2 113 1[3 1[4].
3|4 315 214 2[5 215
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The hook of a box (i,7) in [A] is the collection of squares {(4,7), (i + 1,7),..., (N}, ), (4,5 +
1),...,(i,\;)} below (7,7) in the same column, or to the right in the same row. For example, for
box (2,2) in (5,4, 3,3) the hook is . The hook-length h; ; is the number of boxes in the

hook of (i, 7).
Let f* be the number of standard Young tableaux of shape A - n. Then the hook-length formula
(HLF) of Frame-Robinson-Thrall [FRT54] gives

(2.1) =

The following remarkable identity

(2.2) Y ()=

A

gives rise to an even more remarkable bijection between pairs of same shape SYTs and permutations,
known as RSK for Robinson-Schensted-Knuth. For example

<1 2[4 1 2I31> 4123 .

The semi-standard Young tableauz (SSYT) of shape A and content « are maps T : [\] — N, such
that |T~1(i)| = a, i.e. o; many entries are equal to i, and the entries increase weakly along rows
and strictly down columns, i.e. T(i,7) < T(i,j+ 1) and T(i,5) < T(i + 1, 7). We denote the set of
such tableaux by SSYT(A; ).

For example the SSYTs of shape A = (3,3,1) and type a = (2,2,2,1) are

17172 17112 11]3] .
2[3]3 2[3]4 2[2]4
13] 3]
Completely analogously, we can deﬁne the skew SSYT of shape \/u as the fillings of [\/u] with
integers weakly increasing along rows and strictly down columns, e.g. G Z is a skew SSYT of
2

shape (4,4,2)/(2,1) of type (1,2,2,2).

2.2. Symmetric functions. Let A[x] be the ring of symmetric functions f(x1,x2,...), where the
symmetry means that f(x) = f(x,) for any permutation o of the variables, and f is a formal
power series. When all but finitely many variables are 0 then f becomes a symmetric polynomial.

The ring A is graded by the total degree, and its component of degree n has dimension p(n) as a
C-vector spaces. There are several useful bases for A — the monomial, the elementary, power sum,
(complete) homogeneous, and Schur functions.

The monomial symmetric functions my(x1,...,zy) are defined as the sum of all distinct monomi-
als of the form xi%l) . -xi’(“k), where o € Si. For example, ms11(z1,...,2,) = x?x2x3+x:{’x2x4+. .o
and each monomial appears with coefficient 0 or 1.

Let pr == my) = x’f + x’z“ + .... The power sum symmetric functions are then defined as
Px = p)\l p)\z e

The elementary symmetric functions {e)} are defined as follows

e == Z Tiy Tiy *** Tiy and €\ 1= €), €y "
11 <t <---<ip

For example

62’1(171, T2, :L‘3) = (:E1£L’2 + x5 + $2$3)(1’1 + x9 + $3) = m271($1, T9, 1'3) + 3m171’1(a:1, T2, :L‘3).
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The homogeneous symmetric functions hy are given by

hy = Z Ty Tiy ** Tiy, and hy = hx hy, - .

i1 <ip <<y

The Schur functions can be defined as the generating functions of SSYTs, where ¢ := z{" - - - 2%,

namely
weY Y

a TeSSYT(\«)
where o goes over all weak compositions of n. For example, s;x = ex, s = hy and
_ 2 2 2 2 2 2.9
5(2,1) (x1, T2, x3) = xix2 + 125 + T]T3 + T123 + T5T3 + T2x5 + 2017273,

We can also define the skew Schur functions sy ,, as the analogous generating function for SSYT(\/p).
They can also be defined and computed via the Weyl determinantal formula

L E_i\k 1
S)\(l'l,...,l‘k) = det(l’?JJrk J) H

i j=1 Ti — Ti
YT <icj<n YT

or the Jacobi-Trudi identity
L(A
Sa /= det[hy iy 1102
The ring A has an inner product (-, -), where the Schur functions form an orthonormal basis and
the power sums are orthogonal. Namely

(5x:8u) = O (D, Pu) = 220x p0-
Additionally (hy,m,) = 6x,, where 0y, = 0if A # pand 1if A = p and 2y = Hz+'zm' when
A= (1"12m2...) ie. there are m; parts equal to i.

The involution w is defined as w(ey) = hy, w? = id and we have that w(sy) = sy.
The Schur functions posses beautiful combinatorial properties, for example they satisfy the

Cauchy identity
1
pSIEMME) -
X iYj

Z?J
which can also be proven via RSK.

2.3. Representations of S, and GLy. A group representation p of a group G is a group homo-
morphism p : G — GL(V), which can also be interpreted as an action of the group on a vector
space V. We often refer to the vector space V as the representation. An irreducible representation
is such a vector space V which has no nontrivial invariant subspaces. If G is finite or reductive
and the underlying field is C then every representation can be uniquely decomposed as direct
sum of irreducible representations. Such decompositions can be easily studied via the characters,
X" (g) := trace(p(g)), which are central functions, i.e. constant on conjugacy classes.

The irreducible representations of the symmetric group S, are the Specht modules Sy and are
indexed by partitions A - n. Using row and column symmetrizers in the group algebra C[S,,] one
can construct the irreducible modules as certain formal sums over tableaux of shape A. Each such
element has a unique minimal tableau which is an SYT, and so a basis for Sy can be given by the
SYTs. In particular

dimS, = f.

We have that S, is the trivial representation assigning to every w the value 1 and Si» is the
sign representation.



COMPUTATIONAL COMPLEXITY IN ALGEBRAIC COMBINATORICS 7

The character x*(w) of Sy can be computed via the Murnaghan-Nakayama rule. Let w have

type «, i.e. it decomposes into cycles of lengths a1, as, ..., ar. Then
w)=xMa)= Y (=)MD),
TeMN (\a)

where M N is the set of rim-hook tableaux of shape A\ and type «, so that the entries are weakly
increasing along rows and down columns, and all entries equal to ¢ form a rim-hook shape (i.e.
connected, no 2 x 2 boxes) of length «;. The height of each rim-hook is one less than the number
of rows it spans, and ht(T') is the sum of all these heights. For example,

1T11213[3]3]

112]2]3]4

2]12[3]3]4
is a Murnaghan-Nakayama tableau of shape (6,5,5), type (3,5,6,2) and has height ht(T) = 1 +
24+2+1=6.

As we shall see, the characters are also the transition matrices between the {s)} and {p)} bases
of A.

The irreducible polynomial representations of GLy(C) are the Weyl modules V) and are indexed
by all partitions with £(A\) < N. Their characters are exactly the Schur functions sy(z1,...,znN),
where 21,...,xx are the eigenvalues of ¢ € GLy(C). The dimension is just s)(1') and can be
evaluated as a product via the hook-content formula

| %
(i.5)€M e

3. MULTIPLICITIES AND STRUCTURE CONSTANTS

3.1. Transition coefficients. As the various symmetric function families form bases in A, it is
natural to describe the transition matrices between them. The coefficients involved have significance
beyond that.
We have that
ha =Y CT(X p)my,
w

. . . . (X)) x4
where C'T'(\, p) is the number of contingency arrays A with marginals A, u, namely A € NO( )xtw)

and Zj Aij = /\i7 Zz Aij = Hj-.
Similarly,
e\ = Z CTO()‘7 :u)m,uv
0

where CTy(\, p) is the number of 0 — 1 contingency arrays A with marginals A\, pu, ie. A €
{0, 1}€(>\)X€(u)'

We have that

DX = E P()‘vu)m,ua
m
where for any two integer vectors a, b, we set

P(a,b):=#{(B1,By,...,By) : BIUByU...UBy=[m], Y a;=b; forall j=1,...,k}
iEBj
be the number of ordered set partitions of items a into bins of sizes b.
The Kostka numbers Ky, A\, u = n are defined by

hy =Y Kysa
ukEn
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and by orthogonality also as
S\ = Z K Ap My -
ukn
By definition we have that Ly, = [SSYT(A, p)|, i.e. the number of SSYTs of shape A and type p.
Finally, the symmetric group characters appear as

Pa = _ X (@)sx
A

or equivalently, as
S\ = Z YMa)zg pa.
(0%

3.2. Tensor products and structure constants. Once the irreducible representations have been
sufficiently understood, it is natural to consider what other representations can be formed by them
and how such representations decompose into irreducibles. Such problems are often studied in
quantum mechanics under the name Clebsh-Gordon coefficients.

