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Abstract— This paper studies the problem of designing work-
place electric vehicle (EV) charging tariffs (i.e., fee schedules)
while considering their impact to the transportation-electricity
nexus. In particular, we consider the morning commute problem
where a collection of commuters who drive EV to work must
go through a common traffic bottleneck. Individual commuters
determine when to leave for work and whether to charge their
EV at work by optimizing a payoff function accounting for their
generalized travel cost and payoff from charging. As an arrival
time dependent charging tariff can directly impact the com-
muter decisions at the user equilibrium, we tackle the problem
of designing tariffs that optimize (a) only the transportation
component of the social cost, (b) only the electricity component
of the social cost, and (c) the total social cost for the coupled
transportation and electricity system. Tariffs incentivizing user
equilibria that achieve the same performance as centralized
social cost minimization are derived for the first two settings.
For the last setting, we establish a tight condition under which
it is possible to decentralize social optimal decisions via tariffs,
and design optimal and suboptimal tariffs when the condition
holds and fails, respectively.

I. INTRODUCTION

As the transportation system electrifies, it becomes more
inter-connected with the electric power system than ever.
Driving an electric vehicle (EV) from point A to point B
contributes to (a) the flow of vehicles and traffic, (b) the
flow of users of the transportation and power systems, and
(c) the flow/relocation of energy stored in the EV battery
and electricity demand induced by the user flow. These
flows jointly comprise the electrified traffic flow, which
is deeply tied to both transportation and power systems.
How to nudge this electrified traffic flow to optimize the
transportation system, the power system, or the both systems
simultaneously?

This paper makes a first attempt in answering this question
in the context of workplace charging pricing. In particular,
we focus on morning commute, one of the most typical travel
settings, and investigate how pricing of workplace EV charg-
ing can influence commuters’ departure time choices and
charging decisions, so to effectively improve the efficiency of
transportation and power systems. At the heart of this work is
the explicit modeling of the closed-loop dynamics, where the
workplace charging tariff impacts travel patterns, the travel
patterns determines EV arrivals and charging loads, and the
cost for serving the charging loads (among other metrics)
drives the tariff design.
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A. Contributions

This paper makes the following original contributions:
(a) It first proposes the idea of leveraging EV charging
pricing to improve the performance of transportation and
power systems individually and jointly. This highlights the
urgency of understanding EVs’ impact to those two net-
works, and necessity of leveraging EV to achieve social
optimum among two systems. (b) Commuters’ disutility
in departure time choices and charging decisions are for-
mulated, where heterogeneity in commuters’ valuation for
charging service at work is explicitly considered. Using an
arrival time dependent charging tariff, we demonstrate that
the system-level non-atomic user equilibrium can be steered
toward social optimum when diverse social cost metrics
are considered. The implied time-varying traffic patterns,
electricity use patterns, and social costs between the two
systems are obtained analytically for policy implications. (c)
As a starting point, we develop theories and models in a
stylized single-bottleneck network with continuous departure
time choices during morning commute. This reveals the
efficiency of EV charging pricing as to influence both users’
and system performance, which can be extended to large-
scale general networks in the future.

B. Related literature

Modeling, analysis, and incentive design (primarily
through tolls) for morning commute have been studied
extensively in the transportation engineering literature. The
starting point is the celebrated Vickrey’s bottleneck model
[1], which has been generalized in a number of directions
to incorporate practical considerations such as heterogenous
users, demand elasticity, and multiple bottlenecks. See [2]
for a comprehensive review. This paper extends the classical
bottleneck model [1], [3] by modeling EV drivers’ heteroge-
nous valuation in workplace charging, the induced charging
decisions, and the impact on the user equilibrium.

Independently, there is a large literature on coordinating
EVs to minimize the electricity cost of serving EV charging
loads [4]-[6] (and see [7] for a review). In these studies,
travel patterns of the EVs are usually treated as exogenous
inputs to the model, impacting EV arrival and departure
times. Only several papers [8], [9] have explicitly internal-
ized how charging costs may impact travel patterns in static
settings focusing on the spatial aspect of travel choices (e.g.,
route and charging station selection), without considering
departure time choices or optimal dynamic charging tariff
design. Moreover, related studies on jointly managing trans-
portation and power networks fail to take user choices (e.g.,



in autonomous driving setups) into consideration; see [10]
for a review.

The existing work that is closest to ours is by Cenedese et
al [11], where charging pricing is optimized to manage trans-
portation costs. The key differences with our work are: they
do not model heterogeneous driving valuation for charging,
require every EV to charge a constant time before reaching
the bottleneck, and, most importantly, do not address diverse
social cost metrics for power and transportation systems.

