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Learning from knockout
reactions using a dispersive
optical model

M. C. Atkinson1* and W. H. Dickhoff2

1Nuclear Data and Theory Group, Lawrence Livermore National Laboratory, Livermore, CA, United
States, 2Department of Physics, Washington University in St. Louis, St. Louis, MO, United States

We present the empirical dispersive optical model (DOM) as applied to direct
nuclear reactions. The DOM links both scattering and bound-state experimental
data through a dispersion relation, which allows for fully consistent, data-
informed predictions for nuclei where such data exist. In particular, we review
investigations of the electron-induced proton knockout reaction fromboth 40Ca
and 48Ca in a distorted-wave impulse approximation (DWIA) utilizing the DOM
for a fully consistent description. Viewing these reactions through the lens of the
DOM allows us to connect the documented quenching of spectroscopic factors
with the increased high-momentum proton content in neutron-rich nuclei.
A similar DOM-DWIA description of the proton-induced knockout from 40Ca,
however, does not currently fit in the consistent story of its electron-induced
counterpart. With the main difference in the proton-induced case being the use
of an effective proton–proton interaction, we suggest that a more sophisticated
in-medium interaction would produce consistent results.

KEYWORDS

nuclear structure, knockout reactions, optical potential, Green’s function, distorted-
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1 Introduction

Independent particle models (IPMs) provide a simplified view of the nucleus in which
correlations are neglected and all orbitals are completely filled up to the Fermi level
according to the Pauli principle. However, due to residual interactions, orbitals below the
Fermi energy are depleted, while those above it are filled. Knockout reactions, in which
a nucleon is removed from a nuclear target after collision with a projectile, are suitable for
studying this distortion of the Fermi sea.The importance of the (e,e′p) reaction in clarifying
the details of this rearrangement near the Fermi energy is well-established and initially
reviewed in [1]. Subsequent high-resolution work at the Nikhef facility in Amsterdam then
provided a detailed view of the limitations of the IPMs in describing closed-shell nuclei
[2–10]. The primary interaction in this reaction is electromagnetic and well-understood
so that at sufficient high-electron beam energy, a distorted-wave impulse approximation
(DWIA) provides an excellent reaction model [11–14].

In the traditional application of the DWIA to (e,e′p) cross sections, the Nikhef group
typically utilized a global optical potential at the energy of the outgoing proton to describe
the distorted wave. The overlap function from the ground state to the relevant state
in the nucleus with one proton removed was obtained from a standard Woods–Saxon
potential, with the depth adjusted to the separation energy and the radius constrained by
the momentum dependence of the observed cross section. The cross sections obtained for
targets consisting of closed shell nuclei then typically require a scaling factor of 0.6–0.7 to
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generate an accurate description of the data [9]. This scaling
factor, usually referred to as the (reduced) spectroscopic factor,
corresponds to the normalization of the overlap function between
the target ground state and the excited state of the recoiling A− 1
nucleus. A spectroscopic factor less than 1 indicates a divergence
from the IPM. Furthermore, the data show that additional removal
strength with essentially the same overlap function is located at
nearby energies, providing clear evidence of the fragmentation of
the single-particle strength [5, 15].

It has been argued in the literature that spectroscopic factors,
while representing a useful concept, are not observables [16].
No doubt the (e,e′p) reaction provides the cleanest probe of
removal probabilities. A similar approach in atoms for the (e,2e)
reaction supports this claim (see [17]). Apart from assessing the
accuracy of the DWIA method for the (e,e′p) reaction, it is
also necessary to clarify the validity of the chosen nuclear wave
functions of the Nikhef analysis. We note that separate structure
wave functions (phenomenological overlap function) and unrelated
distorted scattering waves obtained from local optical potentials
were employed. The dispersive optical model (DOM), which was
first proposed by Mahaux and reviewed in [18], provides an
approach to clarify these issues. In this article, we review the
application of theDOM toDWIA calculations of knockout reactions
[19–21]. Recent implementations of the DOMhave introduced fully
nonlocal dispersive potentials [22, 23], allowing additional data to
be included in the description, like the particle number and the
nuclear charge density, which were not considered in [18]. It is
thus possible to extract all nuclear ingredients needed for a DWIA
calculation of (e,e′p) from aDOM that is constrained by all available
elastic nucleon scattering data, aswell as separation energies, particle
number, ground-state binding energy, charge radius, and the nuclear
charge density for 40Ca and 48Ca in our case. Indeed, the distorted
outgoing proton wave and the overlap function with its implied
normalization are all provided by the DOM to allow for a consistent
description of both 40Ca(e,e′p) 39K and 48Ca(e,e′p) 47K cross
sections. The states analyzed for this reaction are the ground and
first excited states of 39K and 47K, which correspond to the 0d3/2
and 1s1/2 valence hole states in the IPSM.

