
1 © 2024 by ASME

Proceedings of the ASME 2024
International Mechanical Engineering Congress and Exposition

IMECE2024
November 17-21, 2024, Portland, Oregon

IMECE2024-144963

PARYLENE CAPPING LAYER FOR EMBEDDED LIQUID MASS FOR MEMS PACKAGING

Rahul Adhikari
The University of New Mexico, 

Center for High Technology Materials, and 
Mechanical Engineering Department 

Albuquerque, NM

Nathan Jackson
The University of New Mexico, 

Center for High Technology Materials, 
Nanoscience and Microsystems Engineering, 

and Mechanical Engineering Department 
Albuquerque, NM

ABSTRACT
Microelectromechanical Systems (MEMS) packaging is 

over 80% of the cost of a typical MEMS device because there are 
no standard packaging methods, and each device requires 
unique packaging. Recently several MEMS devices have 
illustrated the desire to have a liquid filled cavity within the 
MEMS device for applications such as biomedical sensors, 
tunable energy harvesters, or liquid cooling microelectronics. 
However, embedded liquids in silicon pose a challenge when it 
comes to packaging. This paper illustrates a novel concept of 
using a conformal parylene coating to cap or encapsulate the 
liquid. The concept is validated using various liquids such as 
various viscosity silicone oils as well as Galinstan a Ga-based 
liquid metal. The study investigates the packaging reliability 
through a series of systematic accelerated life-time testing, 
elevated temperature testing, accelerated soak testing, and 
mechanical testing (shock and resonant frequency testing).  Mass 
changes were monitored and compared to control (no capping), 
glass epoxy bonded packaging, and silicone spray coating 
encapsulation.  The results demonstrate the superior mean-time-
to-failure of the parylene capping method compared to the other 
methods. The results confirm that parylene can be used to 
package embedded liquids in silicon or 3D printed structures.
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INTRODUCTION
Microelectromechanical Systems (MEMS) packaging along 

with microelectronics packaging is a critical component to the 

performance of the device, and for MEMS packaging there are 
no standard packaging techniques as each device has specific 
packaging needs [1]. Some MEMS and microelectronics devices 
could benefit from the potential to embed liquid inside of the 
device, but to date this concept has been limited by the high 
packaging challenges associated with embedded liquids. 
Applications including microfluidics such as lab on chip [2], 
microelectronic cooling using flowing liquids [2, 3], 
microthrusters [4], atomizers [5, 6] all require a packaging 
method that allows liquid to be embedded in micro-channels 
without leakage. Recently energy harvesters have also 
demonstrated advantages when integrating embedded liquids to 
increase bandwidth [7-10] or tuning resonant frequencies [11-
13]. However, so far these types of devices are limited to 
research labs as packaging embedded liquids is challenging as 
leakage can lead to catastrophic failure for the device and its 
electronics.  These applications could be used for anything from 
implants to consumer electronics. Therefore, the packaging 
needs to be able to withstand leak testing but also it must be able 
to withstand vibrations (especially for kinetic energy harvesters).

Typical, packaging for these types of devices includes glass 
or polymer cap bonding or silicone encapsulation packaging but 
these are not ideal as they often require thick layers adding to the 
mass of the system, which for energy harvesters can significantly 
alter the resonant frequency and affect performance. 

Parylene is a conformal chemical vapor deposited polymer 
that is deposited at room temperature. It has numerous 
advantages over other polymers such as: pinhole free, low water 
absorption, relatively good thermal properties (dependent on 
type of parylene), thickness range from 200 nm to 50 μm, 
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transparency etc… It has also been widely used previously in 
MEMS packaging [14-16] as well as encapsulation layers [17-
19]. It has also been used previously as a capping layer for 
embedded nanomagnets in silicon [20-24]. Recent efforts have 
demonstrated its potential use in packaging implantable pressure 
sensors covered in high viscosity silicone oil [19, 25, 26].

This study investigates the feasibility of creating a thin-film 
parylene-based capping layer for embedded liquids. The study 
investigates various liquids from silicone oil with varying 
viscosities to gallium-based liquid metals. We investigated the 
effects of concavity and filling ratios.  The study within the paper 
also investigates the reliability of the packaging by putting 
various test devices under various accelerated air evaporation 
testing, soak testing, as well as mechanical vibration testing. 

layers. Thickness of 20 μm was deposited. A silane (A
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