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ABSTRACT

Graph Neural Networks (GNN) involve two basic sparse kernels,
SDDMM and SpMM, on which all GNN models could be built. Prior
works have explored piecemeal solutions by using different storage
formats and computation paradigms, resulting in excess memory
consumption, and have not yet realized their full potential. This
paper, called GNNONE, studies these two basic sparse kernels in
GPU and shows that they can be built on the same system design
principle of data load being the limiting factor irrespective of their
computing paradigms. Hence GNNONE presents a unified two-stage
data-load design that provides greater performance through novel
techniques of data-load balancing, data-load optimizations, and
data-reuse. Such a unified design also enables the usage of a single
sparse storage format to increase productivity, memory saving, and
reduce maintenance. Evaluations show that the proposed system
achieves an average speedup of 6.25X and 6.02x for SpMM and
SDDMM over many prior works for different feature lengths. For
GNN training, GNNONE achieves 2.01x average speedup over dgNN,
2.28x average speedup over DGL on 3 different GNN models.
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1 INTRODUCTION

A sparse matrix or graph is a widely used data model in Graph
Neural Networks [4, 15, 23, 32, 48-50] (GNN) to boost the perfor-
mance of deep learning (DL) training on sparse data among different
applications, such as social media, biology, chemistry, recommen-
dation systems, and knowledge base completions [8, 14, 24, 28, 29,
33, 45, 51]. Prior works [35] have established SDDMM (sampled
dense dense matrix multiplication) and SpMM (sparse matrix dense
matrix multiplication) as the basic building blocks (sparse kernels)
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to construct any GNN model as discussed in-depth in §2. For ex-
ample, when GNN calls SpMM in the forward computation, the
back-propagation calls SpMM and SDDMM.

A graph consists of vertex set V and edge set E, where E denotes
the non-zero element of the sparse matrix (more information is
in §2). SDDMM and SpMM produce output at the edge-level and
vertex-level respectively. Hence they follow different computation
paradigms: SDDMM naturally aligns with edge-centric computa-
tion, while SpMM is vertex-centric. These distinct paradigmatic
differences between these two kernels have so far inspired piece-
meal solutions resulting in very contrasting SpMM and SDDMM
designs, presenting a challenge in efficiently combining them as
part of the same workflow of GNN training.

To illustrate, consider the existing high-level approaches as listed
next. 1) Optimize SpMM kernel only [19, 20, 37], sometimes even
proposing a custom storage format for the same, without giving
attention to their applicability to SDDMM. The custom storage for-
mat also creates further hurdles in their integration into popular DL
or GNN frameworks, such as DGL [35] or Pytorch-Geometric [9]
(PyG), which do not support custom formats. 2) Downgrade SD-
DMM into a vertex-centric variant [5, 39, 47] so that a single storage
format, such as compressed sparse row (CSR), could be used in the
whole GNN workflow. However, the downgrade impedes the appli-
cation of potential optimizations to SDDMM thereby achieving only
non-optimal SDDMM performance. 3) Individually align SpMM and
SDDMM, such as DGL [35] uses CSR and coordinate list (COO) for-
mats respectively. Similarly, Sputnik [11] uses a custom format for
SpMM but uses CSR for SDDMM. Such approaches not only con-
sume multiple storage formats which leads to excessive memory
consumption but also make optimization on two different problems
which let us believe that SpMM and SDDMM are fundamentally
different.

Clearly, none of the above approaches are ideal in an end-to-
end GNN training setup as they either compromise on SDDMM
optimization or increase the system complexity in the integration,
maintenance, and optimization. Also, SDDMM being a new sparse
kernel, was not studied previously in scientific computation or in
classical graph analytics work, its support is only recently been
introduced in vendor libraries such as Cusparse [1] by Nvidia. How-
ever, it is still excessively slow as our evaluation (§5) shows.

All these observations lead us to believe that SDDMM has neither
been comprehensively studied individually nor along with SpMM
as part of GNN training. This points to a critical research question:
are differences in computation paradigms of SDDMM and SpMM
fundamental enough to design piecemeal optimizations or can we
design common optimizations that can allow high-performance in
both individual kernels without sacrificing the performance of either?

In response, we propose GNNONE, a system dedicated to a com-
prehensive study of sparse kernels, and identifying fundamental
differences in their computation paradigm. GNNONE shows that
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those differences, despite being fundamental, are not responsible for
current piecemeal solutions. GNNONE turns to a data-load centric
design based on our novel observations to achieve a unified design.
To be more specific, a) the fundamental trade-off is only in the
reduction stage of the computation (§3) and not in their data-load
stages; and b) sparse kernels should be dominated by the data-load
performance and not by actual computation due to irregularity intro-
duced by the sparsity irrespective of their computation paradigm.
Hence, the sparse kernels— performing similar data-load and being
dominated by it- are unified at the data-load design by GNNONE.
For their common optimizations, GNNONE then revisits some of
the known problems in sparse kernels from data-load perspective,
achieving workload balancing through data-load balance, and fur-
ther optimization by minimizing data-load volume through data
reuse.

GNNONE achieves unified design and optimization through a
novel two-stage data-load technique. Stage 1 loads NZEs and cor-
responding edge-level features using a fully balanced edge-parallel
strategy and caches them explicitly for their reuse in Stage 2. Stage
2loads vertex-level features of cached NZEs using another balanced
data-load strategy, improves data-load performance, and introduces
their data-reuse using a novel symbiotic thread scheduler. The
scheduler is developed from the insight gathered from our in-depth
study of sparse kernels to achieve their symbiotic co-existence in
the GNN training.

The separation of data-load into two stages allows their inde-
pendent optimization in many novel ways. a) Stage 1 uses GPU
shared memory for caching non-zero elements and edge-level fea-
tures whose optimum size can be determined independent of the
neighborhood size in the dataset. The caching is new in SDDMM
while its independence is new in SpMM compared to current sys-
tems. b) Our new insights point out that reduction fundamentally
impacts the data-load performance through the memory barrier
usage and excessive usage of shared memory or registers (§3.2).
The symbiotic scheduler through thread-grouping, and a novel Con-
secutive scheduling policy optimizes the data-load performance in
Stage 2, introduces huge data-reuse, and enables a more thread-local
reduction in both sparse kernels.

The unified design and the symbiotic co-existence of sparse ker-
nels enable their implementation based on a single sparse storage
format as long as reduction can access the row ID of every non-
zero element efficiently. This observation gives the standard COO
format a head start. However, our optimization can be applied to
other formats and explain the trade-off involved in selecting the
COO format compared to CSR or custom storage formats.

Performance evaluations show that for SDDMM, our COO-based
GNNONE achieves an average 6.54X, 4.17X, and 6.38X speedup com-
pared to CSR-based Featgraph, COO-based DGL, and CSR-based
dgSparse library [3] which is used in dgNN[47] respectively among
different feature lengths, and one to two orders of average speedup
compared to CuSparse, and Sputnik. For SpMM, our COO-based
GNNONE achieve 9.80%, 3.20X, 4.86X, and 1.73X speedup compared
to CSR-based Ge-SpMM [19], CSR-based Cusparse, and the work-
load balanced solutions(custom format-based) by GNNAdvisor [37],
and Huang et. al [20] respectively for various feature lengths.

We also show that GNNONE, without any kernel fusion, achieves
2.01x speedup over dgNN [47], a highly fused GNN system, for
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Fig. 1: Illustration of sparse matrix storage formats, showing edge-
level features. The edge-level features are not static like the corre-
sponding sparse matrix topology. Vertex-level features have been
omitted for brevity.

GAT [32]. Compared to DGL, GNNONE gains 1.89%, 1.27X, and
3.68x% average speedup for GCN [23], GIN [40], and GAT [32].