II. MODEL

A collection of EV drivers, labelled by i € Z := [0,1],
commutes from home to work in the morning'. The time
period for the entire morning commute and charging process
is modeled as a continuous time interval 7 = [¢,¢] C R.
The interval 7 is determined such that without loss of
generality it will contain the earliest departure time of any
commuter and the latest completion time of any EV charging
sessions (see Section II-B for more details about the charging
sessions). It is also assumed that 7 is shorter than a day
so there is no overlap between the morning commute and
charging process of consecutive days.
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Fig. 1: Schematic of a simple transportation network with one
bottleneck and workplace charging.

A. Transportation and charging infrastructure

As in the celebrated morning commute problem [1], com-
muters leave for work through a single route (Fig. 1). There
exists a bottleneck on the route with flow capacity s > 0.
Let the (endogenous) rate at which commuters depart from
home be d(t) and the length of the queue be Q(t¢) at time
t € T. Without loss of generality, we focus on variable travel
time (i.e., waiting time in the queue) and assume zero fixed
travel time as in [1], so a commuter arrives at the bottleneck
immediately after departing from home and arrives at the
workplace immediately after leaving the bottleneck. As a
result, the rate at which commuters arrive at work is

d(t), if Q(t) =0 and d(t) < s,

W=Vs 01 >00rdt)>s.

In other words, if commuters arrive at the bottleneck at a rate
faster than s, a first-in-first-out queue will form before the
bottleneck and the service rate of the bottleneck is s. We can
also define the cumulative departure and arrival functions as

Do) = [ @) de and )= [ a(e) ds.

ISince we use an interval of unit length to model all commuters, we
will refer to the fraction of the population of commuters and normalize all
quantities by the actual size of the population accordingly.

Close to the workplace, the commuters can park and
potentially charge their EVs. We consider a setting where
any commuters who wish to charge their EV can get an EV
charging connection. However, some commuters may choose
to not charge the EV at the work depending on the existence
of an outside option (e.g., charging at somewhere else) and
the cost of charging at work. In other words, our focus is on
how the charging cost rather than the availability of charging
infrastructure can impact commuters’ travel decisions.

B. Commuter model

In our model, each commuter can decide when to leave
home for work, and whether to charge her EV at work. As
in the classical setting [1], all commuters’ ideal arrival time
to work is assumed to be identical, and is denoted by t* €
T. For commuter ¢ who departs home at ¢;, the time spent
waiting at the queue formed at the traffic bottleneck is:

w(ti) = Q(t)/s = (D(t:) — A(ti))/s,

where the second identity follows from Q(¢t) = D(t) — A(¢).
The actual arrival time of commuter ¢ is denoted by t¥ :=
t?(t;) := t; +w(t;). With these notations, we can relate the
cumulative departures and arrivals with departure and arrival
times of individual commuters:

D(t):/Il{ti <t} di and A(t):/zl{tggt} di,

where 1{-} denotes the indicator function.

A commuter’s generalized travel cost models the equiva-
lent monetary cost of the travel time of the commuter and
early or late arrival penalty. As common in the transportation
literature [3], the generalized travel cost of commuter ¢ with
departure time ¢; takes the form of

cur(ti) = aw(ts) + B — 3(8))4 + 1t () — 1)+,

where (z)4 := max(z,0), « is the monetary value of time,
and S and v are the penalty for unit-time schedule delay
of early arrival and late arrival, respectively. We also adopt
the standard assumption (cf. [3] and references therein) that
v>a>p>0.

Upon arrival, each commuter can decide whether to charge
her EV at a workplace charging spot. Given that the availabil-
ity of outside charging options varies among the commuters,
we model the valuation of workplace charging of commuter
i by 6; € [0,0] with § > @ > 0, where 6; models the
willingness to pay of commuter ¢ for a charging session (also
see Section II-D) at work. Let F'(6) := [ 1{; < 6}di be
a function characterizing the fraction of commuters whose
valuation is no larger than any 6 € [0, 0]. For simplicity, we
assume that all chargers have the same power rating (e.g., 6.6
kW for AC level 2 chargers), and the energy requirement of
all EVs is the same?. Let the decision of whether to charge

>The first assumption is typically valid for workplace charging. The
second one is unlikely the case. However, since our focus is on the power
consumption profile induced by the morning commute travel decisions, it
will be clear later that this assumption does not qualitatively impact our
results as long as each EV, if decided to charge, will stay being charged
during the morning commute rush hours.



be z; € {0,1}, the payoff associated with the EV charging
decision of commuter 7 is

uch(ti; CI?Z‘) = (91 — W(ta(ti)))xi,

where 7(¢) denotes what the commuter has to pay to the
charging provider for the entire charging session if starting
to charge at time ¢, and we assume that every commuter starts
the charging session upon arrival if deciding to charge’.
Given the decisions (¢;, x;), commuter 4’s total payoff is

u(ts, 2;) = uen(ti, T3) — cor(ts). (D

Since the only difference among the set of commuters is
that they may have different valuation of the charging service
0;, the individual departure time and charging decisions are
functions of the valuation 6; for some functions 7 : Ry +— T
and o : Ry — {0, 1}, respectively, such that

ti:T(9i>, a?i:o(Oi), 1e1.

