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Abstract— Uncertainty is an unavoidable part of any spatial
analysis, which makes quantifying and communicating
uncertainty a requirement of any spatial data science study.
However, current curricula leave students understanding the
importance of uncertainty and concerned about potential bias, but
without an actionable framework to improve their workflows or
inferences. We propose a framework rooted in Bloom’s Taxonomy
for introducing these concepts to spatial data science students.
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I. INTRODUCTION

GlScientists and geographers recognize that understanding
uncertainty, error, and bias is an essential part of spatial data
science (SDS) education. Uncertainty is an unavoidable part of
any spatial analysis, which makes quantifying and
communicating uncertainty a requirement of any SDS study.
SDS students are typically taught to quantify uncertainty using
statistical techniques that measure variability in the results of a
study, and are told to be on the lookout for systematic
distortions that could bias their estimates and mislead their
inferences. While conceptually sound, in practice this approach
has several shortcomings. First, lessons about uncertainty,
error, and bias raise awareness of these concepts, but often do
not make a clear distinction between them, differentiate the
different forms they can take, or explain how each concept
relates to the others. Second, students are taught to measure
uncertainty using statistical techniques that quantify the
variability of study results, but which are not designed to
measure uncertainties that arise during research design, data
collection or processing. Third, compounding these issues,
lessons often do not provide implementable frameworks for
auditing SDS workflows that allow students to distinguish
different forms of uncertainty and their consequences for
inference. Ultimately, students are left understanding the
importance of uncertainty and concerned about potential bias,
but without an actionable framework to improve their
workflows or inferences.

Addressing this situation should be a priority for educators
because a limited understanding of uncertainty, error, and bias
can impact decision making. Uncertainties capable of
producing bias exist throughout the lifecycle of a SDS project
[1], [2], [3]- When conceptualizing and designing studies, SDS
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students must translate domain-specific problem formulations
into statistical and computational problems. How even the most
basic elements of many domain-specific problems should be
translated into SDS workflows is often unclear, which leaves a
study design open to judgment calls that can result in bias.
When gathering and preparing data for analysis, SDS students
also often rely on ‘found’ data that are opportunistically
collected using non-probability sampling schemes that are
likely to introduce bias into analyses, and violate the
assumptions needed to make statistical inferences [4], [5].
When implementing analyses, SDS students use abundant
computational resources and flexible statistical frameworks
that permit the testing of many alternative analytical
specifications, which again creates the opportunity to select and
report results in ways that can bias conclusions. SDS education
must train students to recognize and assess uncertainties, errors,
and biases arising from all of these stages in a SDS project
lifecycle.

Geography provides a useful perspective on these issues
because geographers have long recognized the unavoidable
presence of uncertainty in their data and the accompanying
potential for bias in their predictions and explanations. In the
GIScience literature, uncertainty is broadly defined as the
problems arising from imperfections in representing the real
world in geographic information (GI) databases. However, this
use of the term is not consistent across studies or clearly aligned
with definitions used in other disciplines. The GIS&T Body of
Knowledge has no less than eight entries on uncertainty located
in four different knowledge areas, and the most encompassing
of these entries point immediately to the additional terms,
specialized forms, and alternative perspectives on the topic (see

[6D).

Similarly, the concept of bias is frequently mentioned in
literature, but with no consistently agreed-upon definition or
overarching framework. Instead, geographers often present
specific forms of bias relevant to the spatial process being
studied. For example, Spatial bias, sometimes referred to as
“geographical bias” or “cartographic confounding,” is
commonly discussed in volunteered geographic information
[7], ecology [8], [9] and epidemiology [10] studies.
Representative bias is discussed and evaluated in mobility
studies [11] and accessibility indexes [12]. Links between
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uncertainty and bias are frequently presented in the context of
the Modifiable Areal Unit Problem (MAUP), as attempts to
quantify the bias introduced when selecting a spatial unit of
analysis have been common for 40 years [13].

