

A Survey of Researcher Perceptions of Replication in Geography

Peter Kedron, Joseph Holler & Sarah Bardin

To cite this article: Peter Kedron, Joseph Holler & Sarah Bardin (2025) A Survey of Researcher Perceptions of Replication in Geography, *Annals of the American Association of Geographers*, 115:1, 184-204, DOI: [10.1080/24694452.2024.2415695](https://doi.org/10.1080/24694452.2024.2415695)

To link to this article: <https://doi.org/10.1080/24694452.2024.2415695>

© 2024 The Author(s). Published with
license by Taylor & Francis Group, LLC.

Published online: 06 Nov 2024.

Submit your article to this journal

Article views: 563

View related articles

View Crossmark data

A Survey of Researcher Perceptions of Replication in Geography

Peter Kedron,^a Joseph Holler,^b and Sarah Bardin^{c,d}

^aDepartment of Geography, University of California Santa Barbara, USA; ^bDepartment of Geography, Middlebury College, USA; ^cSchool of Geographical Sciences and Urban Planning, Arizona State University, USA; ^dSpatial Analysis Research Center, Arizona State University, USA

Replications confront existing explanations with new evidence by retesting prior claims using new data and similar research procedures. Publishing replication studies remains uncommon in the geographic literature. Place-to-place variations make it unclear whether the results and claims of a study should be expected to replicate across locations, and a lack of experimental control makes it challenging to implement replications that can provide clear evidence about those same results and claims. The small number of studies that have attempted to replicate geographic research suggest that many studies cannot be fully replicated or are simply missing information needed to attempt a replication. Accordingly, it remains unclear how geographic researchers view replication and its role in the knowledge accumulation process. To address this question, we surveyed geographic researchers about their understanding of replicability, beliefs about what factors affect the chances of replicating a study, motivations to attempt replication studies, and experiences conducting replications. The results of our survey suggest that researchers are familiar with replication and believe that replication studies can serve a range of epistemic purposes. Nonetheless, only a small percentage of geographic researchers attempt or publish replications due to a lack of incentives. Researchers are similarly uncertain whether it is currently valuable to replicate geographic research. These findings could in part be due to differences between research traditions, and it might be fruitful to further examine how researchers working in different subfields perceive and use replication in their work. **Key Words:** *epistemology, geographic research methods, open science, replicability, survey*.

Replications test the validity of the claims made in prior research by confronting existing explanations with new evidence using new data and similar research procedures (National Academies of Sciences, Engineering, and Medicine [NASEM] 2019; Nosek and Errington 2020). Attempts to reproduce prior research also test the validity of a study, but do so using the same data and the same, or very similar, analyses (Plesser 2017; NASEM 2019). Contrasted with a replication attempt, the central focus of a reproduction attempt is the verification of claims through the examination of how a study was conducted and whether the design and execution of that study support the results presented. The results of reproduction or replication attempts do not provide conclusive evidence for or against a claim, although those that produce outcomes consistent with prior studies typically

increase confidence in a claim and the theories on which it is based (Earp and Trafimow 2015; Nichols et al. 2021). When prior results cannot be re-created, there is reason to question the data and methods used by the prior study, the claims made in the prior study, and perhaps even the current theoretical understanding of the phenomena being investigated (Christensen, Freese, and Miguel 2019; NASEM 2019).

Although the number of reproduction and replication studies undertaken in the social and behavioral sciences continues to rise, such studies have not yet become commonplace in geography. The majority of recent research in the geographic literature on the subject has focused on reproduction over replication and has emphasized the computational reproducibility of geographic research ahead of other dimensions. For example, an ongoing reproducibility initiative

ARTICLE HISTORY

Initial submission, February 2024; revised submission, August 2024; final acceptance, September 2024

CORRESPONDING AUTHOR

Peter Kedron peterkedron@ucsb.edu

© 2024 The Author(s). Published with license by Taylor & Francis Group, LLC.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

supported by the Association of Geographic Information Laboratories in Europe attempts to reproduce the computational results of submissions to their annual meeting and reports on the accessibility of related data, code, and computational environment (Nüst et al. 2018; Ostermann et al. 2021). A series of reproduction studies led by Kedron and Holler (Kedron, Holler, et al. 2022; Kedron, et al. 2024) advance this stream of work by introducing selected variations into the reproduction process to test the sensitivity of results to conceptual and methodological perturbations. Those studies, however, also largely focus on testing the conclusion validity of past studies through computational reproduction.

The small number of published studies that have attempted to replicate geographic research suggest that many studies cannot be fully replicated (e.g., Kedron, Bardin, et al. 2022; Paez 2022), or are simply missing components needed to attempt a replication (Ostermann and Granell 2017; Konkol, Kray, and Pfeiffer 2019). More often the literature on the replication of geographic research turns to the question of if and when it is reasonable to expect the findings and claims of a prior study to be replicable (Goodchild and Li 2021; Kedron et al. 2021; Sui and Kedron 2021; Kedron and Holler 2022). Place-to-place variations in phenomena and the processes that produce those variations are among the defining features of geographic research and form a central tenet of many of its research traditions. With these intellectual foundations, it remains unclear how current geographic researchers view replication and its role in the knowledge accumulation process. There is similarly limited empirical evidence available about the factors that motivate or discourage geographic researchers from pursuing replications.

To address this gap in our collective knowledge, we surveyed geographic researchers about their understanding of replicability, beliefs about what factors affect the chances of replicating a study, motivations to attempt replication studies, and experiences conducting replications. We are aware of only a handful of similar published surveys within the geographic literature (Ostermann and Granell 2017; Konkol, Kray, and Pfeiffer 2019; Balz and Rocca 2020; Kedron, Holler, and Bardin 2024a). These surveys, though, typically focus on the quantitative and computationally intensive forms of geographic research, primarily assess the availability of research

artifacts (e.g., data and code), and address reproducibility rather than replicability. In all but one instance, these surveys also rely on convenience samples drawn from specialist conferences or nonrepresentative subsets of the geographic research community. In contrast, to support generalization, we designed a sampling frame to capture researchers from across disciplinary subfields and methodological approaches and draw survey participants from that frame using a probability sampling scheme.

In the remainder of this article, we first discuss replication in the context of geographic research. We then detail the design of our survey of geographic researchers, sampling strategy, and analytical approach before presenting our results. We conclude with a discussion of the implications and limitations of our work.

Replication and the Evaluation of Prior Claims

Replications structure the iterative development of theory by confronting claims with new evidence. Broadly defined, a replication is any study that has at least one outcome that would be considered diagnostic evidence of the validity of a claim made in prior research (Nosek and Errington 2020). The details of definitions of replication and replicability vary across scientific disciplines, but share this focus on the evaluation of the claims made in prior studies (Plesser 2017; Barba 2018). Currently, the most common usage of the term *replication* follows the definition established by Claerbout and Karrenbach (1992), which identifies a study as replicable if a second independent study arrives at the same findings using new data analyzed using similar methods. This definition has been adopted by NASEM (2019) and was introduced into the geographic literature by Goodchild et al. (2021) and Kedron et al. (2021).

Replications play an essential role in the scientific investigation of phenomena because no single study provides evidence about all of the conditions that could affect the claim being made. This limitation exists because individual studies are performed by particular researchers using particular methods to draw and analyze data from particular settings, and changes in any of these contextual factors could lead to different findings. Until a claim is tested through replication, our expectation of whether it will hold

under new conditions relies on the theory used to structure the original investigation or on a speculative assumption of generalizability.

Replications empirically test the validity and reliability of the claims made in a study by selectively altering different aspects of the initial work and repeating the study (Radder 2003, 2012; Schmidt 2009; Gomez, Juristo, and Vegas 2010). By altering different aspects of a study across a series of replications, researchers can collectively and progressively test claims across a widening set of conditions and use that information to revise theory. The type of check a replication provides depends on which aspects of a study are changed and in what combination. Researchers pursuing a replication will collect new data but will also change the materials and procedures used in the replication, the measurement of variables, the location of the replication, the population being studied, or some combination of these. Gomez, Juristo, and Vegas (2010), Hendrick (1990), and Schmidt (2009) presented taxonomies that both define replication and link different study alterations to different epistemic purposes. Specific epistemic purposes include testing the generalizability of a claim in new contexts, assessing various forms of study validity (internal, external, conclusion), and improving our understanding of the location-based factors that influence a phenomenon. Christensen, Freese, and Miguel (2019), Kedron et al. (2021), and The Turing Way Community (2024) all similarly deconstructed the definition of replicability, and the related concept of reproducibility, by linking changes in data and analysis to different purposes and implications. Within these taxonomies, replication studies are also often classified as either direct or conceptual depending on which of these aspects a researcher is changing and which objective they are pursuing (see Sargent 1981; Schmidt 2009; Plesser 2017).

Direct replications make limited changes to an initial study to verify the claims of the study by testing for conclusion, construct, and internal validity. If a researcher attempting a replication keeps all aspects of a study the same, but collects new data, then the replication is designed to assess internal validity. As long as the population being studied remains stable between the two studies, the replication will control for sampling error and will provide evidence as to whether the prior results were the product of chance variation. Alternatively, if a

researcher changes how a key variable is measured and also holds all other aspects of a study constant, then the replication can test construct validity. Consistently observing a relationship across well-established measures of a concept or phenomenon might raise researcher confidence that the operationalization used in the original study did not bias the result or affect the claims made. Finally, if the analytical procedures used in a replication differ from a prior study, then the replication assesses whether these factors affected the original results, thereby testing the conclusion validity of the prior work.

In conceptual replications, changes are made to the population or location being studied to test external validity and whether the claims made in a study generalize to new populations and contexts. In geographic research, a conceptual replication could involve changing the location of a study from one city to another or from one ecosystem to another. Alternatively, a researcher could conduct a conceptual replication of a study by examining the same location across different time periods, for instance, before and after migration is thought to have changed the population within that area. Conceptual replications provide evidence that can be used to assess the hypotheses and theories that underlie a prior study in new situations (Schmidt 2009). Conceptual replications, however, do not necessarily provide evidence that can be used to adjust confidence in a claim made in an initial study (Nosek and Errington 2020). For example, it is not necessarily the case that observing evidence in one location that contradicts a prior study's claim based on a different location should reduce a researcher's confidence in the prior claim. It is possible that the prior study claim might remain internally valid while failing to generalize to the new study location for reasons that need to be further investigated.