C. User equilibrium

To this point, we have defined the morning commute and
charging game, where the set of the nonatomic players is 7
and the payoff of each player ¢ is defined according to (1).
The payoff of player ¢ depends implicitly on the decision of
other players via the travel delay term w(t), which will affect
both the generalized travel cost and the charging payoff (if
the charging cost is time-varying).

By extending the classical concept of (dynamic) user equi-
librium [1], [12] to incorporate charging decisions, we arrive
at the following solution concept for the morning commute
and charging game. This solution concept also coincides with
Nash Equilibrium for the considered nonatomic game.

Definition 1 (User equilibrium): Given any fixed charg-
ing tariff function m, for the collection of commuters Z,
the departure time decision 7 and the charging decision o
constitute a User Equilibrium (UE), if for all i € Z, t; € T
and z; € {0,1}, we have

w(t(0:),0(6:)) = ulti, ;). 2)
The interpretation of (2) is straightforward: no user has
incentive to unilaterally deviate from the decisions specified
by (1,0), if (7,0) constitutes a UE. Such a UE may be
understood as a day-to-day equilibrium. In other words, given
the parameters of the morning commute problem fixed, all
commuters will become aware of the traffic conditions after
a sufficient amount of commute experience, and the eventual
travel patterns in terms of departure time as well as the
charging decisions will be such that individual commuters
cannot further unilaterally improve their own payoff.
Crucially, Definition 1 in fact defines a family of equilibria
parametrized by the charging tariff 7. That is, we may obtain

3This may not be valid if commuters prefer to delay when their EVs are
connected to a charger after arrival. However, delaying the connection time
often requires extra costs and efforts from the commuters, including time
spent to park at an alternative location before relocating to the charging
spot (since most paid charging spots disallow free parking of unconnected
EVs). This way of “gaming” the system may not be preferred due to the
extra costs while considering it will add another layer of complexity to the
model. We thus leave exploring this direction to future work.

different UE decisions (7,0) when we vary m. For this
reason, we will denote the UE decision associated with any
particular charging tariff 7 by (7, 05).

D. Serving the EV charging load

Let the power rating of each charger be p and the duration
of each EV charging session be A. Denote the charging
completion time of commuter ¢ € Z with type 6; by
t(r(6;)) := t*(7(6;)) + A. Then, the electric load at time
t € T induced by the arrival of morning commuters is

]
t(r,0) = /9 po(B)L{t € [1*(r(6:)). £°(r(6:))]} AF(6y),

where t € [t*(7(6;)),t°(7(6;))] implies commuter i’'s EV
is still being charged provided that the commuter decides to
use workplace charging, i.e., o(6;) = 1. The continuous time
process {(7,0) = {{;(7,0) : t € T} then captures the load
for charging the EVs over the entire time horizon 7.

To secure power supply needed for serving this load,
the charging service provider will incur some cost. The
actual institutional arrangement (e.g., among the third-party
charging service providers, utility companies, and wholesale
electricity market operators) for the electricity industry is
complex and analyzing the incentives of these players in
details is beyond the scope of this study. Instead, we ignore
the monetary transfers among these players and consider the
following stylized cost function for serving the load moti-
vated by the increasing penetration of solar power generation

epnr (£(7,0)) = A / (o) dt, 3)
t

where A > 0 is the constant marginal cost of conventional
generators, and ¢*" is the sunrise time.

Remark 1 (Choice of electricity cost model): For a com-
muter arriving at 3 and deciding to charge, her contribution
to the electricity cost (3) is a piecewise linear function
Ap(t*" — t2)4. Using this function in the electricity cost
gives arguably the simplest model that still has two important
qualitative features: (a) only the electricity cost has a direct
dependence on the charging decision while the travel cost
does not, and (b) the travel and electricity costs are optimized
by different arrival profiles therefore need to be traded off
when jointly optimized. Practically, the use of this function
is motivated by solar integration challenges seen in states
like California where the net electricity demand in the
morning ramps down rapidly after sunrise. Our model is
mathematically equivalent to a more realistic model where
the electricity price is A\; > 0 before sunrise and Ay €
(0, A1) after sunrise. Indeed, note that the charging cost of
a commuter in this case is (A1 — A2)p(t*" — t2) 4 + AapA.
Ignoring the constant term (without impacting the optimal
tariff) and setting A = A\; — A2 reduce this to our model.

