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ARTICLE INFO ABSTRACT

Dataset link: https://github.com/martafdezmA Image semantic segmentation, a fundamental computer vision task, performs the pixel-wise classification of
M/lessen_supervision an image seeking to group pixels that share some semantic content. One of the main issues in semantic
Keywords: segmentation is the creation of fully annotated datasets where each image has one label per pixel. These

Semantic segmentation annotations are highly time-consuming and, the more the labelling increases, the higher the percentage of
Unsupervised learning human-entered errors grows. Segmentation methods based on less supervision can reduce both labelling time
Weakly supervised learning and noisy labels. However, when dealing with real-world applications, it is far from trivial to establish a
Deep convolutional neural networks method that minimizes labelling time while maximizing performance.

Our main contribution is to present the first comprehensive study of state-of-the-art methods based on
different levels of supervision. Image processing baselines, unsupervised, weakly supervised and supervised
approaches have been evaluated. We aim to guide anyone approaching a new real-world use case by providing
a trade-off between performance and supervision complexity on datasets from different domains, such as street
scenes (Camvid), microscopy (MetalDAM), satellite (FloodNet) and medical images (NuCLS). Our experimental
results suggest that: (i) unsupervised and weak learning perform well on majority classes, which helps to
speed up labelling; (ii) weakly supervised can outperform fully supervised methods on minority classes; (iii)
not all weak learning methods are robust to the nature of the dataset, especially those based on image-level
annotations; and (iv) among all weakly supervised methods, point-based are the best-performing ones, even
competing with fully supervised methods. The code is available at https://github.com/martafdezmAM/lessen_

supervision.
1. Introduction on improving the quality of the model by, for example, exploring ar-
chitectures, algorithms or hyperparameters. However, it is not common
Semantic segmentation (Long et al., 2015; Wang et al., 2018) is one to find studies related to the data-centric approach, which focuses on
of the most widely used problems in computer vision since it performs exploiting the data to reach the best performance.

both classification and localization tasks within an image at the pixel
level in a precise way. Moreover, semantic segmentation allows us
to estimate the size of objects in an image by converting each pixel
size to units of length measurement, based on information such as
image augmentation parameters. This way, we can perform accurate
object quantification tasks. During the last few years, methods based
on semantic image segmentation have obtained great performance
in different fields, such as video surveillance (Muhadi et al., 2020),

The generation of good-quality annotations is a very common chal-
lenge involving data-centric approaches due to several issues. While
building a semantic segmentation dataset, the main issue is the large
amount of time required to generate the necessary labelled data. Com-
plete labelling refers to annotating every pixel per image, often entail-
ing a tremendous amount of labelling effort. For instance, in the case
of MS COCO Lin et al. (2014) labelling at the image level took an

autonomous driving (Feng et al., 2021), medical prognosis (Wang et al., average of 4.1 s while labelling at the pixel level took an average of
2022), or material’s characterization (Holm et al., 2020), just to name 10.1 min. This means that while labelling 1 image at the pixel level,
a few. These techniques are usually model-centric approaches, focusing 148 images are labelled at the image level. This is an example of an
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image dataset with a 640 x 480 resolution, however, this labelling
task becomes even more tedious when facing datasets with images of
higher resolution, with a larger number of classes or, when contour
outlining is complex and requires a huge effort. For instance, the
Camvid dataset (Brostow et al., 2009) reports that labelling each image
takes about 60 min. Another good example is Cityscapes (Cordts et al.,
2016), which contains higher resolution images and two types of labels,
coarse labels consisting of poorly refined polygons and requiring an
average of 7 min of labelling per image, and fine labels consisting of
well-defined pixel-level labels and taking about 90 min. In the case
of MetalDAM (Luengo et al., 2022), with high-resolution images and
complex boundaries between classes, the average labelling time per
image is 140 min.

A secondary issue, depending on the particular application field, in
cases such as analysis of medical image Liu et al. (2021a) or material
microstructures (Luengo et al., 2022; Holm et al., 2020), among others,
labelling requires expert domain knowledge. Therefore, the labelling
work must be carried out, in many cases, by one or a few specialists
in those fields, who may not have enough time to perform this kind
of labelling task. This increases the need of reducing the amount of
labelling.