In the case of GLN(C) these coefficients are the Littlewood—Richardson coefficients (LR) cﬁy
defined as the multiplicity of V) in V,, ® V,, so

CA
V.oV, =Py
A

Via their characters, they can be equivalently defined as
5,8y = ci‘“,s;\, and s/, = ci‘wsl,.
A v
While no nice product formula exists for their computation, they have a combinatorial inter-
pretation, the so called Littlewood-Richardson rule. This rule was first stated by Littlewood and
Richardson in 1934 [LR34], survived through several incomplete proofs, until formally proven using
the new technology listed here by Schiitzenberger and, separately, Thomas in the 1970s.

Theorem 3.1 (Littlewood-Richardson rule). The Littlewood-Richardson coefficient cf‘w is equal to

the number of skew SSYT T of shape A/u and type v, whose reading word is a ballot sequence.
The reading word of a tableau T is formed by reading its entries row by row from top to bottom,

such that the rows are read from the back. For example the reading word of 5 :15 ;) 2] is 21133241.
1

A sequence ajas ... is a ballot sequence if for every i and every k we have #{j : aj =14,j < k} >
#{j :a; =i+ 1,j <k}, i.e. there are weakly more ¢’s thant (i + 1)’s in every initial segment
a1 ...ax of the sequence. So the above example is not a ballot sequence because for kK = 1 we have
more 2s than 1s.

(6,4,3)

Example 3.2. We have ¢ 2 as there are two LR tableauz (SSYT of shape (6,4,3)/(3,1)

(3.1),(43,2) —
and type (4, 3,2) whose reading words are ballot sequences) . 1[1T1] with reading word 111221332
21313
and — L[I[I] with reading word 111222331.
313

It is easy to see the similarity with the Kostka numbers, and indeed, Kostka is a special case of
LR via the following

(3.1) Ky,=¢

-1
AT

where £ = £(p), 0 = N1 40, \) with = (g % (£ — 1), 1 % (£ —2),..., 1) and 7 =1 + p.
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Example 3.3. Let A = (3,2) and p

would be 111T1] gnd 1
202 2
1[1]3 1112
202 213

emerge in the bottom. The top parts are forced and their reading words have many more 1s than 2s,
more 2s than 3s etc so that they overwhelm the ballot and the ballot condition is trivially satisfied
by any SSYT in the bottom part.

(2,2,1), then the suggested LR tableauz by the above formula
L[1]. As we see the reqular SSYTs of shape \ and type i

1
2

The Kronecker coefficients g(\, u,v) of the symmetric group are the corresponding structure
constants for the ring of .S,,- irreducibles. Namely, .S,, acts diagonally on the tensor product of two
Specht modules and the corresponding module factors into irreducibles with multiplicities g(\, i, v)

Sx® Sy = @ ST e X =D g\ )X
14 14
In terms of characters we can write them as
v 1 12
(3.2) g ) = XX = = > XM (w)x” (w).

wES,

The last formula shows that they are symmetric upon interchanging the underlying partitions
g\, p,v) = g(u,v,\) = -+ - which motivates us to use such symmetric notation.
The Kronecker product * on A is defined on the Schur basis by

S\ * S, = Zg()\,,u, V)Sy,
v

and extended by linearity.
The Kronecker coefficients were defined by Murnaghan in 1938 [Mur38|, who was inspired by the
Littlewood-Richardson story. In fact, he showed that

Theorem 3.4 (Murnaghan). For every A, u, v, such that |\ = |u| + |v| we have that
C/)J\,V = g((n - ’A’7 )‘)7 (7’L - ’M’a M)? (n - ‘V‘7 V>)7
for sufficiently large n.

In particular, one can see that n = 2|A| + 1 would work. Note that this also implies that these
Kronecker coefficients stabilize as n increases, which is also true in further generality.
Thanks to the Schur-Weyl duality, they can also be interpreted via Schur functions as

salzy] =Y 900w, v)su(@)su(y),
w,v

where xy = (z1y1,21%2,...,%2y1,...) is the vector of all pairwise products. In terms of GL
representations they give us the dimension of the invariant space

g\ p,v) =dim(V, @V, ® V;)GLNXGLM’

where V), is considered a G Ly module, and V,, a GL); module. Using this interpretation for them
as dimensions of highest weight spaces, see [CHMO07], one can show the following

Theorem 3.5 (Semigroup property). Let (al, B, 41) and (a2, B?,~?) be two partition triples, such
that [a'| = |B'| = [y'| and |o?| = |8*] = |1?|. Suppose that g(a', 5',7") > 0 and g(a®, 5%, 7%) > 0.
Then

g(at +a? B+ 8% 41 +42) > max{g(al, B, 71), g(a?, B2,42)}.
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Other simple properties we can see using the original S,, characters are that
g\ p,v) =g\ v)

since Sy = Sy ® Sin, where x!" (w) = sgn(w) is simply the sign representation. Similarly, we have
g(A, p, (n)) = 0y, for all X and g(A, p, 1) = 0y -
Example 3.6. By the above observation we have that
hilzy) = sklzy) =) sx(@)sa(y).
A=k
Using the Jacobi-Trudi identity we can write

s2.1(®y] = helzylhi[zy] — hs[zy] = (s2(@)s2(y) + s1,1(2)51,1(y)) 51(2)51(y)
—s3(x)s3(y) — s2,1(x)s2,1(y) — s1,1,1(2)51,1,1(Y)
= 82,1(®)52,1(y) + s2,1(2)s3(y) + s3()s2,(y) + s1,1,1(2)s2,1(y) + s2,1(x)s1,1,1(Y).
So we see that g((2,1),(2,1),(2,1)) = 1.
The plethysm coefficients al’\w are multiplicities of an irreducible GL representation in the com-
position of two GL representations. Namely, let p* : GLy — GLj; be one irreducible, and

¥ . GLy; — GLg be another. Then p” o p* : GLy — GLg is another representation of GLy
which has a character s,[s,], which decomposes into irreducibles as

_ 2 : A
= auv,,sx
A

Here the notation f[g] is the evaluation of f over the monomials of g as variables, namely if
g= o 2z 4 - -, then f[g] = f(mo‘l,wo‘g, ce)e
Example 3.7. We have that
s@)[s(12)] = halea] = ha(z172, 7123, ..) = 2223 + 232013 + 3T T0T3T4 + - - -
= sg2(x1,22,3,...) + s1111(21, 22, 23, ...),
50 agf()l 1y = =1 and ag;gl,l) =0.

We will be particularly interested when p = (d) or (1%) which are the dth symmetric power Sym?
and the dth wedge power A%, and v = (n). We denote this plethysm coefficient by ay(d[n]) := ag‘ d),(n)

and
hal =Y _ ax(d[n])sx
A

The following can easily be derived using similar methods, see [PP14].

Proposition 3.8. We have that g(\,n?%, n?) = ax(d[n]) = pr,(n,d) — pr,_1(n,d) for A nd, such
that £(\) < 2. Here p,(a,b) = #{utr:u < a,l(un) < b} are the partitions of r which fit inside a
rectangle.

In particular, these are the coefficients in the g-binomials
a i+b
ro__ a’+b A (1_ql+)
Zpr(% b)q" = < a ) = H g
T q i=1
As a curious application, these identities were used in [PP13, PP17a] to prove the strict version
of Sylvester’s unimodality theorem and find bounds on the coefficients of the g-binomials. Later in
[MPP19a], using tilted random geometric variables, we found tight asymptotics for the differences
of p,(a,b) and hence obtained tight asymptotics for this family of Kronecker coefficients.
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4. COMPUTATIONAL COMPLEXITY THEORY

Here we will define, in broad and not fully precise terms, the necessary computational complexity
classes and models of computation. For background on the subject we refer to [Aarl6, Biir00a,
Wig19].

4.1. Decision and counting problems. Computational problems can be classified depending on
how much of a given resource (time or memory) is needed to solve it via an algorithm, i.e. produce
the answer for any given input of certain size. Depending on the model of computation used (e.g.
Turing machines, boolean circuits, quantum computers etc) the answers could vary. Here we will
only focus on classical computers and will consider complexity depending on the time an algorithm
takes, which is essentially equivalent to the number of elementary steps an algorithm performs.
Let I denote the input of the problem and let |I| = n be its size as the number of bits it takes
to write down in the computer. Depending on the encoding of the problem the size can vary, and
then the “speed” of the algorithm as a function of the size will change. There are two main ways
to present an input: binary versus unary. If the input is an integer IV, then in binary it would have
size about [logy(N)], for example when N = 2023, in binary it is 11111100111 and the input size
is 11. In unary, we will write V as 111...1 and in our case take up N = 2023 bits. As we shall see

soon, the encoding matters signiﬁcantjlvy on how fast the algorithms are as functions of the input
size. From complexity standpoint, encoding in binary or in any other base b > 1, does not make a
difference as the input size is just rescaled log, N = log;(2) log, N.

