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ABSTRACT

This study employs physics-informed neural networks (PINNs) to reconstruct multiple flow fields in a transient natural convection system
solely based on instantaneous temperature data at an arbitrary moment. Transient convection problems present reconstruction challenges
due to the temporal variability of fields across different flow phases. In general, large reconstruction errors are observed during the incipient
phase, while the quasi-steady phase exhibits relatively smaller errors, reduced by a factor of 2-4. We hypothesize that reconstruction errors
vary across different flow phases due to the changing solution space of a PINN, inferred from the temporal gradients of the fields.
Furthermore, we find that reconstruction errors tend to accumulate in regions where the spatial gradients are smaller than the order of 1076,
likely due to the vanishing gradient phenomenon. In convection phenomena, field variations often manifest across multiple scales in space.
However, PINN-based reconstruction tends to preserve larger-scale variations, while smaller-scale variations become less pronounced due to
the vanishing gradient problem. To mitigate the errors associated with vanishing gradients, we introduce a multi-scale approach that deter-
mines scaling constants for the PINN inputs and reformulates inputs across multiple scales. This approach improves the maximum and
mean errors by 72.2% and 6.4%, respectively. Our research provides insight into the behavior of PINNs when applied to transient convection
problems with large solution space and field variations across multiple scales.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0243548

I. INTRODUCTION

. . can be inserted into opaque flow systems, they tend to disturb the orig-
A. Flow field reconstruction

inal fluid flows.

6¥:9€:/1 G20z Aenuer €0

Flow field reconstruction is an important yet challenging task in
thermofluid research, that is the process of estimating velocity, temper-
ature or other flow variables throughout a fluid domain based on par-
tial or indirect measurements. In many real-world applications,
obtaining complete flow conditions, including velocity, temperature,
and pressure distributions at all flow inlets, outlets, and other bound-
aries, is often impractical or impossible. For instance, laser diagnostics
like particle image velocimetry, which measure continuous fluid flow
velocity distributions, require light to pass through the fluid system.
However, most real-world flow systems are constructed from metals
with opaque surfaces, making it challenging to measure complete
velocity distributions. Additionally, while point measurement sensors

Traditionally, flow field reconstruction has been limited to sce-
narios such as (1) reconstructing three-dimensional (3D) volumetric
fluid flow from two-dimensional (2D) particle flow images‘ and (2)
mapping discrete flow parameters to 2D velocity fields.” * For exam-
ple, computer vision algorithms are often used to perform 3D particle
image velocimetry, reconstructing 3D flow motion within the entire
fluid volume when 2D particle flow images are provided.' Recent
advances in machine learning have enabled the reconstruction of 2D
velocity fields from discrete flow parameters, but these methods
require large amounts of training data. For instance, Yu et al. used a
multilayer feedforward neural network to reconstruct Mach number
contours of nozzle airflows from discrete parameters such as Reynolds
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number (Re) and pressure ratio.” Similarly, Deng et al. employed a
modified convolutional neural network to reconstruct 2D velocity
fields in an air scramjet combustor from discrete pressure data.’
However, previous methods have limitations: (1) they are challenging
to generalize across different flow conditions, (2) may not satisfy physi-
cal laws in their reconstructed outputs, and (3) can only reconstruct
field variables included in their training datasets. For example, if train-
ing data only contain velocity fields, traditional machine learning mod-
els cannot reconstruct other field variables like temperature or
pressure.

B. Physics-informed neural networks (PINNs) for flow
field reconstruction

To address these challenges, PINNs have recently attracted signif-
icant interest for their ability to reconstruct flow fields from limited
measurement data while adhering to physics laws. PINNs are a class of
artificial neural networks wherein the underlying physics of the prob-
lem are integrated into the neural network architecture. PINNs address
the data limitation issue by inherently learning to approximate the sol-
utions to partial differential equations (PDEs) that characterize the
physics of the system. Unlike traditional machine learning methods
that rely on large datasets, PINNSs leverage the fundamental governing
equations of the system to guide the learning process.