Uncertainty, error, and bias need to be moved to the
forefront of the SDS curriculum. Neither the geographic nor the
data science literature use consistent definitions of these terms,
or describe in an accessible way how these fundamental
concepts are related. This ambiguity can create confusion for
students, impact decision making, and ultimately restrict who
can participate in SDS. We address these issues in the
remainder of this paper. We organize our work into three
remaining sections. First, we introduce a framework for
teaching uncertainty, error, and bias in SDS that emphasizes
three core competencies - (A) understanding uncertainty, error,
and bias, (B) identifying epistemic uncertainty and cataloging
bias, and (C) quantifying epistemic uncertainty. Second, we
turn our attention to implementation and discuss how our core
competencies can be presented and assessed in the classroom.
Finally, we conclude by re-emphasizing the benefits of
quantitatively assessing and communicating uncertainty and
briefly discuss how our approach can be used in a variety of
SDS courses.

II. AN EDUCATIONAL FRAMEWORK FOR UNCERTAINTY,
ERROR, AND BIAS

To address current ambiguities in SDS education
surrounding uncertainty, error, and bias, we propose a
framework for introducing these concepts to SDS students.
Rooted in Bloom’s Taxonomy and the Convergence
Curriculum for Geospatial Data Science, our approach
emphasizes three central competencies - (A) understanding
uncertainty, error, and bias, (B) identifying epistemic
uncertainty and cataloging bias, and (C) quantifying epistemic
uncertainty.

A. Understanding Uncertianty, Error, and Bias

Following the revised Bloom’s Taxonomy, our framework
first emphasizes the cognitive processes of remembering and
understanding the factual and conceptual foundations of
uncertainty, error, and bias. In addition to teaching students
how to distinguish between uncertainty, bias, and error, we
stress the importance of teaching the interrelationships that
exist among these concepts. We advocate educators place
particular emphasis on epistemic uncertainty because this form
of uncertainty is directly related to bias, can be reduced by
student actions, and, when addressed, can improve model
development [14] and out-of-distribution prediction [15], [16].
Here we briefly outline essential definitions and relationships
among these concepts drawing from statistical, data science,
and geographic literatures.

We suggest that educators begin building student
understanding of uncertainty, error, and bias by differentiating
between aleatoric and epistemic uncertainty. Aleatoric or
stochastic uncertainty is variability in the outcome of a study
due to inherent randomness. Aleatoric uncertainty generally
cannot be reduced by researcher actions and produces random

errors that impact the precision of estimates, but leaves those
estimates unbiased. In contrast, epistemic or systematic
uncertainty stems from a lack of knowledge about the process
being studied. Absent complete knowledge, data scientists must
make design and analysis decisions which, when incorrect, can
create systematic errors and lead to bias. In data science
epistemic uncertainty is often further separated into model and
estimation uncertainty.

Differentiating  between aleatoric and epistemic
uncertainty naturally sets up a discussion of error as the
difference between the predicted value of a function and an
unobserved true value. Our approach uses a statistical treatment
to decompose error into bias and two forms of variance and link
those elements to different forms of uncertainty. Following
Hastie et al. [17], when the mean prediction of a model given
data x is §= [yDyx(y|x)dy , the bias-variance
decomposition of the squared prediction error is:

Varyx(Y|x) + Varp(§1x) + Ep(P|x) — Eyx(Y]x)

This treatment has several educational advantages. First,
we can identify the portion of the expected prediction error
caused by aleatoric uncertainty as Varyx (Y|x). It is also clear
that this error cannot be reduced by researcher actions because
modeling decisions captured in § are absent from this term. The
term’s dependence on x also makes clear how aleatoric
uncertainty relates to the training data used to fit the model, and
that the error attributable to aleatoric uncertainty will vary
across samples. Second, students can also see that epistemic
uncertainty is linked with the remaining estimator variance,
Varp (¥|x), and bias, Ep, (§|x) — Eyjx(Y]x), both of which are
determined in part the modeling decisions that structure j.
Pushed further, this decomposition can be used to link
estimation uncertainty with the estimator variance and model
uncertainty with bias and the well-known bias-variance
tradeoff.