A decision problem, often referred to as language, is a problem, whose answer should be Yes/No.
For example, in the problem PRIMES we are given input N and have to output Yes if N is a
prime number. The complezity class P consists of the decision problems, such that the answer
can be obtained in polynomial time, that is O(n*) for some fixed k (fixed for the given problem,
but independent of the input). Thanks to the [AKS04] breakthrough result, we now know that
PRIMES € P.

The complexity class NP consists of decision problems, such that if the answer is Yes then it
can be verified in polynomial time, i.e. they have a poly-time witness. The problem is phrased as
“given input I, is the set C'(I) nonempty”. It is in NP iff whenever C'(I) # (), then there would
be an element X (I) € C(I), such that we can check whether X (I) € C(I) in O(n*) time for some
fixed k. For example, in HAMCYCLE, the input is a graph G = (V, E) (encoded as its adjacency
matrix, so the input size is O(|V|?)), and the question is “does G have a Hamiltonian cycle”. In
this case C(G) would be the set of all Hamiltonian cycles in G (encoded as permutations of the
vertices), and given one such cycle X(G) = vy...v,, we can check in O(m) time whether it is
indeed a Hamiltonian cycle by checking whether (v;,v;+1) € FE for alli=1,...,m.

We say that a problem is NP-complete if it is in NP and every other problem from NP can be
reduced to it in polynomial time. A set of NP-complete problems includes HAMCYCLE, 3SAT,
BINPACKING etc. A problem is NP-hard if every problem in NP is reducible to it in poly time.

Example 4.1. Here is an example when input size starts to matter. The problem KNAPSACK is
as follows:

Given an input ay, ..., am,b of m+1 integers, determine whether there is a subset S C {1,...,m},
such that ), .ga; = b. If the input integers a; are encoded in binary then the problem is NP-
complete. However, if they are encoded in unary then there is a dynamic programming algorithm
that would output the answer in polynomial time. It is said that such problems can be solved
in pseudopolynomial time. However the modern treatment would consider these problems as two
different computational problems, one for each input encoding.

We have that P C NP, but we are nowhere near showing that the containment is strict.

Problem 4.2 (The P vs NP Millennium problem). Show that P # NP.
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However, most researchers believe (and assume) that P # NP.

The class coNP consists of the decision problems, such that if the answer is No, then there exists
a poly-time witness proving that. X € coNP if and only if X € NP. For example, HAMCYCLE
would be the problem of deciding whether a graph does NOT have a Hamiltonian cycle. If the
answer is no, then the graph has such a cycle and we can check it as above. The polynomial
hierarchy PH is a generalization of NP and coNP and is, informally, the set of all problems which
can be solved by some number of augmentations by an oracle. Specifically, denote by B# the set
of problems which can be solved by an algorithm from B augmented with an “oracle” (another
machine) from A. Then we set Af := %f := II}} := P and recursively AZPH = PEzP, Zfﬂ = NP™T
and HfH — coNPE/. We set PH := U; (Zf UH'; UA';). We have that ¥; C A;41 C X411 and
II; € Ajy1 C Iy, and it is yet another big open problem to prove the containments are strict.
A widely believed hypothesis is that NP # coNP and that PH does not collapse to any level (i.e.
Ei 75 Zi+1 etc).

Counting problems ask for the number of elements in C'(I) given input I. There are two main
complexity classes FP and #P, also believed to be different. FP is the class of problems, such that
|C(I)| can be found in O(n*) time for some fixed k. The class #P is the counting analogue of
NP and can be defined as #P is the class of functions f : {0,1}* — N, such that there exists a
polynomial p and a verifier V so that for an input I we have

op(I1) _1

(4.1) P =y € {0,370V V(L,y) = 1}| = Z V(I,y).

The verifier should be an algorithm running in polynomial time. That is, #P is the set of functions
f which can be expressed as exponentially large sums of terms V € {0,1} which are determined in
polynomaial time.

Example 4.3. #PERFECTMATCHINGS, #HAMCYCLES, #SETPARTITIONS are all #P-complete
problems. In the case of HAMCYCLE, we have the input I := G a graph on m wvertices and
|I| = O(m?) given by the edge pairs. Then f counts the number of Hamiltonian cycles, so it can be
computed by going over all m! = O(2™1°8™) permutations y := v, of the vertices {vi,...,vm} and
the verifier is V(G,vs) = 1 iff (Vo(i), Vo(i+1)) € E(G) is an edge for every i.

The class GapP is the class of problems which are the difference of two #P functions, namely
GapP = {f —g: f,g € #P}. The class GapP~y = GapP N {f > 0} is the class of GapP functions
whose values are nonnegative. We define C_P = [GapP = 0], the class of decision problems on
whether two #P functions are equal.

The application of Computational Complexity theory in Combinatorics revolves around the
following paradigm, see [Pak22+] for detailed treatment.

Counting and characterizing combinatorial Solve: is X € C(I)? or compute |C(I)]
objects given input data I

“Nice formula” The problem is in P, FP
Positive combinatorial formula The problem is in NP, #P
No “combinatorial interpretation” The problem is not in #P

Remark 4.4. The class #P is quite large. While it contains essentially all positive combinatorial
formulas/interpretations we encounter in practice, it may actually be too large and other complexity
classes like AC could be more appropriate for certain problems.
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Remark 4.5. The above table does not address how the input is presented, but we can argue that
there are natural encodings for the problems we will consider. Namely, we will see that if the inputs
are in unary of input size n then our problems of interest are in GapP and are nonnegative functions.
This makes it natural to ask for the positive combinatorial formula to be in #P. Moreover, the
bounds on the sizes of our answers would be at most exponential in the input size n, i.e. O(2P(")
for some fixed degree polynomial p, which again suggests that a positive combinatorial formula is
exactly of the kind (4.1). Thus, problems like “the number of sets of subsets of a given set” are
excluded from this consideration being “too large” for their input size.

Besides the classical computational complexity, there is also quantum complexity, informally
defined by the minimal size of a quantum circuit needed to compute an answer. Here the input
would be encoded in n qubits and lives in the Hilbert space £2({0,1}"), and a simple gate in the
circuit is a reversible unitary transformation on some of the qubits. The output is a measurement
of some qubits. Quantum mechanics does not allow us to perform exact measurements, and so our
output is naturally probabilistic. A quantum algorithm solves a decision problem, iff the probability
that it outputs the correct answer (Yes/No) is > % (this constant can be changed). The quantum
analogues of P and NP are BQP and QMA: BQP is the class of decision problems for which there
is a polynomially-sized quantum circuit computing the answer with high probability, and QMA is
the class of problems, for which when the answer is Yes, there exists a poly-sized quantum circuit
verifying the answer with high-probability. The counting analogue of #P is thus #BQP and can
be thought of as counting the number of accepting witnesses to a QMA verifier.

4.2. Algebraic Complexity Theory. Arithmetic (algebraic) Complexity theory is the study of
computing polynomials f(x1,...,2,) € F[z1,...,2,] in n formal variables using simple operations
*, 4+, —, /, where the input are the variables z1,...,x, and arbitrary constants from the underlying
field. The complexity of the given polynomial f is then the minimal number of such operations
needed to compute the polynomial within the given model. There are three basic models of com-
putations — formulas, algebraic branching programs (ABPs) and circuits. For details on Algebraic
Complexity theory see [BCS97, Biir00a]. Throughout the polynomials f will be assumed to have
O(poly(n)) bounded total degrees.

The algebraic complexity classes VP and VNP were introduced by Valiant [Val79a, Val79b], as
the algebraic analogues of P and NP (we refer to [Biir00Oa] for formal definitions and properties).

The class VP is the class of sequences of polynomials for which there is a constant k and a
O(n¥)-sized arithmetic circuit computing them. By arithmetic circuit we mean a directed acyclic
graph with source nodes containing variables x1, ..., x, or constants from the field, and the other
vertices contain one simple operation performed with input from the nodes pointing to that vertex.
There is only one sink, which should contain the result of all the computations, our polynomial f.
Let S(f) denote the minimal possible size of a circuit computing f.