Reliance on standard sparse format (COO) allows GNNONE to be
integrated with popular GNN frameworks such as DGL and PyG
that support COO format. Moreover, it can also be part of many
scientific computing workflows as vendor libraries such as Cusparse
support SpMM using the COO format. It can also influence its
SDDMM performance which has been far below expectations and
is yet to support the standard COO format. GNNONE not only have
far-reaching impacts on GNN system optimizations, maintenance,
and productivity due to the unified property that we discuss but
also on sparse models, another user of such sparse kernels.

The remainder of the paper is organized as follows. The back-
ground is presented in §2, motivation and overview in §3, detailed
design and discussion in §4, and evaluations in §5. Other related
works and discussions are presented in §6, and we conclude in §7.

2 BACKGROUND

GPU. GPU has become a very important accelerator for deep learn-
ing training. A GPU is made up of many Streaming Multiprocessors
(SM). A program in GPU is called kernel and is executed by a group
of thread blocks, also called CTA (cooperative thread array). Each
CTA is configured with a specific number of threads such as 64, 128,
256, 512, etc. At any time, a number of CTA may be active on the
same GPU SM, and there count per SM is called GPU Occupancy.
A higher occupancy is preferred as it can hide the long latency
instructions, such as data-load instruction.

CTA threads are grouped in warps— 32 threads— that execute
in single instruction multiple threads (SIMT) fashion. Coalesced
memory can only be achieved if each thread of the warp issue
data load on consecutive locations. Coalescing results in faster data
movement from the global memory to its register for computation.

Each CTA also has a fixed amount of programmable hardware
cache (e.g., 64KB), which may optionally be used as shared memory
in CTA, where a program can modify or access its contents directly.
However, writing data to GPU’s shared memory requires a memory
barrier before it can be read for further processing.

Graph Storage Format. Sparse data that we focus on in this work
could be modeled using sparse matrices or graphs. A graph has a set
of vertices |V|, and connections between vertices are represented as
an edge set |E|. A sample sparse matrix/graph is shown in Fig. 1(a),
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where there are only a few non-zero columns in any row. A row
corresponds to a vertex, while the count of non-zero elements (NZE)
is equal to the edge-count (|E|) in the corresponding graph.

Terminology. In this paper, we mostly use sparse matrix terminol-
ogy but do use graph-related terminologies for types of tensors and
parallelism to avoid name collision. For tensors (features), we label
them as vertex-level or edge-level. For example, W of size |E| X |1|
is an edge-level tensor in Fig. 1(a) where each NZEs has a scalar
feature. Similarly, a dense matrix of size |V| X |F| would be called a
vertex-level tensor, where each vertex has a vector feature of size
|F|. Similarly, for parallelism, we label them as vertex-parallel or
edge-parallel. The row-length is equivalent to vertex degree.

Fig. 1 shows different storage formats of the sparse matrix that
only store non-zero elements(NZE) of the sparse matrix. Com-
pressed Sparse Row (CSR) uses three arrays: The first array con-
tains the column ID of every NZE of the matrix. The offset array
contains offsets to the NZE array for each row. The third array is
the edge-level tensor. Coordinate List (COO) format consists of two
arrays, the first array contains the tuple of row and column IDs,
while the second array is the edge-level tensor. Cusparse defines
the COO to be stored in the CSR way [2].

Custom Storage Format. Any format that does not conform to the
above-discussed form, we call them custom format. For example,
any additional metadata on top of the CSR format makes it a custom
format. Though we will be comparing against custom formats for
performance, our goal is to rely on standard formats.

Basic Sparse Kernels. Sparse kernels involve sparse and dense
matrices. SDDMM or sampled Dense Dense Matrix multiplication
(W — A 0 (XYT)) introduces sparsity to the product of two dense
matrices (or vertex-level tensors) X and Y7, each of size |V| x |F|,
using sparse adjacency matrix A. Thus the result W is an edge-level
tensor of same size as A (|E| X 1). Hence, the dot product happens
across (vertex) feature dimensions. SpMM or Sparse matrix and
dense matrix multiplication (Y « AX) is the matrix multiplication
operation between a sparse matrix (or edge-level tensor) A of size
|E|x1 and a dense matrix (or vertex-level tensor) X of size |V| X |F|
resulting in a dense matrix (or a new vertex-level tensor) Y of size
V| X |F].

Some GNN models, such as GCN, may not need SDDMM in its

forward and backward computation, while other GNN models still
need both SDDMM and SpMM in their computation, so optimizing
them either individually or together is still vital.
Vertex-Parallel and Edge-Parallel. When computation units are
divided equally among rows (or vertices), it is called vertex-parallel
method. E.g., a warp assigned to each row for performing SpMM.
However, each warp performs a varying amount of work due to
varying row lengths, leading to severe workload imbalance. On the
other hand, the edge-parallel method allocates an equal amount of
NZEs to each warp. Such solutions are known as non-zero split in
the SpMV domain, and imparts good workload balancing amid the
need for inter-thread communication for reduction implementation.
Feature-Parallel Method. From feature-parallel [42] perspective,
warp threads are deployed along the vertex-feature dimension to
achieve coalesced data load from matrices X and Y7 in GPUs, i.e.,
dense matrices are read row-wise.
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3 MOTIVATION AND OVERVIEW

3.1 Optimizing SDDMM and SpMM Together

SDDMM and SpMM kernels and their variants serve as the basic
building blocks for all the sparsity needs of GNN [35]. Optimizing
them can contribute to all kinds of GNN models. Several GNN mod-
els, such as GAT [32], GaAN [49] need to include both SDDMM and
SpMM together for training and inference. However, SDDMM have
different computation patterns than SpMM, SDDMM computation
pattern is derived from feature dimension reduction, i.e. reduction
is column-based; while SpMM computation is from neighborhood
dimension reduction, i.e. reduction is row-based.

Because of the above differences, numerous efforts have been
made to optimize the SDDMM and SpMM independently tailored to
the specific computation pattern of each kernel, and this has often
resulted in conflicting designs and/or sub-optimal performance of
sparse kernels. For example, DGL designed kernels are very differ-
ent from each other, e.g. it uses COO for (edge-parallel) SDDMM
achieving a good workload balancing, however, it uses CSR for
SpMM leading to excessive memory consumption for graph storage
in GNN training, while we present soon that workload balancing
alone does not bring DGL SDDMM desired results. However, newer
GNN systems [39, 47] have ignored workload-balancing achieved
by DGL SDDMM by sticking to CSR format for both the kernels
by implementing a vertex-centric variant. Other GNN works, such
as Ge-SpMM [19] and GNNAdvisor [37] has only offered SpMM
to support only limited GNN models, and hence it is not clear if
the same design can provide an optimal solution for SDDMM in
order to support wider GNN models. A more in-depth study of prior
works is presented in §6.

In this work, we focus on sparse kernel design that does not
compromise the performance of any sparse kernels, specifically on
the design of SDDMM and its co-existence with SpMM as part of
GNN workflow. We comment that the community has not under-
stood this co-existence fully. We establish clear facts to prove that
SDDMM and SpMM can be built from the same fundamentals so
that their design will not conflict with each other while achieving
the desired performance goal. To corroborate this, we now present
two general observations: the first is about similarities and differ-
ences between SDDMM and SpMM, and the second is about the
general trend for sparse kernel computation on modern hardware.
These two present us with novel opportunities for the co-existence
of both the sparse kernels and to achieve common optimizations.
Observation #1: Only Reduction is Fundamentally Different.
Many steps are similar for these two sparse kernels, or only minor
differences exist. E.g., loading NZEs and the vertex-features of
their column ID are the same. The minor difference is that SpMM
additionally loads edge-features of NZE, while SDDMM additionally
fetches vertex-feature of the row ID of each NZE. Both of them
produce an equal count of individual dot products.