As for the third issue, we also must consider that a higher image
resolution implies an increase in the labelling time, but also the noise
on the annotations and the probability of introducing human errors
during labelling. Therefore, using fully annotated images is not always
the best solution as it is prone to human errors and biases. A recent
study (Northcutt et al., 2021) analysed 10 of the most common state-
of-the-art datasets and showed that approximately 3.3% of the labels
in a dataset are wrong. For instance, in ImageNet (Deng et al., 2009)
6% of labels in the evaluation subset are wrongly annotated. These
labelling errors result in inaccurate evaluation metrics, which may
mean that some model-centric approaches, rather than improving the
model performance, are learning to adapt to these labelling errors.

These challenges can be tackled in several ways by applying meth-
ods based on different levels of supervision rather than training fully
supervised models on large datasets. On the other hand, reducing the
level of supervision may also reduce their performance, since their
natural behaviour will be to produce inaccurate segmentations due
to the lower amount of supervision (Li et al., 2018). However, this
performance depends largely on the training data, as well as the
objectives and the tasks to be performed. With all of this in mind,
before generating a new model from an unlabelled dataset, the first
thing to do is to establish a trade-off between time to be invested in
labelling and training algorithms, versus the desired performance level.
For instance, if just some hundreds of labelled pixels can provide results
that meet the target performance level, training with thousands of
annotated pixels will not be the best option as it will require much more
annotation effort. There are cases such as detecting people in security
environments where there is no need for such high accuracy, on the
other hand, cases like medical diagnostics or material characterization
require precise results.

Many works have proposed new architectures or methods within
each supervision branch: supervised learning (Guo et al., 2018), semi-
supervised (Hong et al., 2015), weakly supervised (Chan et al., 2021),
few-shot (Dong and Xing, 2018) and unsupervised (Toldo et al., 2020).
Some of these works focus on providing new architectures or incremen-
tal optimizations for a given data domain or even for a specific dataset.
Another part of the literature develops reviews comparing methods
from the aforementioned supervision branches. For example, there are
studies such as (Lateef and Ruichek, 2019) which include a theoretical
and practical comparison of different neural network architectures on
different datasets using fully supervised training. We also found reviews
of methods based on unlabelled data such as (Li et al., 2018) which
compares unsupervised methods with state-of-the-art fully supervised
approaches. Regarding weakly supervised methods, Chan et al. (2021)
compares a few of them with their fully supervised version.
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In the literature, when comparing other supervision approaches
with unsupervised methods, classical computer vision techniques are
often used, neglecting the potential of more sophisticated unsuper-
vised segmentation methods. However, there are numerous papers
proposing novel unsupervised segmentation methods such as Ji et al.
(2019), Cho et al. (2021), Hwang et al. (2019), Van Gansbeke et al.
(2021), Kanezaki (2018), Kim et al. (2020b) and Hamilton et al. (2022).
Despite unsupervised methods obtaining poorer results than others with
higher supervision, if the target of the model is relatively easy, they
can be a perfect choice. Moreover, unsupervised approaches can also
be useful as an aid to labelling, using their output as a pre-annotation,
reducing notably the annotation effort. This applies not only to un-
supervised but also to weakly supervised approaches so, by testing
methods with lower complexity labels, we can generate more complex
labels easily. Fig. 1 graphically represents this idea in which three large
families of methods are identified: Unsupervised (no labels), weakly
supervised (partial labels) and supervised (fully annotated labels).

There are other families such as few-shot learning and domain
adaptation. Few-shot learning focuses on reducing the labelling effort
by minimizing the number of images. However, they still make use of
fully annotated data, which, as discussed in the third issue, leads to
the introduction of human errors. Moreover, the process of labelling
a single pixel-wise annotation is more tedious for the labellers than
annotating diverse images using weak labels. In addition, as these
methods use fewer images during the training, they face a hard problem
which is the selection of the most representative images. As for domain
adaptation techniques, there are papers such as (Dong et al., 2020,
2021; Liu et al., 2021b) that only require a model trained on a similar
domain and an unlabelled dataset to obtain very good results. They
achieve these results by preserving the source domain knowledge from
a pre-trained model via knowledge transfer during model adaptation.
However, in this work, we focus on real-world applications where it is
not common for the community to share already trained networks or
labelled datasets from the same domain.

