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ABSTRACT

Graph Neural Networks (GNN) involve two basic sparse kernels,

SDDMM and SpMM, on which all GNN models could be built. Prior

works have explored piecemeal solutions by using di�erent storage

formats and computation paradigms, resulting in excess memory

consumption, and have not yet realized their full potential. This

paper, called GnnOne, studies these two basic sparse kernels in

GPU and shows that they can be built on the same system design

principle of data load being the limiting factor irrespective of their

computing paradigms. Hence GnnOne presents a uni�ed two-stage

data-load design that provides greater performance through novel

techniques of data-load balancing, data-load optimizations, and

data-reuse. Such a uni�ed design also enables the usage of a single

sparse storage format to increase productivity, memory saving, and

reduce maintenance. Evaluations show that the proposed system

achieves an average speedup of 6.25× and 6.02× for SpMM and

SDDMM over many prior works for di�erent feature lengths. For

GNN training,GnnOne achieves 2.01× average speedup over dgNN,

2.28× average speedup over DGL on 3 di�erent GNN models.
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1 INTRODUCTION

A sparse matrix or graph is a widely used data model in Graph

Neural Networks [4, 15, 23, 32, 48–50] (GNN) to boost the perfor-

mance of deep learning (DL) training on sparse data among di�erent

applications, such as social media, biology, chemistry, recommen-

dation systems, and knowledge base completions [8, 14, 24, 28, 29,

33, 45, 51]. Prior works [35] have established SDDMM (sampled

dense dense matrix multiplication) and SpMM (sparse matrix dense

matrix multiplication) as the basic building blocks (sparse kernels)
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to construct any GNN model as discussed in-depth in §2. For ex-

ample, when GNN calls SpMM in the forward computation, the

back-propagation calls SpMM and SDDMM.

A graph consists of vertex setĒ and edge set ā, where ā denotes

the non-zero element of the sparse matrix (more information is

in §2). SDDMM and SpMM produce output at the edge-level and

vertex-level respectively. Hence they follow di�erent computation

paradigms: SDDMM naturally aligns with edge-centric computa-

tion, while SpMM is vertex-centric. These distinct paradigmatic

di�erences between these two kernels have so far inspired piece-

meal solutions resulting in very contrasting SpMM and SDDMM

designs, presenting a challenge in e�ciently combining them as

part of the same work�ow of GNN training.

To illustrate, consider the existing high-level approaches as listed

next. 1) Optimize SpMM kernel only [19, 20, 37], sometimes even

proposing a custom storage format for the same, without giving

attention to their applicability to SDDMM. The custom storage for-

mat also creates further hurdles in their integration into popular DL

or GNN frameworks, such as DGL [35] or Pytorch-Geometric [9]

(PyG), which do not support custom formats. 2) Downgrade SD-

DMM into a vertex-centric variant [5, 39, 47] so that a single storage

format, such as compressed sparse row (CSR), could be used in the

whole GNN work�ow. However, the downgrade impedes the appli-

cation of potential optimizations to SDDMM thereby achieving only

non-optimal SDDMM performance. 3) Individually align SpMM and

SDDMM, such as DGL [35] uses CSR and coordinate list (COO) for-

mats respectively. Similarly, Sputnik [11] uses a custom format for

SpMM but uses CSR for SDDMM. Such approaches not only con-

sume multiple storage formats which leads to excessive memory

consumption but also make optimization on two di�erent problems

which let us believe that SpMM and SDDMM are fundamentally

di�erent.

Clearly, none of the above approaches are ideal in an end-to-

end GNN training setup as they either compromise on SDDMM

optimization or increase the system complexity in the integration,

maintenance, and optimization. Also, SDDMM being a new sparse

kernel, was not studied previously in scienti�c computation or in

classical graph analytics work, its support is only recently been

introduced in vendor libraries such as Cusparse [1] by Nvidia. How-

ever, it is still excessively slow as our evaluation (§5) shows.

All these observations lead us to believe that SDDMMhas neither

been comprehensively studied individually nor along with SpMM

as part of GNN training. This points to a critical research question:

are di�erences in computation paradigms of SDDMM and SpMM

fundamental enough to design piecemeal optimizations or can we

design common optimizations that can allow high-performance in

both individual kernels without sacri�cing the performance of either?

In response, we propose GnnOne, a system dedicated to a com-

prehensive study of sparse kernels, and identifying fundamental

di�erences in their computation paradigm. GnnOne shows that
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those di�erences, despite being fundamental, are not responsible for

current piecemeal solutions. GnnOne turns to a data-load centric

design based on our novel observations to achieve a uni�ed design.

To be more speci�c, a) the fundamental trade-o� is only in the

reduction stage of the computation (§3) and not in their data-load

stages; and b) sparse kernels should be dominated by the data-load

performance and not by actual computation due to irregularity intro-

duced by the sparsity irrespective of their computation paradigm.

Hence, the sparse kernels– performing similar data-load and being

dominated by it– are uni�ed at the data-load design by GnnOne.

For their common optimizations, GnnOne then revisits some of

the known problems in sparse kernels from data-load perspective,

achieving workload balancing through data-load balance, and fur-

ther optimization by minimizing data-load volume through data

reuse.

GnnOne achieves uni�ed design and optimization through a

novel two-stage data-load technique. Stage 1 loads NZEs and cor-

responding edge-level features using a fully balanced edge-parallel

strategy and caches them explicitly for their reuse in Stage 2. Stage

2 loads vertex-level features of cached NZEs using another balanced

data-load strategy, improves data-load performance, and introduces

their data-reuse using a novel symbiotic thread scheduler. The

scheduler is developed from the insight gathered from our in-depth

study of sparse kernels to achieve their symbiotic co-existence in

the GNN training.

The separation of data-load into two stages allows their inde-

pendent optimization in many novel ways. a) Stage 1 uses GPU

shared memory for caching non-zero elements and edge-level fea-

tures whose optimum size can be determined independent of the

neighborhood size in the dataset. The caching is new in SDDMM

while its independence is new in SpMM compared to current sys-

tems. b) Our new insights point out that reduction fundamentally

impacts the data-load performance through the memory barrier

usage and excessive usage of shared memory or registers (§3.2).

The symbiotic scheduler through thread-grouping, and a novel Con-

secutive scheduling policy optimizes the data-load performance in

Stage 2, introduces huge data-reuse, and enables a more thread-local

reduction in both sparse kernels.

The uni�ed design and the symbiotic co-existence of sparse ker-

nels enable their implementation based on a single sparse storage

format as long as reduction can access the row ID of every non-

zero element e�ciently. This observation gives the standard COO

format a head start. However, our optimization can be applied to

other formats and explain the trade-o� involved in selecting the

COO format compared to CSR or custom storage formats.

Performance evaluations show that for SDDMM, our COO-based

GnnOne achieves an average 6.54×, 4.17×, and 6.38× speedup com-

pared to CSR-based Featgraph, COO-based DGL, and CSR-based

dgSparse library [3] which is used in dgNN[47] respectively among

di�erent feature lengths, and one to two orders of average speedup

compared to CuSparse, and Sputnik. For SpMM, our COO-based

GnnOne achieve 9.80×, 3.20×, 4.86×, and 1.73× speedup compared

to CSR-based Ge-SpMM [19], CSR-based Cusparse, and the work-

load balanced solutions(custom format-based) by GNNAdvisor [37],

and Huang et. al [20] respectively for various feature lengths.

We also show that GnnOne, without any kernel fusion, achieves

2.01× speedup over dgNN [47], a highly fused GNN system, for

 

Fig. 1: Illustration of sparse matrix storage formats, showing edge-

level features. The edge-level features are not static like the corre-

sponding sparse matrix topology. Vertex-level features have been

omitted for brevity.

GAT [32]. Compared to DGL, GnnOne gains 1.89×, 1.27×, and

3.68× average speedup for GCN [23], GIN [40], and GAT [32].