This circuit computes the polynomial f =
zoxs(z1 +x2)(3+x3) using 4 input nodes and

6 internal operations.
Example 4.6. Q
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The class VP is the class of polynomials f, which have O(n¥)-sized formulas. A formula is a
circuit whose graph is a binary tree, so no output can be used twice. Let L(f) denote the minimal
formula size of f. Then a formula is recursively composed of operations f =g h or f =g+ h, so
we have L(f) < L(g) + L(h) + 1.

Example 4.7. Let f = 23+ 23+ 23+ 103+ 2122+ 32273 = (21 +22) * (1 +23) + (22 +73) (T2 +73),
which has formula size 34+ 143, so L(f) < 7.

We have that S(f) < L(f) by definition, and according to [VSBR], S(f) < L(f)&"™.

Finally, the class VBP is the class of polynomials f which can be computed with a poly-sized
Algebraic Branching Program. Informally, this is a directed acyclic graph with deg( f)-many layers,
one source s and one sink ¢, each edge e is labeled by a linear function in the variables x1,...,x,
called w(e) and the output is computed by going over all directed paths p:

f= Z Hw(e).

The size of the branching program is defined as the maximal number of nodes in a layer, and by our
assumptions is polynomially equivalent to the size of the given graph. Let M(f) be the minimal
size ABP needed to compute f, then VBP is the class of families of polynomials f,, for which there
is a fixed k with M (f,) = O(n").

The class VNP is the class of polynomials f, such that there exists a fixed k£ and a polynomial
g € VP with m = O(n*) variables, such that

fz1,...,2p) = Z g(x1, ..., &y, b1, ... b))
be{0,1}m—n

In particular, every polynomial whose coefficients in the monomial expansion are easy to determine,
would be in VNP.
It is clear that VPys C VBP C VP C VNP, but are these classes different?

Conjecture 4.8 (Valiant). We have that VBP # VNP.
We also believe that VP £ VNP, but this problem is even harder to approach.

As Valiant showed, for every polynomial f € Clx1,...,x,] there exists a K and a K x K matrix
A st. A=Ay + N | Ajz; with A; € CF*E | such that
detA = f.

The smallest such K is the determinantal complexity de(f) of f and it is finite for every f.
Example 4.9. Let f = a;% + 21X + X273 + 271, then let

r1 + 2 T2

A=
—r3+2 x1+ T2

)

so f =detA. Since deg(f) = 2, the smallest such matriz would be 2 x 2 and so dc(f) = 2.

As Valiant also showed, we have

de(f) < 2L(f),

and also that M(f) and dc(f) are polynomially equivalent. Thus from now on we can use dc as
complezity measure. We say that determinant is universal for VBP, in the sense that f € VBP iff

de(f) = poly(n).

The classical universal VNP-complete polynomial is the permanent

per,, [ Xl = > [ Xiow

€S =1
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in the sense that every f € VNP of deg(f) < n® can be written as a per,,[A] for some matrix
A of affine linear entries, and of polynomial size m = O(nk). It is much more powerful than the
determinant.

Thus, to show that VBP # VNP we need to show the following

Conjecture 4.10 (Valiant [Val79b]). The determinantal complezity dc(per,,) grows superpolyno-
mially in m.

It is known that dc(per,,,) < 2™ — 1 [Grell], and dc(per,,) > ’”72 [MRO4].

The connection between P vs NP and VP vs VNP is exemplified in the following statement.

Theorem 1 ([Biir00b]). If one shows that VP = VNP over a finite field then P = NP. If VP = VNP
over C and the Generalized Riemann Hypothesis holds then P= NP.

From here on we will only work over the field of constants C.

We believe that separating VBP from VNP is the easier problem as the algebraic structure gives
more tools. An approach to show VBP # VNP is the Geometric Complexity Theory, which will be
discussed in Section 6.

5. APPLICATIONS OF COMPUTATIONAL COMPLEXITY IN ALGEBRAIC COMBINATORICS

Here we discuss some open problems in Algebraic Combinatorics. These can be phrased more
formally using computational complexity theory and potentially answered within its framework.

5.1. Open problems: combinatorial interpretation. Semistandard Young Tableaux, the hook-
length formula, the RSK correspondence, the Littlewood-Richardson rule are all examples of beau-
tiful combinatorics. Besides being aesthetically appealing, such results are also quite useful. Within
Representation Theory they provide effective tools to understand the structure of group represen-
tations. Within asymptotics and statistical mechanics they give tools to understand behavior of
lozenge tilings (dimer covers of the hexagonal grid), longest increasing subsequences of permuta-
tions, behavior of random sorting networks, random matrix eigenvalues etc.

Following the discovery of the Littlewood-Richardson rule in 1934, Murnaghan [Mur38] defined
the Kronecker coefficients of S and observed that computing even simple special cases is difficult.
Interest in specifically nonnegative combinatorial interpretation can be found in [Las79, GR&5],
and was formulated explicitly by Stanley as Problem 10 in his list “Open Problems in Algebraic
Combinatorics” [Sta00]".

Open Problem 5.1. Find a combinatorial interpretation of g(\, u,v), i.e. a family of combina-
torial objects C(\, u,v), such that g(\, p,v) = |C (X, u,v)|.

Over the years, there has been very little progress on the question. In 1989 Remmel determined
g(\, u, v) when two of the partitions are hooks [Rem89]. In 1994 Remmel and Whitehead [RW94]
determined g(\, u, ) when two of the partitions are two-rows, i.e. ¢(\),¢(n) < 2. This case was
subsequently studied also in [BMS15]. In 2006 Ballantine and Orellana [BOO05] determined a rule for
g(\, i, v) when one partition is a two-row, e.g. u = (n—k, k), and the first row of one of the others
is large, namely A; > 2k — 1. The most general rule was determined by Blasiak in 2012 [Blal7]
when one partition is a hook, and this was later simplified by Blasiak and Liu [BL18, Liul7];
informally it states that g(\, i, (n — &, 1%)) is equal to the number of tableau in 1 <1 <2 < --- of
shape A, type p with restrictions on the ordering and certain entries. Other very special cases have
been computed in the works of Bessenrodt-Bowman [BB17] for multiplicity-free products; when
the marginals correspond to pyramids in Ikenmeyer-Mulmuley-Walter [IMW17]; near-rectangular
partitions by Tewari [Tew15] etc.

1See this for the original list and updates on the problems https://mathoverflow.net/questions/349406/
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Remark 5.2. Most combinatorial interpretations in the area count tableaux or permutations with
various restrictions. That, however, should not limit our scope. Consider the following labeled
rooted partition trees T(m, £, k) whose vertices are labelled by (a,b, A, j), 7 < ab, A b. The leaves
correspond to labels with b = 1 and can thus be labeled by only (a, j) with 0 < j < a. Let the root
be (m, ¢, \, k) for some A I £.

We impose the following local conditions between vertices and their children. Let a vertex be
labeled (a, b, \,7), with A = (1%1,...,nb»). Then it has at most n children and their labels are of
the form (a1, b1, A, 1), ..., (Qn, boy A, 3n). s.t.

ea;,=i(a+2) -2\ +---+X)foralli=1,...,n.

o jit+- -+ in=75—2>,G-1)\.
Finally, let the leaves be {(ao,0), ..., (at,i;)}. Then we must have for each r < t: i, > 2(i,41 +
e tig) = (g + e+ ).

Theorem 5.3 (Pak-Panova, 2014, see [Pan15]). The Kronecker coefficient g((m?), (m?), (mf—k, k))
is equal to the number of partition trees T'(m, (k).

The proof follows from two observations. The first is the fact that g((m?), (m?), (mf — k, k)) =
pre(m, £) — pr_1(,m, £), where pp(m,f) = #[{a F k,a C (m’)}| is the number of partitions of k
fitting inside a m x ¢ rectangle (see e.g. [PP14, MPP19a, Val97]). Alternatively, these are the
coefficients in the expansion of the g-binomials

Zk:pk(maﬁ)qk = <m£ E)q-

The second part is to unwind the recursive proof of the unimodality of those coefficients via Zeil-
berger’s KOH identity [Z89]. The recursion then gives the tree T.

Motivated by other developments, further questions on the Kronecker coefficients have appeared.
Following their work in [HSTZ13] on the square of the Steinberg character for finite groups of Lie
type, Saxl conjectured that ¢(d, dx, 1) > 0 for all k and u (kgl) and 0 = (k,k—1,...,1) is the
staircase partition. This was initially studied in [PPV16], where its generalization was formulated
as

Conjecture 5.4 (Tensor square conjecture). For every n > 9 there exists a symmetric partition
A F n, such that Sy ® Sy contains every irreducible S,, module. In other words, g(\, A\, u) > 0 for
all pFn.