This paper aims to study the trade-off between performance vs.
model generation effort, by exploring diverse supervision approaches.
The main goal is to speed up the model generation process and evaluate
the necessary amount of annotation for datasets of different natures.
Fig. 1 shows the process we follow, which consists in testing meth-
ods from the lowest to the highest labelling complexity. In this way,
generating a final pixel-wise annotation can be sped up by using the
predictions of less complex models as pre-annotations or pseudo-labels.

Our main contribution is to present, up to our knowledge, the first
comprehensive study of state-of-the-art methods based on different
levels of supervision. We test 12 methods on 4 datasets from differ-
ent domains: 2 image processing baselines, 3 unsupervised methods,
6 weak learning approaches and 1 fully supervised approach. Our
comparative study allows us to draw, among others, the following
conclusions:

Not all methods perform equally well on diverse datasets, being
the point-based approach the most robust one.

The point-based approach performs very similarly to the super-
vised method. Since the point-based approach requires less than
0.1% of the annotated pixels, they represent an interesting and
feasible alternative in real-world use cases.

Unsupervised methods are generally effective at predicting major-
ity classes, which would help to speed up the labelling process.
In this study, unsupervised methods based on Deep learning (DL)
techniques have been able to correctly label more than 90% of
the pixels.

Some weakly supervised approaches, such as point-based and
scribble-based methods, outperform fully supervised methods on
minority classes. This could be due to the negative impact of hu-
man errors introduced during the labelling process, as certain less
represented classes are sometimes ignored during the labelling.



M. Ferndndez-Moreno, B. Lei, E.A. Holm et al.

% Labeled data

Engineering Applications of Artificial Intelligence 123 (2023) 106299

Scribble ‘Pre-annotation ‘ e a=e
annotation
DATA
=)
r— -
y //\\
( Create ® > /Create full
‘n?C"bbl‘?/' \annotation
/ ‘\\//’
A
- Fully-
METHODS Sinsupetyised BLEL supervised
learning Supervised =
learning

Fig. 1. Trade-off performance vs. model generation effort: The natural process for establishing this trade-off is to run methods from lower to higher supervision rates while

speeding up the labelling process by reusing method predictions as pre-annotations.
2. Methods

As we have mentioned so far, in this paper we study the trade-
off between performance and model generation effort. Based on this,
we have selected state-of-the-art methods trained on different kinds of
labels whose training process is simple and as fast as possible.

2.1. Unsupervised learning

As mentioned in the introduction, the main objective of unsuper-
vised approaches is that, despite not obtaining as accurate results as the
supervised ones, these models can provide a solution quickly since no
labelling is required. There are numerous unsupervised segmentation
methods in the state of the art based on various architectures and
approaches. We have analysed several methods such as (Ji et al., 2019;
Cho et al., 2021; Hwang et al., 2019; Kanezaki, 2018; Caron et al.,
2018) and evaluated them on several datasets. However, most of these
methods are based on complex architectures whose training time can
extend to more than 12 h or even days, depending on the number and
size of images in each dataset and, in many cases, hyperparameter op-
timization requires running the experiments more than 20 or 30 times
to get an optimized model. This means that the results highly depend
on the hyperparameter values employed and obtaining a reliable model
would take a matter of months.

As reasoned above, the advantage of supervised methods is that
they provide a fast segmentation without labelling, serving as a pre-
annotation or a solution to a simple problem. With this in mind, we
have selected some methods whose training takes just a few seconds
or minutes depending on the resolution of the input image. The first
method is the approach presented in Kanezaki (2018), as it can generate
fairly decent segmentations in a matter of minutes. Hereafter, we will
refer to this method as Unsupervised Segmentation with Superpixel
(USSP) in this article. This method considers three key aspects in image
segmentation: feature similarity, spatial continuity of superpixel-based
clusters, and the number of unique clusters. Unlike traditional DL meth-
ods, USSP does not generate a final model trained on a dataset. Instead,
this algorithm is applied individually for each image by training a fairly
simple Convolutional Neural Network (CNN) for a few steps before
generating the final segmentation. USSP has been successfully tested in
specific tasks such as microscopic imaging, solving the characterization
of steel microstructures in Kim et al. (2020a).