Reliance on standard sparse format (COO) allows GnnOne to be

integrated with popular GNN frameworks such as DGL and PyG

that support COO format. Moreover, it can also be part of many

scienti�c computingwork�ows as vendor libraries such as Cusparse

support SpMM using the COO format. It can also in�uence its

SDDMM performance which has been far below expectations and

is yet to support the standard COO format. GnnOne not only have

far-reaching impacts on GNN system optimizations, maintenance,

and productivity due to the uni�ed property that we discuss but

also on sparse models, another user of such sparse kernels.

The remainder of the paper is organized as follows. The back-

ground is presented in §2, motivation and overview in §3, detailed

design and discussion in §4, and evaluations in §5. Other related

works and discussions are presented in §6, and we conclude in §7.

2 BACKGROUND

GPU. GPU has become a very important accelerator for deep learn-

ing training. A GPU is made up of many Streaming Multiprocessors

(SM). A program in GPU is called kernel and is executed by a group

of thread blocks, also called CTA (cooperative thread array). Each

CTA is con�gured with a speci�c number of threads such as 64, 128,

256, 512, etc. At any time, a number of CTA may be active on the

same GPU SM, and there count per SM is called GPU Occupancy.

A higher occupancy is preferred as it can hide the long latency

instructions, such as data-load instruction.

CTA threads are grouped in warps– 32 threads– that execute

in single instruction multiple threads (SIMT) fashion. Coalesced

memory can only be achieved if each thread of the warp issue

data load on consecutive locations. Coalescing results in faster data

movement from the global memory to its register for computation.

Each CTA also has a �xed amount of programmable hardware

cache (e.g., 64KB), which may optionally be used as shared memory

in CTA, where a program can modify or access its contents directly.

However, writing data to GPU’s shared memory requires a memory

barrier before it can be read for further processing.

Graph Storage Format. Sparse data that we focus on in this work

could be modeled using sparse matrices or graphs. A graph has a set

of vertices |Ē |, and connections between vertices are represented as

an edge set |ā |. A sample sparse matrix/graph is shown in Fig. 1(a),
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where there are only a few non-zero columns in any row. A row

corresponds to a vertex, while the count of non-zero elements (NZE)

is equal to the edge-count (|ā |) in the corresponding graph.

Terminology. In this paper, we mostly use sparse matrix terminol-

ogy but do use graph-related terminologies for types of tensors and

parallelism to avoid name collision. For tensors (features), we label

them as vertex-level or edge-level. For example,ē of size |ā | × |1|

is an edge-level tensor in Fig. 1(a) where each NZEs has a scalar

feature. Similarly, a dense matrix of size |Ē | × |Ă | would be called a

vertex-level tensor, where each vertex has a vector feature of size

|Ă |. Similarly, for parallelism, we label them as vertex-parallel or

edge-parallel. The row-length is equivalent to vertex degree.

Fig. 1 shows di�erent storage formats of the sparse matrix that

only store non-zero elements(NZE) of the sparse matrix. Com-

pressed Sparse Row (CSR) uses three arrays: The �rst array con-

tains the column ID of every NZE of the matrix. The o�set array

contains o�sets to the NZE array for each row. The third array is

the edge-level tensor. Coordinate List (COO) format consists of two

arrays, the �rst array contains the tuple of row and column IDs,

while the second array is the edge-level tensor. Cusparse de�nes

the COO to be stored in the CSR way [2].

Custom Storage Format.Any format that does not conform to the

above-discussed form, we call them custom format. For example,

any additional metadata on top of the CSR format makes it a custom

format. Though we will be comparing against custom formats for

performance, our goal is to rely on standard formats.

Basic Sparse Kernels. Sparse kernels involve sparse and dense

matrices. SDDMM or sampled Dense Dense Matrix multiplication

(ē ← A » (XYĐ )) introduces sparsity to the product of two dense

matrices (or vertex-level tensors) X and YĐ , each of size |Ē | × |Ă |,

using sparse adjacency matrixý. Thus the resultē is an edge-level

tensor of same size as A (|ā | × 1). Hence, the dot product happens

across (vertex) feature dimensions. SpMM or Sparse matrix and

dense matrix multiplication (ĕ ← ýĔ ) is the matrix multiplication

operation between a sparse matrix (or edge-level tensor) A of size

|ā |×1 and a dense matrix (or vertex-level tensor) X of size |Ē | × |Ă |

resulting in a dense matrix (or a new vertex-level tensor) Y of size

|Ē | × |Ă |.

Some GNN models, such as GCN, may not need SDDMM in its

forward and backward computation, while other GNN models still

need both SDDMM and SpMM in their computation, so optimizing

them either individually or together is still vital.

Vertex-Parallel and Edge-Parallel. When computation units are

divided equally among rows (or vertices), it is called vertex-parallel

method. E.g., a warp assigned to each row for performing SpMM.

However, each warp performs a varying amount of work due to

varying row lengths, leading to severe workload imbalance. On the

other hand, the edge-parallel method allocates an equal amount of

NZEs to each warp. Such solutions are known as non-zero split in

the SpMV domain, and imparts good workload balancing amid the

need for inter-thread communication for reduction implementation.

Feature-Parallel Method. From feature-parallel [42] perspective,

warp threads are deployed along the vertex-feature dimension to

achieve coalesced data load from matrices X and ĕĐ in GPUs, i.e.,

dense matrices are read row-wise.

3 MOTIVATION AND OVERVIEW

3.1 Optimizing SDDMM and SpMM Together

SDDMM and SpMM kernels and their variants serve as the basic

building blocks for all the sparsity needs of GNN [35]. Optimizing

them can contribute to all kinds of GNN models. Several GNN mod-

els, such as GAT [32], GaAN [49] need to include both SDDMM and

SpMM together for training and inference. However, SDDMM have

di�erent computation patterns than SpMM, SDDMM computation

pattern is derived from feature dimension reduction, i.e. reduction

is column-based; while SpMM computation is from neighborhood

dimension reduction, i.e. reduction is row-based.

Because of the above di�erences, numerous e�orts have been

made to optimize the SDDMM and SpMM independently tailored to

the speci�c computation pattern of each kernel, and this has often

resulted in con�icting designs and/or sub-optimal performance of

sparse kernels. For example, DGL designed kernels are very di�er-

ent from each other, e.g. it uses COO for (edge-parallel) SDDMM

achieving a good workload balancing, however, it uses CSR for

SpMM leading to excessive memory consumption for graph storage

in GNN training, while we present soon that workload balancing

alone does not bring DGL SDDMM desired results. However, newer

GNN systems [39, 47] have ignored workload-balancing achieved

by DGL SDDMM by sticking to CSR format for both the kernels

by implementing a vertex-centric variant. Other GNN works, such

as Ge-SpMM [19] and GNNAdvisor [37] has only o�ered SpMM

to support only limited GNN models, and hence it is not clear if

the same design can provide an optimal solution for SDDMM in

order to support wider GNNmodels. A more in-depth study of prior

works is presented in §6.

In this work, we focus on sparse kernel design that does not

compromise the performance of any sparse kernels, speci�cally on

the design of SDDMM and its co-existence with SpMM as part of

GNN work�ow. We comment that the community has not under-

stood this co-existence fully. We establish clear facts to prove that

SDDMM and SpMM can be built from the same fundamentals so

that their design will not con�ict with each other while achieving

the desired performance goal. To corroborate this, we now present

two general observations: the �rst is about similarities and di�er-

ences between SDDMM and SpMM, and the second is about the

general trend for sparse kernel computation on modern hardware.

These two present us with novel opportunities for the co-existence

of both the sparse kernels and to achieve common optimizations.

Observation #1: Only Reduction is Fundamentally Di�erent.

Many steps are similar for these two sparse kernels, or only minor

di�erences exist. E.g., loading NZEs and the vertex-features of

their column ID are the same. The minor di�erence is that SpMM

additionally loads edge-features of NZE, while SDDMMadditionally

fetches vertex-feature of the row ID of each NZE. Both of them

produce an equal count of individual dot products.