E. Optimal charging tariff design

It is evident that a time-varying charging tariff 7 can
impact user travel and charging behaviors in the UE, which
in turn affect the EV charging load and therefore the cost of



powering such a charging load. What is an optimal design
for the time-varying charging tariff m when these impacts are
taken into account? The first step in answering this question
is identifying the metrics to optimize. From a social planner’s
perspective, the following metrics are of interest.

1) Social cost, the transportation component: If the social
planner is more concerned about the performance of the
transportation system (e.g., traffic congestions and associated
delays), the following metric, as commonly used in the
classical morning commute literature, represents the total
generalized travel cost of all the commuters considered:

0
Jr(r,0) = /@ cul(r(0)) AF(6;).

2) Social cost, the electricity component. If the social
planner is more concerned about the performance of the
power system, the total cost associated with serving the
electric load for charging the EVs less the total value created
by the charging service will be of the primary concern:

6
Je(7,0) = cpur(U(T,0)) — /0 0;0(0;) dF(6;).

Including the second term is essential as otherwise the trivial
solution where no one charges will minimize this cost metric.

3) Total social cost: If the social planner cares about the
performance of this coupled transportation and electricity
infrastructure system, the total social costs for both systems
will be considered: Jr g(7,0) = Jr(7,0)+ Je(7,0). Note
that since both the generalized travel cost and the cost of
electricity for serving the charging load are in terms of
monetary values, they can be added directly.

For simplicity, let the social cost under consideration be

J(Tv g; H) = HTJT(Ta g) + '%EJE(Ta 0)7

and when k := (kr,kg) € {0,1}* take different values,
J models different social cost metrics mentioned above.
Using this definition, the problem of identifying the optimal
charging tariff can be written as

J(TryOn; K), 4)

min

mell
where II := {m : Ry — R} is the set of all arrival time
dependent charging tariff functions and (7.,0,) is a UE
induced by the charging tariff 7.

This problem, despite its simple appearance, is very chal-
lenging. First, the decision space is infinite dimensional as
we are optimizing over functions. Furthermore, we cannot
directly control the departure time and charging decisions
of individual commuters. Instead, we can only indirectly
influence the commuter behaviors through the charging tar-
iff, whose impact is limited since unlike tolls charging is
not mandatory. Finally, characterizing UE behaviors under
various charging tariff designs is in general a non-trival task.

Remark 2 (Existence and uniqueness of UE): The exis-
tence and uniqueness of UE (in terms of departure and
arrival profiles) have been established for common settings
in the transportation engineering literature [13]. However, for
optimization (4) and with an arbitrary 7, the existence and

uniqueness of UE are not guaranteed. This does not lead
to issues for us since our approach is to analyze specific
tariffs and prove they are optimal by showing they match the
corresponding social optimal cost lower bounds (Section III),
rather than searching over the space of feasible tariffs.

III. BENCHMARKS AND STRUCTURAL RESULTS

We will evaluate our charging tariff designs by comparing
to the following two benchmarks.

1) Status quo: In the status quo, the workplace charging
cost does not vary with the arrival time, i.e., the charging
tariff is mo(t) = 7o for all t € T for some constant 77y > 0.

2) Centralized social cost minimization: Rather than in-
dividuals making their own decision of departure time and
charging, in this ideal benchmark, a social planner deter-
mines the departure time and charging decisions for each
commuter in a way that minimizes the social cost metric
under consideration. In other words, the social planner solves
the following optimization to “assign” individual commuters
to ideal departure times and charging decisions

J(1,0;K), (5)

min
T7€ll, o€X
where I' := {7 : Ry = T} and ¥ := {0 : Ry — {0,1}}
are the sets of possible departure time and charging deci-
sion assignments based on commuters’ charging valuation,
respectively. Denote an optimal solution of (5) by (7*,0%)
where the corresponding « will be clear from context.
It is then evident that for any fixed k, if we denote the
charging tariff solving problem (4) by 7*, we have

J(Tpe,0ne;6) > (75,07 K).

Therefore, the social cost minimization benchmark will serve
as a lower bound for evaluating any tariff that we design. In
particular, a tariff that achieves the lower bound is an optimal
tariff for the social cost metric under consideration.
Even for the status quo benchmark, characterizing the
UE is a non-trivial problem with the introduction of the
heterogenous user valuation for charging service. A key step
in addressing this challenge is establishing the following
structural results about the UE induced by an arbitrary
charging tariff 7(-). Proofs are omitted due to the page
limit and can be found in the online report [14].
Lemma 1 (Structural characterization of UE): Given any
m, if (7, 0) constitutes a UE, then following statements hold:
1) There exists a 6* > 0 such that o(0) = 1{0 > 0*}.
Furthermore if 0* € (6,0), then it is the solution to
w(t*(7(0))) = 6.

2) The generalized travel cost of all commuters within
the non-charging group is identical, i.e., there exists a
constant C}° > 0 such that

co(T(0:) = CLF, i €Tpe ={i €T :0; < 0*}.