The above conjecture raises the question on simply determining when g(\, u,v) > 0. Advances
on the tensor square conjecture were initially made in [PPV16, 115, LS17], see [Pan23] for a list of
many more recent works. It is a consequence of representation theory that for n > 2 for every u Fn
there is a A, such that g(A\, A\, ) > 0 (see [Sta99, Ex. 7.82]), but even that has no combinatorial
proof.

Positivity results were proved using a combination of three methods — the semigroup property
constructing recursively positive triples from building blocks, explicit heighest weight constructions
using the techniques in [Ful97], and an unusual comparison with characters, which was originally
stated in by Bessenrodt and Behns [BB04] for when g(A, A\, A\) > 0, later generalized in [PPV16],
and in its final form in [PP17a].

Proposition 5.5 ([PP17a]). Let A, utn and A = N. Let A = (2A; — 1,20y — 3,3\ —5,...) be the
principal hooks of A\. Then

g A 1) > [N

In 2020, with Christine Bessenrodt we generalized the conjecture as follows.
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Conjecture 5.6 (Bessenrodt-Panova 2020). For every n there exists a k(n), such that for every
AEn with A = X and d(\) > k,, which is not the square partition, we have g(A\, X, p) > 0 for all
uwEn.

Here d(A\) = max{i : \; > i} is the Durfee square size of the partition. Partial progress on that
conjecture will appear in the work of Chenchen Zhao.

Another question motivated by Quantum Information Theory, pertaining to the so called “quan-
tum marginal problem”, is for which triples of rational vectors («, 3,7) is g(ka, kB, kvy) > 0 for
some k € N, see e.g. [CHMO07]. Thanks to the semigroup property these triples form a convex
polytope, a special case of the so-called Moment polytope of a compact connected Lie group and
a unitary representation. The Kronecker polytope can actually be described in a certain concrete
sense, see [VW14]. The analogous question on positivity of Littlewood-Richardson coefficients is
the Horn problem on spectra of matrices A, B, C, such that A + B = C. The resolution of the
“Saturation conjecture” in [KT99] established that the inequalities cutting out the polytope of
eigenvalue triples coincide with the inequalities defining triples of positive LR coefficients.

Similar questions pertain to the plethysm coefficients. The following problem is number 9 in
Stanley’s list [Sta00].

Open Problem 5.7 (Stanley). Find a combinatorial interpretation for the plethysm coefficients
A

an -
Even the simple case for ay(d[n]) = (sx, ha[hn]) is not known.
A detailed survey on the partial results and methods can be found in [COSSZ].
There is no direct connection between the Kronecker and plethysm coefficients. Yet we know
that when £(\) <2

ax(d[n]) = g(\,n?,n).

An inequality between them in their stable limit is given in Theorem 5 and was obtained using
their interpretations within GCT.
There is one major conjecture on plethysm coefficients.

Conjecture 5.8 (Foulkes). Let d > n, then
ax(d[n]) = ax(nld])
for all A+ nd.

This conjecture is related to Alon-Tarsi conjecture, and appeared in the GCT approaches as well.
In [DIP19] we proved it for some families of 3-row partitions, see Section 6.3.

5.2. Complexity problems in Algebraic Combinatorics. We will now study the important
quantities in Algebraic Combinatorics with respect to their computational complexity leading to a
classification by such “hardness”. This gives a paradigm to understand these constants and either
explain when a nice formula could be found, or show that a combinatorial interpretation is unlikely
as it would violate computational complexity assumptions like P # NP.

Such questions have been quite common in other branches of combinatorics, like Graph Theory,
and many of the graph theoretic problems are at the heart of Computational Complexity. Inves-
tigating computational complexity properties of structure constants was initiated when Algebraic
Complexity Theory was developed. It came to prominence when Geometric Complexity Theory put
understanding Littlewood-Richardson, Kronecker and plethysm coefficients in the spotlight. Most
recently, understanding computational complexity has been developed as a framework to formalize
combinatorial properties of its own interest as in [Pak22+].
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Example 5.9. Consider the problem #SYT: given the input partition A, compute the number of
standard Young tableaux of shape A. The answer would depend on how the input is encoded. Suppose
that X\ is encoded in unary, i.e. each part \; takes up \; bits, and so the input size is n = |\|. Using
the HLF formula we can compute the product in O(n) time and thus the problem is in FP. If the
input is in binary, then the input size is |I| = O(logo(A)l(N)) and n = |X| = O(2M1). For most
such partitions we would have f» = o(2") = 0(22‘“). This answer is too big, as it would require
exponential space to even encode. This shows that binary input would not be appropriate for this
problem at all.

As the example shows, the number of SYTs of shape A can be computed in polynomial time
(when the input is in unary). We have that A=K A,17, 50 the next natural problem is to compute
the number of SSYTs of shape A and given type a. This time, however, there is no product nor
determinantal formula known.

KostkaPos:

Input: ()\1, Ao, .. .), (041, g, .. )

Output: Is K, > 07

This is the problem on deciding positivity of Kostka numbers. We know that K, , > 0 if and
only if A > p in the dominance order, which is the set of linear inequalities for every i = 1,...,4(\)

D I R AT I S 2

Thus, given A and « in either binary or unary, we can check these inequalities in O(¢())) time, so
KostkaPos € P.
The computational problem, however, is far from trivial

ComputeKostka:
Input: (A1, Ae,...), (a1,a0,...)
Output: Value of K ,.

Theorem 5.10 (Narayanan [Nar06]). When the input A\, « is in binary, ComputeKostka is #P-
complete.

It is not apriori clear why the problem (with binary input) would be in #P given that the
SSYTs themselves have exponentially many entries. Yet K, can be computed as the number
of integer points in the Gelfand-Tsetlin polytope, defined by O(f(a)?) many linear inequalities.
These inequalities can be verified in polynomial time. The proof of completeness uses a reduction
to KNAPSACK, which is well known to be #P-complete in binary, but it can be solved by a
pseudopolynomial dynamic algorithm, so in unary it is in FP. 2

Yet, when the input is in unary for Kostka, in the general case, reduction to KNAPSACK does
not give anything. Nonetheless, we conjecture that it is still hard.

Conjecture 5.11 (Pak-Panova 2020). When the input is unary we have that COMPUTEKOSTKA
1s #P-complete.

Here it is easy to see that the problem is in #P, but not that it is hard.

Next we turn towards the Littlewood-Richardson coefficients.

LRPos:
Input: A, u,v
Output: Is cf;,, > 07

2The input encoding actually changes the problem and is usually part of the problem specification. In the early
days of the development of Computational Complexity, a problem solvable in polynomial time when the input is in
unary was said to be solvable in “pseudopolynomial time”. When it is #P-hard when the input is in unary, it would
be called “strongly #P-hard”, see e.g. [GJ79].



COMPUTATIONAL COMPLEXITY IN ALGEBRAIC COMBINATORICS 19

The proof of the Saturation Conjecture by Knutson and Tao [KT99] showed that an LR coefficient
is nonzero if and only if the corresponding hive polytope is nonempty, see [DM06, MNS12]. This
polytope is a refinement of the Gelfand-Tsetlin polytope, defined by O(£(A\)?) many inequalities.
Showing that the polytope is nonempty is thus a linear programming problem, which can be solved
in polynomial time. Thus

Theorem 5.12. We have that LRPOS € P when the input is binary (and unary ditto).

ComputelR:

Input: A, u,v

Output: Value of cﬁy.

Using the polytopal interpretation to show that even when the input is in binary we have Com-
puteLRe #P, the fact that Kostka is a special case of LR, see (3.1), we get the following.

Theorem 5.13 (Narayanan [Nar06]). When the input A\, « is in binary, ComputelR is #P-
complete.

Yet again, when the input is in unary, we do not know whether the problem is still that hard.

Conjecture 5.14 (Pak-Panova 2020). When the input is in unary we have that ComputelR is
#P-complete.

We have that computing LR coefficients is in #P thanks to the Littlewood-Richardson rule and
its polytopal equivalent formulation. If the input is unary, then the LR tableaux are the polynomial
verifier, and one can check in O(n?) time if the tableaux satisfies all the conditions. The hard part
here again is to show that computing them is still hard, namely that an #P-complete problem like
3SAT would reduce to ComputelLR.