The fundamental di�erence exists only for reduction: SDDMM

performs reductions of the dot products along the vertex-feature

dimension to generate output at the edge level, while SpMM does it

along the neighborhood dimension of the sparse matrix to generate

output at the vertex level.

Observation #2: Data Loadk Actual Compute. Sparse kernel

computations, like many other computations, involve three steps:
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Fig. 2: Illustration of the proposed uni�ed design for SDDMM and SpMM computation: each warp (say, 4 threads) is shown to handle 8 NZE,

and 8 is feature-length for brevity. The 8 NZEs are divided among two thread groups using the proposed Symbiotic scheduling policy, where

they work on 4 consecutive NZEs. Each thread fetches 4 consecutive vertex-level features from the dense matrix.

bringing data (NZEs and their features) from the device memory to

the registers of the computation unit, and then doing actual compu-

tation (dot product and reduction), followed by updating the result

to the output. Modern GPU processors are very fast and can work

in SIMT fashion resulting in faster computation. However, memory

speed (device memory to-and-fro register) has not kept pace with

processor performance, and is popularly know as “memory wall”

in computer architecture �eld. Further, the irregularity introduced

due to sparsity makes data-load the dominant cost in GPU.

Clearly, both sparse kernels show a common data-load pattern

that should dominate the overall performance. We do prove this

claim empirically later in Fig. 11. Hence, this motivates system

design of GnnOne to focus on abstracting out the common data-load

pattern using an uni�ed data-load design, followed by balancing and

optimizing it while also introducing data reuse.

3.2 GnnOne: Challenges and Overview

Uni�ed Data-Load. GnnOne abstracts out the common data-load

pattern and designs a uni�ed data-load stage whose optimization is

the main research goal to bene�t both the sparse kernels. Viewing

the sparse kernels from the prism of data-load performance, the

known problem of workload-imbalance becomes a data-load imbal-

ance problem, while optimizing the performance of sparse kernels

requires data-load optimization including introducing data-reuse.

Thus the �nal goal is the study of various aspect of uni�ed data-load

optimization.

Advantages. This uni�ed data-load design is very relevant as a

number of optimizations that have been proposed for SpMM (or

even SpMV) can become relevant for SDDMM, while the techniques

that we propose for SDDMM becomes relevant for SpMM. Data-

load uni�cation also have other wide ranging advantages. It may

also enable the deployment of a single storage format in both sparse

kernels leading to signi�cant memory saving in GNN, such as in

DGL which relies on two di�erent formats; and selecting a standard

graph storage format (COO) ensures its compatibility with standard

libraries, such as Cusparse. The uni�ed design also leads to less

development and maintenance cost as each data-load optimization

technique is likely going to be applicable to both kernels, thereby

leading to code modularization and code reuse. Finally, vendor

libraries such as CuSparse can quickly reuse their SpMM codebase

and extend it to SDDMM rather than spending additional time on

design thinking, as their current SDDMM is extremely slow, which

we believe is based on a di�erent design than its SpMM.

Challenge: Data-load balancing alone is not su�cient.Achiev-

ing a balanced data-load alone does not imply the best data-load or

kernel performance. Hence merely borrowing the idea from prior

works focused on balanced data-load alone does not guarantee an

optimal data-load performance.

To illustrate for SDDMM, DGL does use edge-parallel design,

which achieves data-load balance. However, it is even slower than

the CSR-based SDDMM of dgSparse library [3], which is used by

GNN systems such as dgNN [47]. E.g., when the feature-length

is 32, DGL is slower by an average of 2.01× than dgSparse on

datasets listed in Table 1. More results are presented in §5. Similarly,

for SpMM, we can consider the well-known nonzero-split (edge-

parallel) techniques pioneered by SpMV [6, 27] to achieve data-load

balance. Unfortunately, Yang et al [42], which extended this design

to SpMM, concludes that a nonzero-split SpMM is slower than their

vanilla vertex-parallel SpMM for the majority of their datasets.

It is no surprise that such results have established the non-

optimal vertex-parallel variants as the state-of-the-art while discard-

ing the right approach of data-load balanced solutions. As it stands

today, edge-parallel SDDMM by DGL and edge-parallel SpMM by

Yang et al. are not the state-of-the-art solutions.

Overview and Contributions. Better performance from the uni-

�ed data-load stage requires not only a data-load balanced design

but also investigating the factors that indirectly a�ects its perfor-

mance. In this work, we perform such investigations, and accord-

ingly propose novel techniques to improve the data-load perfor-

mance as outlined next as our contributions:

• Reduction indirectly impacts Data-Load. Our analysis reveals

a fundamental impact that reduction stage has indirectly on data-

load performance which remains unknown to the community.

Firstly, reduction can impact data-load performance through the

memory barrier. To illustrate, consider 32 as feature-length in SD-

DMM, where individual threads of the warp are mapped along

feature dimensions, i.e., 1 thread handles 1 vertex-feature before

doing the reduction. Hence, a thread of the warp performs just 1
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load of vertex-level feature before doing 5 rounds (Ģĥĝ32
2
) of inter-

thread communication [18]. The inter-thread communication also

introduces a memory barrier, enforcing an ordering constraint on

memory operations issued before and after the barrier instruction.

Hence, the compiler cannot issue more than 1 outstanding feature

load instruction, forcing the thread to wait after issuing every fea-

ture load. This impacts instruction-level parallelism (ILP), resulting

in slower data-load performance.

Secondly, reduction can impact data-load performance through

excessive consumption of shared-memory or register. To illustrate,

consider nonzero-split from SpMV [27], which Yang et al [42] ex-

tended for SpMM as is. It continued materializing the individual

dot products in SpMM in registers for all NZE that are assigned to a

warp, and reduction is performed at the very end. This materializa-

tion leads to excessive usage of registers per thread, e.g. 32× than

SpMV if the feature-length is 32. Yang et al claims that large register

usage is the main reason for slowdown of their non-zero split based

SpMM. Our investigation con�rms that large register usage low-

ers GPU occupancy, thereby GPU cannot launch many concurrent

CTA to allow hiding data-load latency with the computation. Hence,

the GPU cannot issue su�cient data-load instructions leading to

smaller ILP and hence poor data-load performance.

• Two-Stage Data-Load and Symbiotic Thread Scheduler. Gn-

nOne propose a two-stage data-load and symbiotic thread sched-

uler to import data-load balancing and optimization to the uni�ed

data-load design by exploring factors that are responsible for poor

data-load performance. The working �ow is shown in Fig. 2.

Stage 1 of uni�ed data-load achieves a fully balanced data-load

of NZEs and the corresponding edge features, if needed, using the

edge-parallel method resulting in complete memory coalescing.

This stage stores them in the shared memory of the GPU so that

they can be reused in Stage 2. The advantage of separation is that

GnnOne can determine the cache size in Stage 1 based on hardware

(GPU) characteristics such as shared memory size, and memory

barrier that is applied before reading from shared memory, and

is fully independent of row-length– a novel contribution that is

applicable for both SDDMM and SpMM.

Stage 2 loads the vertex-level features of the cached NZEs from

device memory to registers, while also performing the dot product

as per individual kernel needs. The scheduler assigns one thread to

load many consecutive vertex-level features so that the impact of the

memory barrier in SDDMM can be minimized. The decision also

enables more thread-local reduction and minimizes inter-thread

communications. For example, one thread loads 4 consecutive vertex-

level features when the feature-length is 32. Thus, only 8 threads

participate in inter-thread communication resulting in just 3 rounds

of it when using the tree reduction method. Further, the compiler

can now issue up to 4 data-loads per thread before encountering

the memory barrier resulting in improved ILP and better data-load

performance. We explain how this is achieved without sacri�cing

memory coalescing (§4.2.1).

The scheduler creates thread-groups to utilize all threads of the

warp. E.g., it creates 4 thread-group each containing 8 threads when

feature-length is 32. Each thread-group handles di�erent cached

NZEs in a way that allows more thread-local reduction in SpMM.