Although stable targets corresponding to closed-shell nuclei
have been investigated using the (e,e′p) reaction, corresponding
results for exotic nuclei are not available and may never be.
Alternative reactions have been explored in inverse kinematics
at rare isotope facilities. For example, the heavy-ion nucleon
knockout reaction was employed by the researchers of the National
SuperconductingCyclotron Laboratory atMichigan StateUniversity
[24, 25]. The results suggested a strong dependence of the removal
probability on the difference in separation energies between
minority and majority species. The analysis of these data for open-
shell nuclei relies on small model space shell model calculations,
which already allow for partial orbital occupancy. The resulting
reduction factors for overlap functions similarly generated as for the(e,e′p) reaction yield values close to 1 for the removal of valence
majority nucleons and a strong suppression for the corresponding
minority nucleons. The obtained results for closed-shell nuclei,
with respect to the IPM description, are consistent with the (e,e′p)
results mentioned above. This dependence on nucleon asymmetry
is not consistent with the corresponding results of transfer reactions
reviewed in [26] or the single-nucleon removal experiments recently

reported in [27, 28]. At this time, no clear consensus has been
reached on this intriguing difference. A comprehensive status report
of these different approaches containing a theoretical background
was reported in [29]. We provide an additional perspective on
this situation based on our DOM analyses of 40Ca(e,e′p) 39K and
48Ca(e,e′p) 47K.

The electron-induced proton knockout reaction, (e,e′p), has
been considered the cleanest spectroscopic method for decades.
An alternative approach is proton-induced knockout or (p,2p),
which, despite some concerns about uncertainties [29–36], has
been established as a complementary spectroscopic tool to(e,e′p) with approximately 15% uncertainty for incident energy
above 200 MeV [36]. Although the (e,e′p) reaction involves one
proton distorted wave, there are three such components in the(p,2p) reaction. In addition, the interaction responsible for the
transition to the final state, apart from being fundamentally
two-body in nature, involves an in-medium proton–proton (pp)
interaction. The pp interaction is not nearly as well-understood as
the electromagnetic transition operator (ep) in the (e,e′p) reaction,
which is a predominantly one-body operator.

Using the sameDOMbound-state and scatteringwave functions
that were employed in the DWIA analysis of 40Ca(e,e′p)39K, we
performed a DWIA calculation of 40Ca(p,2p)39K in [21]. This
was not only the first DWIA calculation of 40Ca(p,2p)39K to
utilize consistent nuclear ingredients but also the first time that
the distorted waves of the incoming and outgoing protons were
generated by a nonlocal optical potential. The resulting analysis
pointed to an inconsistency between the electron-induced and
proton-induced knockout reactions; although the DOM-provided
spectroscopic factor of 0.71 reproduces the (e,e′p) data, this factor
had to be further reduced to 0.56 to reproduce the (p,2p) data. Since
the only difference between the descriptions of these two reactions
is the ep interaction vs the pp interaction, the inevitable conclusion
is that a further study of the in-medium pp interaction is required.
We note that transfer reactions have also been studied with DOM
ingredients [37–39], but such studies require additional analysis
of the reaction model, although applying current nonlocal DOM
potentials may provide useful insights.

The underlyingGreen’s function formalism of the single-particle
propagator is presented in Section 2.1, while the DOM framework
is introduced in Section 2.2. The application of the DOM to
the (e,e′p) reactions is described in Section 3. Results for the
40Ca(e,e′p) and 48Ca(e,e′p) reactions are presented in Sections 3.1,
3.2, respectively. A discussion of the (p,2p) results employing DOM
ingredients is provided in Section 4. Conclusions and some outlook
are presented in Section 5.