As tests of generalizability and external validity, conceptual replications play an important role in the development of theory (Earp and Trafimow 2015; Irvine 2021; Haig 2022). When a theory is early in its development, it is often unclear whether a researcher should expect the predictions of that theory to hold in new populations, locations, and times. This is the case because new theories commonly lack a well-developed and empirically supported set of conditional statements identifying for whom, where, and when their explanations and predictions should hold. Without these statements, it remains

possible that the predictions of the theory will generalize across a large set of contexts. In other words, a lack of evidence causes uncertainty about the explanatory range of the theory. In this situation, conceptual replications act as empirical tests of the external validity of a theory. Conceptual replications provide evidence to inform the addition and revision of conditional statements that identify for whom, where, and when the theory is expected to provide meaningful predictions. As the conditions required for a claim to replicate are incorporated into the theory, the theory matures and the situations in which the prediction of the theory are expected to hold becomes clearer.

The Replicability of Geographic Research

Geographers have arguably never formally and explicitly held an extended discussion of the role of replication in the discipline. Replication, however, is implicitly at the center of the discipline's nomothetic–ideographic debate (Sui and Kedron 2021; Kedron and Holler 2022) and ongoing discussions about how to construct explanations of the physical and human processes that shape the world (see Harvey 1969; Sayer 1992; Inkpen and Wilson 2013; Miller and Goodchild 2015; Yeung 2019, 2023). A central argument in the nomothetic–ideographic debate (Schaefer 1953; Hartshorne 1954, 1955) over whether geography should be a law-seeking discipline focused on whether the uniqueness of places precluded the possibility of discovering laws of geography altogether (Bunge 1962; Lewis 1965; Guelke 1977). Within this literature, discussions of replication typically pivot on the expected variability of processes across locations, whether replications can inform theory development and, as a practical matter, the ability to control factors that could affect the outcome of a study.

The first point raised in most discussions of replication in geography is that places are unavoidably different from one another (see Goodchild et al. 2021; Wainwright 2021; Goodchild 2022). Researchers involved in these discussions often invoke Anselin's (1989) second law of geography, which notes that geographic features exhibit uncontrolled variability over space. This principle implies that researchers can expect to observe differences between places, which could contribute to an inability to replicate prior findings from one place in

another. Geographic variation essentially poses an identification problem for those interpreting the results of a replication, because it is not clear whether the same research outcome (e.g., parameter estimates) observed in different locations is or is not determined by the same processes. In some instances, commentary about differences between places is combined with discussions of the role of researcher position and perspective in the research process (Peet 1999; Simandan 2019). Discussions of replication developed from this perspective often suggest that the role replication can play in geography is limited, because research is an interpretive process dependent on the unique perspective of a researcher who is analyzing data drawn from different or unique places (Wainwright 2021).

Arguments about geographic variation can be pushed further and linked to the principle of flux (Marcovich 1967). This alternative argument suggests that, on the one hand, a feature studied in a place cannot be encountered twice, and, on the other hand, that places are defined not by the stability of their features but by their continual renewal through processes that create change in those same features. The two alternative readings of this principle have very different implications for the prospect of replicating geographic research. Under the first simpler reading, change is constant and a researcher should not expect to find the same arrangement of features at different times in the same location. In this situation, an inability to replicate a finding would not be surprising and explanations would be localized. Under the second reading, geographic features are continually changing but are structured by processes that might, or might not, be consistent across time and space. In this situation, findings could be expected to replicate within a range of uncertainty, and attempting replications can give insights into the stability of processes across locations.

Understanding places as defined by processes that potentially differ across locations aligns with the argument that geography is well-suited to the development of empirically grounded middle-range theory (Miller and Goodchild 2015). The aim of middle-range theory is not to develop overarching explanations or essential features of processes, but rather to offer provisional explanations of identifiable phenomena, which can be tested and used to slowly develop more general but bounded explanations

(Merton 1968). As Harvey (1969) noted, geographers often elaborate the theories of other disciplines by linking them with spatial explanations of form and process. Turner (1989, 2002) argued this synthesis approach gives geography the capability to generate and refine the text of theories and establish their spatial domain by examining phenomena empirically within a web of complex processes that interact within and between locations. In this way, replications can give insight into when, where, and why an explanation does not hold (Zhang and Wolf 2023). Similarly, Sayer (1992) distinguished between intensive research in which synthesis is used to identify how processes work in a particular case or location, and extensive research in which synthesis extends across cases or locations to identify how widely a process holds. In intensive research, replication attempts that change the data collected from a location can be used to corroborate the explanation of a process. In extensive research, replication data are gathered from new contexts to establish the coverage of an explanation. In either case, that accumulation of empirical evidence through replication can be used to refine and adjust theory.

Finally, discussions of replication in the literature also frequently point out that many of the phenomena geographers study not only vary across locations but are difficult or impossible to control (see Sayer 1992; Kedron et al. 2021; Waters 2021). This lack of control makes it difficult to execute replications that isolate the influence of any particular factor from all the other confounding factors that vary from one location to another, which makes it unclear what lessons should be learned from a replication attempt and what epistemic function that attempt might be serving. Moreover, it is also often unclear *a priori* which factors should be accounted for when studying a particular location. The political ecology literature is rich with examples of theories applied to new locations without understanding crucial location-specific factors. One example would be applying a Western understanding of the relationship between access to safe water and public health to Bangladesh without considering arsenic and gender (Sultana 2009). When location-specific factors affect how a phenomenon operates, accounting for the same set of factors in different locations might not be enough to ensure that two studies will produce the same results. If the common set of factors accounted for in studies of different locations fails to

include some location-specific factors that affect the process responsible for generating the phenomenon in either location, the results of the study could vary across locations for reasons not considered in the study. In practice, the full set of factors that might affect the processes generating a phenomenon in different locations are typically unknown. As Goodchild and Li (2021) suggested, even when some level of control can be exerted on a process, it will remain difficult to exclude the variable effects of context from studies that are incompletely identified in the presence of spatial heterogeneity. In addition to the intrinsic challenges posed by uncontrolled variability across locations, geographers also often use secondary data without control over data collection, population sampling, and variable measurements, and prior studies often lack important details about materials and procedures. These challenges also substantiate the need for replication of geographic research to better understand location-specific variations and their influence on the social and environmental phenomena geographers study.

Geography as a discipline is presently defined by its topical, epistemological, and methodological diversity. Although replication has been an implicit part of many discussions of the development of knowledge in the discipline, it remains unclear exactly how the practice is understood and applied by researchers within those different traditions. Moreover, to date there has been no empirical measure of how often researchers across the discipline attempt to replicate research, what motivates them to pursue or not pursue replications, and how they would interpret the findings of such studies. In fact, we expect that many geographic researchers would disagree with the conception and presentation of replication presented here. Until researcher conceptions and practices of replication are systematically assessed, however, conversations about the role of replication in the discipline can only progress so far.

Data and Methods

Complete documentation of the procedures, survey instrument, and other materials used in this study are available through Kedron, Holler, and Bardin (2024b; see <https://osf.io/x6qrk/>). This OSF project connects to a GitHub repository that hosts the anonymized data set and code used to create all results and supplemental materials along with a

complete history of their development. All of the results presented in this article can be independently reproduced using the materials in that repository. Before the start of data collection, we preregistered an analysis plan for the survey with OSF Registries (Kedron, Holler, et al. 2022; see <https://osf.io/a4nwg>). The survey was conducted under the approval and supervision of the Arizona State Institutional Review Board (STUDY00014232).

Sampling Frame

Our target population of interest is researchers who have recently published in the field of geography. We followed a four-step procedure to create a sampling frame for our survey that captures this diverse population of researchers. First, beginning at the publication level, we identified journals indexed as either geography or physical geography journals by the Web of Science's Journal Citation Reports that also had a five-year impact factor greater than 1.5. From those journals, we created a database of all articles published between 2017 and 2021. Second, we used Arizona State University's institutional subscription to the Scopus Database to extract journal information (e.g., subject area, ranking), article information (e.g., abstract, citation counts), and author information (e.g., corresponding status, e-mail) for each publication. Because our intention was to capture individuals actively publishing new geographic research, we retained publications indexed by Scopus as *document type* = "Article" and removed all other publication types (e.g., editorials, book reviews) from our article database. We also removed articles with missing authorship information.

Third, moving to the researcher level, we created a list of researchers and their published articles, focusing on corresponding authors for two reasons. (1) Corresponding authorship is one indicator of the level of involvement an individual had in a given work. Although imperfect, it was the best available indicator in the Scopus database as across journals there is no commonly adopted policy for declarations of author work (e.g., CRediT Statements). (2) Scopus maintains e-mail contact information for all corresponding authors, which gave us a means of contacting researchers in our sampling frame. Scopus

also maintains a unique identifier for each author (author-id) across time, which allowed us to identify authors across publications.

Fourth, we constructed a sampling frame of unique researchers and their most recent e-mail contact information. We determined uniqueness by grouping researchers by their author-id, and we determined the most recent contact information by selecting records associated with the most recent year of publication. For 383 researchers who had two or more distinct e-mails in the latest year of publication, we removed noninstitutional personal e-mail addresses and then selected one of the remaining institutional e-mail addresses.

Applying these criteria yielded a sampling frame of 29,828 researchers. On average, these authors published 2.7 articles in geography journals meeting our criteria between 2017 and 2021. Roughly one-third (33.0 percent) were most recently a corresponding author for an article published in a general geography journal. A similar proportion (32.0 percent) were most recently a corresponding author for an article published in an earth sciences journal, and smaller proportions had published in the social sciences and cultural geography (20.0 percent and 16.0 percent, respectively).

