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Abstract— Uncertainty is an unavoidable part of any spatial 

analysis, which makes quantifying and communicating 
uncertainty a requirement of any spatial data science study. 
However, current curricula leave students understanding the 
importance of uncertainty and concerned about potential bias, but 
without an actionable framework to improve their workflows or 
inferences. We propose a framework rooted in Bloom’s Taxonomy 
for introducing these concepts to spatial data science students.  
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I. INTRODUCTION  
GIScientists and geographers recognize that understanding 

uncertainty, error, and bias is an essential part of spatial data 
science (SDS) education. Uncertainty is an unavoidable part of 
any spatial analysis, which makes quantifying and 
communicating uncertainty a requirement of any SDS study. 
SDS students are typically taught to quantify uncertainty using 
statistical techniques that measure variability in the results of a 
study, and are told to be on the lookout for systematic 
distortions that could bias their estimates and mislead their 
inferences. While conceptually sound, in practice this approach 
has several shortcomings. First, lessons about uncertainty, 
error, and bias raise awareness of these concepts, but often do 
not make a clear distinction between them, differentiate the 
different forms they can take, or explain how each concept 
relates to the others. Second, students are taught to measure 
uncertainty using statistical techniques that quantify the 
variability of study results, but which are not designed to 
measure uncertainties that arise during research design, data 
collection or processing. Third, compounding these issues, 
lessons often do not provide implementable frameworks for 
auditing SDS workflows that allow students to distinguish 
different forms of uncertainty and their consequences for 
inference. Ultimately, students are left understanding the 
importance of uncertainty and concerned about potential bias, 
but without an actionable framework to improve their 
workflows or inferences.  

Addressing this situation should be a priority for educators 
because a limited understanding of uncertainty, error, and bias 
can impact decision making. Uncertainties capable of 
producing bias exist throughout the lifecycle of a SDS project 
[1], [2], [3]. When conceptualizing and designing studies, SDS 

students must translate domain-specific problem formulations 
into statistical and computational problems. How even the most 
basic elements of many domain-specific problems should be 
translated into SDS workflows is often unclear, which leaves a 
study design open to judgment calls that can result in bias. 
When gathering and preparing data for analysis, SDS students 
also often rely on ‘found’ data that are opportunistically 
collected using non-probability sampling schemes that are 
likely to introduce bias into analyses, and violate the 
assumptions needed to make statistical inferences [4], [5]. 
When implementing analyses, SDS students use abundant 
computational resources and flexible statistical frameworks 
that permit the testing of many alternative analytical 
specifications, which again creates the opportunity to select and 
report results in ways that can bias conclusions. SDS education 
must train students to recognize and assess uncertainties, errors, 
and biases arising from all of these stages in a SDS project 
lifecycle. 

Geography provides a useful perspective on these issues 
because geographers have long recognized the unavoidable 
presence of uncertainty in their data and the accompanying 
potential for bias in their predictions and explanations. In the 
GIScience literature, uncertainty is broadly defined as the 
problems arising from imperfections in representing the real 
world in geographic information (GI) databases. However, this 
use of the term is not consistent across studies or clearly aligned 
with definitions used in other disciplines. The GIS&T Body of 
Knowledge has no less than eight entries on uncertainty located 
in four different knowledge areas, and the most encompassing 
of these entries point immediately to the additional terms, 
specialized forms, and alternative perspectives on the topic (see 
[6]).  

Similarly, the concept of bias is frequently mentioned in 
literature, but with no consistently agreed-upon definition or 
overarching framework. Instead, geographers often present 
specific forms of bias relevant to the spatial process being 
studied. For example, Spatial bias, sometimes referred to as 
“geographical bias” or “cartographic confounding,” is 
commonly discussed in volunteered geographic information 
[7], ecology [8], [9] and epidemiology [10] studies. 
Representative bias is discussed and evaluated in mobility 
studies [11] and accessibility indexes [12]. Links between 
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uncertainty and bias are frequently presented in the context of 
the Modifiable Areal Unit Problem (MAUP), as attempts to 
quantify the bias introduced when selecting a spatial unit of 
analysis have been common for 40 years [13].  