The other selected method was introduced in Kim et al. (2020b)
as a modification of USSP (Kanezaki, 2018) and we will refer to it

as Continuity-based Unsupervised Segmentation (USC). The authors
claimed as a limitation that the segment boundaries were fixed in
Kanezaki (2018) due to superpixel refinement, so they replaced this
refinement by adding a continuity term in the loss function. This loss
favours cluster labels to be the same as those of neighbouring pixels by
considering the L1 norm of the horizontal and vertical differences of
the response map as a spatial constraint. This method can be trained in
the same way as USSP, by training one model per image, or by doing
what the authors call “training by reference”, which consists of training
the same network on a subset of images. From now on in this paper we
will refer to the “training by reference” approach as Reference-based
Unsupervised Segmentation (USRef).

2.2. Weakly supervised learning

As mentioned above, we can group weakly supervised methods into
different categories according to the type of label they use for training.
However, bounding boxes annotations (Hsu et al., 2019) tend to be
more common in instance segmentation, as they are more related to
providing information about the presence of an object rather than its
exact location. In addition, semantic segmentation datasets tend to
have highly intermingled classes where bounding boxes would overlap
and include parts of other classes. This means that within semantic
segmentation, image-level (Zhou et al., 2021, 2022), scribbles (Lin
et al., 2016) and points (Papadopoulos et al., 2017) are treated as the
most commonly used weak labels. Therefore, for each of these three
approaches, a method has been selected based on the same criteria as
those established when selecting unsupervised methods, i.e., simplicity
of the methods and speed in training and optimizing the model.

The first weak learning method will be an image-level approach
as it is the simplest type of weak label. Within this field, there are
numerous approaches such as (Du et al., 2022; Zhou et al., 2021, 2022),
among others, from which (Zhou et al., 2022) has been selected for
its balance between good performance and ease of reproducing the
results reported by the authors. This method obtains pseudo-labels by
combining semantic contrast and aggregation. These pseudo-labels are
then used as labels during subsequent supervised training. We will refer
to this paper from now on as RCA.

The approach involving scribbles is a variation of the USC (Kim
et al., 2020b) method and we will refer to this one as Semantic Seg-
mentation with Scribbles (SSCR), where the authors introduce another
term to the loss function regarding the supervised loss over the scribble
information. We have selected this method for the same reasons as
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Fig. 2. Summary of the selected methods grouped by the type of label used
during training. Unsupervised methods: Unsupervised Segmentation with Super-
pixel (Kanezaki, 2018) (USSP), Continuity-based Unsupervised Segmentation (Kim et al.,
2020b) (USC), Reference-based Unsupervised Segmentation (Kim et al., 2020b) (USRef).
Image-level method (Zhou et al., 2022): Regional Contrast Aggregation (RCA) Scribble
method (Kim et al.,, 2020b): Scribble-based Segmentation (SSCR). Point-based meth-
ods (Shin et al., 2021): Margin Sampling-based PixelPick (PX_Margin), Confidence-based
PixelPick (PX_Conf), Entropy-based PixelPick (PX_Entropy), Random-based PixelPick
(PX_Random). Supervised method: DeepLabV3+ (Chen et al., 2018).

USC, since it performs well on different datasets, its training is fast and
simple, the model architecture is lightweight and the incorporation of
scribbles in the training is simple and efficient in terms of performance.

As for the point-based method, we have selected the approaches
in Shin et al. (2021) where the authors present an active learning
pipeline inspired by the “extreme clicking” method introduced in Lin
et al. (2016). This pipeline consists of N consecutive trainings in which
the output proposes M new pixels to be labelled considered as the most
relevant ones. The authors compare four different criteria to consider
which pixel is more relevant using the measures: least loss confidence,
margin sampling, cross-entropy loss value and random selection. We
will refer to each of them as PX conf, PX margin, PX entropy and
PX random. These active learning criteria will also be compared with
the rest of the methods. This approach has been selected because it
allows us not only to simply evaluate the training on a different number
of pixels but also to compare different approaches based on active
learning. On the other hand, the authors provide very promising results
on the Camvid dataset, close to supervised with less than 0.1% of the
labelled pixels, so one of our goals will be to check if this behaviour is
also true for other datasets.

As a summary, Fig. 2 shows an outline of the methods we have
selected for this study since, after an initial analysis of several methods,
they are the ones that best suit the objectives of this comparative study.
The figure shows each of the methods gathered according to the type
of label used during training.