It is important to also point out the shortcomings of this
treatment of uncertainty, error, and bias. Specifically, we
believe it is essential that students understand the simplifying
assumptions made when decomposing error and uncertainty
and how those assumptions close off additional sources of
uncertainty likely to be present in practical applications. For
example, the statistical presentation above assumes the true
probability model is present in the hypothesis space, that the
data used in estimation are suitable for the purpose of the study,
and that the data generating process is spatially and temporally
stationary. In practice, none of the elements is usually known
and in spatial analysis the last is commonly assumed to not be
true. Discussing these issues highlights the wider set of
uncertainties that can affect the variance and bias of estimates,
and motivates a broader discussion of epistemic uncertainty,
bias, and ways to account for each during the research design
process.

B. Identifying Epistemic Uncertainty and Cataloging Bias

Once a foundational understanding of uncertainty, error,
and bias has been established, we suggest expanding on the



concept of bias and shifting to the development of analysis
skills and procedural knowledge. Our objectives are twofold.
First, we seek to reinforce that bias can emerge from systematic
errors made when facing uncertainties at any stage of a data
science project, not just those made in model estimation.
Second, we seek to provide students with a list of errors and
biases they can apply and expand upon when executing SDS
projects. We favor an approach that synthesizes insights from
three frameworks for uncertainty and bias tracing - geographic
filters of uncertainty [3], total survey error [18], [19], and the
catalog of bias [20].

We begin by providing a definition of bias linked to the
many types of mistakes that can lead to distortions in results.
Following the literature [21], we define bias as: a systematic
distortion, due to design problem, interfering factor, or
Jjudgment, that can affect the design or execution of a study and
cause erroneous misestimation of the probable size of an effect
or association. This definition makes clear that mistakes made
during data collection can produce an imbalanced
representation of the target population. Data processing errors
can remove locations or individuals from an otherwise
representative sample. Model specification and data splitting
decisions can shift estimates away from true values. Plotting
and mapping decisions can spin results to support misleading
conclusions.

With a definition in place, we suggest building a systematic
understanding of potential sources of error and bias by first
presenting Longley’s filters of geographic uncertainty (FGU).
Uncertainty in this framework is defined as the problems
arising from imperfections in representing the real world in
geographic information databases and is structured by four
filters related to: the conception (Ul), representation (U2),
analysis (U3) and visualization (U4) of geographical
phenomena.

Ul relates to the conception of place and attribute.
Studying spatial relationships requires areal units with
boundaries; however, defining geographic units of analysis is
inherently subjective and faces many challenges. If the
boundary of a spatial unit does not match the phenomena
studied, errors such as scale problems and aggregation
problems can be introduced (Openshaw, 1983). Similarly, the
labels we assign to these units can be vague and ambiguous,
failing to accurately reflect the phenomena. Uncertainty in
measurement (U2) encompasses inaccuracies in both places
(locations) and attributes. Vector models can introduce location
errors through aggregation and coarse scaling, while field
models often struggle with the issue of multiple classes within
a single pixel. As for attributes, nominal labels are subject to
misclassification, and continuous values can be inaccurate or
imprecise. Still more bias can be introduced when addressing
uncertainties during analysis (U3). For example, the inherent
structure of spatial data requires specific specification of
functional forms [22], and not accounting for this structure can
inflate Type I error rates resulting in incorrect inferences.
However, the authors also point out that analysis tools can assist
measurement and communication of uncertainty and error.

Similarly with visualization (U4), while uncertainty can be
easily introduced by different interpretations of maps, we can
also leverage it to provide feedback to tackle uncertainty at
previous steps.

FGU naturally links with the Total Survey Error (TSE)
framework, which emphasizes data as the structured product of
research design decisions. Developed to identify systematic
distortions introduced when designing and executing surveys,
the TSE reinforces those epistemic uncertainties tied to
conceptualization and measurement produce listable errors that
can be scrutinized before and after data collection. Similarities
can then be drawn to the FGU and traced back to the statistical
definitions of bias and variance. Those comparisons should
make clear that many sources of epistemic uncertainty
identified in FGU and TSE are not directly represented by terms
in the error decomposition, but can affect key terms, such as the
dataset x within those equations.