Uncertainty, error, and bias need to be moved to the 
forefront of the SDS curriculum. Neither the geographic nor the 
data science literature use consistent definitions of these terms, 
or describe in an accessible way how these fundamental 
concepts are related. This ambiguity can create confusion for 
students, impact decision making, and ultimately restrict who 
can participate in SDS. We address these issues in the 
remainder of this paper. We organize our work into three 
remaining sections. First, we introduce a framework for 
teaching uncertainty, error, and bias in SDS that emphasizes 
three core competencies - (A) understanding uncertainty, error, 
and bias, (B) identifying epistemic uncertainty and cataloging 
bias, and (C) quantifying epistemic uncertainty. Second, we 
turn our attention to implementation and discuss how our core 
competencies can be presented and assessed in the classroom. 
Finally, we conclude by re-emphasizing the benefits of 
quantitatively assessing and communicating uncertainty and 
briefly discuss how our approach can be used in a variety of 
SDS courses. 

II. AN EDUCATIONAL FRAMEWORK FOR UNCERTAINTY, 
ERROR, AND BIAS 

To address current ambiguities in SDS education 
surrounding uncertainty, error, and bias, we propose a 
framework for introducing these concepts to SDS students. 
Rooted in Bloom’s Taxonomy and the Convergence 
Curriculum for Geospatial Data Science, our approach 
emphasizes three central competencies - (A) understanding 
uncertainty, error, and bias, (B) identifying epistemic 
uncertainty and cataloging bias, and (C) quantifying epistemic 
uncertainty.  

A. Understanding Uncertianty, Error, and Bias 
Following the revised Bloom’s Taxonomy, our framework 

first emphasizes the cognitive processes of remembering and 
understanding the factual and conceptual foundations of 
uncertainty, error, and bias. In addition to teaching students 
how to distinguish between uncertainty, bias, and error, we 
stress the importance of teaching the interrelationships that 
exist among these concepts. We advocate educators place 
particular emphasis on epistemic uncertainty because this form 
of uncertainty is directly related to bias, can be reduced by 
student actions, and, when addressed, can improve model 
development [14] and out-of-distribution prediction [15], [16]. 
Here we briefly outline essential definitions and relationships 
among these concepts drawing from statistical, data science, 
and geographic literatures.     

We suggest that educators begin building student 
understanding of uncertainty, error, and bias by differentiating 
between aleatoric and epistemic uncertainty. Aleatoric or 
stochastic uncertainty is variability in the outcome of a study 
due to inherent randomness. Aleatoric uncertainty generally 
cannot be reduced by researcher actions and produces random 

errors that impact the precision of estimates, but leaves those 
estimates unbiased. In contrast, epistemic or systematic 
uncertainty stems from a lack of knowledge about the process 
being studied. Absent complete knowledge, data scientists must 
make design and analysis decisions which, when incorrect, can 
create systematic errors and lead to bias. In data science 
epistemic uncertainty is often further separated into model and 
estimation uncertainty.  

Differentiating between aleatoric and epistemic 
uncertainty naturally sets up a discussion of error as the 
difference between the predicted value of a function and an 
unobserved true value. Our approach uses a statistical treatment 
to decompose error into bias and two forms of variance and link 
those elements to different forms of uncertainty. Following 
Hastie et al. [17], when the mean prediction of a model given 
data x is 𝑦𝑦� = ∫𝑦𝑦 𝑝𝑝�𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥)𝑑𝑑𝑑𝑑 , the bias-variance 
decomposition of the squared prediction error is:  

𝑉𝑉𝑉𝑉𝑉𝑉𝑌𝑌|𝑋𝑋(𝑌𝑌|𝑥𝑥) + 𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷(𝑦𝑦�|𝑥𝑥) + 𝐸𝐸𝐷𝐷(𝑦𝑦�|𝑥𝑥) − 𝐸𝐸𝑌𝑌|𝑋𝑋(𝑌𝑌|𝑥𝑥) 

This treatment has several educational advantages. First, 
we can identify the portion of the expected prediction error 
caused by aleatoric uncertainty as 𝑉𝑉𝑉𝑉𝑉𝑉𝑌𝑌|𝑋𝑋(𝑌𝑌|𝑥𝑥). It is also clear 
that this error cannot be reduced by researcher actions because 
modeling decisions captured in 𝑦𝑦� are absent from this term. The 
term’s dependence on x also makes clear how aleatoric 
uncertainty relates to the training data used to fit the model, and 
that the error attributable to aleatoric uncertainty will vary 
across samples. Second, students can also see that epistemic 
uncertainty is linked with the remaining estimator variance, 
𝑉𝑉𝑉𝑉𝑉𝑉𝐷𝐷(𝑦𝑦�|𝑥𝑥), and bias, 𝐸𝐸𝐷𝐷(𝑦𝑦�|𝑥𝑥) − 𝐸𝐸𝑌𝑌|𝑋𝑋(𝑌𝑌|𝑥𝑥), both of which are 
determined in part the modeling decisions that structure 𝑦𝑦� . 
Pushed further, this decomposition can be used to link 
estimation uncertainty with the estimator variance and model 
uncertainty with bias and the well-known bias-variance 
tradeoff.       