3. Experiments

In this section, we will evaluate the selected methods on several
datasets with different characteristics. The objective is to analyse how
this trade-off between performance and model generation effort be-
haves in each dataset by comparing methods trained on labels of
different complexities. A common repository has been implemented,
where the above methods have been adapted to new datasets. As part
of the contribution of this article, this repository has been made public
and can be accessed from the link: https://github.com/martafdezmAM/
lessen_supervision.

3.1. Datasets

Since not all methods behave in the same way depending on the
different characteristics of the datasets, we will evaluate how far we
can go in terms of accuracy and performance with different levels of
supervision. For this purpose, we must analyse the impact of each
method regardless of the type of image used, so we must test these
methods on highly different datasets. To achieve this, the following
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datasets have been selected looking for the greatest possible diversity
based on the following criteria: tasks, number of examples, resolution,
and number of classes.

» MetalDAM (Luengo et al., 2022): MetalDAM consists of grayscale
images of steel microstructures taken with different microscopes
or similar specialized devices that are capable of obtaining mag-
nified images. In material science, this kind of data is typically
used for characterization tasks, and the annotations do not usually
contain many classes. However, they are high-resolution images
that have a large amount of detail and uncertain boundaries
between classes. The areas to be segmented usually involve more
abstract and complex criteria than in other kinds of tasks such as
the segmentation of well-defined objects such as cars or people.
Camvid (Brostow et al., 2009): Camvid consists of images taken
from a car driving on diverse roads. We see a lot of variability
of illumination between images due to the different times of the
day in which the photo were taken, atmospheric conditions or
even the shadows produced by objects as seen from the camera’s
viewpoint. Camvid has been used as a benchmark in multiple
methods, including the point-based method (Shin et al., 2021)
selected in this article. Based on this, we have used the same
version of the dataset as the authors.

FloodNet (Rahnemoonfar et al., 2021): It is composed of high-
resolution satellite images that capture the consequences of some
natural disasters. These are aerial images, so the perspective of
the images is not highly variable. However, due to their very high
resolution, they contain a large amount of information. FloodNet
contains thousands of images, but only the labels of the training
set are public, so just 398 training images have been used.
NuCLS (Amgad et al., 2022): This dataset contains examples of
breast cancer images from The Cancer Genome Atlas (TCGA)
programme. The version labelled by non-pathologists and subse-
quently validated by a pathologist has been selected as it contains
a larger volume of better-quality labels. NuCLS has a training
subset of 1481 images and a test subset of 263 images.

Table 1 gathers the most relevant information relative to each
dataset and Fig. 3 shows an example of an image and its mask for
each dataset. From this table and Figure, we can observe the differences
between the kind of images and annotations between datasets, as well
as the differences of the volume of data and the image resolution.

3.2. Set-up

In summary, the behaviour of MetalDAM, Camvid, FloodNet and
NuCLS datasets with different labels will be tested on the methods:
USSP (Kanezaki, 2018), USC (Kim et al., 2020b) and USCRef. (Kim
et al., 2020b) (unsupervised), RCA (Zhou et al., 2022), SSCR (Kim et al.,
2020b), PX_margin, PX_conf, PX_entropy and PX random (Shin et al.,
2021) (weakly supervised approaches) and a CNN trained in a fully
supervised fashion (Chen et al., 2018).

Additional methods were tested against the four datasets; however,
the previous methods were selected by taking into account key issues
such as reduced labelling time, model training and human-introduced
error. Extensive experimental work has been carried out since the
previous experiments along with those outlined in this paper have been
run more than 40 times for each dataset. These experiments have been
running for 7 months on 2 DGX servers each with 8 NVIDIA Tesla V100
GPUs and 3 servers equipped with NVIDIA RTX 3090.

To contrast unsupervised methods with more traditional techniques,
k-means (Dash et al., 2010) and graph-segmentation (Felzenszwalb and
Zabih, 2010) baselines have been included. As for the weak learning
methods, the code has been modified to use PyTorch segmentation
models library (Yakubovskiy, 2020). This modification gives users the
possibility of using new loss functions and a much wider catalogue
of network architectures. Each of these architectures was tested, and
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a) MetalDAM

Fig. 3. Comparison of images and their mask: Each subfigure shows an example for each dataset.