There have been initial investigations into the application of
PINNs for reconstructing thermofluidic fields. Wang et al. recon-
structed a 2D natural convection flow around a cylinder with the
Richardson number (Ri) of 1 over a duration of 1 s.” The quasi-steady
nature of the flow allowed for the sufficient recovery of the fields using
only 10 frames at different time steps, each frame comprising 200 data
points for temperature and velocity fields obtained solely from bound-
ary conditions. In this work, an original PINN architecture with 10
hidden layers, each layer containing 100 neurons, was employed with
uniform weighting to all loss functions. In another investigation, Cai
et al. reconstructed a mixed convection flow within a 2D square
domain, with heated bottom, operating at Ri=1.” Only temperature
data were used to reconstruct the unknown pressure and velocity
fields. Training dataset spanned from initial conditions to steady state,
incorporating 100 frames, with each frame containing 9950 tempera-
ture data points. They emphasized the importance of establishing an
appropriate weight ratio between the data and PDE losses to ensure
convergence and prevent overfitting, recommending a weight ratio of
50:1. Finally, in the same work,” the demonstration of PINN for field
reconstruction extends to experimental natural convection data. In
this study, the unsteady 3D temperature field in the flow over an
espresso cup was captured using Tomographic Background Oriented
Schlieren. Training focused on the transient phase, using 400 frames of
temperature data without incorporating other boundary conditions.

C. Limitations

Despite the successful demonstrations of original PINNs for
addressing inverse problems (i.e., field reconstructions) related to tran-
sient convection phenomena, a critical gap remains in understanding
how the solution space of PDEs—all possible solutions under incom-
pletely defined problem conditions—in the time domain influences
PINN accuracy. Previous studies have primarily focused on either
quasi-steady or unsteady states where temporal variations in the field,
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or equivalently, the time-derivatives of field variables, are not signifi-
cant. Therefore, future research efforts may be directed toward adapt-
ing PINNs to accommodate varying levels of time dependence, which
would require adjustments in the temporal domain of training data.

Additionally, in transient convection phenomena, multiple fields
can exhibit variations across several spatial-temporal scales, leading to
the vanishing gradient problem in PINNs.*” For instance, spatial gra-
dients of pressure, velocity, and temperature within a flow system can
vary significantly due to differences in the diffusion coefficients of
momentum and heat. In such multi-scale systems, training the original
PINN across all types of field variables presents a challenge. Previous
research has not addressed multi-scale structures in transient flow
problems, and issues related to field gradients remain largely
unexplored.

D. Our scope

This work studies the impact of transience on the accuracy of
PINNs in addressing unsteady convection problems. Specifically, the
objective is to reconstruct the transient natural convection dynamics
within a 2D square domain. Due to the increased complexity of the
problem with significantly broadened solution space (i.e., possible field
distributions along time domain) compared to previous research, we
limit the spatial domain of the demonstration to 2D. The PINN is
trained to infer completely unknown pressure (P), x- and y-velocity
fields (U, V) from temperature data (T) available within an arbitrary
chosen time window without the knowledge of the prior flow field
development.

A crucial consideration is the varying solution space of PDEs in
the time domain across different temporal phases, which may not be
uniformly captured by a PINN optimized under a single setting. For
example, the incipient phase, the initial stage of the flow system char-
acterized by large time derivatives, contrasts with the quasi-steady
phase, where flow field distributions are sufficiently stabilized and time
derivatives approach zero. Addressing different temporal phases
within transient processes may require adaptation of PINNs. The key
contributions of this work are: (1) implementing PINNs for highly
transient processes and investigating error sources in field reconstruc-
tion; and (2) adapting PINNSs using a multi-scale approach to address
the vanishing gradient problem that can arise from the presence of
multiple spatial scales within the system.

II. PROBLEM AND METHODOLOGY
A. Problem definition

The problem of interest is the reconstruction of the unknown
field variables that are physically coupled: pressure, x- and y-velocity in
a canonical transient buoyancy-driven flow within a 2D square cavity
as shown in Fig. 1. The fields are reconstructed during an arbitrary
chosen time window if temperature data across the domain is pro-
vided, along with boundary conditions. Both width (w) and height (h)
of the cavity are 0.015m. The left wall is at T; =37 °C, and the right
wall is at Tp=35°C. The top and bottom walls are thermally insulated
(i.e., dT/dx or dT/dy=0), and all walls exhibit the no-slip condition.
Asymmetric wall temperatures create a density gradient that drives a
buoyancy-driven flow circulating the cavity. The flow field within the
square cavity is characterized by the Rayleigh number, [Ra = gB(T,x
— T,in)W lva], where g is the gravitational acceleration, f is the ther-
mal expansion coefficient (ff =3.34 x 107* K™Y, v is the kinematic
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aT Reconstruction zone
Frs (0<t*<1)

FIG 1. Schematic of a square cavity with a heated left wall, a cooled right wall, and
insulated top and bottom walls. During the initial stage, the temperature field exhibits
a significant temporal gradient. A reconstruction zone is arbitrary selected within the
complete dataset, and a normalized timescale (0 < t* < 1) is assigned.

viscosity (v =7.26 x 107" m?%s), and o is the thermal diffusivity
(2=1.49 x 10~7 m%/s). The temperature difference (Tyoc — Tonin) 1S
one way of controlling the complexity of flow fields, where T, is the
maximum surface temperature, and T,;, is the minimum surface tem-
perature. In this study, a temperature difference of 2 °C results in a Ra
of 2 x 10°, which is below the critical Ra of 3 x 10°, indicating that the
flow remains laminar.