The fundamental difference exists only for reduction: SDDMM
performs reductions of the dot products along the vertex-feature
dimension to generate output at the edge level, while SpMM does it
along the neighborhood dimension of the sparse matrix to generate
output at the vertex level.

Observation #2: Data Load > Actual Compute. Sparse kernel
computations, like many other computations, involve three steps:
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Fig. 2: Illustration of the proposed unified design for SDDMM and SpMM computation: each warp (say, 4 threads) is shown to handle 8 NZE,
and 8 is feature-length for brevity. The 8 NZEs are divided among two thread groups using the proposed Symbiotic scheduling policy, where
they work on 4 consecutive NZEs. Each thread fetches 4 consecutive vertex-level features from the dense matrix.

bringing data (NZEs and their features) from the device memory to
the registers of the computation unit, and then doing actual compu-
tation (dot product and reduction), followed by updating the result
to the output. Modern GPU processors are very fast and can work
in SIMT fashion resulting in faster computation. However, memory
speed (device memory to-and-fro register) has not kept pace with
processor performance, and is popularly know as “memory wall”
in computer architecture field. Further, the irregularity introduced
due to sparsity makes data-load the dominant cost in GPU.

Clearly, both sparse kernels show a common data-load pattern
that should dominate the overall performance. We do prove this
claim empirically later in Fig. 11. Hence, this motivates system
design of GNNONE to focus on abstracting out the common data-load
pattern using an unified data-load design, followed by balancing and
optimizing it while also introducing data reuse.

3.2 GNNONE: Challenges and Overview

Unified Data-Load. GNNONE abstracts out the common data-load
pattern and designs a unified data-load stage whose optimization is
the main research goal to benefit both the sparse kernels. Viewing
the sparse kernels from the prism of data-load performance, the
known problem of workload-imbalance becomes a data-load imbal-
ance problem, while optimizing the performance of sparse kernels
requires data-load optimization including introducing data-reuse.
Thus the final goal is the study of various aspect of unified data-load
optimization.

Advantages. This unified data-load design is very relevant as a
number of optimizations that have been proposed for SpMM (or
even SpMV) can become relevant for SDDMM, while the techniques
that we propose for SDDMM becomes relevant for Sp)MM. Data-
load unification also have other wide ranging advantages. It may
also enable the deployment of a single storage format in both sparse
kernels leading to significant memory saving in GNN, such as in
DGL which relies on two different formats; and selecting a standard
graph storage format (COO) ensures its compatibility with standard
libraries, such as Cusparse. The unified design also leads to less
development and maintenance cost as each data-load optimization
technique is likely going to be applicable to both kernels, thereby
leading to code modularization and code reuse. Finally, vendor
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libraries such as CuSparse can quickly reuse their SpMM codebase
and extend it to SDDMM rather than spending additional time on
design thinking, as their current SDDMM is extremely slow, which
we believe is based on a different design than its SpMM.
Challenge: Data-load balancing alone is not sufficient. Achiev-
ing a balanced data-load alone does not imply the best data-load or
kernel performance. Hence merely borrowing the idea from prior
works focused on balanced data-load alone does not guarantee an
optimal data-load performance.

To illustrate for SDDMM, DGL does use edge-parallel design,
which achieves data-load balance. However, it is even slower than
the CSR-based SDDMM of dgSparse library [3], which is used by
GNN systems such as dgNN [47]. E.g., when the feature-length
is 32, DGL is slower by an average of 2.01x than dgSparse on
datasets listed in Table 1. More results are presented in §5. Similarly,
for SpMM, we can consider the well-known nonzero-split (edge-
parallel) techniques pioneered by SpMV [6, 27] to achieve data-load
balance. Unfortunately, Yang et al [42], which extended this design
to SpMM, concludes that a nonzero-split SpMM is slower than their
vanilla vertex-paralle]l SpMM for the majority of their datasets.

It is no surprise that such results have established the non-
optimal vertex-parallel variants as the state-of-the-art while discard-
ing the right approach of data-load balanced solutions. As it stands
today, edge-parallel SDDMM by DGL and edge-parallel SpMM by
Yang et al. are not the state-of-the-art solutions.

Overview and Contributions. Better performance from the uni-
fied data-load stage requires not only a data-load balanced design
but also investigating the factors that indirectly affects its perfor-
mance. In this work, we perform such investigations, and accord-
ingly propose novel techniques to improve the data-load perfor-
mance as outlined next as our contributions:

¢ Reduction indirectly impacts Data-Load. Our analysis reveals
a fundamental impact that reduction stage has indirectly on data-
load performance which remains unknown to the community.

Firstly, reduction can impact data-load performance through the
memory barrier. To illustrate, consider 32 as feature-length in SD-
DMM, where individual threads of the warp are mapped along
feature dimensions, i.e., 1 thread handles 1 vertex-feature before
doing the reduction. Hence, a thread of the warp performs just 1
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load of vertex-level feature before doing 5 rounds (loggz) of inter-
thread communication [18]. The inter-thread communication also
introduces a memory barrier, enforcing an ordering constraint on
memory operations issued before and after the barrier instruction.
Hence, the compiler cannot issue more than 1 outstanding feature
load instruction, forcing the thread to wait after issuing every fea-
ture load. This impacts instruction-level parallelism (ILP), resulting
in slower data-load performance.

Secondly, reduction can impact data-load performance through

excessive consumption of shared-memory or register. To illustrate,
consider nonzero-split from SpMV [27], which Yang et al [42] ex-
tended for SpMM as is. It continued materializing the individual
dot products in SpMM in registers for all NZE that are assigned to a
warp, and reduction is performed at the very end. This materializa-
tion leads to excessive usage of registers per thread, e.g. 32X than
SpMV if the feature-length is 32. Yang et al claims that large register
usage is the main reason for slowdown of their non-zero split based
SpMM. Our investigation confirms that large register usage low-
ers GPU occupancy, thereby GPU cannot launch many concurrent
CTA to allow hiding data-load latency with the computation. Hence,
the GPU cannot issue sufficient data-load instructions leading to
smaller ILP and hence poor data-load performance.
o Two-Stage Data-Load and Symbiotic Thread Scheduler. Gn-
NONE propose a two-stage data-load and symbiotic thread sched-
uler to import data-load balancing and optimization to the unified
data-load design by exploring factors that are responsible for poor
data-load performance. The working flow is shown in Fig. 2.

Stage 1 of unified data-load achieves a fully balanced data-load
of NZEs and the corresponding edge features, if needed, using the
edge-parallel method resulting in complete memory coalescing.
This stage stores them in the shared memory of the GPU so that
they can be reused in Stage 2. The advantage of separation is that
GNNONE can determine the cache size in Stage 1 based on hardware
(GPU) characteristics such as shared memory size, and memory
barrier that is applied before reading from shared memory, and
is fully independent of row-length— a novel contribution that is
applicable for both SDDMM and SpMM.

Stage 2 loads the vertex-level features of the cached NZEs from
device memory to registers, while also performing the dot product
as per individual kernel needs. The scheduler assigns one thread to
load many consecutive vertex-level features so that the impact of the
memory barrier in SDDMM can be minimized. The decision also
enables more thread-local reduction and minimizes inter-thread
communications. For example, one thread loads 4 consecutive vertex-
level features when the feature-length is 32. Thus, only 8 threads
participate in inter-thread communication resulting in just 3 rounds
of it when using the tree reduction method. Further, the compiler
can now issue up to 4 data-loads per thread before encountering
the memory barrier resulting in improved ILP and better data-load
performance. We explain how this is achieved without sacrificing
memory coalescing (§4.2.1).

The scheduler creates thread-groups to utilize all threads of the
warp. E.g., it creates 4 thread-group each containing 8 threads when
feature-length is 32. Each thread-group handles different cached
NZEs in a way that allows more thread-local reduction in SpMM.
Le., each thread-group processes consecutive cached NZEs, so that
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the reduction along the neighborhood dimension becomes thread-
local to a large extent. This scheduling also allows SDDMM to cache
the vertex-level features of rows and reuse them till a new row is
encountered (§4.2.2), and offers a running reduction in SpMM to
be performed to minimize the register usage (§4.3).