3) The sum of the generalized travel cost and the charging
cost, defined as ¢, (7(6;)) = cu:(7(6;)) + 7 (t*(7(6,))),
is a constant among all commuters within the charging
group, i.e., there exists a constant C¢, € R such that,

Cu(r(0) =CC., ieT.={ieT:0;>0).



This result is intuitive and is established by showing that
unless the said conditions are met, individual commuters can
unilaterally improve their payoff.

Equipped with Lemma 1 and extending the UE character-
ization for the classical morning commute problem [1], [3],
we can obtain the following results regarding the UE for the
constant charging cost benchmark.

Lemma 2 (UE for the status quo benchmark): Any UE
decisions (7,0) for the morning commute and charging
game with tariff 7y (t) = 7y > 0 satisfy following properties:

1) The charging group and non-charging group (see

Lemma 1) are defined by the threshold value 6* = 7.
2) The generalized travel cost of all commuters are iden-
tical at the UE, i.e.,
By 1

e (7(6;)) = “szCr—ﬂz ,
o (7(6:)) t t 0 B+~s
3) The departure rate function at the UE for any ¢t € T is

_Jsaf(a=p), ifte [tg,f),
dt) = {sa/(a—i—’y), if t € [£,td],

1el.

where t3 is the earliest departure time among the
commuters, tg/ is the latest departure time, and t is the
departure time such that the arrival time is ¢*. At the
UE, these times are ¢ = t* — B7/[a(B + 7)s],

td =t —/[(B+~)s] and ty =t5+1/s. (6)
Lemma 2 outlines the departure time decisions at the UE
under the constant charging tariff status quo. Commuters will
first depart at a rate higher than s and thus form a queue
at the bottleneck, until the critical time t~ after which they
depart at a rate lower than s. This leads to morning commute
rush/peak hours [t,t{'], during which there is a queue at
the bottleneck. As a result, the arrival rate during the rush
hours is constant s. Fig. 2 depicts the departures and arrivals
against time in this case, where we can show that the grey
region has an area that is proportional* to the total traffic
congestion delay for the population (i.e., the integration of
the aw(¢;) term over 7). Given Lemma 2, it is easy for us
to calculate the total schedule delay and thus the social cost
for the transportation system.

The social cost for the power system is less clear. We know
that the arrival rate will be s during [t3,¢)']. However, how
this stream of arrivals during [t], ('] are split between the
charging group and non-charging group is unclear. In fact,
any way to assign the charging/non-charging group departure
(and the corresponding arrival) rates satisfying the following
conditions constitutes a UE: (a) the total arrival rates of the
charging and non-charging group sum up to s in [t0,t]],
and (b) the total mass of non-charging group is F'(7p). In
Fig. 2, the area of the yellow region is cpwr(¢(Try, Ory))/ AP
(thus is proportional to the electricity cost) when we consider
the worst-case way of splitting the arrivals where all early
arrivals belongs to the charging group, assuming 1—F(7g) >
(t —tg)s so the charging group can fill up the bottleneck
during the part of the rush hour before the sunrise. The total

“4Precisely, the area is the total traffic congestion delay divided by a.

power system cost Jg(7r,, 0, ) in this case is the electricity
cost (i.e., the yellow area multiplied by Ap) less the value

served by charging service (i.e., f:o 0; dF(6,)).
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Fig. 2: Example of UE cumulative departures and arrivals under the
status quo, where the yellow area that scales with the electricity
cost represents UE charging decisions leading to the maximum
electricity cost.

IV. CHARGING TARIFF AS A TOLL

We start by analyzing the case where x = (1,0). In
this case, we are designing time-varying charging tariff to
minimize the social cost for the transportation system. In
some sense, this can be viewed as using charging tariff as
a more convenient toll, whose implementation requires no
traffic stops or dedicated new infrastructure. The downside
of incentivizing commuters using a charging tariff instead
of a toll is that not everyone has to pay the charging
tariff, as some commuters may not drive an EV (which
is not considered in this paper), and even if a commuter
drives an EV, she may decide not to charge it at work.
In other words, even though a time-varying charging tariff
is easier to implement, its reach is limited and commuters
have the option to strategically avoid it, based on their
heterogeneous valuation for charging. This will be a recurrent
theme throughout the rest of the paper when we optimize
diverse social cost metrics.

When we are only optimizing the social cost for the
transportation system, the solution to the centralized social
cost minimization problem (5) is known in the transportation
literature. Since the charging decision does not directly
impact the generalized travel cost of commuters, it does not
impact the social cost metric J(7,0; k) when x = (1,0).
We reproduce the result from [3] here.

Lemma 3 (Transportation social cost minimization): The
departure time assignment 7 that solves the social cost
minimization problem (5) with x = (1,0) is such that the
departure and arrival rates satisfy

dy(t) = ak(t) = 1{t € [t],ty]}s, teT, (7)

where t3 and t] are as defined in Lemma 2.