It is important to also point out the shortcomings of this 
treatment of uncertainty, error, and bias. Specifically, we 
believe it is essential that students understand the simplifying 
assumptions made when decomposing error and uncertainty 
and how those assumptions close off additional sources of 
uncertainty likely to be present in practical applications. For 
example, the statistical presentation above assumes the true 
probability model is present in the hypothesis space, that the 
data used in estimation are suitable for the purpose of the study, 
and that the data generating process is spatially and temporally 
stationary. In practice, none of the elements is usually known 
and in spatial analysis the last is commonly assumed to not be 
true. Discussing these issues highlights the wider set of 
uncertainties that can affect the variance and bias of estimates, 
and motivates a broader discussion of epistemic uncertainty, 
bias, and ways to account for each during the research design 
process.  

B. Identifying Epistemic Uncertainty and Cataloging Bias 
Once a foundational understanding of uncertainty, error, 

and bias has been established, we suggest expanding on the 



concept of bias and shifting to the development of analysis 
skills and procedural knowledge. Our objectives are twofold. 
First, we seek to reinforce that bias can emerge from systematic 
errors made when facing uncertainties at any stage of a data 
science project, not just those made in model estimation. 
Second, we seek to provide students with a list of errors and 
biases they can apply and expand upon when executing SDS 
projects. We favor an approach that synthesizes insights from 
three frameworks for uncertainty and bias tracing - geographic 
filters of uncertainty [3], total survey error [18], [19], and the 
catalog of bias [20].  

We begin by providing a definition of bias linked to the 
many types of mistakes that can lead to distortions in results. 
Following the literature [21], we define bias as: a systematic 
distortion, due to design problem, interfering factor, or 
judgment, that can affect the design or execution of a study and 
cause erroneous misestimation of the probable size of an effect 
or association. This definition makes clear that mistakes made 
during data collection can produce an imbalanced 
representation of the target population. Data processing errors 
can remove locations or individuals from an otherwise 
representative sample. Model specification and data splitting 
decisions can shift estimates away from true values. Plotting 
and mapping decisions can spin results to support misleading 
conclusions. 

With a definition in place, we suggest building a systematic 
understanding of potential sources of error and bias by first 
presenting Longley’s filters of geographic uncertainty (FGU). 
Uncertainty in this framework is defined as the problems 
arising from imperfections in representing the real world in 
geographic information databases and is structured by four 
filters related to: the conception (U1), representation (U2), 
analysis (U3) and visualization (U4) of geographical 
phenomena.  

U1 relates to the conception of place and attribute. 
Studying spatial relationships requires areal units with 
boundaries; however, defining geographic units of analysis is 
inherently subjective and faces many challenges. If the 
boundary of a spatial unit does not match the phenomena 
studied, errors such as scale problems and aggregation 
problems can be introduced (Openshaw, 1983). Similarly, the 
labels we assign to these units can be vague and ambiguous, 
failing to accurately reflect the phenomena. Uncertainty in 
measurement (U2) encompasses inaccuracies in both places 
(locations) and attributes. Vector models can introduce location 
errors through aggregation and coarse scaling, while field 
models often struggle with the issue of multiple classes within 
a single pixel. As for attributes, nominal labels are subject to 
misclassification, and continuous values can be inaccurate or 
imprecise. Still more bias can be introduced when addressing 
uncertainties during analysis (U3). For example, the inherent 
structure of spatial data requires specific specification of 
functional forms [22], and not accounting for this structure can 
inflate Type I error rates resulting in incorrect inferences. 
However, the authors also point out that analysis tools can assist 
measurement and communication of uncertainty and error. 

Similarly with visualization (U4), while uncertainty can be 
easily introduced by different interpretations of maps, we can 
also leverage it to provide feedback to tackle uncertainty at 
previous steps.  