4 UNIFIED DATA LOAD: TWO-STAGE DESIGN

In the pursuit of optimizing data-load of NZEs and features, GN-
NONE is dedicated to enhancing data-load balance and promoting
data-reuse. Our strategy to achieve this goal employs a two-stage
data-load approach, which optimizes how the data is brought from
GPU device memory to registers (or GPU shared memory) for com-
putation which has proven to be instrumental in reaching our per-
formance objectives for SDDMM and SpMM both. The challenge
here is to design the stage by carefully understanding the factors
that impact the performance of data-load stages and for the dy-
namic feature-length whose value varies based on the configuration
of different model layers during runtime.

4.1 Stage-1Data Load and Caching

In this stage, GNNONE divides the data-load of NZEs and corre-
sponding edge-level features equally among warps using the edge-
parallel data-load method to avoid any data-load imbalance among
warps. To explain, each warp fetches CACHE_SIZE (multiple of
32) NZEs and corresponding edge features, if needed, in a coalesced
way as shown in Listing 1, stage 1. So, if one row has 1000 non-
zero columns and another only 10, this stage allocates 100X more
threads to load the non-zero columns of the former than the latter.

void SDDMM_or_SpMM_Stagel (edge_tx coo, floatx etensor,

int dim, ...) {
int warpId = threadIdx.x/32;
int warpLane = threadIdx.x % 32;
int absWarpId = blockIdx.x*blockDimx.x+warpId;
int eStart = absWarpId*CACHE_SIZE;
int eEnd = eStart+CACHE_SIZE;
//Stagel: Load NZE and edge-features and Cache

for (int e=eStart+warplLane; e<eEnd; e+=32) {
sh_NZE[e-eStart]=coole];//Shared memory
//Line 11 is needed for SpMM only
sh_evaluel[e-eStart]=etensor[e];//Shared memory

}

__syncwarp();

}

Listing 1: Sparse kernel sketch (simplified) for fully balanced data-
load Stage 1

Data Reuse. The loaded data is cached temporarily in the shared
memory of the GPU so that it can be reused in stage 2. For SD-
DMM, the row ID and column ID of each NZE are needed in Stage
2 by multiple threads to fetch their vertex-features (vector), and
their data-reuse is achieved by caching them in Stage 1. However,
the Edge-parallel SDDMM in prior works, such as DGL [35], Feat-
Graph [18], etc. do not have NZE caching strategy at all, and there-
fore cannot benefit from the data-reuse of NZEs.

For SpMM, NZEs are also reused: the column ID of NZEs is reused
by many threads to fetch their vertex-feature Stage 2, while the row
ID is needed to reduce the dot products and write the result (vector)
to output tensor. Stage 1 additionally caches the corresponding
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edge-feature of every NZE which is needed by different threads to
perform the dot product with the vertex-features. Therefore, The
reuse factor for the cached elements in both SDDMM and SpMM is
exactly as the feature dimension of vertex-features.

4.1.1 CACHE_SIZE Determination and Discussion. The separate
Stage 1 in GNNONE allows us to find the cache size independent of
row-length of sparse matrix or feature-length of each vertex, which
is not the case in prior sparse kernel works, as we discuss soon.
CACHE_SIZE and Memory Barrier. GNNONE determines the
cache size based on the hardware characteristic, such as thread
count in a warp, shared memory size, etc., and not based on row-
length of the dataset. Hence, any multiple of 32 is a good starting
point for CACHE_SIZE as there are 32 threads in a warp. Kindly
note that a memory barrier is needed before Stage 2 can read the
cached data from the GPU shared memory. This incurs costs, specif-
ically, memory-related instructions can not be reordered across a
memory barrier. Hence, in the case of 32 as CACHE_SIZE, each
warp thread only issues one data-load, and then waits for the mem-
ory barrier. However, by caching more than 32 elements, such as
128, the frequency of this barrier usage is reduced, allowing every
warp thread to issue data-load of 4 NZE before waiting for the
memory barrier. Hence, performance is better when Stage 1 caches
128 NZEs per warp than just 32, and is confirmed empirically (§5).
Prior SDDMM Works. Sputnik [11], FeatGraph [18], dgNN [47],
DGL, and others have not cached NZEs in their SDDMM. Hence,
they perform more data-load than necessary for loading NZE. Hence,
Caching is very novel in SDDMM, and is enabled purely due to the
similarity that we observe in this paper about sparse kernels.
Prior SpMM Works and Row-Length. Vertex-parallel SpMM ap-
proaches uses a fixed cache size of 32 per warp, but also dependent
on row-length. E.g., workload-balanced SpMM designs such as GN-
NAdvisor [37] and Huang et al. [20] break each row into neighbor
groups of 32 non-zero columns, and are forced to use cache size to
32. However, the last neighbor group and those rows that have less
than 32 non-zero columns cache less than 32 NZE. GE-SpMM [19],
caches only 32 NZEs per warp at any time. Even if such works
do decide to increase the cache size, it is always limited by the
row-length which varies for each row, as many rows that contain
fewer non-zero columns are unable to fully utilize the increased
cache size. Hence, unlike GNNONE, prior SpMM works cannot make
cache size independent of the row-length and actual computation,
while doing no caching for SDDMM.

Prior SpMM works and Feature-Length. Many SpMM works
drop caching or have other behaviors when feature-length is less
than 32, e.g., GE-SpMM drops caching. On the other hand, GNNAd-
visor, and Huang et al keep the warp threads idle while loading
the features of NZEs. Since such feature dimensions are common,
especially in the last layer of the GNN, a separate Stage 1 fully
independent of Stage 2 holds significance and does not distinguish
the implementation based on feature-length.

4.2 Stage-2 Data Load & Symbiotic Scheduler

In SDDMM, this stage loads the vertex-features of row and column
IDs of the cached NZE and performs their dot product. In SpMM,
this stage loads vertex-features of the column ID of the cached
NZEs, as edge-feature of NZEs are already loaded in Stage 1, and
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perform their dot product. This stage solves the challenges (§3.2)
that reduction stage has on data-load performance using Symbiotic
thread scheduler.
Thread-Group and Need of Scheduling. The symbiotic thread
scheduler uses one thread to load at least 4 features so that the
compiler can issue more data-load instructions before a memory
barrier is hit due to the need for reduction (inter thread commu-
nication) in SDDMM (§3.2). This leads to forming thread groups
within a warp to utilize all its threads for various feature-lengths.
E.g., if the feature-length is 32, then 8 threads are dedicated to load-
ing them forming one thread group. Hence, there are a total of 4
thread groups within a warp. But in case 16 as feature-length, 4
threads form a thread group, resulting in 8 thread groups within a
warp. Also, the count of NZEs processed simultaneously within a
warp depends directly on the thread-group count within the warp.
Le., if the thread-group count is 4 (feature-length 32), each thread
group handles one NZE, leading to 4 NZEs handled simultaneously
by the warp. Further, the cached NZEs are divided equally among
thread groups to process. E.g., if the CACHE_SIZE is 128 then each
thread-group is assigned 32 NZEs 128/4) to process independently.

This leads to two scheduling decisions to be made: a) which 4
features are allocated to a thread (§4.2.1); and b) which NZEs are
allocated to a thread group (§4.2.2).

As we explain next, such decisions present challenges on how to
keep the coalesced memory access of the warp so that the data-load
does not degrade.