Having reinforced the connection between uncertainty and
error, we suggest further widening student understanding of
bias by presenting the Catalogue of Bias (COB). This growing
collection, now encompassing 65 health study biases, is
organized into four categories: conceptualization, selection,
conduct, and reporting. Each entry defines a specific bias and
explains its impact on the magnitude and direction of effects by
providing an example. Some biases are cross-disciplinary and
well-recognized in statistics and data science, such as collider
bias, confounding bias, industry sponsorship bias, and data-
dredging bias. Others are specific to the health field, such as
informed presence bias and diagnostic suspicion bias. For
general biases that affect all data science projects, this
framework is helpful in explicitly outlining how uncertainty
management in specific cases can impact outcomes in
magnitude and direction. On the other hand, field-specific
biases can inspire thoughts on how SDS might be subject to
particular biases due to unique data collection methods (e.g.,
GPS, VGI, web scraping) and spatial analysis approaches. This
framework aligns with FGU in showing how uncertainty can be
introduced and propagated at every step of research and extends
FGU by illustrating how different methods of handling
uncertainty can lead to various systematic distortions (i.e.,
bias). Compared with TSE, it goes beyond the research itself
and includes potential biases introduced by researcher belief,
inequitable access of resources and other ethical concerns.
Overall, the COB offers a finer resolution than FGU and a
broader focus than TSE in discussing uncertainty and bias.

C. Quantifying Epistemic Uncertainty

In applied work, direct measurement and clear delineation
of uncertainty, error and bias is difficult under the best of
circumstances. As a result, our approach focuses on
establishing a clear understanding of these issues and providing
a flexible framework for parsing and scrutinizing potential
sources of error and bias. Nonetheless, it is essential to quantify
uncertainty and possible bias in SDS projects. We suggest
educators introduce uncertainty quantification by teaching
students to computationally test the predictability and stability
of their results following the guidance of Yu and Kumbier [2],



[23]. This approach emphasizes the cognitive processes of
creating and evaluating uncertainty measurements, and
reinforces the need to evaluate decisions made at all stages of a
SDS project.

Stability assessments stress-test the results of a SDS
project to realistic changes in data processing, analysis, and
reporting decisions made when facing uncertainty. SDS results
are stable when they tend not to change under reasonable
alternative workflows, and stable results garner greater trust.
Concerns about stability are already well established in SDS
and spatial analysis literature. Openshaw’s exploration of the
modifiable areal unit problem (MAUP) [13], [24], perhaps the
most famous result in spatial analysis, is fundamentally a
stability analysis that demonstrates the variability of statistical
results when changes are made to the spatial support of data.
The essential lesson of the MAUP can be expanded to all data
processing and analysis decisions through stability assessment.
Educators can follow Kedron et al. [25] suggestion to use
specification curves to assess the stability of results, which
visually and quantitatively demonstrates the [1], [26], [27]
impacts of student decisions.

Following Yu and Kumbier, predictability assessments test
whether results are generalizable to new, relevant situations.
Predictability introduces the concept of external validity to the
uncertainty, error, bias discussion. Predictability can be used to
discuss how systematic errors and their resulting biases can
imperil model generalizability and practical use. The best
evidence for predictability comes from reliable re-use of a
model with new data in new contexts. However, in many cases
students will not have access to additional data that reflects new
contexts or future scenarios. These issues are discussed in
geographic literature on replicability. This reality creates an
opportunity to introduce data splitting as a surrogate for
external validation and the risk of bias from data leakage.

III. PEDAGOGICAL IMPLEMENTATION

The three central competencies of our approach to
introducing uncertainty, error, and bias can be implemented in

a variety of SDS courses using activities and assessments
centered on the acquisition of critical skills (Table 1).
Understanding uncertainty, error, and bias begins with prepared
lectures that introduce the definitions of each concept and their
interrelationships. Educators can use traditional quiz and exam
formats to test definition recall, but we suggest the use of
concept mapping to teach and assess conceptual relationships.
As a form of active visual learning, concept mapping
complements the statistical treatment of uncertainty, error, and
bias for learners less familiar or comfortable with the statistical
approach. Once definitions are established, educators can
reinforce learning by asking students to classify different forms
of uncertainty in a research case study and critique assignment.