None of the above has been possible for the Kronecker and plethysm coefficients, however, due
to the lack of any positive combinatorial formula.

KronPos:

Input: A, u,v

Output: Is g(A\, u,v) > 07

The Kronecker coefficients have particular significance in GCT, see Section 6. In the early stages
Mulmuley conjectured [MS08] that they would be like the Littlewood-Richardson, so KronPose P,
which was recently disproved.

Theorem 5.15 ([IMW17]). When the input X\, u,v is in unary, KronPos is NP-hard.

The proof uses the fact that in certain cases g(A, u,v) is equal to the number of pyramids with
marginals A, i, v, see [Val99], and deciding if there is such a pyramid is NP-complete. However, the
problem is not yet in NP, because we do not have polynomially verifiable witnesses showing that
g(A, p,v) > 0 when this happens.

Needless to say, the problem would be even harder when the input is in binary, and we do not
consider that here.

Mulmuley also conjectured that computing the Kronecker coefficients would be in #P, again
mimicking the Littlewood-Richardson coefficients.

ComputeKron:
Input: A, u,v
Output: Value of g(A, p,v).

Open Problem 5.16 (Pak). Show that COMPUTEKRON is not in #P under reasonable complexity
theoretic assumptions such as PH not collapsing.
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If the above is proven, that would make any solution to Open Problem 5.1 as unlikely as the
polynomial hierarchy collapsing. Any reasonable combinatorial interpretation as counting certain
objects would show that the problem is in #P, as the objects would likely be verifiable in polynomial
time.

Note that ComputeKron € GapP ([BI08]) as it is easy to write an alternating sum for its compu-
tation, for example using contingency arrays, see [PP17b]. This further shows that #P would be a
natural class for this problem as it is already in GapP,.

The author’s experience with Kronecker coefficients seems to suggest that some particular families
would be as hard as the general problem.

Conjecture 5.17 (Panova). We have that ComputeKron is in #P when £(\) = 2 if and only if
ComputeKron is in #P in the general case. Likewise, ComputeKron for u = v = (n%) and \ - nd
as the input is in #P if and only if the general problem is in #P.

The last part concerns the rectangular Kronecker coefficients of special significance in GCT, see
Section 6 and [IP17].

It is worth noting that when the partitions have fixed lengths, we have that COMPUTEKRON
is in FP even when the input is in binary, see [CDW12, PP17b]. Moreover, from the asymptotic
analysis and symmetric function identities in [PP23], it follows that

Proposition 5.18. Let k be fized and (A, u,v) F n be partitions with diagonals at most k, i.e.
d(\),d(p),d(v) < k. Then g(\, pu,v) can be computed in time O(n***).

Note that in this case we have g(\, u,v) < Cpn**+13K2 431k £ ap explicit constant Cj. This in
itself does not guarantee the efficiency of the algorithm computing them, but in this case can be
easily derived. On the other hand, when the lengths of the partitions are bounded by & the efficient
algorithms run in time O((logn)¥*1°6%). We do not expect that a similar efficient algorithm exists
in the more general case of fixed diagonals.

PlethPos: ComputePleth:
Input: A\ u,v Input: A\, pu,v
Output: Is afLV > 07 Output: Value of al)‘w.

Using symmetric function identities, it is not hard to find an alternating formula for the plethysms
and show that they are also in GapP, see [FI20]. They also show that PlethPos is NP-hard. We
suspect that ComputePleth may not be in #P in the general case, but also when u, v are single row
partitions. The coefficient then ay(d[n]) has special significance in GCT, see Section 6.

Open Problem 5.19. Determine whether PLETHPOSE NP and ComputePlethe #P under rea-
sonable complexity theoretic assumptions.

The representation theoretic significance of these structure constants poses the natural question
on their computation via quantum circuits. Quantum computing can be powerful on algebraic and
number theoretic problems. The structure constants in question are dimensions of various vector
spaces, and it is natural to expect that such quantities could be amenable to efficient quantum com-
putation. While this is not straightforward, Beals’ quantum Fourier transform over the symmetric
group [B97] gives the following

Theorem 5.20. KRONPOS is in QMA. COMPUTEKRON is in #BQP.

These statements have been claimed in [HCW]. The first statement and a weaker version of the
second were shown in [BCGHZ]. The full proof of the second statement appears in [IS23]. As the
first group noted, the statements should be true even when the input is in binary.
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Open Problem 5.21. Show that when the input (X, u,v) is in binary, then KRONPOS is in QMA
and COMPUTEKRON is in BQP.

With the input in binary we can no longer use the symmetric group S,, as n would be too large
and we will have to use the GL interpretation of the Kronecker coefficients.

5.3. Proof of concept: character squares are not in #P. Underlying all the representation
theoretic multiplicities mentioned above are the characters of the symmetric group. For example,
equation (3.2) expresses the Kronecker coefficients via characters, and the other structure constants
can also be expressed in similar ways. What then can we say about computing the characters and
can this be used in any way to help with the problems in Section 5.2

The characters satisfy some particularly nice identities coming from the orthogonality of the rows
and columns of the character table in S,,. We have that

(5.1) Sow)? = [T,

AFn

where ¢; = number of cycles of length i in w € S,,. When w = id, we have that x*(id) = f*, the
number of SYTs and the identity becomes equation 2.2. That equation, as mentioned in Section 2.1,
can be proven via the beautiful RSK bijection. The first step in this proof is to identify (f*)? as
the number of pairs of SYTs of the same shape.

Could anything like that be done for equation (5.1)? The first step would be to understand
what objects x*(w)? counts, does it have any positive combinatorial interpretation? We formulate
it again using the CC paradigm as

ComputeCharSq:

Input: A\, aF n, unary.

Output: the integer x*(a)2.

Theorem 5.22 ([IPP22]). ComputeCharSqg #P unless PH = Y.

The last condition says “polynomial hierarchy collapses to the second level”, which is almost as
unlikely as P = NP, and is a widely believed complexity theoretic assumption. The proof uses the
intermediate vanishing decision problem

CharVanish:
Input: A, n, unary.
Output: Is x*(a) = 0?

Theorem 5.23 ([IPP22]). We have that CharVanish is C_P -complete under many-to-one reduc-

tions.

In order to prove this we use the Jacobi-Trudi identity to write x*() as an alternating sum of
ordered set partition functions. Let A F n with £(\) < ¢, and let « be a composition of n. Then

Ma) = Z sgn(o) P(a, A 4+ o —id).

O’ES@()\)
Using number theoretic restrictions we limit the entries to just two:

Proposition 5.24. Let ¢ and d be two sequences of nonnegative integers, such that |c| = |d| + 6.
Then there are partitions A and « of size O({|c|) determined in linear time, such that

Ma) = P(c,d) — P(c,d'),
where d := (2,4,d1,ds,...) and d’ := (1,5,d1,da,...).
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We then use the fact that matchings can be encoded as set partition problems, by encoding the
edges/hyperedges as unique integers in a large basis as in [GJ79]. After some constructions, putting
two 3d-matching problem instances on one hyepergraph, with hyperedges of 4 vertices we conclude
that

Proposition 5.25 ([IPP22]). For every two independent 3d matching problem instances E and E',
there exist ¢ and d as above, such that

1 — — 1
#3DM(E) = #3DM(E') = = (P(c,d) = P(c,d)) = 5;@(a),
where 0 is a fizred multiplicity factor equal to the number of orderings.

Finally, we observe that counting 3d matchings is a #P-complete problem. Thus the last equa-
tions shows that x*(a) = 0 iff #3DM(E) = #3DM(E'), i.e. vanishing is equivalent to two
independent #P functions being equal. This makes it C_P-complete and proves Theorem 5.23.

To show the next steps we use classical CC results. If x? € #P then [x? > 0] € NP, so
[x # 0] € NP and hence, by definition, [y = 0] € coNP. Thus C_P C coNP. By a result of Tarui
we have PH ¢ NP®=P | and from the above we get PH ¢ NP<NP — P, So PH = ¥¥, and the proof
follows.

In contrast with this result, we note that Beals’ quantum Fourier transform over the symmetric
group [B97] actually gives an efficient quantum algorithm for the characters.

6. APPLICATIONS OF ALGEBRAIC COMBINATORICS IN COMPUTATIONAL COMPLEXITY THEORY

6.1. Geometric Complexity Theory. Towards answering Conjecture 4.10 and showing that
VBP # VNP, Mulmuley and Sohoni [MS01, MS08] proposed an approach based on algebraic ge-
ometry and representation theory, for which they coined the name Geometric Complexity Theory
(GCT). For an accessible and detailed treatment we refer to [BI18].