2 Theory

This section is organized to provide brief introductions into the
underlying theory of the DOM.

2.1 Single-particle propagator

The single-particle propagator describes the probability
amplitude for adding (removing) a particle in state α at one time to
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(from) the non-degenerate ground state and propagating on top of
that state until a later timewhen it is removed (added) in state β [17].
In addition to the conserved orbital and total angular momentum
(ℓ and j, respectively), the labels α and β in Equation 1 refer to a
suitably chosen single-particle basis. We employed a coordinate-
space basis in our original 48Ca calculation in [40], but we have
switched to a Lagrange basis [41] in all subsequent calculations
(including that of 208Pb from [42]). It is convenient to work with the
Fourier-transformed propagator in the energy domain:

Gℓj (α,β;E) = 〈ΨA
0 |aαℓj 1

E− (Ĥ−EA0 ) + iη a†βℓj|ΨA
0 〉+ 〈ΨA

0 |a†βℓj 1
E− (EA0 − Ĥ) − iη aαℓj|ΨA

0 〉, (1)

with EA0 representing the energy of the non-degenerate ground
state |ΨA

0 〉. Many interactions can occur between the addition
and removal of the particle (or vice versa), all of which need to
be considered to calculate the propagator. No assumptions about
the detailed form of the Hamiltonian Ĥ need be made for the
present discussion, but it is assumed that a meaningful Hamiltonian
exists that contains two-body and three-body contributions. The
application of perturbation theory then leads to the Dyson
equation [17], which is given by

Gℓj (α,β;E) = G(0)ℓ (α,β;E) +∑
γ,δ G(0)ℓ (α,γ;E)Σ∗ℓj (γ,δ;E)Gℓj (δ,β;E) ,

(2)

where G(0)ℓ (α,β;E) corresponds to the unperturbed propagator (the
propagator derived from the unperturbed Hamiltonian, H0, which
in the DOM corresponds to the kinetic energy) and Σ∗ℓj(γ,δ;E) is the
irreducible self-energy [17]. The hole spectral density for energies
below εF is obtained from:

Shℓj (α,β;E) = 1π Im Gℓj (α,β;E) , (3)

where the h superscript signifies it as the hole spectral amplitude.
For brevity, we drop this superscript for the rest of this review.
The diagonal element of Equation 3 is known as the (hole) spectral
function identifying the probability density for the removal of a
single-particle state with the quantum number αℓj at energy E. The
single-particle density distribution can be calculated from the hole
spectral function as

ρ(p,n)ℓj (r) = ∑
ℓj
(2j+ 1)∫εF−∞dE S(p,n)ℓj (r, r;E) , (4)

where the (p,n) superscript refers to protons or neutrons and εF =
1
2 (EA+10 −EA−10 ) is the average Fermi energy, which separates the
particle and hole domains [17].The number of protons and neutrons(Z,N) is calculated by integrating ρ(p,n)ℓj (r) over all spaces. In addition
to the particle number, the total binding energy can be calculated
from the hole spectral function using the Migdal–Galitski sum rule
[17]:

EN,Z0 = 12∑αβ ∫εF0 dE[⟨α|T̂|β⟩Sh (α,β;E) + δαβESh (α,α;E)] . (5)

The expression in Equation 5 assumes that the dominant
contribution involves the two-nucleon interaction [43, 44].

To visualize the spectral function of Equation 3, it is useful to
sum (or integrate) over the basis variables, α so that only energy
dependence, Sℓj(E), remains. The spectral strength Sℓj(E) is the
contribution at energy E to the occupation from all orbitals with
the angular momentum ℓj. It reveals that the strength for a shell
can be fragmented rather than isolated at the independent-particle
model (IPM) energy levels. Figure 1 shows the spectral strength
of a representative set of proton (panel (a)) and neutron (panel
(b)) orbits in 48Ca that would be considered bound in the IPM.
The locations of the peaks shown in Figure 1 correspond to the
energies of discrete bound states with one nucleon removed. For
example, the s1/2 spectral function shown in Figure 1 has two peaks
below εF that correspond to the 0s1/2 and 1s1/2 quasihole states,
while the f7/2 spectral function has a peak below (neutrons) and
above (protons) εF that corresponds to the 0f7/2 quasihole/particle
state. The wave functions of these quasihole/particle states can
be obtained by transforming the Dyson equation into a nonlocal
Schrödinger-like equation by disregarding the imaginary part of
Σ∗(α,β;E): ∑