B. Governing equations

The 2-D incompressible Navier-Stokes equation and the energy
equation govern buoyancy-driven flow within a square domain. Non-
dimensionalization of PDEs is often preferred to make the network
adaptable to a wider array of problems by utilizing dimensionless
terms to characterize the system. Furthermore, due to the nature of
common activation functions used in PINNs (e.g., tanh and swish')
which exhibit nonlinearity and well-defined derivatives within the
range of -1 to 1, normalizing the input and outputs within this interval
is recommended. Consequently, the problem formulation incorporates
the following normalized terms, denoted by  to signify nondimen-
sional parameters with x*=x/w, y"=y/h, t'=t/t,y, U =U/U,
V* = V/Uy P*=PlpoUs> T" = (T-Tri)/(Trnax — Tomin)- The dimen-
sional variables are defined as x € [0,w], y € [0,4], and t € [0, tegp ],
where ¢ is the temporal coordinate and t,y, is the experimental time
duration, which defines the window of the reconstruction dataset. The
characteristic variables are the reference velocity (Uj), maximum den-
sity (po), and reference temperature difference (T; — Tj). In order for
Ri to be 1, U, was chosen to be U= [gf(T; — Tow]®?, leading to
Uy =0.009 92 m/s. The Boussinesq approximation is used to capture
density variation as a function of temperature and yields the following
normalized PDEs:

ouT vt

=0 1
o 17 By ) (1)

ou* ou* ou* op 1 (0*U* Ut
St U’ PV -= 7 =0
o TV o T y* Tor R (8x*2 +7 Ay ) '
2
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A A ) () ()
StW—'—U g +9V a—y*-l-)/a—y*
1 (orve PV
— 3 iTH =
Re <8x*2 o 6y*z> TR0 ©

oT* LoT* LoTr 1 (0T 2 T\
The dimensionless parameters St = w/Upt,,» Re = Ugw/v, Pe = RePr,
and y represent the Strouhal number, Reynolds number, Peclet num-
ber, and geometric aspect ratio of the domain, respectively. According
to the problem definition in Sec. IT A, these parameters are calculated
as Re =206, Pe =997, and y = 1. We arbitrary set ., as 3.9 s that cov-
ers about 2.5 characteristic time periods (.= w/Up), resulting in an St
of 0.39.

C. Network architecture

The PINN architecture used for the flow field reconstruction
comprises a fully connected neural network with 10 hidden layers,
each housing 150 neurons (equivalently, 10 x 150 configuration). The
inputs to the PINN are spatial-temporal coordinates (x*, y*, t*), while
the outputs are the four field quantities (T%, U*, V*, P*) computed at
these coordinates. The outputs are constrained by the governing PDEs
[Egs. (1)-(4)], given temperature data, and boundary conditions, as
detailed in Sec. 11 D. The select activation function is a locally adaptive
sine function.'”'” The governing equations demand an activation
function that is second order differentiable and does not vanish to
zero. The sine function has demonstrated efficacy in previous imple-
mentations when solving natural convection and mixed convection
PDEs." "

To explore hyperparameter sensitivity, the architecture was var-
ied in both size and activation function. While a larger network offers
increased expressiveness, it comes with the trade-off of higher compu-
tational cost.'” Comparative tests were conducted using networks of
different size (i.e., 12 hidden layers with 200 neurons per layer), yield-
ing negligible differences, typically less than 1% when compared to
networks of size 10 x 150. Smaller network size was not considered,
since a previous work” reported large errors. Thus, the configuration
of 10 x 150 was chosen. Additionally, an alternative activation func-
tion, ‘tanh’, was evaluated, in which no significant improvements were
observed, thus the sine activation function was kept. Comparison test
results are available in the supplementary material.

D. Loss functions

The loss functions used in PINNs constrain the reconstruction
results to specified boundary conditions, data, and governing equa-
tions. Thus, the composite loss function (L) includes three components
as follows:

L = Lpc + Lp + Lg, (5)

where Lpc is the loss computed at points along the domain boundary
and Lp is the loss evaluated at points where data are prescribed,
denoted as data points. Ly is the PDE loss calculated using both data
points and additional points defined within the domain, referred to as
collocation points. The losses are expressed as
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TABLE 1. Seven datasets used for field reconstructions.