I.e., each thread-group processes consecutive cached NZEs, so that

the reduction along the neighborhood dimension becomes thread-

local to a large extent. This scheduling also allows SDDMM to cache

the vertex-level features of rows and reuse them till a new row is

encountered (§4.2.2), and o�ers a running reduction in SpMM to

be performed to minimize the register usage (§4.3).

4 UNIFIED DATA LOAD: TWO-STAGE DESIGN

In the pursuit of optimizing data-load of NZEs and features, Gn-

nOne is dedicated to enhancing data-load balance and promoting

data-reuse. Our strategy to achieve this goal employs a two-stage

data-load approach, which optimizes how the data is brought from

GPU device memory to registers (or GPU shared memory) for com-

putation which has proven to be instrumental in reaching our per-

formance objectives for SDDMM and SpMM both. The challenge

here is to design the stage by carefully understanding the factors

that impact the performance of data-load stages and for the dy-

namic feature-length whose value varies based on the con�guration

of di�erent model layers during runtime.

4.1 Stage-1 Data Load and Caching

In this stage, GnnOne divides the data-load of NZEs and corre-

sponding edge-level features equally among warps using the edge-

parallel data-load method to avoid any data-load imbalance among

warps. To explain, each warp fetches ÿýÿĄā_ďąĖā (multiple of

32) NZEs and corresponding edge features, if needed, in a coalesced

way as shown in Listing 1, stage 1. So, if one row has 1000 non-

zero columns and another only 10, this stage allocates 100× more

threads to load the non-zero columns of the former than the latter.

1 void SDDMM_or_SpMM_Stage1 (edge_t* coo , float* etensor ,

int dim , ...) {

2 int warpId = threadIdx.x/32;

3 int warpLane = threadIdx.x % 32;

4 int absWarpId = blockIdx.x*blockDimx.x+warpId;

5 int eStart = absWarpId*CACHE_SIZE;

6 int eEnd = eStart+CACHE_SIZE;

7 // Stage1: Load NZE and edge -features and Cache

8 for (int e=eStart+warpLane; e<eEnd; e+=32) {

9 sh_NZE[e-eStart ]=coo[e];// Shared memory

10 //Line 11 is needed for SpMM only

11 sh_evalue[e-eStart ]= etensor[e];// Shared memory

12 }

13 __syncwarp ();

14 ...

15 }

Listing 1: Sparse kernel sketch (simpli�ed) for fully balanced data-

load Stage 1

Data Reuse. The loaded data is cached temporarily in the shared

memory of the GPU so that it can be reused in stage 2. For SD-

DMM, the row ID and column ID of each NZE are needed in Stage

2 by multiple threads to fetch their vertex-features (vector), and

their data-reuse is achieved by caching them in Stage 1. However,

the Edge-parallel SDDMM in prior works, such as DGL [35], Feat-

Graph [18], etc. do not have NZE caching strategy at all, and there-

fore cannot bene�t from the data-reuse of NZEs.

For SpMM, NZEs are also reused: the column ID of NZEs is reused

by many threads to fetch their vertex-feature Stage 2, while the row

ID is needed to reduce the dot products and write the result (vector)

to output tensor. Stage 1 additionally caches the corresponding
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edge-feature of every NZE which is needed by di�erent threads to

perform the dot product with the vertex-features. Therefore, The

reuse factor for the cached elements in both SDDMM and SpMM is

exactly as the feature dimension of vertex-features.

4.1.1 CACHE_SIZE Determination and Discussion. The separate

Stage 1 in GnnOne allows us to �nd the cache size independent of

row-length of sparse matrix or feature-length of each vertex, which

is not the case in prior sparse kernel works, as we discuss soon.

CACHE_SIZE and Memory Barrier. GnnOne determines the

cache size based on the hardware characteristic, such as thread

count in a warp, shared memory size, etc., and not based on row-

length of the dataset. Hence, any multiple of 32 is a good starting

point for ÿýÿĄā_ďąĖā as there are 32 threads in a warp. Kindly

note that a memory barrier is needed before Stage 2 can read the

cached data from the GPU shared memory. This incurs costs, specif-

ically, memory-related instructions can not be reordered across a

memory barrier. Hence, in the case of 32 as ÿýÿĄā_ďąĖā, each

warp thread only issues one data-load, and then waits for the mem-

ory barrier. However, by caching more than 32 elements, such as

128, the frequency of this barrier usage is reduced, allowing every

warp thread to issue data-load of 4 NZE before waiting for the

memory barrier. Hence, performance is better when Stage 1 caches

128 NZEs per warp than just 32, and is con�rmed empirically (§5).

Prior SDDMMWorks. Sputnik [11], FeatGraph [18], dgNN [47],

DGL, and others have not cached NZEs in their SDDMM. Hence,

they performmore data-load than necessary for loadingNZE. Hence,

Caching is very novel in SDDMM, and is enabled purely due to the

similarity that we observe in this paper about sparse kernels.

Prior SpMM Works and Row-Length. Vertex-parallel SpMM ap-

proaches uses a �xed cache size of 32 per warp, but also dependent

on row-length. E.g., workload-balanced SpMM designs such as GN-

NAdvisor [37] and Huang et al. [20] break each row into neighbor

groups of 32 non-zero columns, and are forced to use cache size to

32. However, the last neighbor group and those rows that have less

than 32 non-zero columns cache less than 32 NZE. GE-SpMM [19],

caches only 32 NZEs per warp at any time. Even if such works

do decide to increase the cache size, it is always limited by the

row-length which varies for each row, as many rows that contain

fewer non-zero columns are unable to fully utilize the increased

cache size. Hence, unlike GnnOne, prior SpMM works cannot make

cache size independent of the row-length and actual computation,

while doing no caching for SDDMM.

Prior SpMM works and Feature-Length. Many SpMM works

drop caching or have other behaviors when feature-length is less

than 32, e.g., GE-SpMM drops caching. On the other hand, GNNAd-

visor, and Huang et al keep the warp threads idle while loading

the features of NZEs. Since such feature dimensions are common,

especially in the last layer of the GNN, a separate Stage 1 fully

independent of Stage 2 holds signi�cance and does not distinguish

the implementation based on feature-length.

4.2 Stage-2 Data Load & Symbiotic Scheduler

In SDDMM, this stage loads the vertex-features of row and column

IDs of the cached NZE and performs their dot product. In SpMM,

this stage loads vertex-features of the column ID of the cached

NZEs, as edge-feature of NZEs are already loaded in Stage 1, and

perform their dot product. This stage solves the challenges (§3.2)

that reduction stage has on data-load performance using Symbiotic

thread scheduler.

Thread-Group and Need of Scheduling. The symbiotic thread

scheduler uses one thread to load at least 4 features so that the

compiler can issue more data-load instructions before a memory

barrier is hit due to the need for reduction (inter thread commu-

nication) in SDDMM (§3.2). This leads to forming thread groups

within a warp to utilize all its threads for various feature-lengths.

E.g., if the feature-length is 32, then 8 threads are dedicated to load-

ing them forming one thread group. Hence, there are a total of 4

thread groups within a warp. But in case 16 as feature-length, 4

threads form a thread group, resulting in 8 thread groups within a

warp. Also, the count of NZEs processed simultaneously within a

warp depends directly on the thread-group count within the warp.

I.e., if the thread-group count is 4 (feature-length 32), each thread

group handles one NZE, leading to 4 NZEs handled simultaneously

by the warp. Further, the cached NZEs are divided equally among

thread groups to process. E.g., if theÿýÿĄā_ďąĖā is 128 then each

thread-group is assigned 32 NZEs 128/4) to process independently.

This leads to two scheduling decisions to be made: a) which 4

features are allocated to a thread (§4.2.1); and b) which NZEs are

allocated to a thread group (§4.2.2).

As we explain next, such decisions present challenges on how to

keep the coalesced memory access of the warp so that the data-load

does not degrade.