γ
〈α|Tℓ +Re Σ∗ℓj (εnℓj) |γ〉ψn

ℓj (γ) = εnℓjψn
ℓj (α) , (6)

where 〈α|Tℓ|γ〉 is the kinetic-energy matrix element, including the
centrifugal term. The wave function, ψn

ℓj(α), is the overlap between
the A and A− 1 systems and the corresponding energy, εnℓj, is the
energy required to remove a nucleon with the particular quantum
numbers nℓj:

ψn
ℓj (α) = 〈ΨA−1

n |aαℓj|ΨA
0 〉, εnℓj = EA0 −EA−1n . (7)

When solutions to Equations 6, 7 are found near the Fermi
energy, where there is naturally no imaginary part of the self-
energy, the normalization of the quasihole is well-defined as the
spectroscopic factor:

Zn
ℓj = (1− ∂Σ∗ℓj (αqh,αqh;E)∂E |εnℓj)−1, (8)

where αqh corresponds to the quasihole state that solves Equation 6.
The quasihole peaks in shown Figure 1 become narrower as the
levels approach εF, which is a consequence of the imaginary part
of the irreducible self-energy decreasing when approaching εF. The
last mostly occupied neutron level in panel (b) of Figure 1 (0f7/2)
has a spectral function that is essentially a delta function peaked
at its energy level, where the imaginary part of the self-energy
vanishes. Valence proton hole orbits (1s1/2 and 0 days 3/2) exhibit
the same behavior. For these orbitals, the strength of the spectral
function at the peak corresponds to the spectroscopic factor shown
in Equation 8. This spectroscopic factor is the very same we employ
in the (e,e′p) calculations, which is discussed in Section 3.1 (see also
[19, 20].

2.2 Dispersive optical model

The Dyson equation, Equation 2, simplifies the complicated
task of calculating Gℓj(α,β;E) from Equation 1 to find a suitable
Σ∗(α,β;E) to invert. It was recognized long ago that Σ∗(α,β;E)
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FIGURE 1
Proton (left) and neutron (right) spectral functions of a representative set of ℓj shells in 48Ca. The particle states are differentiated from the hole states
by the dotted line representing εF. Figure adapted from [20].

represents the potential that describes elastic-scattering observables
[45]. The link with the potential at negative energy is then provided
by the Green’s function framework, as realized by Mahaux and
Sartor, who introduced the DOM, as reviewed in [18]. The analytic
structure of the nucleon self-energy allows one to apply the
dispersion relation, which relates the real part of the self-energy at
a given energy to a dispersion integral of its imaginary part over
all energies.The energy-independent correlated Hartree–Fock (HF)
contribution [17] is removed by employing a subtracted dispersion
relation with the Fermi energy used as the subtraction point [18].
The subtracted form has the additional advantage of focusing on
energies closer to the Fermi energy, for which more experimental
data are available. We still refer to the energy-independent part
of our potential as the HF term, and is sufficiently attractive
to bind the relevant levels at exactly the correct energies. In
practice, the imaginary part is assumed to reach the Fermi energy
on both sides while being extremely small in its vicinity. The
subtracted form of the dispersion relation employed in this work
is given by

Re Σ∗ (α,β;E) = Re Σ∗ (α,β;εF)− P∫∞
εF

dE′
π Im Σ∗ (α,β;E′)[ 1

E−E′ − 1
εF −E′ ]+ P∫εF−∞ dE′π Im Σ∗ (α,β;E′)[ 1

E−E′ − 1
εF −E′ ],

(9)