Set1 Set2 Set3 Set4 Set5 Set6 Set7

Start frame 10 60 100 150 200 300 500
Start time ¢, [s] 1 6 10 15 20 30 50
End frame 49 99 139 189 239 339 539

End time fy + fo [s] 49 99 139 189 239 339 539

1 N
Lic == oy [Flsot) = B ©
1
Lp = Nﬁ)zf: |T*(xi7yiv ti) — Ti*|2’ @)
1 Ne+N; 4 2
Lrp = mz;; ’ Zk:l e yis )] ®

where Ngc, Np, and Ny represent the number of boundary points, data
points, and collocation points, respectively. For Lg, the field variables,
F, reconstructed at the boundary are compared with the boundary
conditions F;. For Lp, reconstructed temperature values are compared
against those obtained from computational fluid dynamics (CFD) sim-
ulations, denoted as T;". For Lg, the residuals between the reconstruc-
tion results and Eqgs. (1)-(4), denoted as e; through e, are computed.
The mean square error is used as the optimization criterion for PINNs.

In the composite loss, each loss term can be assigned a weight to
bias the reconstruction toward a specific constraint. Previous studies

(a) Traditional PINN (c)
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have favored data over PDEs in PINNs by applying an Lp/Lr weight
ratio of 50-100.” However, in our experiments, using an Lp/Lg weight
ratio from 1 to 100 did not yield substantial improvements. While a
large Lp/Ly weight ratio can accelerate convergence by aligning net-
work parameters more quickly with data constraints, it may also com-
promise the generalization capacity of the PINNs. With a large Lp/Lg
weight ratio, the network parameters may deviate from accurately sat-
istying the PDEs, potentially leading to overfitting. Thus, equal weights
were assigned to the loss terms for further analysis.

E. Network optimization

PINN was built using Pytorch libraries and was executed on a
single Nvidia A100 GPU. The network optimization utilized floating-
point precision with a machine epsilon of 1.19 x 10”7, The optimiza-
tion of the loss function employed a coupled strategy,'® initially utiliz-
ing the Adam optimizer with 100000 epochs and a learning rate of
0.0001 followed by refinement with the L-BFGS optimizer until con-
vergence.”'” The network parameters were initialized using the Xavier
normal distribution.

To evaluate the reconstruction results and provide temperature
data to the PINNG, reference data were generated using a finite volume
model (FVM), implemented in ANSYS Fluent. Independent mesh and
time step convergence analyses were performed to ensure accuracy
within 1% of a finer step size. The transient natural convection was
simulated over a 60-second duration with a time step of 0.001 seconds,
while data were extracted at intervals of 0.1 seconds (denoted as

Reconstruction of multiple fields
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FIG. 2. Overview of field reconstruction process. Two PINN architectures are tested: (a) a traditional PINN and (b) a PINN modified based on multiple scale method (MSPINN).
(c) PINNs reconstruct unknown fields (U*, V*, P*) based on the provided temperature field (T*). Neural network losses are evaluated at (d) boundary and data points, as well

as at (e) collocation points.
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Atpara), resulting in a total dataset of 600 frames. From the total data-
set, seven different subsets were sampled at distinct temporal phases of
the flow, each spanning 3.9 seconds (equivalent to ., and 40 frames).
Table I lists the start and end times of the subsets. Although the start
times t, differ among subsets, when the subset data are provided to a
PINN, {, is normalized to " =0, as illustrated in Fig. 1. The normaliza-
tion of f, ensures that no information regarding the prior flow condi-
tions or the absolute time (f) is provided to the PINN. This approach
allows the PINN to operate independently of the absolute time of data-
set, enabling flow field reconstruction at any point in time without
relying on prior states.

Figure 2 illustrates a schematic overview of the field recon-
struction process, displaying the points where the losses are com-
puted. The number of boundary points in a single edge along the
X, ¥, and t axes, denoted as N,, N,, and N,, is set to 100 each,
resulting in a total of 40000 boundary points, estimated as
N = [2(N+N,)N,]. Consequently, the time step between bound-
ary points along the t axis (Atpc=tx,/N) is 0.039 seconds.
Collocation points, ranging from N,=162880 to 262 880, are
randomly sampled throughout the domain using the Latin-
Hypercube (LHS) method."® Data points are also randomly sam-
pled using LHS from the nodal information of the FVM data, rep-
resenting 2.5% to 10% of the dataset (equivalently, between 893
and 3572 points per frame). The coordinates of all points are pro-
vided to the PINN, where the loss is computed, and the network
is updated through iterations.