Table 1

Summary of the semantic segmentation datasets tested in the experiments.
Dataset Domain # Labelled images # Classes Resolution
MetalDAM? Microscopy 42 5 1024 x 768
Camvid® Urban Scene 701 12 480 x 384
FloodNet* Satellite 398 10 4000 x 3000
NuCLS! Medical 1744 4 480 x 384

2https://dasci.es/transferencia/open-data/metal-dam/.
bhttps://github.com/alexgkendall/SegNet-Tutorial.
¢https://github.com/BinaLab/FloodNet-Challenge- EARTHVISION2021.
dhttps://sites.google.com/view/nucls/home?authuser=0.
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Fig. 4. Comparison of images and their scribble: Each figure represents an example for each dataset,consisting of an image and the scribble that has been manually created.

DeepLabv3+ (Chen et al., 2018) has obtained the best results; therefore,
a DeepLabv3+ since they are trained in a fully supervised fashion
and also used in RCA, PX_margin, PX_conf, PX entropy and PX_random
methods. Regarding the unsupervised models, as they are trained on
each image individually, the 20 most representative images have been
selected for each dataset. To identify the most representative images,
we applied k-means clustering to the label class distribution of each
image and selected the 20 centroids. Regarding the scribble-based
method, scribbles have been manually created for each of the 20 images
in the four datasets and will be shared along with the implementation
of the methods in this article’s repository. Fig. 4 shows an example per
dataset showing these scribbles on its image.

The optimization of hyperparameters has been performed using
Optuna (Akiba et al., 2019), and all unsupervised and SCR methods
have been run a minimum of 20 times based on a sequential model
optimization using Tree-structured Parzen Estimator (TPE) (Bergstra
et al., 2013). As for the PX_margin, PX _conf, PX _entropy and PX random
methods, fixed hyperparameters were selected based on the recommen-
dations of the original paper. Each of the PX methods has been run 10
times, training over N new labelled pixels per image in each run, so
that the first training is done on N pixels per image and the last one
on 10X N.

Regarding the datasets, the training, validation and test subsets
predefined by their authors have been used in each dataset. However,
since the labels for the validation and test subsets of FloodNet are
not publicly available, the training subset has been divided into three
separate subsets, each with the same proportions as the other three
datasets. Additionally, the high resolution of the FloodNet images and
masks results in longer and more costly training processes. Based on
this problem, our results suggest that resizing images to a resolution
of 1024 x 768 does not harm the performance of the models, and all
training has been performed on this resolution of images and masks.
Concerning the classes in MetalDAM, we have ignored class 3 during
the model training and evaluation process, since this class was just
partially labelled. Regarding FloodNet and Camvid as well, the image
background has also been ignored since this class represents pixels that
do not belong to any of the classes to be identified.

3.3. Results and discussion

In this section, we collect the results obtained on each dataset and
analyse the impact of each type of label. Since every method has been
run 20 times, to show the average result of each method, instead of
selecting the best experiment, we report the results of the selected
experiment as a function of the median over the mean Intersection Over
Union (IOU) of the classes. For the point-based method, the results of
the model trained with 10 x N pixels are shown (N being the number
of labelled pixels introduced by active learning on each run), since it
corresponds to the end of the training pipeline.

First, through Fig. 5 we analyse the mean IOU performance of each
method sorted from left to right according to the complexity of the
label. Each colour refers to a different type of label:

1. Unsupervised without labels.

2. Weakly supervised with image-level.
3. Weakly supervised with scribbles.

4. Weakly supervised with points.

5. Supervised with fully annotated labels.

The natural behaviour of the graph, therefore, would be to observe
growth on the Y-axis between the different colour bands. Considering
the results obtained on the four datasets, we can observe several
common behavioural patterns.

An Appendix has been included to show examples of the predictions
made by each model compared to the input image and the correspond-
ing label. In this appendix we can see how unsupervised methods obtain
segmentations with high granularity, especially in majority classes. As
for the image-level method, we can see how its predictions are more
oriented towards instance segmentation, since it tends to separate clear
objects from the background, as happens in the case of MetalDAM. In
the case of scribbles, we see how the SCR method starts to distinguish
somewhat more minority classes, although it does not do so with
great precision. Finally, the point-based method achieves visually very
similar results to the supervised ones.