4.2.1  Vertex-Level Feature Assignment Policy. Allowing a thread
to issue four outstanding data-load instructions for feature loading
may break the memory coalescing as the warp (or thread-group)
cannot fetch consecutive 32 features (128 bytes) at one time even
when the feature-length is 32. It requires careful design to allow
memory coalescing. GNNONE turns to a CUDA’s native support for
vector data-load instruction, such as float4. This enables each thread
to fetch 4 consecutive vertex features by using a single vector data-
load instruction. So, for 32 feature-length, a thread-group consisting
of 8 threads achieves full coalesced memory access of 128 bytes.
Moreover, it requires just 3 rounds of inter-thread communication
(logg) compared to the earlier 5 rounds. Results in §5 shows that
switching to the proposed thread-grouping leads to a significant
speedup of over the vanilla feature-parallel method for feature-
length of 32.

The huge speedup in SDDMM is because of performing more
loads(each thread loads 4 features now) before the memory bar-
rier, which leads to higher instruction-level parallelism (ILP) for
data-load instructions. Hence, if one can come up with a differ-
ent solution to increase ILP for data-load, it would provide similar
optimization in SDDMM. However, not all solutions may perform
better if they compromise with memory coalescing. E.g., an extreme
design would be to dedicate a single thread to handle all vertex-
features of an NZE to perform a full thread-local reduction. This
will impact Stage 2 data-load performance warp cannot produce
coalesced memory access.

Since, using float4 easily provided the mechanism, we did not
look for any other mechanism. Though prior works have used
vector data-load for various other purposes at different stages of
sparse kernels, the unique proposal of GNNONE remains novel in
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explaining the unknown impact that inter-thread communication
creates on the data-load performance through the memory barrier.

Though SpMM is different than SDDMM, thread-grouping is
applicable to SpMM. So, each thread uses float4 data type during
Stage 2 data-load. However, the usage of float4 does not bring
significant speedup for SpMM because it does not perform inter-
thread communication at the end of each NZE thereby observing
no issues due to the memory barrier.

4.2.2  NZE Assignment Policy. We explore two thread-group sched-
uling strategies to decide which cached NZE should be assigned
to each thread group within a warp. We explain these two strate-
gies by using 4 thread-group (32 as feature-length), and 128 as
CACHE_SIZE. In the Consecutive method, the preferred method,
the first thread-group is assigned the first 32 cached NZEs(0, 1, 2, ...,
31). The next thread-groups are assigned the next block of 32 NZEs,
and so on. Each thread within the thread group handles different
features of the same NZE. In the Round-robin method, the first
thread-group gets NZEs stored in 0, 4, 8, 12, ..., 124" Jocation in
the cache. The second thread group gets NZEs stored in 1, 5, 9,
13, ..., 125" location in the cache, and so on. Listing 2 shows both
methods of scheduling for thread groups of a warp.

float* etensor,
int dim, ...) {

//--Start of Stage 2

//Calculate thread group details

int thdGrpCount = 4;//Example

int thdsInThdGrp = 8; //Example

int thdGrpId = warplLane / thdsInThdGrp;
int thdGrpLane = warplLane % thdsInThdGrp ;
//EITHER Consecutive method

int start = thdGrpId*CACHE_SIZE/thdGrpCount;
int end = start + CACHE_SIZE/thdGrpCount;
for (int i = start; i < end; i++){

e = sh_edgel[i]; //fetch the cached NZE

3
//0R Round-robin method
for(int i=grpld; i<CACHE_SIZE; i+=thdGrpCount){

e = sh_NZE[i]; //fetch the cached NZE

3
3
Listing 2: Sparse kernel sketch (simplified) for data-load Stage 2,
showing thread-group scheduling,.

We now investigate how reduction and data reuse influence the
choice, and whether one can provide better data-load performance
than the other.

Data-Reuse Analysis: Consecutive method is Better. In SD-
DMM, the Consecutive method introduces data-reuse of vertex-
features of row ID for many NZEs until a row split is encountered.
This is because the COO is usually arranged in a CSR way [2], and
a block of consecutive NZEs is assigned to a thread group. On the
other hand, the Round-robin method offers very little data-reuse
chance as consecutive NZEs are not allocated to the same thread
group. In SpMM, no such data reuse exists irrespective of the sched-
uling method as vertex-features of a row ID are never fetched.

Reduction Analysis: Consecutive method is Better. In SpMM,
the Consecutive method is more useful for reduction as each thread
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group processes consecutive NZEs, which are likely to have the
same row ID. Hence thread-local reduction can be performed along
the neighborhood dimension by each thread-group. Kindly, note the
Consecutive method needs just one round of dot product exchange
among thread-groups for the reduction in case two consecutive
thread-groups have some NZEs of the same row ID. However, the
Round-robin method requires more inter-thread communications
for reductions as consecutive NZEs are assigned in a round-robin
fashion to different thread groups. This is likely going to be more
costly than a pure thread-local as this method needs to exchange
4096 items (32 features* 4 thread-group * 32 NZEs per thread-group)
in the worst case. SDDMM reduction has no role in deciding the
scheduling method.

It is clear that the Consecutive method is better than the Round-
robin method. Moreover, a higher CACHE_SIZE in Stage 1 favors
the Consecutive method as each thread group handles more NZE,
therefore it can do more thread-local reduction to minimize the
thread communication in SpMM. Hence, the Consecutive method
in Stage 2 is better suited to complement the Stage 1 design of
caching more elements.

4.3 Reduction Design

After the data-load phase produces the dot products, the reduction
phase reduces those dot products and then writes the reduced
results to the output tensor. Thanks to our data-load Stage 2 design
which is based on reduction analysis, the final reduction design
becomes very simple. All the sparse kernels use the thread-grouping
and the Consecutive scheduling method. Due to this, both the
kernels rely on the maximum thread-local reduction of dot products
as discussed next.
SDDMM. A thread performs 4 thread-local reductions, followed
by inter-thread communication within the thread group for final
reduction. E.g., for 32 as feature-length, reduction only performs
3 rounds of inter-thread communication. The results are written
immediately to the output.
SpMM. We do a running reduction (thread-local), i.e., each thread
in a thread group performs reduction immediately after new dot
product computation in Stage 2 while handling consecutive NZEs,
before a row split is observed by a thread group. This minimizes
the register count or shared memory usage that otherwise would
have been needed to keep individual dot products. Discovering a
row-split is easy in the Consecutive scheduling method because of
the usage of COO where every NZE contains its row ID. However,
we directly use atomic instruction to write the thread-local reduced
value to the output tensor. We are fine with this approach as the
results show in §5, and leave the exploration of alternate approaches
as a future work.
Format Selection. The GNNONE can fit in any format if we can
quickly locate the row and column ID from each non-zero element.
In this work, we choose the COO format since it not only meets
the requirement but also is the standard format, supported by a
wide variety of libraries and frameworks. In the following text,
we discuss the selection of the sparse storage format and presents
various trade-off that guide our choice.

CSR is naturally not suited for workload balanced solutions.
Hence prior works rely on custom formats. On the other hand,
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Fig. 3: SDDMM results: GNNONE speedup over prior works for different feature lengths (dim). A speedup of 64 means that baselines has OOM
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the COO format has a natural property of workload balancing as
done in GNNONE. In addition, the COO format brings a unique
advantage in the GNN use cases. GAT [32], GaAN [49], and many
other GNNs also invoke SDDMM variants which are naturally
suited for edge-parallel computation as the output tensor is at edge-
level. Current systems, such as DGL, Pytorch-Geometric, etc. rely
on the COO format. Therefore, optimizing SpMM so that it can use
the COO format makes these GNN frameworks rely on a single
format minimizing memory consumption amid better performance.

Moreover, the vendor libraries such as CuSparse still support the
COO format arranged in the CSR way. This indicates that many
scientific computation also relies on the COO format, and not just
the GNN use-cases. Therefore, having high-performance sparse
kernels(SpMM and SDDMM) in the COO format is likely to benefit
many scientific workflows.