4.2.1 Vertex-Level Feature Assignment Policy. Allowing a thread

to issue four outstanding data-load instructions for feature loading

may break the memory coalescing as the warp (or thread-group)

cannot fetch consecutive 32 features (128 bytes) at one time even

when the feature-length is 32. It requires careful design to allow

memory coalescing. GnnOne turns to a CUDA’s native support for

vector data-load instruction, such as �oat4. This enables each thread

to fetch 4 consecutive vertex features by using a single vector data-

load instruction. So, for 32 feature-length, a thread-group consisting

of 8 threads achieves full coalesced memory access of 128 bytes.

Moreover, it requires just 3 rounds of inter-thread communication

(Ģĥĝ8
2
) compared to the earlier 5 rounds. Results in §5 shows that

switching to the proposed thread-grouping leads to a signi�cant

speedup of over the vanilla feature-parallel method for feature-

length of 32.

The huge speedup in SDDMM is because of performing more

loads(each thread loads 4 features now) before the memory bar-

rier, which leads to higher instruction-level parallelism (ILP) for

data-load instructions. Hence, if one can come up with a di�er-

ent solution to increase ILP for data-load, it would provide similar

optimization in SDDMM. However, not all solutions may perform

better if they compromise with memory coalescing. E.g., an extreme

design would be to dedicate a single thread to handle all vertex-

features of an NZE to perform a full thread-local reduction. This

will impact Stage 2 data-load performance warp cannot produce

coalesced memory access.

Since, using �oat4 easily provided the mechanism, we did not

look for any other mechanism. Though prior works have used

vector data-load for various other purposes at di�erent stages of

sparse kernels, the unique proposal of GnnOne remains novel in
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explaining the unknown impact that inter-thread communication

creates on the data-load performance through the memory barrier.

Though SpMM is di�erent than SDDMM, thread-grouping is

applicable to SpMM. So, each thread uses �oat4 data type during

Stage 2 data-load. However, the usage of �oat4 does not bring

signi�cant speedup for SpMM because it does not perform inter-

thread communication at the end of each NZE thereby observing

no issues due to the memory barrier.

4.2.2 NZE Assignment Policy. We explore two thread-group sched-

uling strategies to decide which cached NZE should be assigned

to each thread group within a warp. We explain these two strate-

gies by using 4 thread-group (32 as feature-length), and 128 as

CACHE_SIZE. In the Consecutive method, the preferred method,

the �rst thread-group is assigned the �rst 32 cached NZEs(0, 1, 2, ...,

31). The next thread-groups are assigned the next block of 32 NZEs,

and so on. Each thread within the thread group handles di�erent

features of the same NZE. In the Round-robin method, the �rst

thread-group gets NZEs stored in 0, 4, 8, 12, ..., 124Īℎ location in

the cache. The second thread group gets NZEs stored in 1, 5, 9,

13, ..., 125Īℎ location in the cache, and so on. Listing 2 shows both

methods of scheduling for thread groups of a warp.

1 void SDDMM_or_SPMM_Stage2 (edge_t* coo , float* etensor ,

int dim , ...) {

2 ...

3 //--Start of Stage 2

4 // Calculate thread group details

5 int thdGrpCount = 4;// Example

6 int thdsInThdGrp = 8; // Example

7 int thdGrpId = warpLane / thdsInThdGrp;

8 int thdGrpLane = warpLane % thdsInThdGrp ;

9 // EITHER Consecutive method

10 int start = thdGrpId*CACHE_SIZE/thdGrpCount;

11 int end = start + CACHE_SIZE/thdGrpCount;

12 for (int i = start; i < end; i++){

13 e = sh_edge[i]; // fetch the cached NZE

14 ...

15 }

16 //OR Round -robin method

17 for(int i=grpId; i<CACHE_SIZE; i+= thdGrpCount){

18 e = sh_NZE[i]; // fetch the cached NZE

19 ...

20 }

21 }

Listing 2: Sparse kernel sketch (simpli�ed) for data-load Stage 2,

showing thread-group scheduling.

We now investigate how reduction and data reuse in�uence the

choice, and whether one can provide better data-load performance

than the other.

Data-Reuse Analysis: Consecutive method is Better. In SD-

DMM, the Consecutive method introduces data-reuse of vertex-

features of row ID for many NZEs until a row split is encountered.

This is because the COO is usually arranged in a CSR way [2], and

a block of consecutive NZEs is assigned to a thread group. On the

other hand, the Round-robin method o�ers very little data-reuse

chance as consecutive NZEs are not allocated to the same thread

group. In SpMM, no such data reuse exists irrespective of the sched-

uling method as vertex-features of a row ID are never fetched.

Reduction Analysis: Consecutive method is Better. In SpMM,

the Consecutive method is more useful for reduction as each thread

group processes consecutive NZEs, which are likely to have the

same row ID. Hence thread-local reduction can be performed along

the neighborhood dimension by each thread-group. Kindly, note the

Consecutive method needs just one round of dot product exchange

among thread-groups for the reduction in case two consecutive

thread-groups have some NZEs of the same row ID. However, the

Round-robin method requires more inter-thread communications

for reductions as consecutive NZEs are assigned in a round-robin

fashion to di�erent thread groups. This is likely going to be more

costly than a pure thread-local as this method needs to exchange

4096 items (32 features* 4 thread-group * 32 NZEs per thread-group)

in the worst case. SDDMM reduction has no role in deciding the

scheduling method.

It is clear that the Consecutive method is better than the Round-

robin method. Moreover, a higher CACHE_SIZE in Stage 1 favors

the Consecutive method as each thread group handles more NZE,

therefore it can do more thread-local reduction to minimize the

thread communication in SpMM. Hence, the Consecutive method

in Stage 2 is better suited to complement the Stage 1 design of

caching more elements.

4.3 Reduction Design

After the data-load phase produces the dot products, the reduction

phase reduces those dot products and then writes the reduced

results to the output tensor. Thanks to our data-load Stage 2 design

which is based on reduction analysis, the �nal reduction design

becomes very simple. All the sparse kernels use the thread-grouping

and the Consecutive scheduling method. Due to this, both the

kernels rely on the maximum thread-local reduction of dot products

as discussed next.

SDDMM. A thread performs 4 thread-local reductions, followed

by inter-thread communication within the thread group for �nal

reduction. E.g., for 32 as feature-length, reduction only performs

3 rounds of inter-thread communication. The results are written

immediately to the output.

SpMM.We do a running reduction (thread-local), i.e., each thread

in a thread group performs reduction immediately after new dot

product computation in Stage 2 while handling consecutive NZEs,

before a row split is observed by a thread group. This minimizes

the register count or shared memory usage that otherwise would

have been needed to keep individual dot products. Discovering a

row-split is easy in the Consecutive scheduling method because of

the usage of COO where every NZE contains its row ID. However,

we directly use atomic instruction to write the thread-local reduced

value to the output tensor. We are �ne with this approach as the

results show in §5, and leave the exploration of alternate approaches

as a future work.

Format Selection. The GnnOne can �t in any format if we can

quickly locate the row and column ID from each non-zero element.

In this work, we choose the COO format since it not only meets

the requirement but also is the standard format, supported by a

wide variety of libraries and frameworks. In the following text,

we discuss the selection of the sparse storage format and presents

various trade-o� that guide our choice.

CSR is naturally not suited for workload balanced solutions.

Hence prior works rely on custom formats. On the other hand,
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Fig. 3: SDDMM results: GnnOne speedup over prior works for di�erent feature lengths (dim). A speedup of 64 means that baselines has OOM

not GnnOne((log scale, higher is better)

the COO format has a natural property of workload balancing as

done in GnnOne. In addition, the COO format brings a unique

advantage in the GNN use cases. GAT [32], GaAN [49], and many

other GNNs also invoke SDDMM variants which are naturally

suited for edge-parallel computation as the output tensor is at edge-

level. Current systems, such as DGL, Pytorch-Geometric, etc. rely

on the COO format. Therefore, optimizing SpMM so that it can use

the COO format makes these GNN frameworks rely on a single

format minimizing memory consumption amid better performance.