Lectures can again be used to establish a conceptual
understanding of the three uncertainty and bias frameworks.
Here again we advocate for using an in-class concept mapping
exercise to help students understand the shared foundations of
the three frameworks, as well as their individual strengths and
weaknesses. This exercise will give students a broader
perspective on the types of error and biases potentially present
in SDS projects. Next, focusing on the COB, we suggest asking
students to identify and differentiate between biases in a set of
applied SDS case studies and SDS datasets. Executing this task
separately for completed studies and datasets will reinforce that
different biases are rooted in different stages of a project
lifecycle. An in-class discussion of these issues can facilitate
further understanding by illustrating that in many instances bias
identification is not simple. We expect students to identify
different potential biases and hold different opinions about the
magnitude of their impact. When conflicts occur, students can
be asked to prepare written defenses of their positions or
potentially debate their views in class.

Finally, we suggest lessons on epistemic uncertainty
quantification use the Predictability, Computability, and
Stability (PCS) framework to teach students to design and
implement stability and predictability tests and make
judgements about the reliability of results in light of their
outcomes. In the classroom, educators can develop these skills

Table 1. Pedagogical Implementation of the Uncertainty and Bias Framework

Bloom’s Taxonomy Implementation
Skill Process Knowledge  Activity Assessment
A. Understand Uncertainty
Define uncertainty, error, and bias Remember Factual Lecture Exam
Explain interrelationships between Understand  Conceptual  Lecture Concept Map
uncertainty, error, and bias
Classify uncertainty Understand  Conceptual  Case Study Critique
B. Catalog Uncertainty
Integrate error and bias frameworks Create Conceptual  Lecture Concept Map
Differentiate biases Apply Procedural Discussion Critique
Infer potential errors Analyze Procedural Discussion Debate
C. Quamtify Uncertainty
Design stability/predictability tests Create Procedural Design Study Problem Set
Implement stability/predictability test Apply Procedural Comp Demo Problem Set
Judge models and inferences Evaluate Conceptual  Discussion Critique




by asking students to plan stability and predictability
assessments for prepared research scenarios or their own
project work. Assessment implementation and reporting can be
taught using prepared computational demonstrations, and
educators can share their code to facilitate student replication
and elaboration in their own work. Yu provides a template that
can be used to teach students how to document a PCS workflow
as well as software packages in both Python and R [28], [29]
that support simulations of reasonable alternative models.
Kedron and Holler [30] provide a similar template for
geographic workflows that emphasizes unique features of
spatial analysis. Reproduction studies based on that template
(see [31], [32]) can be used to support class discussions of
uncertainty quantification, and as the basis of critique
assignments where students are asked to judge inferences and
conclusions after viewing reasonable perturbations of an
analysis.

IV. CONCLUSIONS

To address current ambiguity surrounding concepts of
uncertainty, error, and bias in SDS education, we present a
framework for introducing these concepts to SDS students that
is rooted in Bloom’s Taxonomy and the Convergence
Curriculum for Geospatial Data Science. We stress building an
understanding of these concepts using clear definitions and a
statistical framework. The bias-variance decomposition we use
provides a helpful distinction between aleatoric and epistemic
uncertainty, but does not cover the many sources of uncertainty
outside of the modeling process that can also affect an SDS
study. Consequently, our approach brings attention to
additional sources of uncertainty by synthesizing insights from
three frameworks that trace uncertainty, error, and bias across
the entire lifecycle of a data science project. To bring these
conceptual elements into practice, we advocate for the use of
the PCS framework which trains students to measure the
impacts of their decision making (stability) and the potential
usefulness of their models in new contexts (predictability).

Because our educational approach provides a foundational
understanding of uncertainty, error, and bias, it can be deployed
in a variety of SDS courses. For example, our three-stage
approach could be used as the first weeks of a methods course
on uncertainty estimation. Subsequent weeks could derive error
decompositions for different statistical models or branch into
different quantification techniques. In contrast, a research design
course could use our approach to prepare students to
collaboratively design SDS projects with domain experts.
Students could use the COB and TSE to structure discussions
with collaborators seeking to prevent potential biases in their
work, or use PCS documentation to plan stability and
predictability analyses before data is collected and processed to
prevent data leakage and bias. Finally, our approach could be
inserted into the middle of a topic-focused course to help
practice oriented students search for bias in past studies, or
identify contextual factors that could contribute to uncertainty
and error in their research domain.
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