4.4 Discussion

Is GNNONE SpMM an extension of Nonzero Split SpMV [6,
27, 31]? We discussed in §3.2 how nonzero-split SpMM by Yang et
al. [42] suffers from performance drop. That is because it does not
incorporate the understanding of the differences between SpMV
and SpMM, and how the reduction phase impacts data-load perfor-
mance. Hence, GNNONE SpMM is not a direct extension of nonzero-
split SpMV. We claim that nonzero-split SpMV is a special case of
GNNONE SpMM, and not the other way around, based on another
fundamental insight that we developed between the classes of two
nonzero-split SpMV.

Trade-off between two classes of SpMV is between how the
NZEs are fetched (coalesced or non-coalesced) and the reductions
are performed (limited thread-local or fully inter-thread). Dalton
et al. [6] (one class of nonzero-split SpMV) fetches NZEs and edge-
features in a coalesced manner that forbids any thread-local reduc-
tion. Hence, inter-thread reduction is performed by materializing
the dot product to the shared memory. On the other hand, Merrill
et al. [27] (another class) forgoes coalesced fetch of NZE, and edge
features (i.e., a thread fetches N consecutive NZEs, thus a warp
is not able to coalesce them). However, this decision does enable
limited thread-local reduction over N dot products.

We note that GNNONE removes this trade-off in SpMM due to
caching NZEs and edge-features, which are reused by many threads
to fetch vertex-feature from dense matrix. Hence, in SpMM, we
enabled both the coalesced access of NZEs and edge-features plus
limited thread-local reduction. Hence, GNNONE SpMM is not an
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extension of any of these two SpMV designs. It has different design
choices than SpMV.

In other words, caching in Stage 1 is the key difference in SpMM,

which is of no use in spMV as feature-length is just 1. Hence, if
GNNONE has to be extended to SpMV, caching in stage 1 is dropped,
making our SpMV implementation one of Dalton et al. or Merrill
et al. Thus, the two classes of nonzero-split SpMV are special cases of
GNNONE SpMM when the vertex-feature length is 1.
Discussion on Feature-Length. In GNN, the feature-length in
sparse kernels is usually a multiple of 4, such as 16, 32, 64, etc. Hence,
the usage of float4, and thread-group remains useful. It is only the
last layer in some GNN, where the feature-length of sparse kernels
is determined by the classification category, such as 6 in Citeseer.
In such cases, thread-group remains useful. However, we do replace
float4 with other vector data-load instructions, such as float3 when
the feature-length is 6, as float4 cannot be used due to memory
alignment issues. It still provides speedup in such odd feature-length
cases in SDDMM as more than 1 data-load instruction is issued
before hitting the memory barrier.

5 EVALUATION

The datasets for the experiments are listed in Table 1. We treat them
as undirected graphs, as GNN frameworks such as DGL expect
this. Hence, the edges are doubled. The edge count in the Table
indicates this. The graphs are downloaded from DGL, SNAP [30],
and the University of Florida Sparse matrix collection [7]. Kron-21
is a synthetic graph generated using Graph500 generator [13]. The
experiment is run using an Nvidia A100 GPU (40GB memory).

This section shows that for various feature lengths, GNNONE!
outperforms all the prior works significantly on individual kernel
measurements as well as on GNN training against a system that has
gained additional performance using kernel fusion, while GNNONE
relied on individual kernels. It also shows the impact of individual
design choices.

5.1 SDDMM

Fig. 3 shows speedup of GNNONE over dgSparse [3] (used by dgNN
[47]), CuSparse, Sputnik [11], FeatGraph [18], and DGL [35]. The
average speedup is 6.02X across all the feature lengths except over
Sputnik and Cusparse. The speedup also depends on the feature-
length. For feature-length 32, GNNONE achieves an average speedup

1Code can be accessed from https://github.com/the-data-lab
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Fig. 4: SpMM results: GNNONE speedup over prior works for different feature lengths (dim). A speedup of 256 means that baselines have OOM
not GNNONE. OOM means every system ran out-of-memory ((log scale, higher is better)

Table 1: Graph datasets. * denotes labeled dataset. F = Input feature-
length, C = Prediction categories. GNN models deploys a linear layer
to project the feature-length to a lower intermediate feature-length
(e.g., 16 or 32) before sparse kernels are called.

Graph Vertex Edge F C
Dataset Count Count

Cora(G0)* 2,708 10,858 1,433 7
Citeseer(G1)* 3,327 9,104 3,703 6
PubMed(G2)* 19,717 88,648 500 3
Amazon(G3) 400,727 6,400,880 150 6
wiki-Talk(G4) 2,394,385 10,042,820 150 6
roadNet-CA(G5) 1,971,279 11,066,420 150 6
Web-BerkStand(G6) 685,230 15,201,173 150 6
as-Skitter(G7) 1,696,415 22,190,596 150 6
cit-Patent(G8) 3,774,768 33,037,894 150 6
sx-stackoverflow(G9) 2,601,977 95,806,532 150 6
Kron-21(G10) 2,097,152 67,108,864 150 6
hollyw00d09(G11) 1,069,127 112,613,308 150 6
Ogb-product(G12)* 2,449,029 123,718,280 100 47
LiveJournal(G13) 4,847,571 137,987,546 150 6
Reddit(G14)* 232,965 229,231,784 602 41
orkut(G15) 3,072,627 234,370,166 150 6
kmer_P1a(G16) 139,353,211 297,829,982 150 6
uk-2002(G17) 18,520,486 596,227,524 150 6
uk-2005(G18) 39,459,925 1,872,728,564 150 6

of 3.00X%, 5.53%, 4.07X over FeatGraph, DGL, and dgSparse respec-
tively. E.g., in the case of Ogb-Product(G12) dataset, GNNONE exhib-
ited a runtime of 11.70 milliseconds (ms), outperforming dgSparse
(23.67ms), DGL (50.22ms), and Featgraph (14.76ms) comprehen-
sively. A similar pattern is also noticed for feature-length of 64.
For smaller feature-length (e.g., 16 or 6), a few prior works keep
some warp threads idle. Hence, the speedup achieved by GNNONE is
generally higher due to its thread-grouping. For example, the average
speedup is 7.49%,4.70x, 5.04x over FeatGraph, DGL, and dgSparse
for feature-length 16. A greater speedup for feature-length 6 also
indicates that GNNONE cares for the last GNN layer. The overall
minimum speedup we observed is against DGL on G6 (1.24x) for
feature-length 6, indicating how effective GNNONE techniques are.
In addition, Sputnik and CuSparse encountered errors when |V|
exceeds a certain threshold, which seems around 2 Million, and
hence is not plotted. Sputnik, which is open-source, allocates |V|?
thread-blocks, and hence this number becomes large enough that
is not supported by CUDA. For datasets where |V| is less than this
threshold, GNNONE demonstrated significant speedup, E.g., for the
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Reddit(G14) dataset, GNNONE achieved speedup exceeding 90X and
40x speedups over Sputnik and CuSparse, respectively.

The huge speedup over DGL proves our intuition that edge-
centric design alone is not sufficient unless data-reuse techniques
are introduced. In comparison to others, a good data-load balanced
solution, minimizing the impact of memory barrier on data-load
performance, and data-reuse techniques play the main role in the
optimization that GNNONE has achieved. We do evaluate these
techniques separately in §5.4

52 SpMM

Fig. 4 shows the speedup of GNNONE over Ge-SpMM [19], CuSparse,
Huang et al. [20], FeatGraph [18], and GNNAdvisor [37]. Despite
the long line of work in SpMM, including some solutions designed
specifically for workload balancing including relying on custom
formats, GNNONE out-performed all of them, achieving an average
6.25% speedup across different feature lengths. For feature-length
32, GNNONE outperforms GE-SpMM, CuSparse, GNNAdvisor, and
Huang et al by an average of 3.84X, 2.65%, 2.90X, and 1.34X speedup
respectively across all datasets. A similar performance trend is
observed for 64 feature-length. For feature-length less than 32 (e.g.,
16, and 6), GNNONE achieves even better performance as some of the
prior works cannot incorporate their proposed methods. E.g., GE-
SpMM cannot use caching, while Huang et al and GNNAdvisor keep
some warp threads idle when feature-length is less than 32. Hence
GNNONE achieves speedup of 13.90% (15.16X), 3.57X (4.20X), 6.25X
(7.52x), 1.71x (2.08X) for feature-length 16 (6) respectively over
Ge-SpMM, CuSparse, GNNAdvisor, and Huang et al. respectively.