Moreover, the vendor libraries such as CuSparse still support the

COO format arranged in the CSR way. This indicates that many

scienti�c computation also relies on the COO format, and not just

the GNN use-cases. Therefore, having high-performance sparse

kernels(SpMM and SDDMM) in the COO format is likely to bene�t

many scienti�c work�ows.

4.4 Discussion

Is GnnOne SpMM an extension of Nonzero Split SpMV [6,

27, 31]? We discussed in §3.2 how nonzero-split SpMM by Yang et

al. [42] su�ers from performance drop. That is because it does not

incorporate the understanding of the di�erences between SpMV

and SpMM, and how the reduction phase impacts data-load perfor-

mance. Hence, GnnOne SpMM is not a direct extension of nonzero-

split SpMV. We claim that nonzero-split SpMV is a special case of

GnnOne SpMM, and not the other way around, based on another

fundamental insight that we developed between the classes of two

nonzero-split SpMV.

Trade-o� between two classes of SpMV is between how the

NZEs are fetched (coalesced or non-coalesced) and the reductions

are performed (limited thread-local or fully inter-thread). Dalton

et al. [6] (one class of nonzero-split SpMV) fetches NZEs and edge-

features in a coalesced manner that forbids any thread-local reduc-

tion. Hence, inter-thread reduction is performed by materializing

the dot product to the shared memory. On the other hand, Merrill

et al. [27] (another class) forgoes coalesced fetch of NZE, and edge

features (i.e., a thread fetches N consecutive NZEs, thus a warp

is not able to coalesce them). However, this decision does enable

limited thread-local reduction over N dot products.

We note that GnnOne removes this trade-o� in SpMM due to

caching NZEs and edge-features, which are reused by many threads

to fetch vertex-feature from dense matrix. Hence, in SpMM, we

enabled both the coalesced access of NZEs and edge-features plus

limited thread-local reduction. Hence, GnnOne SpMM is not an

extension of any of these two SpMV designs. It has di�erent design

choices than SpMV.

In other words, caching in Stage 1 is the key di�erence in SpMM,

which is of no use in spMV as feature-length is just 1. Hence, if

GnnOne has to be extended to SpMV, caching in stage 1 is dropped,

making our SpMV implementation one of Dalton et al. or Merrill

et al. Thus, the two classes of nonzero-split SpMV are special cases of

GnnOne SpMM when the vertex-feature length is 1.

Discussion on Feature-Length. In GNN, the feature-length in

sparse kernels is usually amultiple of 4, such as 16, 32, 64, etc. Hence,

the usage of �oat4, and thread-group remains useful. It is only the

last layer in some GNN, where the feature-length of sparse kernels

is determined by the classi�cation category, such as 6 in Citeseer.

In such cases, thread-group remains useful. However, we do replace

�oat4 with other vector data-load instructions, such as �oat3 when

the feature-length is 6, as �oat4 cannot be used due to memory

alignment issues. It still provides speedup in such odd feature-length

cases in SDDMM as more than 1 data-load instruction is issued

before hitting the memory barrier.

5 EVALUATION

The datasets for the experiments are listed in Table 1. We treat them

as undirected graphs, as GNN frameworks such as DGL expect

this. Hence, the edges are doubled. The edge count in the Table

indicates this. The graphs are downloaded from DGL, SNAP [30],

and the University of Florida Sparse matrix collection [7]. Kron-21

is a synthetic graph generated using Graph500 generator [13]. The

experiment is run using an Nvidia A100 GPU (40GB memory).

This section shows that for various feature lengths, GnnOne1

outperforms all the prior works signi�cantly on individual kernel

measurements as well as on GNN training against a system that has

gained additional performance using kernel fusion, while GnnOne

relied on individual kernels. It also shows the impact of individual

design choices.

5.1 SDDMM

Fig. 3 shows speedup of GnnOne over dgSparse [3] (used by dgNN

[47]), CuSparse, Sputnik [11], FeatGraph [18], and DGL [35]. The

average speedup is 6.02× across all the feature lengths except over

Sputnik and Cusparse. The speedup also depends on the feature-

length. For feature-length 32,GnnOne achieves an average speedup

1Code can be accessed from https://github.com/the-data-lab
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Fig. 4: SpMM results: GnnOne speedup over prior works for di�erent feature lengths (dim). A speedup of 256 means that baselines have OOM

not GnnOne. OOM means every system ran out-of-memory ((log scale, higher is better)

Table 1: Graph datasets. * denotes labeled dataset. F = Input feature-

length, C = Prediction categories. GNNmodels deploys a linear layer

to project the feature-length to a lower intermediate feature-length

(e.g., 16 or 32) before sparse kernels are called.

Graph Vertex Edge F C

Dataset Count Count

Cora(G0)* 2,708 10,858 1,433 7

Citeseer(G1)* 3,327 9,104 3,703 6

PubMed(G2)* 19,717 88,648 500 3

Amazon(G3) 400,727 6,400,880 150 6

wiki-Talk(G4) 2,394,385 10,042,820 150 6

roadNet-CA(G5) 1,971,279 11,066,420 150 6

Web-BerkStand(G6) 685,230 15,201,173 150 6

as-Skitter(G7) 1,696,415 22,190,596 150 6

cit-Patent(G8) 3,774,768 33,037,894 150 6

sx-stackover�ow(G9) 2,601,977 95,806,532 150 6

Kron-21(G10) 2,097,152 67,108,864 150 6

hollywood09(G11) 1,069,127 112,613,308 150 6

Ogb-product(G12)* 2,449,029 123,718,280 100 47

LiveJournal(G13) 4,847,571 137,987,546 150 6

Reddit(G14)* 232,965 229,231,784 602 41

orkut(G15) 3,072,627 234,370,166 150 6

kmer_P1a(G16) 139,353,211 297,829,982 150 6

uk-2002(G17) 18,520,486 596,227,524 150 6

uk-2005(G18) 39,459,925 1,872,728,564 150 6

of 3.00×, 5.53×, 4.07× over FeatGraph, DGL, and dgSparse respec-

tively. E.g., in the case of Ogb-Product(G12) dataset, GnnOne exhib-

ited a runtime of 11.70 milliseconds (ms), outperforming dgSparse

(23.67ms), DGL (50.22ms), and Featgraph (14.76ms) comprehen-

sively. A similar pattern is also noticed for feature-length of 64.

For smaller feature-length (e.g., 16 or 6), a few prior works keep

some warp threads idle. Hence, the speedup achieved by GnnOne is

generally higher due to its thread-grouping. For example, the average

speedup is 7.49×,4.70×, 5.04× over FeatGraph, DGL, and dgSparse

for feature-length 16. A greater speedup for feature-length 6 also

indicates that GnnOne cares for the last GNN layer. The overall

minimum speedup we observed is against DGL on G6 (1.24×) for

feature-length 6, indicating how e�ective GnnOne techniques are.

In addition, Sputnik and CuSparse encountered errors when |Ē |

exceeds a certain threshold, which seems around 2 Million, and

hence is not plotted. Sputnik, which is open-source, allocates |Ē |2

thread-blocks, and hence this number becomes large enough that

is not supported by CUDA. For datasets where |Ē | is less than this

threshold, GnnOne demonstrated signi�cant speedup, E.g., for the

Reddit(G14) dataset, GnnOne achieved speedup exceeding 90× and

40× speedups over Sputnik and CuSparse, respectively.