In other words, the social optimal assignment has the same
rush hours [t3,¢)'] as in the status quo benchmark. During
the rush hours, the commuters are coordinated such that
they depart (and arrive) at rate s, maximizing the bottleneck
capacity while not resulting in a queue. This completely
eliminates the traffic delay term aw(¢;) in the generalized
travel cost for every commuter . However, since different
commuters will have different schedule delay related cost at
the solution, the solution by itself is not a UE as commuters



have an incentive to unilaterally alter the departure time to
minimize their schedule delays.

In the classical morning commute literature, the opti-
mal fine toll [3] equalizes the schedule delays of different
commuters and therefore decentralizes the social optimal
solution (7). In our setting, we can use a time-varying
charging tariff to mimic the optimal fine toll as long as we
can incentivize every commuter to charge at work despite
their heterogeneous valuation 6;. This is achieved with the
following charging tariff.

Lemma 4 (Transportation-optimal charging tariff): An
optimal tariff solving (4) when x = (1,0) is

T (t) = Tote (&5 3, L0

where the time-varying optimal fine toll based charging tariff
with time interval [t%,¢?] is defined as

.44 4al) —

Toft (¢, 1) {9, otherwise.

It is intuitive why this charging tariff is social cost optimal
when only transportation costs are considered. As 6; > 6, it
is optimal for all EV drivers to charge at work. Then, the
form of the tariff ensures that the schedule delay terms in
the travel cost are fully compensated by the negative terms
in the charging tariff. As a result, departing following (7) is
a UE. Denote such a departure time schedule by 71 and the
charging decision that all commuters charge at work by o7.

Fig. 3 depicts the cumulative departures and arrivals in
this case. Comparing with Fig. 2, we can observe that the
traffic congestion delay in the status quo is eliminated with
the transportation-optimal tariff. Meanwhile, the morning
commuter rush hours [¢g, tg’] stays the same as the status quo,
so is the total schedule delay (as well as the transportation
system cost) is obtained by integrating the schedule delay for
all the commuters. On the other hand, since all commuters
will charge at work with this tariff, the power system cost
is the electricity cost (scaling with the area of the yellow

region) less the charging value served, i.e., f; 0; dF'(6;).
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Fig. 3: Example of UE cumulative departures and arrivals under the
transportation-optimal charging tariff.

V. TRANSPORTATION-IN-THE-LOOP CHARGING PRICING

We next analyze the setting where x = (0, 1). The idea
here is to use a time-varying charging tariff to optimize the
electricity cost of serving EV charging loads while recogniz-
ing and internalizing the extricable ties between commuters’
travel and charging decisions. This is an important problem
for power system operators as EV adoption increases.

0— B(t* - t)+ - ’7(t - t*)+, le [tq7tQI]7

With our stylized model for the power system cost, it is
evident that Jg(7,0) is optimized when all EVs decide to
charge, and the cost of serving the charging load is 0. In
other words, the power system cost is optimized when all
the EVs arrive and charge after the sunrise time ¢°".

This can be achieved with many tariff designs.

Lemma 5 (Electricity-optimal charging tariffs): Any tar-
iffs of the following form solve (4) with x = (0, 1):

R(t) = Lt < Ym0 + 1t > )i (1), te T, ®)
where 7_(t) and 7 (¢) < @ satisfy

B —t )y ot — 1) (B ()5 > O
afs+ Bt —t4 )4 +y(ty — )4 — (0 — Ty (t4))+,

for any t_ < t*" and t; € [t°,t°" + 1/s]. In addition, the
following tariff minimizes Jg(7,,0,) while achieving the
lowest Jr(7x,0,) among all tariffs minimizing Jg (7, 07 ):

Th(t) = more (& th, b ) (10)

where t{, = max{tg, '} and ¢} =t} + 1/s.

Intuitively, tariffs of form (8) incentivize commuters to
arrive and charge after ¢°" by ensuring (a) commuters are
better off to arrive during [t°,¢*" 4 1/s] with condition (9),
and (b) commuters are better off to charge at work since
w4 (t) < 6. In (9), the term «/s is an upper bound for the
worst case traffic delay if arriving after ¢*". The particular
tariff that we proposed in (10) in fact does not satisfy (8) and
(9), which are sufficient conditions for optimal tariffs but not
necessary. It is designed to nudge the departure and arrival
times of all commuters to the interval [t3, t% +1/s], which is
[ta, 0] if t7 < ¢3 and [t**, #*" +1/s] otherwise. Furthermore,
by compensating for the schedule delay terms as in the
optimal fine toll defined in Lemma 4, it eliminates the traffic
delay in the UE and it is not difficult to show that this tariff
achieves the secondary goal of reducing the transportation
system social cost given that the primary objective associated
with the electricity system social cost is optimized.