(a) FVYMm

(b) PINN,

(c) FYM
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F. Multiple scale method

Equations (1)-(4) are rescaled using the multiple scale method in
perturbation theory, a technique that analyzes variable scales to iden-
tify those that contribute most significantly to the overall solution. The
PINN based on multiple scale method (MSPINN) closely aligns with
previous works.'”** Huang et al. used matched asymptotic expansions
of multiple networks to create a uniformly valid solution of governing
equations with different scales.”” Unlike Huang’s approach, which sol-
ves outer and inner solutions separately using matched asymptotic
expansions, we introduce augmented inputs via scaling factors directly
integrated into the input layer, allowing the solution to be calculated
with a single network.

For Egs. (1)-(4), we define the lengths (6;;) and time (J,) scaling
factors and corresponding rescaled variables, where a; = x*/dy;, b;=y*/
015 and ¢ = £"/d,, where the subscript i denotes the i scale. Thus, in
MSPINN, the original PINN inputs, x= [x", y, "], are expanded into
a modified input structure, x = [x*, y*, 1", a;, by, as b, c]. The modi-
fied input occupies a distinct layer following the initial network inputs
x, as shown in Fig. 2(b).

To determine the scaling factors, rescaled forms of Eqs. (1)-(4)
are needed which are expressed with rescaled derivatives of field varia-
bles (U*, V*, T", P*). The derivatives of U" with respect to scaling fac-
tors can be obtained using the chain rule as follows:

ouU*  9U* da; AU Ox* U
o~ daow T owox oy T ©)
(d) PINN, (e) FVM (f) PINN,

1.0

o0s x*

o

(ol
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[ =4
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e
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y y
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0.6 0.8 1.0

FIG. 3. Comparison of FVM (a, c, ) and PINN, predictions (b, d, f), evaluated at three different flow phases: (a, b) Incipient phase at t = 1s (start frame of set 1), (c, d) devel-
opment phase at t = 20s (start frame of set 5), and (e, f) quasi-steady state at t =50s (start frame of set 7).
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Similarly, rescaled derivatives of T", V*, and P* can be obtained.

Using the rescaled derivatives, Eqs. (1)-(4) can be rewritten in
their rescaled forms. The rescaled forms of Egs. (2) and (4) are pre-
sented as follows:

*1 * * * 1 * * * 1 *
St(Uca-i‘ U[) +U (Ualaﬁ‘ Ux) +yV (UblE—F Uy)

* 1 * % 1 2 % *
() e | (S, O )
=0, (12)

1 2
"2 * . = * *
+7 <Ub1b1 51,12 + o Uy, + Uyy)

1 1
sr(T:$+ T;*) + U (T;‘z 5ot Tj;)

* * 1 * 1 * 1 2 * *
+yV (TbZE+ Ty) ~ b {(TMWJFETW - Txx>

12
2 * * %
+7 (szbngrETw*Tw) =0 (13)

The magnitudes of each term in the rescaled equations should
be compared to identify the dominant terms. In the rescaled equa-
tions, most terms scale with unity, except for the terms multiplied
by dimensionless numbers such as St, 1/Re, and 1/Pe. In rescaled
Eq. (1), all terms are of the same scale, thus do not require further
scale analysis. The scale analysis for rescaled Eqgs. (2) and (3) is
identical due to their structural similarity and the fact that Ri=1.
Thus, we use only Egs. (12) and (13) for the scale analysis to deter-
mine the scaling factors.

In Eq. (12), the order of magnitudes for each term is represented
by the coefficients of T%, U*, V*, P* terms, such as St/d, 5, St, 1/9,, 1, 1/
911°Re, 1/, Re, and 1/Re. For simplicity in analysis, we assume that
the velocities U" and V” are of the same order of magnitude as 1/9;,.
Consequently, the terms 1/8;,,°Re and St/d, , are considered dominant.
By balancing the dominant terms with the constant term (i.e., 1), we
obtain d;;=Re ** and &, = St. Similarly, the scale analysis of Eq.
(13) leads to a dominant balance, yielding 6;, = Pe™ > and d;, = St.
Holmes provides in-depth explanations on dominant balance and
multiple-scale analysis.”* Note that these scaling factors should be
updated for different problems, as each problem will have its own
unique scaling relations. However, problems governed by the same
PDEs may share the same scaling constants, thus eliminating the need
for repeated derivation.