The huge speedup over DGL proves our intuition that edge-

centric design alone is not su�cient unless data-reuse techniques

are introduced. In comparison to others, a good data-load balanced

solution, minimizing the impact of memory barrier on data-load

performance, and data-reuse techniques play the main role in the

optimization that GnnOne has achieved. We do evaluate these

techniques separately in §5.4

5.2 SpMM

Fig. 4 shows the speedup of GnnOne over Ge-SpMM [19], CuSparse,

Huang et al. [20], FeatGraph [18], and GNNAdvisor [37]. Despite

the long line of work in SpMM, including some solutions designed

speci�cally for workload balancing including relying on custom

formats, GnnOne out-performed all of them, achieving an average

6.25× speedup across di�erent feature lengths. For feature-length

32, GnnOne outperforms GE-SpMM, CuSparse, GNNAdvisor, and

Huang et al by an average of 3.84×, 2.65×, 2.90×, and 1.34× speedup

respectively across all datasets. A similar performance trend is

observed for 64 feature-length. For feature-length less than 32 (e.g.,

16, and 6),GnnOne achieves even better performance as some of the

prior works cannot incorporate their proposed methods. E.g., GE-

SpMM cannot use caching, while Huang et al and GNNAdvisor keep

some warp threads idle when feature-length is less than 32. Hence

GnnOne achieves speedup of 13.90× (15.16×), 3.57× (4.20×), 6.25×

(7.52×), 1.71× (2.08×) for feature-length 16 (6) respectively over

Ge-SpMM, CuSparse, GNNAdvisor, and Huang et al. respectively.

Speedup over FeatGraph is highest (11.30×). This is because

its script prints runtime over many block sizes and block count

combinations, but crashes after a few combinations. Though we

picked the best run-time, it is possible that if the bug is �xed, some

other combination might produce a better runtime. However, their

authors informed us that it would remain slower than CuSparse.

When feature-length is 32, the minimum speedup for workload-

balanced solutions by Huang et al. and GNNAdvisor are negative,

i.e., they are slower than Ge-SpMM, a vanilla vertex-parallel SpMM.

This indicates the presence of overhead to achieve workload bal-

ancing by these works. However, GnnOne still achieves 1.06×

minimum speedup compared to Ge-SPMM in this case, and the

speedup becomes even more obvious for other feature lengths.

It is clear that a workload-balanced solution of GnnOne always

performs better than vanilla vertex-parallel Ge-SpMM, and bet-

ter than the neighbor grouping method of workload balancing by
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Huang et al and GNNAdvisor. These results show the impact of data-

load centric design of GnnOne compared to the existing methods,

speci�cally how prior works still su�er from workload imbalance,

and how the solution proposed by GnnOne can provide better

workload-balancing and data reuse to achieve greater performance.

We do evaluate these techniques separately in §5.4

5.3 GNN Training

We used three GNN models, namely GCN, GIN, and GAT. We used

two-layer GCN, with an intermediate feature size of 16, 5-layer GIN

with an intermediate feature size of 64, and 5-layer GAT with an

intermediate feature size of 16. The feature-length of the last layer

in all these models usually depends on the classi�cation classes.

Thus, GNN training procedures contain a sequence of multiple

SpMM and SDDMM with di�erent feature dimensions.

Baseline. We compare against two baselines DGL and dgNN [47].

DGL uses CuSparse for its SpMM while designing its own SDDMM.

dgNN is a highly optimized system that not only optimizes the

kernels but also fuses them to achieve even better performance.

However, it only supports attention-based GNNs, such as GAT,

which we compare against.

Due to various pitfalls present in prior single-gpu GNN systems,

as discussed by Gong et al. [12], comparing against them, such

as GNNAdvisor [37], Huang et al [20], TLPGNN [10], etc. is not

fair. We also do not compare using smaller datasets, as it implies a

comparison of framework overhead [12]. PyG [9] ran out ofmemory

for Reddit and OGB-Product datasets when we used its original

design of using COO format. This is also reported by prior works [5,

20]. Ge-SpMM and FeatGraph are integrated with DGL, however,

we could not run FeatGraph despite trying various GitHub branches

of DGL as suggested by their authors. GE-SpMM provides �les that

needed to be replaced in DGL but due to code reorganization since

then, those DGL �les have been removed. So, these works are used

only for kernel evaluation.

GnnOne is integrated into the GNNBench benchmarking plat-

form [44] to avoid these pitfalls. The platform allows to use non-

labeled datasets by using generated labels and features, whose

dimensions are listed in Table 1, and cannot be used to measure

training accuracy. We rely on them for performance measurements

only due to the limited number of labeled datasets.

 

Fig. 5: GNN training Accuracy results on three GNN models for

various datasets, showing that the design proposed by GnnOne can

be applied to GNN training correctly.

5.3.1 Accuracy Comparison. Fig. 5 shows that integrating the ker-

nels to a deep learning framework is possible, and works correctly

as accuracy is the same as DGL. This test is used to show that the

kernel implementation is working.

 

Fig. 6: End-to-end speedup of GnnOne for GNN training(200 epoch)

compared to DGL and dgNN. (Log Scale, higher is better). dgNN

produced an error while training G10.

5.3.2 Training Time. GAT. Fig. 6 shows the end-to-end GAT train-

ing time(200 epochs) compared GnnOne to dgNN and DGL among

di�erent large datasets. GnnOne archives 3.68× and 2.01× speedup

over DGL and dgNN respectively. Kindly note that dgNN uses the

fused kernel calling just one fused kernel instead of individual ker-

nels such as a series of SpMM and SDDMM variants as well as

ReLU, dropout layers, etc. that GnnOne invokes individually, yet

GnnOne has performance speedup compared to the dgNN, show-

ing the impact of optimizations of individual kernels. We believe

kernel fusion would provide even better performance to GnnOne,

which we left as future work.

GCN andGIN. Fig. 7 shows the speedup achieved byGnnOne over

DGL for training GCN and GIN models for 200 epochs, achieving

1.89× and 1.27× average speedup respectively for their training.

Further,GnnOne could train GCN onG17 (UK-2002) due tomemory

saving enabled byGnnOne by keeping a single storage formatwhile

DGL ran out-of-memory. For other datasets (G16, and G18), both

the systems ran out of memory.

 

Fig. 7: Training speedup of GnnOne over DGL: GnnOne could

train GCN on G17, while DGL shows out-of-memory conditions (200

epoch). (Log Scale, higher is better).

It should be noted that GNN models also include many other

kernels such as linear function, ReLU, softmax, etc. for which both

rely on PyTorch. Hence, it is very clear that optimizing SpMM,

and SDDM alone brings signi�cant speedup in GNN training. For

example, in Reddit,GnnOne kernel can achieve 6.26× for 16 feature

dimensions over CuSparse, which translates to 4.05× speedup over

DGL for end-to-end GCN training.

5.4 Design Choice Evaluation

We now evaluate the impact of the design decisions that we have

proposed in this work.

5.4.1 Impact of Di�erent Optimizations. Fig. 8 shows the perfor-

mance speedup achieved by SDDMM for di�erent optimization

techniques presented in the paper. Baseline represents data-load

balanced solution using COO format but without giving thought

to data-reuse and impact of memory barrier. This roughly mimics
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the DGL SDDMM design ideas. +Data-reuse adds two techniques

on top of the baseline solution: caching NZE in stage-1 data-load,

and reuse of features of row ID while handling many NZEs. The

data-reuse alone results in average 2.78× speedup over baseline.

 

Fig. 8: Performance comparison in SDDMM between baseline, base-

line + data reuse, baseline + data reuse + �oat4. The plot uses 32 as

the feature length.

+Float4 minimizes the impact of the memory barrier on stage-

2 data-load: it shows the impact of loading 4 vertex-features per

thread instead of 1 to alleviate the impact of the memory barrier

on data-load performance which is implicitly applied due to the

inter-thread communication needed during the reduction stage in

SDDMM. Speci�cally, for feature-length of 32, it should be noted

that both approaches do vertex-feature load using full memory

coalescing. However, the approach proposed byGnnOne (4 features

per thread) leads to a further 1.80× speedup achieving a total of

4.59× average speedup compared to the baseline performance.

 

Fig. 9: Caching 128 NZEs bene�ts the performance in comparison

to caching just 32 NZEs in SpMM. Plot uses 16 as feature-length.

5.4.2 Impact of Stage-1 Data-load Cache Size. Fig. 9 shows that

caching 128 NZEs per warp brings additional performance (1.31×

speedup) in comparison to caching only 32 NZEs per warp in SpMM.