Cumulative
departures, D(t)

Cumulative
arrivals, A(t)

Departures and arrivals

e * t Time

Fig. 4: Example of UE cumulative departures and arrivals under the
electricity-optimal charging tariff (10).

VI. NEXUS COGNIZANT CHARGING PRICING

In previous sections, we have seen that time-varying EV
charging tariffs can be used to optimize the social cost metric
for either the transportation system or the electricity system.
In each of the cases, we are able to identify a charging tariff
that achieves the same performance as the centralized social
cost minimization benchmark for the metric under consider-
ation. In this section, we move on to the setting where the



social planner is cognizant to overall cost for the electricity-
transportation nexus, i.e., when £ = (1,1). Can the social
costs for both the transportation and electricity systems be
simultaneously optimized with one charging tariff? If not,
can we identify a tariff that achieves an optimal trade-off
between these two metrics?

To answer these questions, we recognize one key common
feature of the optimal tariffs that have been designed so
far: the charging tariffs are such that all commuters are
incentivized to charge their EVs at work. This is essential.
Otherwise, commuters who do not charge at work will
not directly face the incentives of the tariff and therefore
their decisions may not follow the social cost minimization
assignment. Indirectly nudging non-charging commuter via
the decisions of charging commuters at the UE is possible.
But it turns out that this is not sufficient for achieving the
first best outcome as in social cost minimization benchmark.
Motivated by this observation, we first characterize the social
cost minimization solution when it is optimal to charge all
EVs at work. Due to the space limit, we focus on the most
typical scenario specified by the following two assumptions:
A1 Sunrise time. Sunrise time is earlier than the desired

arrival time, i.e., " < t*.

A2 Charging rate. AC level 2 chargers are used for work-
place charging such that the charging duration is longer
than the rush hours, i.e., A > 1/s.

Assumption A1 usually holds when the desired arrival time
is set to 9 a.m.. It may fail for certain regions with latitudes
relatively close to the poles. For Assumption A2, using a
common AC level 2 charger and considering the average
commute distance in the U.S. and EV electricity consumption
per mile, it usually takes more than the length of rush hours
(e.g. 2 hours) to fully charge an EV used for commute.

A. All-charging case

Under these assumptions, we can obtain the following
solution for the centralized social cost minimization when
it is optimal for all commuters to charge at work.

Lemma 6 (Nexus cost minimization, all charging case):
It is optimal for all commuters to charge in the centralized
social cost minimization problem (5) with x = (1, 1) if and
only if either one of the following two conditions hold:

1) Early sunrise case: If

Y

where ¢ is defined as in (6), then o*(¢;) = 1 for all
1 € 7, and the optimal departure time assignment 7*
is such that the departure and arrival rates are dy () =
af(t) =1{t € [t3,td]}s, t € T.

2) Late sunrise case: If

and 0 > Ap(t™ —t3,), (12)

where Y, =t — 4’\//57(6+’Y_~)_(>\t;7t5r)7 then o*(0;) = 1

B+
for all ¢ € Z, and the optimal departure time assignment
7* is such that the departure and arrival rates are
dq;}(t) = aq(t) = 1{t € [ty ty,]}s, t € T, where
Ny =ty +1/s.

57 < tgv

" > tg

Equations (11) and (12) offer a tight characterization for
when it is optimal for all commuters to charge. Under these
conditions, we can decentralize such social optimal solutions
with the following tariffs.

Lemma 7 (Nexus-optimal tariff, all charging case):
Under the all-charging condition (11) or (12), there is
a charging tariff 7y, that decentralizes the social cost
minimization decisions with x = (1,1).

1) Early sunrise case: When (11) holds, 7%, (t) = 77.(t).

2) Late sunrise case: When (12) holds, n%,(t) =
Tott (£ 1y £ -

In the early sunrise case, it turns out that the
transportation-optimal tariff optimizes the performance of
both systems. Indeed, when the sunrise is earlier than the
earliest departure time under the transportation-optimal tariff,
the cost of charging all EVs are zero and therefore there is no
conflict between the cost metrics of the two systems. In the
late sunrise case, this observation is no longer true. The goal
to reduce the electricity cost in this case results in a later
commute time window than that under the transportation-
optimal tariff. The tradeoff between the cost metrics of the
two systems also means that the earliest departure time is
not ¢%'; it is actually earlier than #°" so it will incur non-zero
cost for charging some EVs. The second inequality in (12)
ensures the charging valuations are such that it is optimal to
charge every EVs even at a non-zero cost.

B. General case

Moving beyond the all-charging conditions, the problem
becomes much more challenging. The next result provides a
complete characterization of the social optimal solution.