In MSPINN, only the input structure—represented by the first
layer of the neural network—is modified, while the remaining layers,
forming a fully connected network, remain identical to those in the
original PINNs. The risk of overfitting is minimal, as the additional
trainable parameters account for less than 0.7% of the total parameters.
Furthermore, the computational cost of MSPINN is nearly identical to
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that of traditional PINNS, since the optimization time is primarily
influenced by the number of trainable parameters, assuming other fac-
tors (e.g., loss function, training points) remain constant. Both PINNs
and MSPINN are expected to exhibit similar performance impacts
when applied to complex geometric domains, as MSPINN focuses on
addressing the multiscale aspects within the PDEs, rather than the
computational challenges associated with the domain geometry.

lll. RESULTS AND DISCUSSION
A. Optimization of traditional PINNs

To assess the efficacy of traditional PINNs, baseline PINNs with-
out rescaled input variables (PINN,) were first optimized using the
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FIG. 4. ¢ of PINN and MSPINN for the six different temporal sets in (a) T, (b) U,
(c) V* and, (d) P* fields. Numbers in each plot represent the dataset number.
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most resource-intensive settings. These settings utilized 10% of the
available FVM data points (i.e., N; = 142 880 points), with N, = 40 000,
and N, =162880. The network optimization time was influenced by
factors such as the number of epochs and the volume of collocation
points. On average, completing 100 000 epochs while processing N, of
162 880 took about 6 h and used around 40 GB of memory.

Figure 3 compares the reconstruction results of PINNj at three
different flow phases (i.e., sets 1, 5, 7) with the FVM reference data.
The reconstructed fields show good qualitative agreement with the ref-
erence data. Initially, the warm left wall leads to an upward buoyancy-
driven flow, represented by a large V*, resulting in pressurization at
the top left corner characterized by an elevated P*. During the develop-
ment phase, the pressurized, high-temperature fluid at the top left cor-
ner moves along the top wall toward the cold right wall, inducing a
circulating flow pattern. Along the cold right wall, the fluid descends,
facilitating the formation of stable convection cells within the cavity.
For a visualization purpose, FVM maps were linearly interpolated to
the same grid resolution of PINNj (i.e., 500 x 500).

Next, to identify an efficient network optimization setting, the
traditional PINN was optimized using two datasets—set 2 or set
3—under various configurations. These datasets represent the
most transient flow regimes, characterized by the largest tempera-
ture gradients over time. The most transient regimes are typically
recognized as more challenging for optimizing PINN. In this
experiment, the mean absolute error, ¢, was used to quantitatively
evaluate the performance of the PINN given as & = |[F-F|,/N, where
F, ﬁ, and N are the PINN prediction, FVM ground truth, and num-
ber of points, respectively. Errors were calculated for each time
step across all grid nodes. Due to the stochastic nature of network
optimization, errors varied in each optimization. Thus, the PINN
underwent five optimization iterations.

(a) FVM

(b) PINN, (c) MSPINN

ARTICLE

pubs.aip.org/aip/pof

Experiments revealed that increasing N, from 162 880 to 262 880
did not lead to significant improvements in errors, thus N, of 162 830
was chosen. The variation in N; from 2.5% to 10% of total data
resulted in minor but noticeable differences. It was found that at least
5% of data should be used for the network optimization, and 10% was
chosen to ensure the PINN accurately captures the detailed features of
the flow. Tuning the learning rate showed that 1 x 10~* provided the
optimal balance between error reduction and optimization time. For
example, about 3% decrease in error was traded for a doubled optimi-
zation time. Finally, it was determined that 100000 epochs were opti-
mal. Longer epochs are usually required for tackling more complex
problems. The hyperparameters derived in this section are used for
subsequent reconstructions. For detailed descriptions of these experi-
ments, refer to the supplementary material.

B. Reconstructions by PINN and MSPINN

The transient evolution of the flow can be characterized into three
distinct phases: the incipient phase (R;,), development phase (R.), and
quasi steady-state phase (R;,), each exhibiting unique features. In the
incipient phase [Figs. 3(a) and 3(b)], the temperature and velocity
fields display relatively uniform distributions, with a significant solu-
tion space of the next phase and large field gradients with respect to
time. In this context, the “solution space” refers to the range of possible
field distributions that the PINN can converge to. Next, the develop-
ment phase [Figs. 3(c) and 3(d)] covers the majority of transient
behaviors, with the fields having the largest time derivatives. Finally,
the quasi steady-state phase [Figs. 3(e) and 3(f)] is the transition from
development to steady-state, in which the temporal effects become less
apparent. The differences among three phases can impact the accuracy
of PINN reconstruction, particularly considering the varying solution
space.