This is because caching more NZEs minimizes the impact of mem-

ory barrier on data-load for NZEs and edge-level tensor, and hence

improves the SpMM performance.

 

Fig. 10: Consecutive method of workload division within a warp

achieves better data load performance than the Round-robin.

5.4.3 Consecutive vs Round-Robin. Fig. 10 compares the perfor-

mance of the two scheduling methods using the COO format for

SpMM case for their data-load performance. Kindly recall that the

Consecutive method is better for data-reuse in SDDMM and needs

to perform less inter-thread communication for reduction in SpMM.

However, in this result, we show that the Consecutive method also

has a better data-load performance as it achieves slightly above 10%

performance than the Round-Robin. We implemented the Consec-

utive method using Listing 4.2.2, and a similar code was written

for Round-Robin, where we did not include the �nal reduction.

Including reduction would have provided even better performance

as Consecutive requires much lower inter-thread communication

than Round-Robin method.

To explain the performance di�erence, we note that Consecutive

method lets the warp threads work on consecutive NZEs which are

likely to be part of same row and hence observes better data-locality

than the Round-robin method.

 

Fig. 11: Breakdown of the data load performance to show that our

initial observation about data load being the costly operation holds.

5.4.4 Proving the Observation about Data-Load being Costly Phase.

GnnOne basic premise is the hypothesis that data-load (from GPU

memory to registers) is the phase that should take a longer time

than the rest of the computation (actual reduction and writing the

results to global memory). Fig. 11 shows the breakdown for the

dataset. We measure the total time using the end-to-end prototype

of GnnOne, and the load time using a partial prototype so that the

run-time does not include the impact of the reduction and result

write-back. Clearly, the data loading of NZE and features is the

main phase that takes more time even after optimization.

5.4.5 Advantage of COO over Custom Format. Prior works have

proposed various custom storage formats, speci�cally for SpMM

that need a pre-processing step. We leave the pre-processing cost of

such custom format out as a one-time cost and focus on understand-

ing their run-time behavior. Firstly, results show that GnnOne is

faster than recent SpMM that rely on custom storage for workload

balancing [11, 20, 37].

Secondly, custom formats developed as part of nonzero-split can

work with GnnOne, but it introduces a trade-o� compared to COO:

1) Each NZE in the COO format knows its row ID immediately

without any additional work. Though, this is achieved by perform-

ing 4 extra bytes of load for each NZE when using COO. 2) The

custom storage still needs to bring the additional metadata (less

than 4 bytes per NZE). However, it uses only a few threads of the

warp to do this operation followed by broadcasting the metadata

to every thread, and then each thread performs an online search

on this metadata to �nd the row ID of each NZE.
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Fig. 12: GnnOne SpMV speedup compared to Merge-SpMV. Gn-

nOne performs comparably to Merge-SpMV. Merge-SpMV crashed

for K21(G10), so is not plotted.

With the SIMT nature of GPUs, GnnOne uses all the threads

to bring the additional row ID along with each NZE using coa-

lesced memory access, while a custom format will keep threads

idle while bringing the metadata, followed by additional broadcast

that requires thread synchronization or a memory barrier, while

the search leads to additional overhead. Hence, we believe COO

is �ne in place of a custom format, and use SpMV to empirically

prove this point next.

Fig. 12 compares COO-based SpMV (GnnOne) against Merge-

spMV [27] that uses a custom format. In this case, there is no usage

of Stage 1 caching, so we followed the Merge-SpMV idea so that the

impact of COO could be evaluated compared to a custom format.

GnnOne achieved better or equal performance on all the datasets.

For the Reddit and OGB-Product dataset, GnnOne achieves 1.74×

and 2.09× speedup. Though the focus of this paper is not SpMV,

the results are just an indication that when COO is deployed for

nonzero-split, it can perform similarly or better than custom format

based nonzero-split SpMV. As discussed earlier, the trade-o� be-

tween these two solutions is a data load of 4 additional bytes (COO)

in GnnOne versus loading less than 4 bytes additional data per

NZE but then relying on additional mechanisms such as broadcast

and an online search to locate the row ID in the custom format. It

seems that this causes more overhead than the additional 4 bytes

data-load that GnnOne does on most of the datasets.

6 RELATEDWORK

Many GNN system optimizations have been proposed recently [10,

17, 21, 22, 25, 34, 38, 41, 43, 46]. Internally, they rely on SDDMM and

SpMM sparse kernels, which we focused on in this paper. CuSparse

has supported SpMM for a long time on CSR and COO formats.

However, it has introduced SDDMM recently supporting CSR for-

mat only. Our measurements show that it performs extremely slow,

hence, GNN systems, like DGL do not rely on CuSparse SDDMM,

but have implemented their own version.

SDDMM. DGL uses custom SDDMM based on the COO format

for a workload-balanced design, while still relying on CuSparse for

SpMM. DGL’s SDDMM design has no data reuse: neither caching

NZEs nor reusing vertex-features of row ID, proving our earlier

point (§1) that workload balancing alone is only an enabling condi-

tion for better SDDMM performance. Besides DGL, others [11, 18]

adopt vertex-parallel variant, both of which not only lack workload

balancing but also uses no caching. Further, Sputnik [11] does not

reuse vertex-level features of row ID.

SpMM.GE-SpMM [19], FeatGraph [18], TLPGNN [10] follow vertex-

centric SpMM. Hence, they still su�er from workload imbalance.

Yang et al. [42] that we discussed throughout the paper is an edge-

centric SpMM, however, it performs even slower than vanilla vertex-

parallel SpMM as reported by it.

GNNAdvisor [37], Huang et al [20], Sputnik [11], ASpt [16] pro-

posed a custom storage format using a pre-processing step that

produces additional metadata to provide workload balancing in

SpMM. GNNAdvisor [37], Huang et al [20] split a row into several

groups 32 non-zero columns, generating a metadata that contains

explicit row ID and length for every neighbor group as well as

for rows whose row-length is less than 32. As row-lengths are

hardly multiples of 32, they still su�er from workload imbalance.

Sputnik’s row swizzling is based on the internal knowledge of the

warp scheduler that produces additional array of row ID in decreas-

ing row-length for SpMM. However, it follows a di�erent strategy

for SDDMM. ASpt [16] custom format is di�erent for SpMM and

SDDMM, and hence it is a system with two custom formats.

Vanilla feature-parallel methods used by prior works [18–20, 37,

42] assign one thread to fetch one feature irrespective of whether

the feature-length is a multiple of 32 or not. We have shown how

the memory barrier impacts data-load performance and proposed

thread-group to truly realize its potential for data-load performance

and optimizing the inter-thread communication cost.

Kernel Fusion in GNN [5, 39, 47] fuse many GPU kernels using

vertex-parallel approach, thereby compromising SDDMM perfor-

mance for which edge-parallel is better suited.GnnOne have shown

that individual edge-parallel SDDMM and SpMM is better than the

previous fused vertex-parallel GNN kernels for training.

SpMV and Graph Processing. We already discussed non-zero

split SpMV in §4.4. A few SpMV/graph processing works have

proposed row binning [26, 36] for workload imbalance. Such works

generate bins (arrays) such as 4 bins of rows based on their row-

length using a pre-processing step. It invokes four kernels, one for

each bin where either one thread, one warp, one CTA, or a grid

is assigned to each row of the bins respectively. Such works still

su�er from the workload imbalance within each bin.

7 CONCLUSION

We analyzed the sparse kernels and showed that their fundamen-

tal di�erences do not have any bearing on unifying their design

from data-load perspective. We presented many new insights show-

ing how reduction can impact the data-load performance. Finally,

a new design is presented to improve the data-load balance and

optimization as well as data-reuse in SDDMM and SpMM, and

presented many trade-o�s that remained unknown in comparison

to the well-studied area of SpMV. Our evaluation con�rmed that

GnnOne achieves better performance. We hope that our study can

in�uence the GNN systems, and vendor libraries to a great extent,

as well as sparse models.
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