Survey Instrument

The survey first established eligibility based on age and geographic research activity in the past five years and asked researchers to report their primary subfield and methodology. We asked each participant to assess their familiarity with the term *replicability* and to provide their own definition. We then provided a definition based on Nosek and Errington (2020) to establish a common understanding of replicability for the remainder of the survey. Specifically, replication was defined as follows:

A *replication* is any study that seeks to evaluate a claim of a prior study using similar procedures and new data. A claim made in a prior study has been replicated when the replication produces outcomes that are consistent with the prior claim and increase confidence in that claim.

Remaining questions assessed the epistemic purpose of a replication (five questions); what portion of the geographic literature has, could, or should be replicated (three questions); and factors that affect the chances of successfully replicating a study (eighteen

questions) or the decision to attempt a replication (thirteen questions). For researchers who reported attempting reproductions, we asked them to elaborate on their motivations and outcomes (nine questions).

We developed the survey questions following a review of prior reproducibility surveys (e.g., Fanelli 2009; Baker 2016; Konkol, Kray, and Pfeiffer 2019) and our own reading of recurring issues in the reproducibility and replicability literature. We pretested the survey instrument with $n=15$ graduate students and geography faculty with differing levels of experience, topical focus, and methodological background. After pilot testing, we removed these individuals from our sampling frame to ensure they would not be included in our final sample.

Data Collection

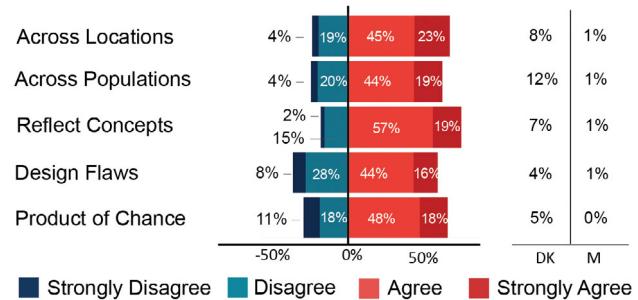
We used a digital form of the tailored design method (Dillman, Smyth, and Christian 2014) to survey geographic researchers between 3 October and 27 October 2022. A simple random sample of 2,000 researchers was drawn without replacement from our sampling frame, and those researchers were invited via e-mail to participate in the online survey. Researchers received their initial invitation on 3 October 2022. Two reminder e-mails were sent on 13 October and 20 October 2022 to researchers who had not yet completed the survey.

The online survey was administered through Qualtrics. Participation in the survey was entirely voluntary. Each researcher who opted to participate in the survey was provided with consent documentation approved by an institutional review board and linked to the Internet survey instrument. Participants were also given the option to provide an e-mail address for eligibility for one of three prizes of US\$90, selected randomly after the data collection period. Participating researchers had the option to exit and reenter the survey and were also able to review and change their answers using a back button as they progressed through the survey. At the end of the data collection period, responses were checked for completeness and coded using the reporting standards of the American Association For Public Opinion Research (AAPOR 2023). Responses were downloaded from Qualtrics, anonymized, and stored in a public deidentified database in the research repository.

Analytical Approach

We conducted two analyses of the survey responses. First, we analyzed researcher perspectives on replicability by coding and calculating summary variables and statistics for three themes: how geographic researchers define replicability, factors researchers believe affect the decision to attempt to replicate a study, and factors researchers believe affect the chances of successfully replicating a study. Second, we analyzed the experiences of researchers attempting to replicate prior studies using statistical summaries of participant motivations, research practices, and ability to produce results consistent with prior studies. For both analyses, we produced and analyzed descriptive statistical summaries of participant responses to Likert scale questions cross-tabulated by disciplinary subfield and methodological approach. For free-form text responses we coded responses and selected illustrative examples for inclusion.

For free-form text definitions of “replicability” we coded participant responses using two procedures. First, we measured the similarity of each provided definition to the definition adopted by NASEM (2019). NASEM defines replicable research as having three characteristics: new data, same procedure, and same or similar results. To make this comparison, two of the authors independently coded each respondent definition for the presence or absence of each of these three characteristics. Disagreements in the assignment of codes were resolved through discussion among the three authors. We created an aggregate measure of definition similarity for the final coded response for each participant by counting the presence of each NASEM definition characteristic, resulting in a measure with the domain [0, 3].


Second, we coded each definition to identify mentions of (1) internal validity assessment, (2) external validity assessment, (3) the significance of spatial or temporal context, (4) epistemic purpose, and (5) adherence to open science practice. We derived this coding from common themes in the responses and our own reading of the replicability literature. As above, each definition was independently coded by each author before code assignments across authors were compared with disagreements resolved through discussion. Our first set of analyses examined the full set of survey responses, and our second set of analyses were restricted to the eighty-four participants who reported attempting a replication study in the past two years.

Results

A total of $n=283$ of the authors we contacted completed the online survey with information sufficient for analysis. The contact rate for the survey was 18.8 percent and the response rate was 14.1 percent, yielding a cooperation rate of 74.4 percent. The refusal rate was 4.8 percent.¹ Respondents were predominantly male (65.1 percent) and between the ages of thirty-five and fifty-five (62.4 percent). The majority of respondents were also academics but they were well balanced across professional job titles, as no one category made up more than 30 percent of the sample. Respondents were similarly balanced across disciplinary subfields but did contain a greater number of physical geographers—human geography (26.8 percent), physical geography (39.9 percent), nature and society (14.8 percent), and geographic methods and GIScience (17.3 percent). Different methodological approaches were well represented by respondents in the sample with qualitative researchers making up the smallest subgroup—quantitative (47.3 percent), qualitative (16.3 percent), and mixed methods (36.0 percent).

Researcher Definitions of Replication and Its Epistemic Functions

Geographic researchers are thinking about replicability and link the act of replicating a study to a number of different epistemic purposes. A majority of respondents reported thinking about replicability (74 percent), talking with colleagues about replicability (65 percent), and considering replicability when undertaking peer review (59 percent) during the past two years. Specifically, respondents believe that replication studies can assess whether the claims of that study will hold in new locations (67 percent) or new populations (63 percent; Figure 1). Respondents also believe that replication studies can be used to investigate and assess whether the variables used in prior studies reflect the concepts that they were intended to represent (76 percent) and whether prior findings resulted from chance variation (66 percent). Although respondents clearly linked replication to epistemic purposes, across all purposes they were more likely to agree than to strongly agree that replications could serve these purposes. Respondents who identified as human geographers or as studying nature and society were

Figure 1. Perceptions of the epistemic purpose of replication studies. Respondents identified the extent to which they agree replication studies can be used to assess the claims or features of past research; “don’t know” (DK) and missing (M) responses.

less likely to agree that replications could be used to achieve these goals when compared to those working in other subfields. For example, 87 percent of respondents specializing in GIScience and methods believe replications could be used to assess whether a claim was the product of chance, compared to just 57 percent of human and nature–society researchers.

Although respondents largely agree that replication has some epistemic role to play in the geographic research process, many respondents did not explicitly include these same concepts in their definitions of replicability. A total of 253 of our respondents provided definitions of replicability, but only sixty-eight of those definitions (26 percent) referenced some form of epistemic purpose. Using replication to externally validate the claims of a study was identified by forty-nine respondents (19 percent). No other epistemic purpose was mentioned by more than thirteen respondents (5 percent). In contrast, 123 respondents (48 percent) reported that replications could be used to assess or improve how well a prior study conforms to the principles of open science (e.g., sharing data and procedures).

Within the limited subset of respondents who explicitly discussed epistemology in their definitions, a small number of researchers carefully articulated connections between the assessment of external validity and the investigation and influence of geographic and temporal context. For example, one participant defined replicability as

the degree to which a study could be conducted in the same way again, at a different point in time and by other people. Good replicability necessitates that study sites, methods and materials are described in adequate detail. But then there's the question of what replicability means in observational studies where the

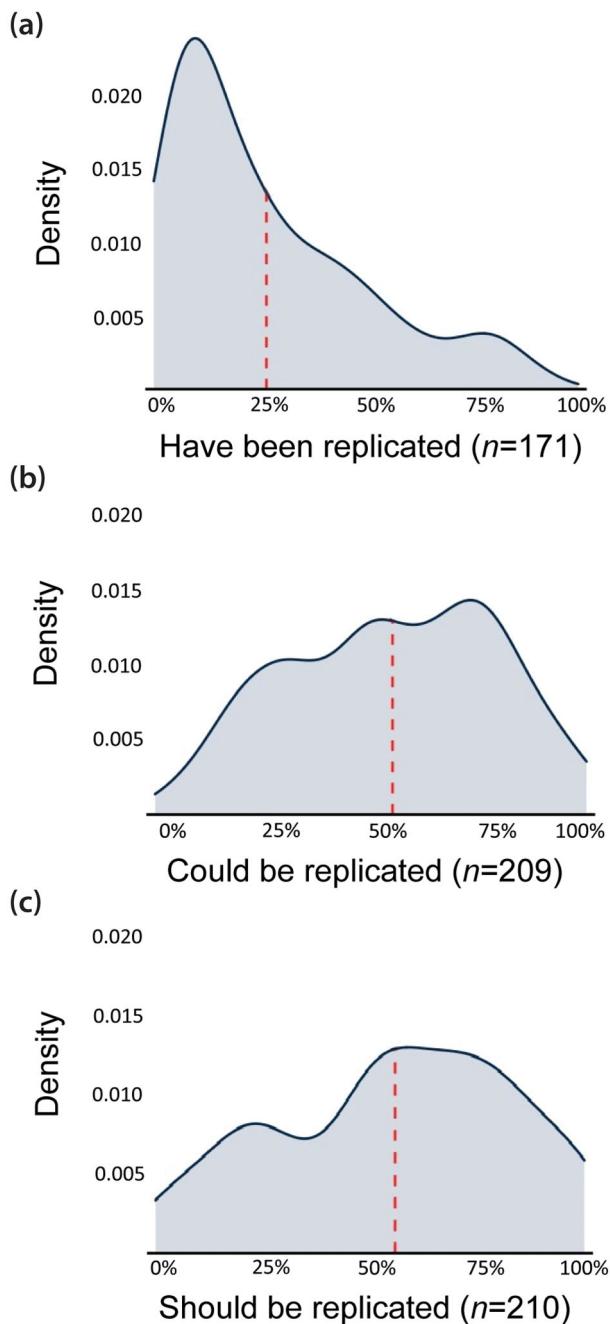
whole setting of the study changes in time (e.g., forest succession in study sites) so that the study cannot be repeated in the same way in the same area again. Also, there's a difference between replicability of a study and replicability of results. A replicable study does not automatically yield replicable results.