Informally, the idea is to show that an m x m permanent of a variable matrix [Xi’j]%-:l cannot

be expressed as an n x n determinant of a matrix with affine linear forms as entries for n = O(m*)
for any k. Set X = (Z, X11, X12,..., X;nm) as the vector of variables in the matrix X plus the
variable Z for the affine terms. Because we are considering all possible linear forms, we are looking
at det, [MX] for all matrices M € C"*"* and we want to explore when per,,[X] = det, [MX].
Replacing these matrices by invertible ones, and then taking the Euclidean closure would give us a,
slightly larger, space of polynomials containing {det,[MX]: M € anmz} C det,(GL,2X). Here
the tools of Algebraic Geometry and Representation theory become available, we can compare the
orbit closures of per,, and det,, via their irreducible representations to show that containment is
not possible for n = poly(m).

More formally, as outlined in [BIP19], the setup is as follows. Denote by Sym™V* the space of
homogeneous polynomial functions of degree n on a finite dimensional complex vector space V. The
group G := GL(V) acts on Sym"V* in the canonical way by linear substitution: (h-f)(v) := f(h~'v)
for h € G, f € Sym"V* v € V. We denote by G- f := {hf | h € G} the orbit of f. We assume now
V .= C™*" view the determinant det,, as an element of Sym™V*, and consider its orbit closure:

(6.1) Q, := GL,2 - det,, C Sym"(C™*"™)*

with respect to the Euclidean topology, which is also the same as with respect to the Zariski
topology.

For n > m we consider the padded permanent defined as X7 "per,, € Sym™(C"*"™)* (here we re-
place the extra variable Z mentioned in the beginning by X1, directly). Via the standard projection
Crxm — C™*™, we can view X{j "'per,, as an element of the bigger space € Sym"(C"*")*.

The following conjecture was stated in [MSO01].
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Conjecture 6.1 (Mulmuley and Sohoni 2001). For all ¢ € N>; we have {’fc_mperm Z Qe for
infinitely many m.

As discussed in the beginning, if per,, = det, [MX] for some n, using the fact that GL,,2 is dense
in C"**7* we have that dc(per,,) < n, and per,, € Q.

Thus, Conjecture 6.1 implies Conjecture 4.10.

The following strategy towards Conjecture 6.1 was proposed by Mulmuley and Sohoni in [MS01].
We consider the space 2, as an algebraic variety and study its structure via its coordinate ring.
Specifically, the action of the group G = GL(V) on Sym"V* induces an action on its graded coor-
dinate ring C[Sym"V*] = @genSym?Sym™V. The space Sym?Sym"V decomposes into irreducible
GL,2—modules with multiplicities exactly the plethysm coefficients. The coordinate ring C[S2,] of
the orbit closure )y, is obtained as the homomorphic image of C[Sym™V*| via the restriction of
regular functions, and the G-action descends on this. In particular, we obtain the degree d part
C[Q]q of C[€,] as the homomorphic G-equivariant image of Sym?Sym™V.

As a G-module, the coordinate ring C[2,] is a direct sum of its irreducible submodules since G
is reductive. We say that A occurs in C[,] if it contains an irreducible G-module of type A and
denote its multiplicity by ) 4., SO we can write

(6.2) Cl]q = C[CLadetn]a = @) vy
AFnd

On the other side, we repeat the construction for the permanent. Let Z, ,, denote the orbit
closure of the padded permanent (n > m):

(6.3) Znm = GL,2 - X{ "per,, C Sym™(C™"*™)*.
If X7 "per,, = det,[MX], then it is contained in Q,, then
(6.4) Znm C Qp,

and the restriction defines a surjective G-equivariant homomorphism C[Q2,] — C[Z,,,,] of the
coordinate rings. We can decompose this ring into irreducibles likewise,

(6.5) ClZnmla = ClCTperya = @) VE™mm.
AFnd

If C[Q,] = C[Zp,m], then we must have Y\ gnm < 0x 4, by Schur’s lemma. A partition A for which
the opposite holds, i.e.

(6.6) Irdngm > Oxdon
is called a multiplicity obstruction. Its existence shows that the containment (6.4) is not possible

and hence the permanent is not an n X n determinant of affine linear forms.

Lemma 6.2. If there exists an integer d and a partition X & n, for which (6.6) holds, then
dc(per,,) > n.

The main conjecture in GCT is thus

Conjecture 6.3 (GCT, Mulmuley and Sohoni [MSO01)). There exist multiplicity obstructions show-
ing that dc(per,,) > m¢ for every constant c. Namely, for every n = O(m°) there exists an integer
d and a partition X = dn, such that yxanm > Oxdn-

A partition A which does not occur in C[€,], but occurs in C[Z,, ,,,], i.e. yx» > 0,9\ = 0, is called
an occurrence obstruction. Its existence thus also proves that Z,, ,, Z €, and hence dc(per,,) > n.

In [MSO01, MS08] it was suggested to prove Conjecture 6.1 by exhibiting occurrence obstructions.
More specifically, the following conjecture was stated.
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Conjecture 6.4 (Mulmuley and Sohoni 2001). For all ¢ € N>, for infinitely many m, there exists
a partition X occurring in C[Zpme m] but not in C[Qye].

This conjecture implies Conjecture 6.1 by the above reasoning.

6.2. Structure constants in GCT. Conjecture 6.3 and the easier Conjecture 6.4 on the existence
of occurrence obstructions has stimulated a lot of research and has been the main focus of researchers
in geometric complexity theory.

Unfortunately, the easier Conjecture 6.4 turned out to be false.

Theorem 2 (Biirgisser-Ikenmeyer-Panova [BIP19]). Let n,d, m be positive integers with n > m?>
and A = nd. If X occurs in C[Zy, ], then X also occurs in C[Qy,]. In particular, Conjecture 6.4 is
false.

Before we explain its proof, we will establish the connection with Algebraic Combinatorics.

In [MSO01] it was realized that the GCT-coefficients 7y 4, can be bounded by rectangular Kro-
necker coefficients, we have vy 4,(A) < g(A,n%, nd) for A - nd. In fact, the multiplicity of A in
the coordinate ring of the orbit GL,2 - det,, equals the so-called symmetric rectangular Kronecker
coefficient sk(\,n?), see [BLMW11], which is in general defined as

sk(A, p) == multy\Sym*(S,) < g(\, p, ).

Note that an occurrence obstruction for Z,,, Z €2, could then be a partition A for which
g(A,n%,n?) = 0 and such that A occurs in C[Z,,]. Since hardly anything was known about the
actual coefficients vy 4, it was proposed in [MS01] to find A for which the Kronecker coefficient
g(\,n%,n?) vanishes and such that A occurs in C[Z,, ].

Conjecture 6.5 ([MSO1]). There exist A, s.t. g(A\,n%,n?) = 0 and v»4nm > 0 for some n >
poly(m).

This was the first conjecture to be disproved.
Theorem 3 ([IP17]). Let n > 3m*, A nd. If g(A\,n%, n?) =0, then v\ anm = 0.

In order to show this, we need a characterization of <y 4, m, which follows from the work of
Kadish and Landsberg [KL14].

Proposition 6.6 ([KL14]). If Vxdnm > 0 then £(X\) <m? and A\ > d(n —m).

The rest revolves around showing that for such A the relevant Kronecker coefficients would
actually be positive.
Theorem 4 ([IP17]). If £(A) < m?, \; > nd—md, d > 3m3, and n > 3m?, then g(\,nxd,nxd) >
0, except for 6 special cases.

The proof of this Theorem uses two basic tools.

One is the result of Bessendrodt-Behns [BB04], generalized to Proposition 5.5, that

g(kF K* EF) >0

for all £ > 1.

The other is the semigroup property Proposition 3.5 applied in various combinations and settings
together with conjugation. In particular, we also have that if a+y 3 := (o/+3')’, the vertical addi-
tion of Young diagrams, we have g(a! + 31, a2+ 82, a® 4y 3%) > 0 whenever both g(at, a?,a3) > 0

and g(f, 32, 5%) > 0.
To prove the general positivity result, we cut our partitions A into squares of sizes 2 x2,...,m
m? and some remaining partition p with at most m? many columns bigger than 1, namely

2%

m2
A=Y np(k*) + p.
k=2
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The two rectangles can also be cut into such square pieces giving triples (k:k,kk, k:k) of positive
Kronecker coefficients that can be combined together using the semigroup properties. Finally, for
the remaining partition p, we show inductively that if g(u, k:lfl, klfl) > 0 for some y = k%, then for
all k, £, r with |u| + £ + r = k? we have all positive Kronecker coefficients

g ((u )y 17, R, k’“) > 0.