Speedup over FeatGraph is highest (11.30x). This is because
its script prints runtime over many block sizes and block count
combinations, but crashes after a few combinations. Though we
picked the best run-time, it is possible that if the bug is fixed, some
other combination might produce a better runtime. However, their
authors informed us that it would remain slower than CuSparse.

When feature-length is 32, the minimum speedup for workload-
balanced solutions by Huang et al. and GNNAdvisor are negative,
i.e., they are slower than Ge-SpMM, a vanilla vertex-parallel SpMM.
This indicates the presence of overhead to achieve workload bal-
ancing by these works. However, GNNONE still achieves 1.06x
minimum speedup compared to Ge-SPMM in this case, and the
speedup becomes even more obvious for other feature lengths.

It is clear that a workload-balanced solution of GNNONE always
performs better than vanilla vertex-parallel Ge-SpMM, and bet-
ter than the neighbor grouping method of workload balancing by
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Huang et al and GNNAdvisor. These results show the impact of data-
load centric design of GNNONE compared to the existing methods,
specifically how prior works still suffer from workload imbalance,
and how the solution proposed by GNNONE can provide better
workload-balancing and data reuse to achieve greater performance.
We do evaluate these techniques separately in §5.4

5.3 GNN Training

We used three GNN models, namely GCN, GIN, and GAT. We used
two-layer GCN, with an intermediate feature size of 16, 5-layer GIN
with an intermediate feature size of 64, and 5-layer GAT with an
intermediate feature size of 16. The feature-length of the last layer
in all these models usually depends on the classification classes.
Thus, GNN training procedures contain a sequence of multiple
SpMM and SDDMM with different feature dimensions.

Baseline. We compare against two baselines DGL and dgNN [47].
DGL uses CuSparse for its SpMM while designing its own SDDMM.
dgNN is a highly optimized system that not only optimizes the
kernels but also fuses them to achieve even better performance.
However, it only supports attention-based GNNs, such as GAT,
which we compare against.

Due to various pitfalls present in prior single-gpu GNN systems,
as discussed by Gong et al. [12], comparing against them, such
as GNNAdvisor [37], Huang et al [20], TLPGNN [10], etc. is not
fair. We also do not compare using smaller datasets, as it implies a
comparison of framework overhead [12]. PyG [9] ran out of memory
for Reddit and OGB-Product datasets when we used its original
design of using COO format. This is also reported by prior works [5,
20]. Ge-SpMM and FeatGraph are integrated with DGL, however,
we could not run FeatGraph despite trying various GitHub branches
of DGL as suggested by their authors. GE-SpMM provides files that
needed to be replaced in DGL but due to code reorganization since
then, those DGL files have been removed. So, these works are used
only for kernel evaluation.

GNNONE is integrated into the GNNBench benchmarking plat-
form [44] to avoid these pitfalls. The platform allows to use non-
labeled datasets by using generated labels and features, whose
dimensions are listed in Table 1, and cannot be used to measure
training accuracy. We rely on them for performance measurements
only due to the limited number of labeled datasets.
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Fig. 5: GNN training Accuracy results on three GNN models for
various datasets, showing that the design proposed by GNNONE can
be applied to GNN training correctly.

5.3.1 Accuracy Comparison. Fig. 5 shows that integrating the ker-
nels to a deep learning framework is possible, and works correctly
as accuracy is the same as DGL. This test is used to show that the
kernel implementation is working.
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Fig. 6: End-to-end speedup of GNNONE for GNN training(200 epoch)
compared to DGL and dgNN. (Log Scale, higher is better). dgNN
produced an error while training G10.

5.3.2  Training Time. GAT. Fig. 6 shows the end-to-end GAT train-
ing time(200 epochs) compared GNNONE to dgNN and DGL among
different large datasets. GNNONE archives 3.68x and 2.01X speedup
over DGL and dgNN respectively. Kindly note that dgNN uses the
fused kernel calling just one fused kernel instead of individual ker-
nels such as a series of SpMM and SDDMM variants as well as
ReLU, dropout layers, etc. that GNNONE invokes individually, yet
GNNONE has performance speedup compared to the dgNN, show-
ing the impact of optimizations of individual kernels. We believe
kernel fusion would provide even better performance to GNNONE,
which we left as future work.

GCN and GIN. Fig. 7 shows the speedup achieved by GNNONE over
DGL for training GCN and GIN models for 200 epochs, achieving
1.89x and 1.27x average speedup respectively for their training.
Further, GNNONE could train GCN on G17 (UK-2002) due to memory
saving enabled by GNNONE by keeping a single storage format while
DGL ran out-of-memory. For other datasets (G16, and G18), both
the systems ran out of memory.
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Fig. 7: Training speedup of GNNONE over DGL: GNNONE could
train GCN on G17, while DGL shows out-of-memory conditions (200
epoch). (Log Scale, higher is better).

It should be noted that GNN models also include many other
kernels such as linear function, ReLU, softmax, etc. for which both
rely on PyTorch. Hence, it is very clear that optimizing SpMM,
and SDDM alone brings significant speedup in GNN training. For
example, in Reddit, GNNONE kernel can achieve 6.26x for 16 feature
dimensions over CuSparse, which translates to 4.05x speedup over
DGL for end-to-end GCN training.

5.4 Design Choice Evaluation

We now evaluate the impact of the design decisions that we have
proposed in this work.

5.4.1 Impact of Different Optimizations. Fig. 8 shows the perfor-
mance speedup achieved by SDDMM for different optimization
techniques presented in the paper. Baseline represents data-load
balanced solution using COO format but without giving thought
to data-reuse and impact of memory barrier. This roughly mimics
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the DGL SDDMM design ideas. +Data-reuse adds two techniques
on top of the baseline solution: caching NZE in stage-1 data-load,
and reuse of features of row ID while handling many NZEs. The
data-reuse alone results in average 2.78% speedup over baseline.

- baseline = +datareuse [ +floatd
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Fig. 8: Performance comparison in SDDMM between baseline, base-
line + data reuse, baseline + data reuse + float4. The plot uses 32 as
the feature length.

+Float4 minimizes the impact of the memory barrier on stage-
2 data-load: it shows the impact of loading 4 vertex-features per
thread instead of 1 to alleviate the impact of the memory barrier
on data-load performance which is implicitly applied due to the
inter-thread communication needed during the reduction stage in
SDDMM. Specifically, for feature-length of 32, it should be noted
that both approaches do vertex-feature load using full memory
coalescing. However, the approach proposed by GNNONE (4 features
per thread) leads to a further 1.80x speedup achieving a total of
4.59% average speedup compared to the baseline performance.
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Fig. 9: Caching 128 NZEs benefits the performance in comparison
to caching just 32 NZEs in SpMM. Plot uses 16 as feature-length.

5.4.2  Impact of Stage-1 Data-load Cache Size. Fig. 9 shows that
caching 128 NZEs per warp brings additional performance (1.31x
speedup) in comparison to caching only 32 NZEs per warp in SpMM.
This is because caching more NZEs minimizes the impact of mem-
ory barrier on data-load for NZEs and edge-level tensor, and hence
improves the SpMM performance.
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Fig. 10: Consecutive method of workload division within a warp
achieves better data load performance than the Round-robin.