Theorem 1 (Nexus cost minimization, general case):
Assume 6 has probability density function f(0) = L F(6).
When neither (11) nor (12) holds, the solution to the
centralized social cost minimization with x = (1,1) is
characterized by a threshold in charging service valuation
6%, which is the unique solution to the equation

[(Apy/2) = Ap(B + 1) F(0)]/s—=Ap(B + ) (t* — t°)/2
B+v+Ap

The optimal charging decisions are o*(6;) = 1{0; > 07},
1 € Z. The optimal departure time decisions are such that
commuters depart at constant rate s during the interval
[t tho], Where ¢, = ti, + 1/s, and

DpF(07) +4]/s — (B +) (" — )
B+y+Ap

The non-charging group Z,., which accounts for F(61)
fraction of the population, departs in [t3,, th, + F(67)/s].
The charging group Z. departs in [ty + F(07)/s, t3,).
Theorem 1 suggests that when the all-charging conditions
fail, it is optimal for a F(6")-portion of commuters, with
lower valuations, to not charge. These commuters depart
and arrive before the sunrise, in fact before ty, + F(67)/s
which can be shown to be strictly earlier than t°°. All
other commuters with higher valuations will depart later and
charge their EV at work. Fig. 5 illustrates the solution.

=0.

thg =17 =
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Fig. 5: Demonstration of social optimal cumulative departures and
arrivals when all-charging conditions fail.

Since a portion of commuters will not charge in the social
optimum, we can establish the following negative result.

Proposition 1 (Impossibility theorem): When neither (11)
nor (12) holds, there is no charging tariff that can decentralize
the social cost minimization solution for x = (1, 1).

Indeed, for the portion of commuters not to charge at work,
charging tariffs will not be able to incentivize their travel
behaviors. Trying to nudge the behaviors of the lower F'(61)
portion via charging tariff is possible, but this comes at the
cost that we need to incentivize them to charge first, which
will result in sub-optimal electricity system cost:

Theorem 2 (All-charging tariff, general case): When nei-
ther (11) nor (12) holds, and with x = (1,1), among the
all-charging tariffs of the form mog (¢; t9,¢tY) with {9 =
t9 4+ 1/s, the tariff that optimizes the social cost metric is
T (8) = Tor (15 150,18,)

Remarkably, it is optimal for the commuters to travel
during [ty,, tﬁ{l] as in Lemma 7 (even when the all charging
conditions (11) and (12) fail) if we restrict to all-charging
tariffs. While the alternative tariff g (t; tcﬁu, t%) will
incentivize the same departure time decisions as in the social
optimum (cf. Theorem 1), it leads to a strictly higher total
cost when the electricity cost is also considered.

VII. COMPARISON, IMPLICATIONS, AND CONCLUSIONS

Collecting all our results, we can compare the social
cost metrics in diverse settings. To simplify notation, let
JI = Jg(7r,0x), for any 7 and k € {T,E}. Further, let
T = By/[2(B+7)s] (cf. [3]) and J5 == — [} 0,dF(6;) be
the social optimal lower bounds obtained from centralized
optimization. Under A1-2, we have:

Theorem 3 (Cost comparison):

1) If " < tg (i.e., early sunrise), then
TR0 > JTE = TN = T = g
JI0 > JIT = TN = T g
2) If t* >t (i.e., late sunrise), then

* * * *
™0 TR TR N1 T _ 7*
JRe Z TR JTE s TN s T = g

AV AV

JIZ TR s N s JTE =
Theorem 3 packs both what is expected and what is
surprising. First, in the early sunrise case, since the travel
pattern optimizing the transportation costs also optimizes the
electricity cost, there is no trade-off between the two cost
metrics that we are considering. Therefore, we can reach both
the lower bounds for Jr and Jg with the proposed tariffs,

and they strictly improve upon the status quo performance.
However, this is no longer the case for the late sunrise
setting. The strings of strict inequalities are expected as
typical in multi-objective optimization contexts, where the
performance of the system measured by the optimized metric
is strictly better than that measured by the metric that is
not optimized for. Somewhat unexpected are the extents to
which optimizing one metric may have on the performance
of the other metric. For example, optimizing the electricity
cost only could lead to a transportation system performance
strictly worse than the status quo, which (as not hard to
show) is already twice the optimal performance. This leads
to the policy implication that given the EV-induced strong
coupling between the two systems, optimizing one system
without considering its impact to the other can lead to severe
negative externalities for the system not considered.

This paper is only the first step in leveraging EVs to jointly
optimize the coupled transportation and electricity systems.
Our qualitative results highlight the importance of jointly
modeling and managing the two systems. In future work,
we plan to incorporate more realistic power system costs,
address the institutional constraints (e.g., incentives and
budget constraints of charging providers), explore joint toll
and charging tariff design, and perform numerical evaluations
with more complex power and transportation networks.
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