where P is the principal value. The static term, ReΣ∗(α,β;εF),
is denoted by ΣHF from here on. Equation 9 constrains the real
part of Σ∗(α,β;E) by empirical information on the HF and
imaginary parts, which are closely tied to experimental data.
Initially, standard functional forms for these terms were introduced
by Mahaux and Sartor, who also cast the DOM potential in a
local form by a standard transformation, which turns a nonlocal
static HF potential into an energy-dependent local potential [46].
Such an analysis was extended in [47, 48] to a sequence of
Ca isotopes and in [49] to semi-closed-shell nuclei heavier than
Ca. The transformation to the exclusive use of local potentials
precludes a proper calculation of the nucleon particle number
and expectation values of the one-body operators, like the charge

density in the ground state (see Equation 4). This obstacle was
eliminated in [50], but it was shown that the introduction of
nonlocality in the imaginary part was still necessary in order
to accurately account for the particle number and the charge
density [22]. Theoretical work provided further support for this
introduction of a nonlocal representation of the imaginary part of
the self-energy [51, 52]. A review detailing these developments was
published in [23].

2.2.1 Functional form of the DOM self-energy
We employ a nonlocal representation of the self-energy,

following [22], where ΣHF(r,r′) and Im Σ(r,r′;E) are parametrized,
and the energy dependence of the real part, Re Σ(r,r′;E), is
generated from the dispersion relation shown in Equation 9.TheHF
term consists of a volume term, spin-orbit term, and a wine-bottle-
shape generating term [53]:

ΣHF (r,r′) = Vvol (r,r′) +Vso (r,r′) +Vwb (r,r′) + δ(r − r′)VC (r) ,
(10)

where the Coulomb potential, VC(r), is also included. The
radial part of the potentials in Equation 10 takes the
following form:

Vvol (r,r′) = Vvol f ( ̃r, rHF(p,n),aHF)H(s;βHF) , (11)

where Vvol is a parameter that determines the depth of the potential
and rHF(p,n), aHF, and βHF are parameters that control the shape
of the Woods–Saxon form factor f and Perey–Buck-shaped [46]
nonlocality H:

f (r, ri,ai) = [1+ exp( r− riA1/3
ai
)]−1

H (s;β) = exp(−s2/β2)/(π3/2β3) (12)

and ̃r = r+ r′2  s = r − r′. (13)

The radial form of Vwb and Vso are similar to those expressed in
Equations 11–13; their explicit forms can be found in [54]. The
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imaginary self-energy consists of the volume, surface, and spin-
orbit terms:

ImΣ(r,r′;E) = −Wvol
0± (E) f ( ̃r; rvol± ;avol± )H(s;βvol)+ 4asur± Wsur± (E)H (s;βsur) dd ̃r f ( ̃r, rsur± ,asur± ) + ImΣso (r,r′;E) ,

(14)

where Wvol
0±(E) and Wsur± (E) are energy-dependent depths of the

volume and surface potentials, respectively, and the ± subscript
indicates that there are different forms used above and below the
Fermi energy (see [54] for the exact forms of the potentials in
Equation 14). When considering asymmetric nuclei, such as 48Ca,
additional terms proportional to the asymmetry, αasy = N−Z

A , are
added to ΣHF(r,r′) and ImΣ(r,r′;E) for a Lane-like representation
[55]. These asymmetric terms introduce additional parameters
describing both their radial shape and energy-dependent depths
[54]. For the full list of parameters used in 48Ca, see [20, 54].

As mentioned previously, it was typical in the past to replace
nonlocal potentials by local, energy-dependent potentials [17, 18,
46, 56]. The introduction of an energy dependence alters the
dispersive correction from Equation 9 and distorts normalization,
leading to incorrect spectral functions and related quantities [50].
Thus, a nonlocal implementation permits the self-energy to
accurately reproduce important observables such as charge density,
particle number, and ground-state binding energy.

To use the DOM self-energy for predictions, the parameters of
the self-energy are constrained through weighted χ2 minimization
(using Powell’s method [57]) by measurements of elastic differential
cross sections ( dσdΩ ), analyzing powers (Aθ), reaction cross sections(σreact), total cross sections (σtot), charge density (ρch), energy levels(εnℓj), particle number, and the rootmean square charge radius (Rch).
The angular dependence of Σ(r,r′;E) is represented in a partial-wave
basis, and the radial component is represented in a Lagrange basis
using Legendre and Laguerre polynomials for scattering and bound
states, respectively. The bound states are found by diagonalizing the
Hamiltonian in Equation 6, the propagator is found by inverting
the Dyson equation, Equation 2, while all scattering calculations are
done in the framework of R-matrix theory [41].