It was more common, however, for respondents to identify validation as the purpose of a replication. One such researcher defined replicability as "the ability to reproduce a study using the same or similar research design to test both its internal and external validity."

A number of respondents specializing in qualitative research provided definitions that questioned, or even rejected, the role of replication in their subfield. One qualitative researcher articulated this position by defining replicability as follows:

The claim that empirical research of a study can be repeated in the same way as it was done in the study. However, this is not exactly possible in qualitative research, as data collection is always a co-construction between all persons involved in the data collection. Transferred to qualitative research, this means for me rather that one would use the same questions, analyze the data with the same methods, etc. The fact that the results are not necessarily the same is not a weakness, but rather to be expected, since our knowledge is always embedded and co-constructed.

Rather than focusing on these larger concepts, most respondents used their definitions to present the criteria that identify a study as a replication. On average, respondents provided definitions that included 1.2 of the three characteristics of the replicability definitions adopted by NASEM. Comparing the similarity of results between studies (65 percent) and using the same method across studies (56 percent) were the characteristics of replicability most frequently identified by respondents. Less than a quarter of respondents explicitly included use of the collection of new data (12 percent) in their definitions. Only 7 percent of respondent definitions included all three characteristics identified by NASEM. A representative definition provided by one respondent identified replicability as, "That another researcher can get the same results as you by using the same methodological approach." The pattern of similarity to the NASEM definition and each of its components was consistent across methodological approaches and subfields. Researchers using primarily quantitative methods or identifying primarily


with the GIScience and methods subfield, however, placed a slightly greater emphasis on methodological consistency.

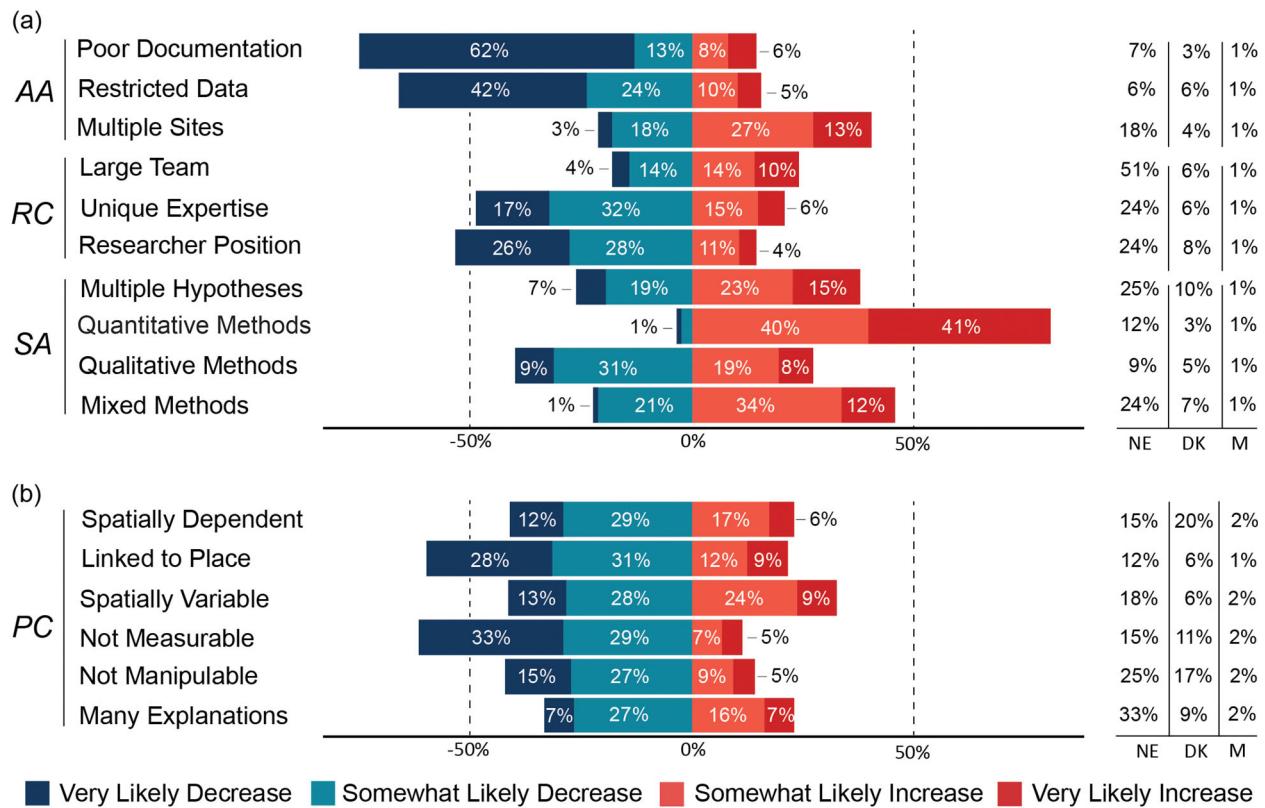
Factors Affecting the Chances of Replicating a Prior Study

Overall, respondents believe that the majority of research in the discipline has not been independently replicated and appear to be uncertain about what proportion of the literature could or should be replicated (Figure 2). On average, respondents estimated that 25 percent of recent studies in their subfield have been replicated. The distribution of these responses is strongly right skewed, however. In fact, 47 percent of respondents estimated that less than 10 percent of recent studies have been replicated. It is similarly unclear if respondents believe recent geographic research could or should be replicated. On average, respondents estimated that approximately half of studies "could be replicated" (55.0 percent) or "should be replicated" (55.9 percent). The distribution of responses to both questions are relatively flat across the range of possible values and highly variable ($sd_{could} = 24.3$ percent, $sd_{should} = 27.7$ percent), though, which suggests respondents were uncertain whether it was possible or valuable to replicate recent research. This pattern of response was consistent across respondents who self-identified as working in different subfields and methodological approaches.

Respondents identified a range of study characteristics that might affect the chances of an independent researcher replicating the claims of a prior study (Figure 3A). A majority of respondents identified the transparency and availability of the components of a study as affecting the odds of replication. Poor documentation of the original study (75 percent) and the use of restricted access data (66 percent) were seen by the greatest number of respondents as decreasing the odds of being able to replicate a prior result. Some respondents identified the inclusion of multiple sites in a study as increasing the chances of an independent replication of the findings of that study (39 percent), but not in great enough numbers to constitute a majority.

Respondents were generally uncertain or pessimistic about how the characteristics of the researchers and teams of prior studies would change the chances of replicating the studies. A majority of respondents

Figure 2. Estimates of the percentage of geographic studies that (A) have been replicated, (B) could be replicated, or (C) should be replicated.


(51 percent) indicated that a large research team working on the prior study would have no effect on the chances of an independent researcher replicating that work. The remaining respondents were split as to whether a large team would increase or decrease the chances of replicating that study. More respondents believed that reliance on the unique expertise

(48 percent) or unique position(s) (53 percent) of the researcher(s) conducting a study would decrease, rather than increase, the chances of replicating the claims of a study. In both cases, 24 percent of respondents reported that they did not believe either factor would affect the odds of replicating a prior result.

Respondents were also divided about the extent to which the approach adopted in the prior study would affect the chances of replicating that study. Respondents were nearly split as to whether the number of hypotheses tested by a study, and whether that study used qualitative or mixed methods, would increase or decrease an independent researcher's chances of finding results that supported the claims of the prior study. About a quarter of respondents said that use of a mixed-methods approach or the testing of multiple hypotheses had no effect on the chances of replication. In contrast, a large majority (80 percent) of respondents identified the use of quantitative methods in a prior study as increasing the chances of replicating that study. This result matches the association observed in respondent definitions of replication, which ties replication to positivist science and quantitative approaches to knowledge creation.

There was less agreement among respondents about whether different characteristics of a phenomenon would affect the chances of replicating the claims made by a prior study of that phenomenon (Figure 3B). For all six of the characteristics we examined, at least 12 percent of respondents replied that those factors would have no effect on the chances of replicating a prior study. Numerous respondents also replied that they simply did not know whether a characteristic would affect the chances of replicating a study, resulting in a total of 18 percent to 42 percent of respondents reporting neutral or uncertain opinions about the characteristics of a phenomenon and the replicability of research about it. For example, 20 percent of respondents said they did not know whether a phenomenon being spatially dependent with itself would affect the chances of replicating a prior study, and an additional 15 percent of respondents said spatial dependence would have no effect on replication. Respondents also favored "somewhat likely" responses over stronger "very likely" responses across all phenomenon characteristics.

Even with this uncertainty, respondents were clearly concerned about the impacts of spatial dependence, connections to place, and spatial

Figure 3. Factors affecting the chances of replicating a study. Respondents identified (A) how likely study characteristics were to alter the chances of successfully replicating a study, and (B) how likely the characteristics of the phenomenon under investigation were to alter the chances of successfully replicating a study in a new location. Acronyms indicate thematic groups: artifact accessibility (AA), researcher characteristics (RC), study approach (SA), and phenomenon characteristics (PC); and the percentage of no effect (NE), “don’t know” (DK), and missing (M) responses.

variability on replicability. Forty-one percent of respondents reported that the presence of spatial dependence or spatial variability in a phenomenon was likely to decrease the chances of replicating a prior study. A majority of 59 percent of respondents reported that phenomenon being linked to place-based local conditions would decrease the chances of replication. Nonetheless, these directional indicators should be interpreted with caution as between 18 percent and 35 percent of respondents recorded “no effect” or “don’t know” answers for these characteristics.