1.0

0.8

0.6 FIG. 5. Comparison between (a) FVM,
(b) PINN, and (c) MSPINN at frame 140
of dataset. The improvements in recon-

0.4 . 5
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To understand the impact of flow transience on PINN recon-
struction, both the traditional PINN and MSPINN were used to recon-
struct the fields at six flow phases (ie., sets 1, 3, 4, 5, 6, and 7). Each
reconstruction underwent three to five iterations of network optimiza-
tion, with the subsequent analysis based on the average results of these
iterations. Figure 4 shows ¢ of both original PINNs and MSPINNS,
offering several interesting observations. First, errors are relatively large
at the incipient phase (R;,) and diminish at the quasi-steady state (R;).
Second, within each flow phase, there is wide variation in error. For a
statistical analysis of ¢, we estimate the mean (denoted as €) and
range (denoted as Ag), defined as the difference between maximum
and minimum values of & Despite a few outliers, both € and A¢
decrease over time, indicating that PINNs are more accurate during
R than during R,

The comparison between the original PINNs and MSPINNs
shows that improvements can be made by rescaling, in which the
impact is more prominent in earlier velocity reconstructions. The max-
imum improvement in ¢ was around 3.78 x 10~ in U" (roughly
72.2%), and on average the improvement in ¢ across all field variables
was around 1.96 x 10> (around 6.4%). This demonstrates that
MSPINN effectively accounts for the various scales present in the natu-
ral convection process. Additionally, Fig. 5 compares the fields recon-
structed by PINN and MSPINN during a development phase (i.e.,
frame 140). While the PINN captures large-scale temperature patterns,
the MSPINN provides more accurate reconstructions of sharp temper-
ature gradients in localized regions.

C. Error sources

We introduce two metrics to understand the cause of relatively
large inaccuracies observed during the incipient phase. The first metric,
namely, the temporal gradient (VtF |F 11 - F4|/At), is used to inves-
tigate the cause of relatively large inaccuracies in the incipient phase,
where F is the field variable obtained from FVM groundtruth and At
is the time step. We hypothesize that the size of the solution space
influences the network performance. This hypothesis stems from the
observation that PINNs tend to exhibit higher errors in systems with a
larger solution space, especially evident in ill-posed reconstruction
problems. A greater solution space implies more possible independent
ways in which the field variables can vary over time. Therefore, a
higher temporal gradient (denoted as VtF ) is expected in systems with
greater solution space. Accordingly, we indirectly characterize the size
of solution space in the system by using V,F.

Different solution spaces could exist under various timescales.
For example, the incipient phase will include large temporal derivatives
(equivalently larger solution space), while the quasi-steady phase will
have near zero temporal derivatives (equivalently smaller solution
space). These phases, each with significantly different solution space,
may necessitate PINN's optimized under different settings.

Figure 6 presents VF, where V,F is an order of magnitude
greater during the incipient phase than during the quasi-steady phase.
Thus, the incipient phase is shown to possess a larger solution space. It
is also clear that the relative magnitude of V.F loosely correlates with
the magnitude of A¢ and €, in which a larger V,F roughly corresponds
to a higher A¢ and €.

The second metric is the absolute spatial gradients (V F= \F$+ 1
— F,|/As) of each field, where As is the spatial step along either the x
(As,) or y (As,) axis that in general can be different. Figure 7 depicts
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|V(E| on a logarithm base 10 scale of original PINNs. Three frames
were considered, i.e., 10™, 200", and 500™ frames, representing differ-
ent phases of field development. To compute the gradients, FVM data
were interpolated on a 500 x 500 grid with a As of 3 x 107> m. Figure
7 shows that the |V.F| spans over four orders of magnitude,
from 107 to 10 % When |V,F| becomes very small, it results in
small gradient terms in the loss function. This, in return, hinders
effective parameter updates during backpropagation through deep
neural networks, a phenomenon referred to as the vanishing gradient
issue.”” While the neural network updates its parameters, repeated
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FIG. 6. VFfor each field (solid line) overlaid with ¢ of PINN (dashed line) in (a) T,
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and 108 to enhance contrast. Error fields of original PINNs are shown with color scales clipped between 5 x 10~ 3and 1.5 x 10~ to show important contrast.

multiplication of small gradient values can result in extremely small
(i.e., vanishing) gradient terms, causing the update process to stagnate.
Figures 7(c), 7(f), and 7(i) also show the error distribution of original
PINNSs in each field at 10th, 200th, and 500th frames. The pressure
errors exhibit relatively uniform distribution, while exhibiting large
errors appear near the cold wall at the incipient phase where the |V P
is the smallest. For the temperature field, errors are less than 2 x 1072,
since the PINN was constrained by the temperature data. For the
velocity fields, errors are highest during the incipient phase and around
the areas with near-zero gradients. The alignment of regions character-
ized by extremely small |V (F| and large & supports the presence of a
vanishing gradient issue, particularly noticeable during the incipient
phase.