3.3.1. Unsupervised methods

As expected, unsupervised methods generally underperform other
methods that incorporate supervision during training, with the excep-
tion of the image-level method.
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a) MetalDAM results
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b) Camvid results
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¢) Floodnet results
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d) NuCLS results
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Fig. 5. Supervision effort vs performance trade-off: This figure reports the mean IOU results obtained by each of the selected methods. Each stripe coloured in a different shade
collects the methods using a certain kind of label and, as we move between strips from left to right, the annotation effort increases. The subfigures represent the results obtained
for each dataset.
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Fig. 6. Comparison of IOU by classes: Each subfigure represents the performance level of the methods based on different types of labels for each of the classes of each dataset.
The title of each graph specifies the percentage of pixels in the entire dataset for that class.
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Fig. 6. (continued).

However, there are interesting exceptions such as the performance
of USSP, which obtains very promising results on all datasets, approach-
ing the scribbles method by 5% on metalDAM. Considering Table 1, one
can observe that unsupervised learning achieves a worse performance
when the dataset has a larger number of classes. In NuCLS (4 classes)
the IOU difference with scribble-based methods is 6%, in MetalDAM (5
classes) 5%, in FloodNet (10 classes) 8% and in Camvid (12 classes)

11%. As can be seen in Fig. 6 unsupervised methods perform well on

majority classes, so the more minority classes, the lower the average
IOU over all classes.

As a summary, from this analysis of unsupervised methods we can
deduce:

» Unsupervised methods obtain highly accurate results in many
majority classes, as is the case of Martensite and Austenite in
MetalDAM, which make up almost 90% of the labelling, or grass
and tree in Floodnet, which make up more than 70% of the
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Fig. 6. (continued).

labelling. Given this fact, using unsupervised methods as an aid

in the labelling process can be a good approach.
+ In relation to the previous point, as they obtain good results on

majority classes, they perform better on datasets with a smaller

number of classes.

10

Among the 2 baselines and 3 unsupervised approaches tested,
USSP always performs best and compares well with methods
such as scribbles and image-level. This suggests that USSP is
the optimal unsupervised method for addressing a problem from
scratch, in addition to serving as an excellent starting point for
comparison.
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Fig. 6. (continued).

3.3.2. Weakly supervised methods To better understand these differences, Table 2 provides, for each

Continuing with the weakly supervised methods, in Fig. 5 we can dataset, information related to the amount of labelled information used
observe that for all four datasets every point-based method outper- by each method. This table shows the percentage of labelled pixels in
forms the other weakly supervised methods. However, the difference in each image and the number of total pixels used taking into account the

performance between these methods varies depending on the dataset. number of training images. It is important to take into account both

11
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Fig. 6. (continued).
measures since not all methods train with the same number of images. Secondly, the scribble-based method (SCR) always contains more
We will now analyse the three methods one by one. annotated pixels per image than the point-based. However, SCR trains
First, in Fig. 5 we observe how RCA, the image-level approach, ob- on a single image, while the point-based approach uses all images in
tains worse results than the rest of the weakly supervised methods. This the training subset. Therefore, as the number of images increases, the
makes sense since, unlike the other two approaches, RCA knows which number of labelled pixels remains the same for scribbles and grows for
classes are present in the image, but has no information regarding their point-based methods. For instance, for MetalDAM, having 29 images,
location and extent. the percentage and number of labelled pixels are higher in scribbles

12
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Comparison between amount of information provided vs performance. The table shows the number of images used
to train the model, the percentage of labelled pixels used per image, the number of labelled pixels used during the

training and the resulting Mean IOU value.

MetalDAM
Approach # training images % labelled pixels # labelled pixels Mean 10U
Unsupervised 1 0% 0 32.24%
Image-level 29 0% 0 14.78%
Scribbles 1 1.16% 9113 37.83%
Point-based 29 0.01% 2900 53.70%
Supervised 29 100% 22806528 62.20%
Camvid
Approach # training images % labelled pixels # labelled pixels Mean 10U
Unsupervised 1 0% 0 19.30%
Image-level 367 0% 0 10.44%
Scribbles 1 3.129% 5748 30.78%
Point-based 367 0.054% 36700 59.17%
Supervised 367 100% 67645440 60.58%
FloodNet
Approach # training images % labelled pixels # labelled pixels Mean 10U
Unsupervised 1 0% 0 21.26%
Image-level 318 0% 0 28.20%
Scribbles 1 12.41% 97601 29.23%
Point-based 318 0.054% 31800 38.87%
Supervised 318 100% 312999936 39.65%
NuCLS
Approach # training images % labelled pixels # labelled pixels Mean 10U
Unsupervised 1 0% 0 25.47%
Image-level 1481 0% 0 25.56%
Scribbles 1 18.06% 33288 31.82%
Point-based 1481 0.01% 148100 38.20%
Supervised 1481 100% 272977920 38.38%

but, for Camvid, having 367 images, the number of annotated pixels in
SCR is lower.