Respondents were more decisive about replication issues due to an inability to measure or manipulate phenomena than about the presence of multiple possible explanations. A majority of respondents identified the inability to directly measure a phenomenon (61.5 percent) as reducing the chances of replicating a prior study. A large number of respondents (42.0 percent) were either neutral or undecided about

whether the inability to experimentally manipulate a phenomenon affects the replicability of studies, with a majority of the remaining respondents agreeing that this inability would decrease the chances of replication. An equally large number of respondents were neutral or undecided about whether the presence of a large number of plausible explanations for a phenomenon would affect the chances of replicating a study. Nine percent more respondents indicated that a large number of plausible explanations would decrease the chances of replication.

Factors That Affect the Decision to Attempt Replications

Several factors related to academic incentives and the availability of prior study research artifacts appear to affect whether researchers decide to attempt to replicate recent geographic research, with relatively less concern about the characteristics of

prior studies (Figure 4). We asked respondents how often each of the factors presented in Figure 4 affect researchers' decisions to attempt replications.

Survey respondents identified current academic incentives as the factor most frequently affecting the decision to attempt a replication study. A majority of respondents identified the pressure to publish original research (66 percent) and the lack of funding for replication studies (59 percent) as frequently or always affecting the decision to attempt a replication. Respondents also believed that the perception of replications as low-value work (55 percent) that was often difficult to publish (51 percent) also affect decision-making. It is not clear, though, how respondents understood value in the context of this question. For example, respondents might have alternatively considered the value of a replication attempt to scientific knowledge, a researcher's career, or even monetary compensation through salary. This ambiguity complicated further interpretation of this result. Contrary to some narratives in the replication literature, the desire to identify fabricated data or results was not seen as a determining factor in the decision to attempt a replication. This finding should be interpreted with caution as one-third of respondents indicated that they did not know whether potential fabrication influenced researcher decision-making.

Respondents also identified the availability of research artifacts as important to the decision to attempt a replication study. Respondents believed that having difficulty accessing and re-creating data (54 percent) frequently or always affects the replication decision. Similarly, respondents (45 percent) identified the accessibility of procedural and methodological information as an influential factor. The challenge of re-creating the methods of a prior study elicited a similar response (41 percent).

No characteristics of the original study, or the potential replication attempt, were identified by a majority of researchers as frequently or always affecting the replication decision. Some respondents, however, did identify inexperience conducting replication studies (37 percent) and potential geographic variation in the phenomenon being investigated (33 percent) as always or frequently influencing decisions to attempt replications. Moreover, many respondents also saw these factors as occasionally affecting the decision to attempt a replication. Only 30 percent of respondents reported that a low chance of successfully replicating a study was "frequently" or "always" a deterrent to attempting a replication. We were unable to identify why this factor was not seen as a deterrent. For example, it could be the case that respondents believe in the value of replication irrespective of results. Alternatively, this result is also

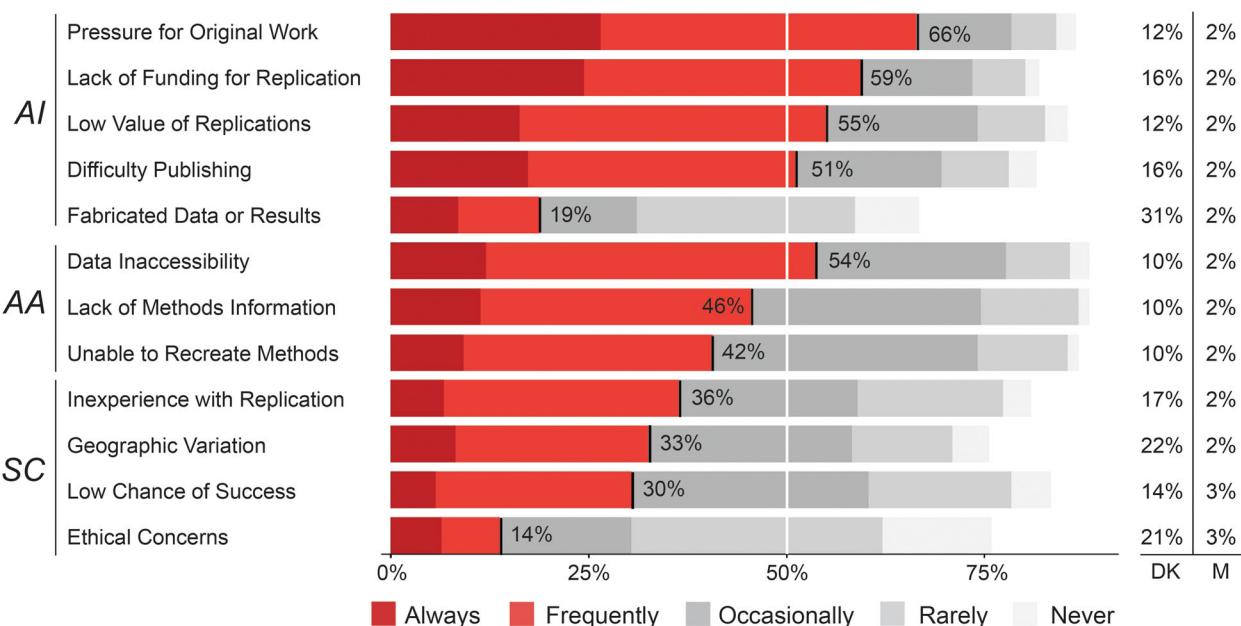


Figure 4. Factors affecting researcher decisions to undertake replication studies. Acronyms indicate thematic groups: academic incentives (AI), artifact accessibility (AA), study characteristics (SC); and the percentage of "don't know" (DK) and missing (M) responses.

consistent with a belief that replications have high chances of success. Finally, respondents did not identify ethical concerns as a factor affecting the decision to attempt a replication study. These results should also be interpreted in the context of the different levels of uncertainty respondents expressed for each question, however. More than 15 percent of respondents replied that they did not know whether geographic variation, inexperience with replication, or ethical concerns would affect a researcher's decision to attempt a replication.

Respondents also qualitatively identified a number of factors that were omitted from our survey instrument as important when deciding whether to attempt a replication of a geographic study. These factors include practical issues, such as the difficulty identifying and accessing new field sites where data would be collected during a replication attempt, the costs of conducting a replication, and the time needed to obtain institutional ethics approvals. Respondents also identified uncertainty about how to compare the results of a replication attempt to the original as important when deciding to undertake a replication attempt. For example, one respondent noted, "Given expected spatial variation, it can be difficult to arrive at a valid metric that would affirm replication while properly acknowledging the inherent variability."

Finally, a small number of respondents believe that geographic researchers do not undertake replication studies because they either believe that replication is not possible or not necessary in geography. These respondents argued that the main value of geographic studies is that each study provides a unique lens on the portion of the world under investigation, which makes replication an unnecessary endeavor. As one respondent stated,

It [replication] just doesn't seem necessary. The pertinent outcomes aren't simply the empirical findings, but the ways in which they are interpreted and the lenses on the world that are generated. These won't be replicated—they've already been produced from the initial research. Just producing similar data from another study doesn't seem very valuable.

Respondents from different disciplinary subfields and methodological approaches varied little in their identification of the factors affecting researchers' decisions to attempt replication studies (Table 1). Human geographers and researchers using quantitative methods less frequently identified academic incentives as important to the replication decision when compared to other subgroups, but were otherwise broadly similar in their views on artifact availability and study characteristics. A greater percentage of quantitative researchers and those working in the areas of GIScience and methods identified

Table 1. Factors affecting researcher decisions to undertake replication studies

Barrier	Subfield				Approach				Overall	N	Missing
	PH	MT	NS	HU	QN	MX	QL				
Academic incentives											
Pressure for original work	72.6%	71.4%	64.3%	53.9%	76.2%	63.7%	43.5%	66.4%	245	38	
Lack of funding for replications	64.6%	57.1%	69.0%	47.4%	64.9%	59.8%	43.5%	59.4%	231	51	
Low value of replication	61.9%	59.5%	55.1%	42.1%	64.9%	50.9%	36.9%	55.2%	242	41	
Difficulty publishing	50.5%	48.9%	57.1%	50.0%	58.2%	47.1%	41.3%	51.2%	231	51	
Fabricated data or results	17.6%	18.4%	23.8%	18.4%	20.9%	21.6%	6.5%	18.7%	189	94	
Artifact availability											
Data inaccessibility	47.8%	57.1%	61.9%	43.9%	56.7%	54.9%	41.3%	53.7%	250	33	
Lack of methods information	40.7%	59.2%	50.0%	40.8%	50.0%	46.1%	30.4%	44.6%	250	33	
Inability to re-create methods	38.1%	46.9%	40.4%	39.4%	47.8%	36.3%	38.3%	40.6%	246	37	
Study characteristics											
Inexperience with replication	27.4%	49.0%	50.0%	32.8%	38.1%	37.3%	28.2%	36.4%	229	54	
Geographic variation	35.3%	32.7%	33.3%	27.7%	31.4%	35.3%	36.4%	32.5%	214	69	
Low chance of success	29.2%	31.6%	31.0%	29.0%	30.6%	31.4%	28.3%	30.4%	236	47	
Ethical concerns	10.5%	12.3%	21.4%	14.1%	11.2%	18.6%	10.9%	14.0%	218	68	

Note: Cells report the percentage of respondents reporting that a factor frequently or always affects researchers' decision to attempt a replication of geographic research. PH = physical geography; MT = GIScience and methods; NS = nature and society; HU = human geography; QN = quantitative; MX = mixed methods; QL = qualitative.

the accessibility of data and methodological information as more often affecting the decision to replicate, but not at a level that was substantially higher than other subgroups. In fact, a greater percentage of researchers studying nature and society identified data accessibility as important than did methods researchers.

Replication Attempts

In total, eighty-four of the researchers who responded to our survey (30 percent) reported attempting to independently replicate at least one study in the last two years. This subset of participants formed the basis for our analysis of researcher experiences when attempting to replicate the work of others. Respondents specializing in physical geography made up the greatest percentage of replication attempts, but researchers from all the subfields we examined reported attempting replication studies—physical (39 percent), human (24 percent), GIScience and methods (19 percent), and nature and society (15 percent). Respondents attempting replications predominantly focused on quantitative (52 percent) and mixed-methods (37 percent) research designs.