25

HPDC ’24, June 3-7, 2024, Pisa, Italy

5.4.3 Consecutive vs Round-Robin. Fig. 10 compares the perfor-
mance of the two scheduling methods using the COO format for
SpMM case for their data-load performance. Kindly recall that the
Consecutive method is better for data-reuse in SDDMM and needs
to perform less inter-thread communication for reduction in SpMM.
However, in this result, we show that the Consecutive method also
has a better data-load performance as it achieves slightly above 10%
performance than the Round-Robin. We implemented the Consec-
utive method using Listing 4.2.2, and a similar code was written
for Round-Robin, where we did not include the final reduction.
Including reduction would have provided even better performance
as Consecutive requires much lower inter-thread communication
than Round-Robin method.

To explain the performance difference, we note that Consecutive
method lets the warp threads work on consecutive NZEs which are
likely to be part of same row and hence observes better data-locality
than the Round-robin method.
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Fig. 11: Breakdown of the data load performance to show that our
initial observation about data load being the costly operation holds.

5.4.4  Proving the Observation about Data-Load being Costly Phase.
GNNONE basic premise is the hypothesis that data-load (from GPU
memory to registers) is the phase that should take a longer time
than the rest of the computation (actual reduction and writing the
results to global memory). Fig. 11 shows the breakdown for the
dataset. We measure the total time using the end-to-end prototype
of GNNONE, and the load time using a partial prototype so that the
run-time does not include the impact of the reduction and result
write-back. Clearly, the data loading of NZE and features is the
main phase that takes more time even after optimization.

5.4.5 Advantage of COO over Custom Format. Prior works have
proposed various custom storage formats, specifically for SpMM
that need a pre-processing step. We leave the pre-processing cost of
such custom format out as a one-time cost and focus on understand-
ing their run-time behavior. Firstly, results show that GNNONE is
faster than recent SpMM that rely on custom storage for workload
balancing [11, 20, 37].

Secondly, custom formats developed as part of nonzero-split can
work with GNNONE, but it introduces a trade-off compared to COO:
1) Each NZE in the COO format knows its row ID immediately
without any additional work. Though, this is achieved by perform-
ing 4 extra bytes of load for each NZE when using COO. 2) The
custom storage still needs to bring the additional metadata (less
than 4 bytes per NZE). However, it uses only a few threads of the
warp to do this operation followed by broadcasting the metadata
to every thread, and then each thread performs an online search
on this metadata to find the row ID of each NZE.
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Fig. 12: GNNONE SpMV speedup compared to Merge-SpMV. GN-
NONE performs comparably to Merge-SpMV. Merge-SpMYV crashed
for K21(G10), so is not plotted.

With the SIMT nature of GPUs, GNNONE uses all the threads
to bring the additional row ID along with each NZE using coa-
lesced memory access, while a custom format will keep threads
idle while bringing the metadata, followed by additional broadcast
that requires thread synchronization or a memory barrier, while
the search leads to additional overhead. Hence, we believe COO
is fine in place of a custom format, and use SpMV to empirically
prove this point next.

Fig. 12 compares COO-based SpMV (GNNONE) against Merge-
spMV [27] that uses a custom format. In this case, there is no usage
of Stage 1 caching, so we followed the Merge-SpMV idea so that the
impact of COO could be evaluated compared to a custom format.
GNNONE achieved better or equal performance on all the datasets.
For the Reddit and OGB-Product dataset, GNNONE achieves 1.74X
and 2.09x speedup. Though the focus of this paper is not SpMV,
the results are just an indication that when COO is deployed for
nonzero-split, it can perform similarly or better than custom format
based nonzero-split SpMV. As discussed earlier, the trade-off be-
tween these two solutions is a data load of 4 additional bytes (COO)
in GNNONE versus loading less than 4 bytes additional data per
NZE but then relying on additional mechanisms such as broadcast
and an online search to locate the row ID in the custom format. It
seems that this causes more overhead than the additional 4 bytes
data-load that GNNONE does on most of the datasets.

6 RELATED WORK

Many GNN system optimizations have been proposed recently [10,
17,21, 22, 25, 34, 38, 41, 43, 46]. Internally, they rely on SDDMM and

SpMM sparse kernels, which we focused on in this paper. CuSparse

has supported SpMM for a long time on CSR and COO formats.
However, it has introduced SDDMM recently supporting CSR for-
mat only. Our measurements show that it performs extremely slow,

hence, GNN systems, like DGL do not rely on CuSparse SDDMM,

but have implemented their own version.

SDDMM. DGL uses custom SDDMM based on the COO format

for a workload-balanced design, while still relying on CuSparse for

SpMM. DGL’s SDDMM design has no data reuse: neither caching

NZEs nor reusing vertex-features of row ID, proving our earlier

point (§1) that workload balancing alone is only an enabling condi-
tion for better SDDMM performance. Besides DGL, others [11, 18]

adopt vertex-parallel variant, both of which not only lack workload

balancing but also uses no caching. Further, Sputnik [11] does not

reuse vertex-level features of row ID.

SpMM. GE-SpMM [19], FeatGraph [18], TLPGNN [10] follow vertex-
centric Sp)MM. Hence, they still suffer from workload imbalance.
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Yang et al. [42] that we discussed throughout the paper is an edge-
centric SpMM, however, it performs even slower than vanilla vertex-
parallel SpMM as reported by it.

GNNAdvisor [37], Huang et al [20], Sputnik [11], ASpt [16] pro-
posed a custom storage format using a pre-processing step that
produces additional metadata to provide workload balancing in
SpMM. GNNAdvisor [37], Huang et al [20] split a row into several
groups 32 non-zero columns, generating a metadata that contains
explicit row ID and length for every neighbor group as well as
for rows whose row-length is less than 32. As row-lengths are
hardly multiples of 32, they still suffer from workload imbalance.
Sputnik’s row swizzling is based on the internal knowledge of the
warp scheduler that produces additional array of row ID in decreas-
ing row-length for SpMM. However, it follows a different strategy
for SDDMM. ASpt [16] custom format is different for SpMM and
SDDMM, and hence it is a system with two custom formats.

Vanilla feature-parallel methods used by prior works [18-20, 37,
42] assign one thread to fetch one feature irrespective of whether
the feature-length is a multiple of 32 or not. We have shown how
the memory barrier impacts data-load performance and proposed
thread-group to truly realize its potential for data-load performance
and optimizing the inter-thread communication cost.

Kernel Fusion in GNN [5, 39, 47] fuse many GPU kernels using
vertex-parallel approach, thereby compromising SDDMM perfor-
mance for which edge-parallel is better suited. GNNONE have shown
that individual edge-parallel SDDMM and SpMM is better than the
previous fused vertex-parallel GNN kernels for training.

SpMYV and Graph Processing. We already discussed non-zero
split SpMV in §4.4. A few SpMV/graph processing works have
proposed row binning [26, 36] for workload imbalance. Such works
generate bins (arrays) such as 4 bins of rows based on their row-
length using a pre-processing step. It invokes four kernels, one for
each bin where either one thread, one warp, one CTA, or a grid
is assigned to each row of the bins respectively. Such works still
suffer from the workload imbalance within each bin.

7 CONCLUSION

We analyzed the sparse kernels and showed that their fundamen-
tal differences do not have any bearing on unifying their design
from data-load perspective. We presented many new insights show-
ing how reduction can impact the data-load performance. Finally,
a new design is presented to improve the data-load balance and
optimization as well as data-reuse in SDDMM and SpMM, and
presented many trade-offs that remained unknown in comparison
to the well-studied area of SpMV. Our evaluation confirmed that
GNNONE achieves better performance. We hope that our study can
influence the GNN systems, and vendor libraries to a great extent,
as well as sparse models.
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