FGU naturally links with the Total Survey Error (TSE) 
framework, which emphasizes data as the structured product of 
research design decisions. Developed to identify systematic 
distortions introduced when designing and executing surveys, 
the TSE reinforces those epistemic uncertainties tied to 
conceptualization and measurement produce listable errors that 
can be scrutinized before and after data collection. Similarities 
can then be drawn to the FGU and traced back to the statistical 
definitions of bias and variance. Those comparisons should 
make clear that many sources of epistemic uncertainty 
identified in FGU and TSE are not directly represented by terms 
in the error decomposition, but can affect key terms, such as the 
dataset x within those equations. 

Having reinforced the connection between uncertainty and 
error, we suggest further widening student understanding of 
bias by presenting the Catalogue of Bias (COB). This growing 
collection, now encompassing 65 health study biases, is 
organized into four categories: conceptualization, selection, 
conduct, and reporting. Each entry defines a specific bias and 
explains its impact on the magnitude and direction of effects by 
providing an example.  Some biases are cross-disciplinary and 
well-recognized in statistics and data science, such as collider 
bias, confounding bias, industry sponsorship bias, and data-
dredging bias. Others are specific to the health field, such as 
informed presence bias and diagnostic suspicion bias. For 
general biases that affect all data science projects, this 
framework is helpful in explicitly outlining how uncertainty 
management in specific cases can impact outcomes in 
magnitude and direction. On the other hand, field-specific 
biases can inspire thoughts on how SDS might be subject to 
particular biases due to unique data collection methods (e.g., 
GPS, VGI, web scraping) and spatial analysis approaches. This 
framework aligns with FGU in showing how uncertainty can be 
introduced and propagated at every step of research and extends 
FGU by illustrating how different methods of handling 
uncertainty can lead to various systematic distortions (i.e., 
bias). Compared with TSE, it goes beyond the research itself 
and includes potential biases introduced by researcher belief, 
inequitable access of resources and other ethical concerns. 
Overall, the COB offers a finer resolution than FGU and a 
broader focus than TSE in discussing uncertainty and bias. 

C. Quantifying Epistemic Uncertainty 
In applied work, direct measurement and clear delineation 

of uncertainty, error and bias is difficult under the best of 
circumstances. As a result, our approach focuses on 
establishing a clear understanding of these issues and providing 
a flexible framework for parsing and scrutinizing potential 
sources of error and bias. Nonetheless, it is essential to quantify 
uncertainty and possible bias in SDS projects. We suggest 
educators introduce uncertainty quantification by teaching 
students to computationally test the predictability and stability 
of their results following the guidance of Yu and Kumbier [2], 



[23]. This approach emphasizes the cognitive processes of 
creating and evaluating uncertainty measurements, and 
reinforces the need to evaluate decisions made at all stages of a 
SDS project.  

Stability assessments stress-test the results of a SDS 
project to realistic changes in data processing, analysis, and 
reporting decisions made when facing uncertainty. SDS results 
are stable when they tend not to change under reasonable 
alternative workflows, and stable results garner greater trust. 
Concerns about stability are already well established in SDS 
and spatial analysis literature. Openshaw’s exploration of the 
modifiable areal unit problem (MAUP) [13], [24], perhaps the 
most famous result in spatial analysis, is fundamentally a 
stability analysis that demonstrates the variability of statistical 
results when changes are made to the spatial support of data. 
The essential lesson of the MAUP can be expanded to all data 
processing and analysis decisions through stability assessment. 
Educators can follow Kedron et al. [25] suggestion to use 
specification curves to assess the stability of results, which 
visually and quantitatively demonstrates the [1], [26], [27] 
impacts of student decisions. 

Following Yu and Kumbier, predictability assessments test 
whether results are generalizable to new, relevant situations. 
Predictability introduces the concept of external validity to the 
uncertainty, error, bias discussion. Predictability can be used to 
discuss how systematic errors and their resulting biases can 
imperil model generalizability and practical use. The best 
evidence for predictability comes from reliable re-use of a 
model with new data in new contexts. However, in many cases 
students will not have access to additional data that reflects new 
contexts or future scenarios. These issues are discussed in 
geographic literature on replicability. This reality creates an 
opportunity to introduce data splitting as a surrogate for 
external validation and the risk of bias from data leakage. 