Most respondents reported that their replication studies were conducted in locations that differed from those of the original study (50 percent), or that they attempted to re-create the results of the original study in both the same location and in a new location (18 percent). Of the forty-seven respondents who identified why they decided to attempt their replication study, thirty-eight reported they were attempting to externally validate the claims of the original study, and ten reported that they were motivated to examine the impact that a difference in geographic or temporal context might have on the results. Respondents emphasizing external validation provided motivation statements such as, “Testing of conceptual claims on a specific governance context (postconflict areas) that motivated me to examine other postconflict areas to examine replicability of results,” or “I didn’t think the claim was likely to replicate, and already had relevant data that could be used to test the hypothesis in question.” Those motivated by differences in context discussed motivations such as, “We needed to compare between Mexico, Honduras and the United States,” and “to capture seasonal nuance from samples only collected during summer in other studies.” A total of sixteen

respondents also identified replication for its epistemic purposes as a fundamental part of knowledge creation and evaluation. For example, one respondent directly linked the motivation to replicate to the desire to construct theory, “To build theory. To add strength to criticisms of other theory based on so called case studies.”

Although few respondents were able to replicate all results, the majority of respondents reported that they were able to re-create at least some of the results of the study they were investigating. Fifty-five respondents (65 percent) reported being able to exactly replicate some of the results of a prior study. Only six respondents (7 percent), though, reported that they were able to exactly replicate all results. The survey results were similar when we asked respondents whether they were able to partially replicate the results of a study—finding a different result, but ultimately coming to a similar conclusion as the prior study. Sixty-two respondents (74 percent) reported being able to partially replicate at least some of the results of a study, and fourteen respondents (17 percent) reported being able to partially replicate all results.

Respondents reported a limited ability to access the data, code, and procedures used in the studies they were attempting to replicate. Respondents were generally able to access some (51 percent) or all (31 percent) of the data used in a prior study, but were slightly less successful at accessing some (43 percent) or all (29 percent) of the code and procedural information. Moreover, being able to access these materials and information did not mean that researchers could fully understand or directly replicate how a study was conducted. Only sixteen respondents who attempted replications (19 percent) reported being able to follow all of the procedures of a prior study without having to make additional assumptions about how the procedure was implemented. In all other cases, the replicating researcher had to make additional assumptions about how the authors of the original study conducted their work. Respondents also reported that their replication attempts were complicated by an inability to re-create the computational environments of prior analyses and by the unavailability of details about where a prior study was conducted. Researchers were also able to find complete details about the geographic extent and location of the prior study in only thirty-one cases (37 percent).

This final result aligns with the findings of Aabeyir (2023) and Margulies et al. (2016), which illustrate that authors often fail to share sufficient metadata about the geographic location, extent, and scale of their study to permit meaningful replication or meta-analysis.

Researchers reported inconsistency in publishing replication findings due to a variety of issues with academic research values and incentives. Of the eighty-four researchers who attempted replications, twenty-three published all findings (27 percent), thirty-five published some findings (42 percent), and twenty-six did not publish their findings at all (31 percent). Of the respondents who did not publish all of their findings, forty-seven shared one or more reasons for nonpublication. Eighteen respondents stated that the replication was still in progress or was too much work to complete, and another seven stated that they were still writing or revising manuscripts. Nine respondents expressed some form of self-censorship due to questioning the interest or significance of their results with phrases like “did not provide a robust story” or “not novel.” Another five respondents expressed difficulties completing or publishing results because of a lack of replicability of prior findings. One such respondent lamented, “The results were exactly opposite of what the original authors found. They very likely review our results now. So far no success to publish it.” Ten respondents expressed belief that it would be too difficult to publish their replication study, because replications were not valued in the academic literature. For example, researchers pointed out that “no one seems to care,” that their results received “no interest from journals,” and that “incentives in academia clearly point toward publishing original research.” In one instance, “The journal that published the original paper specifically claimed to be interested in replications, but then desk rejected our replication.” This reasoning reflects different forms of nonresponse and selection bias at the root of the “file drawer problem” in academic literature (Rosenthal 1979). The file drawer problem exists when the outcome of a study influences the decision to publish or share that finding. Finally, five respondents suggested that a lack of funding, pressure to publish, or other professional constraints kept them from completing and publishing their replication findings.

Discussion

The results of our survey suggest that geographic researchers are familiar with replication and believe that replication studies can serve as tests of several types of validity, but do not often attempt to publish replications themselves.

We found that researcher-provided definitions often did not clearly articulate the epistemic purpose of a replication attempt. Researchers’ definitions instead focused on criteria used to identify a study as a replication. Indeed, many of these definitions closely aligned with the definition of reproducibility, which mirrors Kedron, Holler, and Bardin’s (2024a) findings that researchers appear to often conflate these two terms. Conflation, and the occasional outright reversal, of the definitions of reproducibility and replicability could be attributable to the varying use of these terms across disciplines explored by Barba (2018) and The Turing Way Community (2024). This same focus on criteria can be observed in the wider reproducibility and replicability literature, where authors typically gesture to the epistemic purpose of replication, then quickly turn to the accounting of data and code sharing practices. This tendency toward data and method sharing criteria could suggest that the validity checking role of replication is not at the forefront of geographic researchers’ thinking about replication. Although this finding aligns with the observable focus on computational forms of reproducibility in the geographic literature, further data are needed to support this conclusion because it might simply be the case that respondents could not provide sufficient definitional nuance in a text response survey question.

It also remains unclear if or how geographic researchers map differences in implementation between an original study and its replication to the forms of verification and validation a replication attempt is intended to serve. A clear understanding of the connection between variations between studies and the purpose of a replication is essential because which aspects of a study are changed controls the form of validity being assessed (Radder 2003; Schmidt 2009; Gomez, Juristo, and Vegas 2010). This lack of clarity is perhaps most apparent in the large number of neutral and uncertain responses to questions about the epistemic purposes of replications and the factors affecting the chances of replication. We posit that some uncertainty derives from the fact that researchers from one subfield or approach in geography might not be

familiar with major epistemological and methodological concerns of other subfields or approaches. For example, GIScience and quantitative methods geographers might not understand what “researcher position” means to a qualitative human geographer or how it affects study design and replicability. Conversely, “spatial dependence” has specific meaning and implications for validity and replication that might not be well understood to a qualitative or human geographer with very different understandings of “space.” A discipline-wide debate to resolve the epistemic function of replication might first need to establish a common understanding of the fields’ diverse range of epistemologies and methods before geographers can productively discuss the role of replication in producing and validating geographic knowledge.

Poor documentation and articulation of the connections between study changes and epistemic functions of verification and validation in replication studies could lead to the misinterpretation of the results of an individual replication and could misdirect the collective assessment of a claim across a set of replication studies. Developing a schema to map replication study variations to functions could be particularly challenging in geography due to the complexity of geographic systems and the limited control researchers have over those systems. Moreover, it is often unclear which aspects of a study are changing when a replication study is conducted in a new location. For example, when a researcher conducting a replication collects new data from a new location it might be difficult to determine whether the study is testing the external validity of a claim in a new population, or in the same population that is subjected to different place-based processes. Our results suggest that a conceptual treatment of these connections, attuned to the peculiarities of spatial data analysis, would be an important first step toward conducting and systematically assessing interpretable replication studies of geographic research. Moreover, this attention to variations between prior studies and replications will be pragmatically impossible without improved attention to the availability of reproducible data and procedures for prior studies.

We also found that only a minority of respondents reported attempting replications or attempting to publish replications. Our survey sheds light on several practical considerations that could have hindered researcher replication attempts, but also leaves open several questions. For example, it would be valuable

to know when and why researchers considering attempting a replication decided to stop their attempt. Our results only track researchers who attempted replications. We do not know how many researchers considered attempting replications, but ultimately did not. Similarly, future work could delve more deeply into the experiences of researchers attempting replications and the feedback they receive from the academic community. We do not have details about the response researchers received during the replication process. Understanding how those unobserved responses align with the perceived barriers identified in our survey would be a valuable check of perception against practice.

The results of our survey also suggest that collectively researchers are uncertain whether it is valuable to replicate recent geographic research. Our results do indicate that it is unlikely that this uncertainty stems from a lack of belief in the potential epistemic value of replication studies. Instead, mirroring traditional debates within the discipline, it could be the case that researchers are uncertain whether, or to what extent, the results and claims of a study should be expected to replicate in new locations. Researcher uncertainty might also be a reflection of the perceived quality and importance of the available geographic literature. If researchers believe many studies simply do not contain important findings, it would be rational not to prioritize replicating those studies. Finally, researchers might simply perceive the external validity check offered by replication as not important to the goals of their research tradition. Following Sayer’s (1992) distinction between intensive and extensive research, many traditions in geography focus on reconstructing the causal chains that structure social and environmental relations in specific contexts rather than the discovery of empirical regularities across those contexts. Some of the qualitative responses to our survey are suggestive of these points, but follow-up research could delve more deeply into which studies researchers believe are valuable to replicate and why. For example, one definition of replication by a qualitative researcher in our survey notes that producing different results is not a weakness but an expected, potentially beneficial outcome, which raises important questions about how to approach replications and their different results in this area.

Finally, building on the differences that exist between research traditions in geography, it could be fruitful to further examine how researchers working

in different subfields perceive and use replication in their work. Overall, the differences in responses we observed across subfields and methodological approaches were small, but this finding should be interpreted with caution given the sizes of our subfield samples and potential questions about how respondents self-identified with subfields. For example, we allowed respondents to identify their primary subfield using the thematic areas of this journal. It is likely the case, however, that respondents identify with several subfields. An environmental scientist, for example, might very well identify primarily as a physical geographer, but also work regularly on nature and society issues. Nonetheless, it is sensible that responses to questions about barriers to replicability and motivations to attempt replications would be similar across subfields because researchers across the discipline work in similar academic incentive systems. Alternatively, there are substantial differences in the concepts and methods used in different subfields, in the types of questions researchers ask, and the phenomena and systems they study. It seems natural that this variation in practice would translate into differences in the use and implementation of replications. The limited size of the sample of researchers that reported actually attempting replications did not allow for an extensive analysis of these questions by subfield. Perhaps an initial indicator of these differences is our finding that human geographers and qualitative researchers were disproportionately likely to provide “I do not know” responses across survey questions and to question the relevance of replication to their subfield.