Additionally, Fig. 7 reveals multiple length scales within the field.
First, the spatial scale of the gradient field variation is relatively small.
Gradient field values exhibit an order of magnitude variation even
across Ax" or Ay" of 0.1. However, the spatial scale of original fields
shown in Fig. 3 is relatively large. An order of magnitude variation of
original field variables occurs across the length of the entire domain. If
there are multiple length scales between the original and gradient
fields, it necessitates rescaling the PDEs in Egs. (1)-(4). Otherwise,
PINNSs tend to favor solutions preserving the larger-scale variations,
while the small-scale variations become recessive due to the vanishing
gradient issue.

Figure 8 shows the error maps of MSPINN at three frames (i.e.,
10™, 200", and 500" frames) corresponding to those in Fig. 7.
Compared to Fig. 7, the errors of MSPINN are apparently reduced,
although some inaccuracies still appear in regions with small gradients.
The most improvement occurs during the incipient phase, which
aligns with the trends observed in Fig. 4.

In addition to &, we compare the Reynolds number (Re) to evalu-
ate the reconstruction results of MSPINN. Since MSPINN reconstruct
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unseen velocity fields, the comparison of Re yields insight into the abil-
ity of MSPINN to reconstruct accurate velocity magnitudes. Here, we
use a characteristic velocity different from Uy in Sec. II B. Specifically,
the characteristic velocity is defined as the average of the top 5% of
velocity magnitudes at points within the cavity. Figure 9 compares the
Re values between MSPINN and FVM, showing good alignment with
a coefficient of determination (R®) of 0.982. Interestingly, the incipient
phase (ie., frames < 50) demonstrates higher accuracy than subse-
quent flow phases, consistent with the trends observed in Figs. 4 and 7.
Mean values for the top 5% of U" and V" are available in the supple-
mentary material.

IV. CONCLUSIONS

This paper explored the ability of PINNs to reconstruct pressure
and velocity fields from an instantaneous temperature data for a tran-
sient natural convection process. A fully connected network with a
structure of 10 layers and 150 neurons per layer was employed to con-
struct the PINN, and its performance was enhanced through hyperpara-
meter tuning. Study into the effects of transience on PINNs led to a few
key results. PINN exhibited relatively higher accuracies during the
quasi-steady state, while less accuracies during the incipient state. To
explain the inaccuracies during the incipient phase, we examined two
metrics: spatial and temporal gradients of the field variables (VF and
Vt?). The temporal gradients of field variables serve as indicators of the
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solution space, complexity and variability within a field. As expected,
the magnitude of V,F was an order of magnitude greater during the
incipient phase than during the quasi-steady phase, indicating the pres-
ence of significantly larger solution space during the incipient phase.
The spatial gradients of field variables revealed that V,F spanned more
than four orders of magnitude in the natural convection studied, even
reaching down to 10™°. The correlation between regions exhibiting
extremely small |V .F| and large ¢ indicated the presence of a vanishing
gradient problem, particularly evident during the incipient phase.

Furthermore, we noticed various length scales present within the
field. To reconstruct the fields at different scales, we employed multiple
scale method, in which the inputs were recast into three distinct scales.
The MSPINN resulted in lower ¢ with maximum and average improve-
ments of around 72.2% and 6.4%, respectively. This result demonstrates
the potential efficacy of the multiple scale method in solving thermoflui-
dic reconstruction problems where solutions span across different
scales. Next, the top 5% of U" and V* of MSPINN yielded Reynolds
numbers with R* of 0.982 when compared to FVM data, indicating
good agreement in velocity magnitudes that are representative of the
flow state. Though scaling is currently performed manually, research
into perturbation theory could automate this process. Moreover, gener-
alization of MSPINN to other systems and experimental data will fur-
ther solidify the applicability of this method, including the turbulent
systems which necessitate solving multiple scale equations.

SUPPLEMENTARY MATERIAL

See the supplementary material for neural network optimization,
detailing the effects of varying collocation points, data points, learning
rates, epochs, network sizes, and activation functions.
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