As for the results of the point-based methods, the ones obtained
on Camvid reproduce the results of the original authors and confirms
that the method obtains similar results for the other three datasets
of a very different nature. Comparing the point-based approach with
the supervised method, it can be seen that in MetalDAM, which has
a reduced number of images, the point-based method is almost 10%
behind the supervised method. However, in FloodNet, NuCLS and
Camvid, while training with more images, the results are practically
equal to the supervised ones, only about 1% worse. This may also
be due to the aspect demonstrated by Northcutt et al. (2021) on the
problem of model training and evaluation on noisy data sets. MetalDAM
contains very tightly intertwined classes, which causes the introduction
of many human errors when defining the boundary between classes. In
addition, according to the authors, the labelling of certain classes is
very ambiguous, leading to cases in which several experts in the area
of materials science do not agree on their labelling.

+ Despite the fact that scribbles have more labelled information,
point-based methods are always superior to scribbles, indicating
that better results are obtained with the selection of a smaller
volume of sparse pixels based on active learning criteria.

Based on these results we can see how, apparently, increasing
the percentage of supervision has less impact than increasing the
number of images with a lower level of supervision.

Among the 3 weakly supervised approaches tested, the point-
based method obtains the best results on very diverse datasets. Its
results are very close to the supervised approach, which makes it
a highly recommended solution for real-world problems.

13

4. Conclusions

Our study explores one of the biggest challenges when dealing with
semantic segmentation techniques: annotating a dataset with the lowest
possible error rate in an efficient manner. We had conducted the first
comprehensive study of state-of-the-art methods with different levels
of supervision. We had tested 12 methods on 4 datasets from different
domains, including 2 image processing baselines, 3 unsupervised meth-
ods, 6 weak learning approaches, and 1 fully supervised approach. The
results obtained had shown that spending a lot of time on pixel-level
annotations is generally unnecessary. We had also provided guidance
on the performance offered by different kinds of labels, such as mean
I0OU vs labelling complexity.

We have found that unsupervised methods, such as USSP (Kanezaki,
2018), perform very well on large classes. For instance, USSP is able
to segment the two majority classes that represent the 90% of the
MetalDAM labelling. By using these pre-annotations, the time spent on
labelling MetalDAM could be reduced from more than 4 days to less
than 10 h.

Recent studies, such as the one referenced in Northcutt et al. (2021),
have emphasized the importance of incorporating a high level of noise
in labels. These studies showed that models perform better when
adjustments are made to account for such noise. We have found that
the point-based method tested in this paper outperforms the supervised
approach on certain minority classes. This is because minor classes
are left out during labelling, which causes models trained from these
human annotations to overlook them in their predictions.

Finally, we observed that image-level methods within the weakly
supervised methods obtained significantly different results depending
on the dataset. As they do not provide information about which class
every pixel belongs to, their ability to distinguish between classes
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(¢) Unsupervised

Fig. A.7. FloodNet: Image, label and predictions of each learning approach.

is considerably lower. Although scribbles contain more labelled pix-
els than point-based methods, they consistently perform worse. This
leads us to reflect on the impact of using sparse labels where the
labelled information is scattered throughout the image, rather than
annotating several pixels close to each other. In our experiments, point-
based approaches outperformed scribble-based methods. However, an
in-depth analysis of the efforts required for scribble labelling and point-
based labelling could be very interesting, but it is beyond the scope of
our paper. Future work will include the study of the performance of
weak learning annotations using various types of labels with different
amounts of labelled information.
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Fig. A.8. Camvid: Image, label and predictions of each learning approach.
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Fig. A.9. Metaldam: Image, label and predictions of each learning approach.
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Fig. A.10. NuCLS: Image, label and predictions of each learning approach.

Appendix

Figs. A.7-A.10 show a comparison between a random image and its
label from each dataset with the output prediction of the model from
each learning approach.
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