Limitations

Survey research has several common limitations that we attempted to mitigate through the design of our study. Unlike prior surveys of reproducibility and replicability, our study uses a sampling frame designed to be representative of our target population of active geographic researchers. Use of a well-constructed sampling frame and probability sampling, however, do not ensure that a balanced and representative sample will be drawn from the target population. Ideally, we would stratify our potential respondents into meaningful subgroups, randomly draw participants from these subgroups, and use a poststratification procedure to address any imbalance in our response. We could not follow this approach, though, because stratification

requires knowledge of the population characteristics that predicts differences in response and a population-wide census of those key predictors. We did not have access to this information, because we presently lack a comprehensive understanding of replicability in geography, and no list of geographic researchers complete with relevant predictor information exists. Given these limitations, our study should be viewed as an exploratory analysis with random sampling and a transparent, reproducible methodology for sample frame construction.

We have similarly worked to reduce the effects of common forms of bias from our survey. We have sought to eliminate exclusion bias by including in our sampling frame all researchers publishing as corresponding authors in any of a wide range of geography journals over a five-year period. Geographic researchers publish in a range of journals that are not necessarily indexed as geography by the Web of Science, however. Geographic researchers who have only published outside geographically indexed journals would not be captured in our sampling frame, which would create exclusion errors. We believe the number of individuals falling into this category will be small as most active geographic researchers are likely to have published at least one study in the journals meeting our inclusion criteria.

Similarly, we cannot eliminate the possibility of self-selection bias from our survey. It could be the case that geographic researchers more familiar with replication, or those working in subfields more involved with current reproducibility and replicability debates (e.g., quantitative, computational research) were more likely to respond to our survey. Conversely, it could also be the case that researchers working in subfields traditionally associated with critiques of a positivist scientific approach (e.g., qualitative, human geography) were less likely to participate in our survey. We attempted to quantify potential self-selection by calculating and comparing survey completion rates across subfields and approaches. Completion rates for all subfields were between 69 percent and 78 percent with slightly lower rates for geographic methods and geographic information systems researchers (69.0 percent) and physical geographers (70.6 percent). Completion rates were 76.6 percent for mixed methods, 70.8 percent for qualitative methods, and 71.7 percent for quantitative methods. These values suggest that self-selection was not a significant issue.

We attempted to mitigate the potential for questionnaire bias, which could be caused by partially basing our survey instrument on prior studies that overrepresent perspectives from the computational and experimental sciences. If this were the case, our survey might not gather data on researcher practices and beliefs relevant to replicating types of research not well-represented in the existing literature. To address this concern, we incorporated into our survey instrument questions informed by a parallel review of the R&R literature available within geography and a review of critiques of positivist science made by social scientists and human geographers. We also provided the option for an open-ended text response to questions to identify issues we did not anticipate during instrument construction.

Conclusion

This survey provides a description of the perspectives of geographic researchers at one point in time and depth of understanding. This work offers an initial measurement of geographers' definitions of replicability, beliefs about what factors affect the chances of replicating a study, motivations to attempt replication studies, and experiences conducting replications.

There are several ways to lay the empirical foundations for such a debate. In many cases we were not able to probe more deeply into the nuances of our measurements and the conceptualizations that underlie them. As highlighted in the discussion, we were able to gain only limited insight into the researchers' understanding of the epistemic purpose of replications and how researchers map that purpose onto what is changed in a replication study. Similarly, it would be useful to understand why respondents believe studies should or should not be replicated. Are responses about whether studies have, could, or should be replicated a reflection of beliefs that replications are (1) not meaningful for geographic research, (2) impractical to attempt due to the unavailability of procedural details, or (3) unimportant because many geographic studies do not have interesting or important results and implications? Future research using in-depth interviews or multianalyst study designs could probe these questions more deeply. It would also be useful to track the information collected in this survey over time and to link that tracking to specific research topics. For example, understanding how researcher perspectives of the purpose of replication shift in climate change affects research might be a

useful indicator of how well researchers in that field are developing theories and methodologies capable of dealing with increasing variation and shifting baselines induced by climate change. More broadly, regular monitoring of perceptions of replication would help identify areas in need of engagement, as well as the success or failure of past investments designed to enhance reproducibility and replicability.

Acknowledgments

We thank Tyler Hoffman for providing technical assistance in the development and execution of a set of trial queries using the Scopus API. Peter Kedron was involved in conceptualization, methodology, writing the original draft, review and editing, supervision, project administration, and funding acquisition. Joseph Holler was involved in conceptualization, methodology, data curation, review and editing, and funding acquisition. Sarah Bardin was involved in conceptualization, methodology, writing the original draft, review and editing, data curation, and software.

Funding

This material is based on work supported by the National Science Foundation under Grant No. BCS-2049837.

Disclosure Statement

No potential conflict of interest was reported by the authors.

ORCID

Peter Kedron <http://orcid.org/0000-0002-1093-3416>

Joseph Holler <http://orcid.org/0000-0002-2381-2699>

Sarah Bardin <http://orcid.org/0000-0001-8657-1725>

Notes

1. All outcome rates are reported using AAPOR (2023) standards. The outcome rates used were response rate 2, cooperation rate 2, refusal rate 1, and contact rate 1.

References

Aabeyir, R. 2023. Geoinformation or misinformation? A review of the geographic description of study areas in published academic articles. *African Geographical Review* 43 (5):665–84. doi: 10.1080/19376812.2023.2230199.

American Association for Public Opinion Research (AAPOR). 2023. 2023 standard definitions: Final dispositions of case codes and outcome rates for surveys. 10thed. Alexandria, VA: AAPOR. <https://aapor.org/wp-content/uploads/2023/05/Standards-Definitions-10th-edition.pdf>

Anselin, L. 1989. What is special about spatial data? Alternative perspectives on spatial data analysis. Report No. 89-4, National Center for Geographic Information and Analysis, Santa Barbara, CA.

Baker, M. 2016. 1,500 scientists lift the lid on reproducibility. *Nature* 533 (7604):452–54. doi: 10.1038/533452a.

Balz, T., and F. Rocca. 2020. Reproducibility and replicability in SAR remote sensing. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 13:3834–43. doi: 10.1109/JSTARS.2020.3005912.

Barba, L. A. 2018. Terminologies for reproducible research. *arXiv preprint arXiv:1802.03311*.

Bunge, W. 1966. *Theoretical geography*. 2nd ed. Lund: C W K Gleerup.

Christensen, G., J. Freese, and E. Miguel. 2019. *Transparent and reproducible social science research*. Berkeley: University of California Press.

Claerbout, J. F., and M. Karrenbach. 1992. Electronic documents give reproducible research a new meaning. In *SEG technical program expanded abstracts 1992*, 601–04. Society of Exploration Geophysicists. doi: 10.1190/1.1822162.

Dillman, D. A., J. D. Smyth, and L. M. Christian. 2014. *Internet, phone, mail, and mixed-mode surveys: The tailored design method*. Hoboken, NJ: Wiley.

Earp, B. D., and D. Trafimow. 2015. Replication, falsification, and the crisis of confidence in social psychology. *Frontiers in Psychology* 6:621. doi: 10.3389/fpsyg.2015.00621.

Fanelli, D. 2009. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data. *PLoS ONE* 4 (5):e5738. doi: 10.1371/journal.pone.0005738.

Gomez, O. S., N. Juristo, and S. Vegas. 2010. Replications types in experimental disciplines. In *Proceedings of the 2010 ACM-IEEE international symposium on empirical software engineering and measurement*, G. Succi, M. Morisio, and N. Nagappan, 1–10. New York: Association for Computing Machinery. doi: 10.1145/1852786.1852790.

Goodchild, M. F. 2022. Reproducibility and replicability in spatial science. In *Handbook of spatial analysis in the social sciences*, ed. S. Rey and R. Franklin, 518–27. Cheltenham, UK: Edward Elgar.

Goodchild, M. F., A. S. Fotheringham, P. Kedron, and W. Li. 2021. Introduction: Forum on reproducibility and replicability in geography. *Annals of the American Association of Geographers* 111 (5):1271–74. doi: 10.1080/24694452.2020.1806030.

Goodchild, M. F., and W. Li. 2021. Replication across space and time must be weak in the social and environmental sciences. *Proceedings of the National Academy of Sciences* 118 (35):e2015759118. doi: 10.1073/pnas.2015759118.

Guelke, L. 1977. The role of laws in human geography. *Progress in Human Geography* 1 (3):376–86. doi: 10.1177/030913257700100302.

Haig, B. D. 2022. Understanding replication in a way that is true to science. *Review of General Psychology* 26 (2):224–40. doi: 10.1177/10892680211046514.

Hartshorne, R. 1954. Comment on “Exceptionalism in geography.” *Annals of the Association of American Geographers* 44 (1):108–9. doi: 10.2307/2561120.

Hartshorne, R. 1955. “Exceptionalism in geography” re-examined. *Annals of the Association of American Geographers* 45 (3):205–44. doi: 10.1111/j.1467-8306.1955.tb01671.x.

Harvey, D. 1969. *Explanation in geography*. London: Edward Arnold.

Hendrick, C. 1990. Replications, strict replications, and conceptual replications: Are they important? *Journal of Social Behavior and Personality* 5 (4):41.

Inkpen, R., and G. Wilson. 2013. *Science, philosophy and physical geography*. London and New York: Routledge.

Irvine, E. 2021. The role of replication studies in theory building. *Perspectives on Psychological Science* 16 (4):844–53. doi: 10.1177/1745691620970558.

Kedron, P., S. Bardin, T. D. Hoffman, M. Sachdeva, M. Quick, and J. Holler. 2022. A replication of DiMaggio et al. (2020) in Phoenix, AZ. *Annals of Epidemiology* 74:8–14. doi: 10.1016/j.annepidem.2022.05.005.