Using the fact that determinantal complexity for all polynomials of fixed degree and number of
variables is finitely bounded, the GCT setup and the bounds on the multiplicities we obtain the
following unexpected relation between rectangular Kronecker coefficients and plethysms. Note that
the range of d and n here put these multiplicities in stable regime, i.e. their values stabilize when
n, d increase.

Theorem 5 ([IP17]). For every partition p, let n > |p|, d > 2, X\ :== (nd — |p|,p). Then
g()‘7 nda nd) > a)\(d[n])

In fact, the proof gives sk(\, n%) > ay(d[n]).

The ideas in the proof of Theorem 2 are similar in philosophy, but technically different. We have
that de(X7 + -+ + X}) < ks, as seen from the formula size relation and Valiant’s proof [Val79a].
Then, after homogenization, we have z""%(vi + --- + v{) € Q, for n > ks and linear forms
Z,U1y...,Vk.

Now we can consider

Powp := {7 4+ -+ L} | l; €V} € Qpp,
and essentially prove, see also [DIP19], that using the same setup for coordinate rings replacing the
determinant with the power sum polynomial, see Proposition 6.8, that

multy (C[P]']4) = ax(d[n]) for k > d

(for the partitions A of relevance).

Comparing multiplicities then we get 0y 4, = multyC[Q,] > ax(d[n]). We show using explicit
tableaux constructions, see [Ful97], that ay(d[n]) > 0 for the partitions A such that Ay > d(n —m)
and £(\) < m?2.

Remark 6.7. In [BIP19] we show that occurrence obstructions don’t work not just for permanent
versus determinant, but for permanent versus power sum polynomial. Power sums are clearly
much weaker computationally than the determinant polynomial. The barrier towards occurrence
obstructions comes from the padding of the permanent, which results in partitions A with long first
rows. The long first row makes the relevant multiplicities positive, as can be seen with the various
applications of semigroup properties.

6.3. Multiplicity obstructions. In order to separate VP from VNP via determinant versus per-
manent it is now clear that occurrence obstructions would not be enough. To remedy this there
are two approaches.

We can replace the det,, by the Iterated Matrix Multiplication tensor tr(A; - - - A,,), the trace of
the product of m matrices with affine linear entries of size n x n. This is another VBP universal
model, and the measure of complexity is n, the size of the matrices. In this case we will not be
padding the permanent, and the partitions involved would not have long first rows. The drawback
now is that computing the multiplicities is even more complicated.

Alternatively, we can look for multiplicity obstructions, i.e. partitions A - dn, for which

Yndnm < Oxdm for some n > poly(m),

where by poly(m) we mean any fixed degree polynomial in m.
As a proof of concept, we consider another separation of polynomials, as done in [DIP19].
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Consider the space AT := C[z1,..., 2], of complex homogeneous polynomials of degree n in
m variables. Let V := Al be the space of homogeneous degree 1 polynomials. We compare two
subvarieties of A7) . The first is the so-called Chow variety

Ch™ = {1 £, | l; €V} C A",

which is the set of polynomials that can be written as a product of homogeneous linear forms. In
algebraic complexity theory this set is known as the set of polynomials that have homogeneous
depth-two algebraic circuits of the form II™Y, i.e., circuits that consists of an n-ary top product
gate of linear combinations of variables.

The second variety is called a higher secant variety of the Veronese variety and can be written
as

Powy, . := {7+ + 0% | t; €V} C AL,
which is the closure of the set of all sums of k& powers of homogeneous linear forms in m variables,
which also showed up in [BIP19] as mentioned in §6.2. In algebraic complexity theory this set is
known as the set of polynomials that can be approximated arbitrarily closely by homogeneous depth-
three powering circuits of the form Y*A"Y i.e., a k-ary sum of n-th powers of linear combinations
of variables.

We now consider when Pow,;, , & Chy,, or in other words, when is a power sum not factorizable
as a product of linear forms. While this is easy to see explicitly, here we will show how GCT
can work in practice when there are no occurrence obstructions, namely, we will find multiplicity
obstructions.

The approach is in complete analogy to the approach described in Section 6.1 to separate group
varieties arising from algebraic complexity theory. Here we’ve replaced per by a power sum poly-
nomial, and det by the product of linear forms.

If Powy, ;. C Chy,, then the restriction of functions gives a canonical GL,-equivariant surjection

C[Ch%]d - (C[POWZ%;C]C[.

Decomposing the two modules into irreducibles and comparing multiplicities for each V) we have
that

(6.7) multA(C[Ch”m]d) > multA((C[Pown ]d)

m,k

for all partitions A with £(A) < m. Therefore, a partition A that violates (6.7) proves that Pow,;, , &
Chl and is called a multiplicity obstruction. If additionally multy(C[Ch}}]4) = 0, then A would be
an occurrence obstruction.

Since these are G L,, modules we must have ¢(\) < m and since the total degree is dn we have
A Fdn.

Theorem 6 ([DIP19)]).

(1) Asymptotic result: Let m > 3, n > 2 k=d =n+1, A\ = (n?> —2,n,2). We have
multy(C[Chy Jq) < multy(C[Powy, 1]a), i.e., A is a multiplicity obstruction that shows Powy, , &
Ch .

(2) Finite result: In two finite settings we can show a slightly stronger separation:

(a) Letk=4,n=6, m=3,d="T7, A= (n? —2,n,2) = (34,6,2). Then mult)(C[ChL]4) =7 <
8 = mult(C[Powy, (]a), i.e., A is a multiplicity obstruction that shows Powy, , Z Chy,.

(b) Similarly, for k = 4, n =7, m = 4,d = 8, A\ = (n? —2,n,2) = (47,7,2) we have
mult ) (C[Chy,]q) < 11 = mult)(C[Powy, (]a), i-e., A is a multiplicity obstruction that shows Powy, ;.
Ch?..

Both separations (a) and (b) cannot be achieved using occurrence obstructions, even for arbitrary
k: for all partitions X of £(A) < m that satisfy ax(d[n]) > 0 we have multy(C[Ch}}]z) > 0 in these
settings.
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The proof involves two facts which relate the desired multiplicities with plethysms. We have
that ay(d[n]) = multy(C[A]]4)

Proposition 6.8 ([BIP19]). Let At dn with () < m. If k > d then mult\C[Powy, ;]a = ax(d[n]).
We also have that
Lemma 6.9 ([DIP19]). Let A+ nm with £(A) < m <mn. Then multy(C[Ch]];) < ax(n[d]).

Finally we find explicit values and relations for the plethysm coefficients and prove in particular
the following

Theorem 6.10 ([DIP19)). Let A = (n? —2,n,2) Fn(n+1) and let d =n+ 1. Then
ax(d[n]) = 1+ ax(n[d]).

In particular, this confirms Foulkes conjecture 5.8.

7. DISCUSSION

As we have seen, structure constants from Algebraic Combinatorics, mostly the Kronecker and
plethysm coefficients, play a crucial role in Geometric Complexity Theory in the quest for separating
algebraic complexity classes or simply separating two explicit polynomials. In order to achieve such
separation we need to understand the multiplicities of irreducible components in the coordinate
rings of the orbit closures of the given polynomials. As it turned out just considering whether
multiplicities are 0 or not is not enough in most cases of interest. This implies that we need to
understand better what these multiplicities are and how large they can be.

One aspect of this understanding would be to find their combinatorial interpretation. For the
Kronecker coefficients this has been an open problem in Algebraic Combinatorics and Representa-
tion Theory for more than 80 years. The fact that just deciding whether Kronecker coefficients is
NP-hard, and that the value of the character square of the symmetric group is not #P, is evidence
that sometimes these problems, as fundamental as they are, may not be doable the way we expect.
Computational Complexity theory can help answer these questions and would be especially useful
for negative answers, if the situation happens to be such.

Finally, moving beyond positivity and complexity of structure constants, in the lack of exact
formulas, we turn towards their asymptotic properties and effective bounds. Estimating how large
these multiplicities are for certain families is yet another big open problem, see [Pan23]. Such
estimates could potentially close the cycle to GCT.
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