III. PEDAGOGICAL IMPLEMENTATION 
The three central competencies of our approach to 

introducing uncertainty, error, and bias can be implemented in 

a variety of SDS courses using activities and assessments 
centered on the acquisition of critical skills (Table 1).  
Understanding uncertainty, error, and bias begins with prepared 
lectures that introduce the definitions of each concept and their 
interrelationships. Educators can use traditional quiz and exam 
formats to test definition recall, but we suggest the use of 
concept mapping to teach and assess conceptual relationships. 
As a form of active visual learning, concept mapping 
complements the statistical treatment of uncertainty, error, and 
bias for learners less familiar or comfortable with the statistical 
approach. Once definitions are established, educators can 
reinforce learning by asking students to classify different forms 
of uncertainty in a research case study and critique assignment. 

Lectures can again be used to establish a conceptual 
understanding of the three uncertainty and bias frameworks. 
Here again we advocate for using an in-class concept mapping 
exercise to help students understand the shared foundations of 
the three frameworks, as well as their individual strengths and 
weaknesses. This exercise will give students a broader 
perspective on the types of error and biases potentially present 
in SDS projects. Next, focusing on the COB, we suggest asking 
students to identify and differentiate between biases in a set of 
applied SDS case studies and SDS datasets. Executing this task 
separately for completed studies and datasets will reinforce that 
different biases are rooted in different stages of a project 
lifecycle. An in-class discussion of these issues can facilitate 
further understanding by illustrating that in many instances bias 
identification is not simple. We expect students to identify 
different potential biases and hold different opinions about the 
magnitude of their impact. When conflicts occur, students can 
be asked to prepare written defenses of their positions or 
potentially debate their views in class. 

Finally, we suggest lessons on epistemic uncertainty 
quantification use the Predictability, Computability, and 
Stability (PCS) framework to teach students to design and 
implement stability and predictability tests and make 
judgements about the reliability of results in light of their 
outcomes. In the classroom, educators can develop these skills 



by asking students to plan stability and predictability 
assessments for prepared research scenarios or their own 
project work. Assessment implementation and reporting can be 
taught using prepared computational demonstrations, and 
educators can share their code to facilitate student replication 
and elaboration in their own work. Yu provides a template that 
can be used to teach students how to document a PCS workflow 
as well as software packages in both Python and R [28], [29] 
that support simulations of reasonable alternative models. 
Kedron and Holler [30] provide a similar template for 
geographic workflows that emphasizes unique features of 
spatial analysis. Reproduction studies based on that template 
(see [31], [32]) can be used to support class discussions of 
uncertainty quantification, and as the basis of critique 
assignments where students are asked to judge inferences and 
conclusions after viewing reasonable perturbations of an 
analysis. 

IV. CONCLUSIONS 
To address current ambiguity surrounding concepts of 

uncertainty, error, and bias in SDS education, we present a 
framework for introducing these concepts to SDS students that 
is rooted in Bloom’s Taxonomy and the Convergence 
Curriculum for Geospatial Data Science. We stress building an 
understanding of these concepts using clear definitions and a 
statistical framework. The bias-variance decomposition we use 
provides a helpful distinction between aleatoric and epistemic 
uncertainty, but does not cover the many sources of uncertainty 
outside of the modeling process that can also affect an SDS 
study. Consequently, our approach brings attention to 
additional sources of uncertainty by synthesizing insights from 
three frameworks that trace uncertainty, error, and bias across 
the entire lifecycle of a data science project. To bring these 
conceptual elements into practice, we advocate for the use of 
the PCS framework which trains students to measure the 
impacts of their decision making (stability) and the potential 
usefulness of their models in new contexts (predictability).   

Because our educational approach provides a foundational 
understanding of uncertainty, error, and bias, it can be deployed 
in a variety of SDS courses. For example, our three-stage 
approach could be used as the first weeks of a methods course 
on uncertainty estimation. Subsequent weeks could derive error 
decompositions for different statistical models or branch into 
different quantification techniques. In contrast, a research design 
course could use our approach to prepare students to 
collaboratively design SDS projects with domain experts. 
Students could use the COB and TSE to structure discussions 
with collaborators seeking to prevent potential biases in their 
work, or use PCS documentation to plan stability and 
predictability analyses before data is collected and processed to 
prevent data leakage and bias. Finally, our approach could be 
inserted into the middle of a topic-focused course to help 
practice oriented students search for bias in past studies, or 
identify contextual factors that could contribute to uncertainty 
and error in their research domain. 
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