Kedron, P., S. Bardin, J. Holler, J. Gilman, B. Grady, M. Seeley, X. Wang, and W. Yang. 2024. A framework for moving beyond computational reproducibility: Lessons from three reproductions of geographical analyses of COVID-19. *Geographical Analysis* 56 (1):163–84. doi: 10.31222/osf.io/7jqtv.

Kedron, P., A. E. Frazier, A. B. Trgovac, T. Nelson, and A. S. Fotheringham. 2021. Reproducibility and replicability in geographical analysis. *Geographical Analysis* 53 (1):135–47. doi: 10.1111/gean.12221.

Kedron, P., and J. Holler. 2022. Replication and the search for the laws in the geographic sciences. *Annals of GIS* 28 (1):45–56. doi: 10.1080/19475683.2022.2027011.

Kedron, P., J. Holler, and S. Bardin. 2024a. Reproducible research practices and barriers to reproducible research in geography: Insights from a survey. *Annals of the American Association of Geographers* 114 (2):369–86. doi: <https://doi.org/10.31219/osf.io/nyrq9>.

Kedron, P., J. Holler, and S. Bardin. 2024b. A survey of researcher perceptions of replication in geography. doi: 10.17605/OSF.IO/X6QRK.

Kedron, P., J. Holler, S. Bardin, and Z. Hilgendorf. 2022. Reproducibility, replicability, and open science practices in the geographical sciences. doi: 10.17605/OSF.IO/C5A2R.

Konkol, M., C. Kray, and M. Pfeiffer. 2019. Computational reproducibility in geoscientific papers: Insights from a series of studies with geoscientists and

a reproduction study. *International Journal of Geographical Information Science* 33 (2):408–29. doi: [10.1080/13658816.2018.1508687](https://doi.org/10.1080/13658816.2018.1508687).

Lewis, P. W. 1965. Three related problems in the formulation of laws in geography. *The Professional Geographer* 17 (5):24–27. doi: [10.1111/j.0033-0124.1965.0024_v.x](https://doi.org/10.1111/j.0033-0124.1965.0024_v.x).

Marcovich, M. 1967. *Heraclitus, Greek text with a short commentary (editio maior)*. Merida, Venezuela: Los Andes University Press.

Margulies, J. D., N. R. Magliocca, M. D. Schmill, and E. C. Ellis. 2016. Ambiguous geographies: Connecting case study knowledge with global change science. *Annals of the American Association of Geographers* 106 (3):572–96. doi: [10.1080/24694452.2016.1142857](https://doi.org/10.1080/24694452.2016.1142857).

Merton, R. K. 1968. *Social theory and social structure*. New York: Simon & Schuster.

Miller, H. J., and M. F. Goodchild. 2015. Data-driven geography. *GeoJournal* 80 (4):449–61. doi: [10.1007/s10708-014-9602-6](https://doi.org/10.1007/s10708-014-9602-6).

National Academies of Sciences, Engineering, and Medicine (NASEM). 2019. *Reproducibility and replicability in science*. Washington, DC: National Academies Press.

Nichols, J. D., M. K. Oli, W. L. Kendall, and G. S. Boomer. 2021. Opinion: A better approach for dealing with reproducibility and replicability in science. *Proceedings of the National Academy of Sciences* 118 (7):e2100769118. doi: [10.1073/pnas.2100769118](https://doi.org/10.1073/pnas.2100769118).

Nosek, B. A., and T. M. Errington. 2020. What is replication? *PLOS Biology* 18 (3):e3000691. doi: [10.1371/journal.pbio.3000691](https://doi.org/10.1371/journal.pbio.3000691).

Nüst, D., C. Granell, B. Hofer, M. Konkol, F. O. Ostermann, R. Sileryte, and V. Cerutti. 2018. Reproducible research and GIScience: An evaluation using AGILE conference papers. *PeerJ* 6:e5072. doi: [10.7717/peerj.5072](https://doi.org/10.7717/peerj.5072).

Ostermann, F. O., and C. Granell. 2017. Advancing science with VGI: Reproducibility and replicability of recent studies using VGI. *Transactions in GIS* 21 (2):224–37. doi: [10.1111/tgis.12195](https://doi.org/10.1111/tgis.12195).

Ostermann, F. O., D. Nüst, C. Granell, B. Hofer, and M. Konkol. 2021. Reproducible research and GIScience: An evaluation using GIScience conference papers. In *11th International Conference on Geographic Information Science (GIScience 2021)—Part ii*, vol. 208, ed. K. Janowicz and J. A. Verstegen, 2:1–2. Wadern, Germany: Schloss Dagstuhl Leibniz-Zentrum für Informatik. doi: [10.4230/LIPIcs.GIScience.2021.II.2](https://doi.org/10.4230/LIPIcs.GIScience.2021.II.2).

Paez, A. 2022. Reproducibility of research during Covid-19: Examining the case of population density and the basic reproductive rate from the perspective of spatial analysis. *Geographical Analysis* 54 (4):860–80. doi: [10.1111/gean.12307](https://doi.org/10.1111/gean.12307).

Peet, R. 1999. *Modern geographical thought*. Oxford, UK: Blackwell.

Plessner, H. E. 2017. Reproducibility vs. replicability: A brief history of a confused terminology. *Frontiers in Neuroinformatics* 11:76. doi: [10.3389/fninf.2017.00076](https://doi.org/10.3389/fninf.2017.00076).

Radder, H., ed. 2003. *The philosophy of scientific experimentation*. Pittsburgh, PA: University of Pittsburgh Press.

Radder, H. 2012. *The material realization of science: From Habermas to experimentation and referential realism*. Vol. 294. New York: Springer Science & Business Media. doi: [10.1007/978-94-007-4107-2](https://doi.org/10.1007/978-94-007-4107-2).

Rosenthal, R. 1979. The file drawer problem and tolerance for null results. *Psychological Bulletin* 86 (3):638–41. doi: [10.1037/0033-2909.86.3.638](https://doi.org/10.1037/0033-2909.86.3.638).

Sargent, C. 1981. The repeatability of significance and the significance of repeatability. *European Journal of Parapsychology* 3 (4):423–43.

Sayer, R. A. 1992. *Method in social science: A realist approach*. London: Psychology Press.

Schaefer, F. K. 1953. Exceptionalism in geography: A methodological examination. *Annals of the Association of American Geographers* 43 (3):226–49. doi: [10.1080/00045605309352114](https://doi.org/10.1080/00045605309352114).

Schmidt, S. 2009. Shall we really do it again? The powerful concept of replication is neglected in the social sciences. *Review of General Psychology* 13 (2):90–100. doi: [10.1037/a0015108](https://doi.org/10.1037/a0015108).

Simandan, D. 2019. Revisiting positionality and the thesis of situated knowledge. *Dialogues in Human Geography* 9 (2):129–49. doi: [10.1177/2043820619850013](https://doi.org/10.1177/2043820619850013).

Sui, D., and P. Kedron. 2021. Reproducibility and replicability in the context of the contested identities of geography. *Annals of the American Association of Geographers* 111 (5):1275–83. doi: [10.1080/24694452.2020.1806024](https://doi.org/10.1080/24694452.2020.1806024).

Sultana, F. 2009. Community and participation in water resources management: Gendering and naturing development debates from Bangladesh. *Transactions of the Institute of British Geographers* 34 (3):346–63. doi: [10.1111/j.1475-5661.2009.00345.x](https://doi.org/10.1111/j.1475-5661.2009.00345.x).

The Turing Way Community. 2024. Illustrations from The Turing Way. Shared under CC-BY 4.0 for reuse. doi: [10.5281/zenodo.10654984](https://doi.org/10.5281/zenodo.10654984).

Turner, B. L. 1989. The specialist-synthesis approach to the revival of geography: The case of cultural ecology. *Annals of the Association of American Geographers* 79 (1):88–100. doi: [10.1111/j.1467-8306.1989.tb00252.x](https://doi.org/10.1111/j.1467-8306.1989.tb00252.x).

Turner, B. L. 2002. Contested identities: Human–environment geography and disciplinary implications in a restructuring academy. *Annals of the Association of American Geographers* 92 (1):52–74. doi: [10.1111/1467-8306.00279](https://doi.org/10.1111/1467-8306.00279).

Wainwright, J. 2021. Is critical human geography research replicable? *Annals of the American Association of Geographers* 111 (5):1284–90. doi: [10.1080/24694452.2020.1806025](https://doi.org/10.1080/24694452.2020.1806025).

Waters, N. 2021. Motivations and methods for replication in geography: Working with data streams. *Annals of the American Association of Geographers* 111 (5):1291–99. doi: [10.1080/24694452.2020.1806027](https://doi.org/10.1080/24694452.2020.1806027).

Yeung, H. W.-C. 2019. Rethinking mechanism and process in the geographical analysis of uneven development. *Dialogues in Human Geography* 9 (3):226–55. doi: [10.1177/2043820619861861](https://doi.org/10.1177/2043820619861861).

Yeung, H. W.-C. 2023. *Theory and explanation in geography*. Hoboken, NJ: Wiley.

Zhang, J., and L. J. Wolf. 2023, August. Rethinking “causality” in quantitative human geography. doi: [10.31235/osf.io/7yncm](https://doi.org/10.31235/osf.io/7yncm).

PETER KEDRON is an Associate Professor in the Department of Geography and Associate Director of the Center for Spatial Studies and Data Science at University of California Santa Barbara, Santa Barbara, CA 93106. E-mail: peterkedron@ucsb.edu. His research program develops and uses spatial analytical methods to understand persistently uneven patterns of spatial development. His recent work focuses on improving the production and accumulation of knowledge used to benefit society through policy.

JOSEPH HOLLER is an Associate Professor of Geography at Middlebury College, Middlebury, VT 05753. E-mail: josephh@middlebury.edu. He is a

human geographer and geographic information scientist with research interests in social vulnerability and adaptation in the context of climate change and environmental degradation. His research intersects with work in political ecology, development geography, human dimensions of global change, and GIScience.

SARAH BARDIN is a Doctoral Student in Geography at the School of Geographical Sciences and Urban Planning at Arizona State University, Tempe, AZ 85287. E-mail: sfbardin@asu.edu. Her research focuses on leveraging spatial modeling and GIS to generate policy-relevant, actionable insights from data.