The reproduction of all available experimental data (see [19, 20,
22, 40] for comparisons to training data) indicates that we have
realistic self-energies of 40Ca and 48Ca capable of describing both
bound-state and scattering processes. A parallel DOM analysis of
these and other nuclei was conducted using Markov chain Monte
Carlo (MCMC) methods to optimize the potential parameters
employing the same experimental data and a very similar functional
formbutwith a reduced number of parameters. All observables from
this MCMC fit fell within one standard deviation of those presented
above [58, 59].

3 DWIA description of the (e,e′p) cross
section

In the past, (e,e′p) cross sections obtained at Nikhef in
Amsterdamhave been successfully described by utilizing theDWIA.
This description is expected to be particularly goodwhen kinematics
that emphasize the longitudinal coupling of the excitation operator,

which is dominated by a one-body operator, are used. The Nikhef
group was able to fulfill this condition by choosing kinematic
conditions, in which the removed proton carried momentum
parallel or antiparallel to the momentum of the virtual photon.
Under these conditions, the transverse contribution involving the
spin and possible two-body currents is suppressed. Therefore, the
process can be interpreted as requiring an accurate description of the
transition amplitude from the resulting excited state to the ground
state by a known one-body operator. This transition amplitude is
contained in the polarization propagator, which can be analyzed
with amany-body description involving a linear response [17]. Such
an analysis demonstrates that the polarization propagator contains
two contributions. The first term describes the propagation of a
particle and a hole as they interact with the medium but not with
each other.The other term involves their interaction.The latter term
dominates at low energy when the proton that absorbs the photon
participates in collective excitations like surface modes and giant
resonances.

When the proton receives energy on the order of 100 MeV, it is
expected that the resulting excited state can be well-approximated
by the dressed particle and dressed hole excitation [60]. When
strong transitions are considered, like in the present work, two-
step processes have only minor influence [2, 5]. This interpretation
forms the basis of the DWIA applied to exclusive (e,e′p) cross
sections obtained by theNikhef group.The ingredients of theDWIA,
therefore, require a proton distorted wave describing the outgoing
proton at the appropriate energy and an overlap function with
its normalization for the removed proton. The distorted wave was
typically obtained from a standard (local) global optical potential
shown in [61] for 40Ca. The overlap function was obtained by
adjusting the radius of a local Woods–Saxon potential to the shape
of the (e,e′p) cross sectionwhile adjusting its depth to the separation
energy of the hole. Its normalization was obtained by adjusting
the calculated DWIA cross section to the actual data [9]. Standard
nonlocality corrections were applied to both the outgoing and
removed proton wave functions [62], effectively making the bound-
state wave function the solution of a nonlocal potential. We observe
that such corrections are ℓ-independent and, therefore, different
from the nonlocal DOM implementation.

In order to describe the (e,e′p) reaction, the incoming electron,
the electron–proton interaction, the outgoing electron, and the
outgoing proton must be addressed. The cross section is calculated
from the hadron tensor, Wμν, which contains matrix elements of
the nuclear charge-current density, Jμ [14]. Using DWIA, which
assumes that the virtual photon exchanged by the electron couples
to the same proton that is detected [11, 13], the nuclear current can
be written as

Jμ (q) = ∫dreiq⋅rχ(−)∗Eℓj (r)( ̂Jμeff)Eℓj (r)ψn
ℓj (r)√Zn

ℓj, (15)

where χ(−)∗E (r) is the outgoing proton distorted wave [14], ψn
ℓj is

the overlap function, Zn
ℓj is its normalization, q = kf − ki is the

electron three-momentum transfer, and ̂Jμeff is the effective current
operator [14].The incoming and outgoing electronwaves are treated
within the effective momentum approximation, where the waves are
represented by plane waves with effective momenta to account for
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distortion from the interaction with the target nucleus [12].

keffi( f) = ki( f) +∫drVc (r)ϕ2ℓj (r) , (16)

where Vc(r) is the Coulomb potential of the target nucleus. This
alters Equation 15 by replacing q with the qeff in Equation 16.

In the plane-wave impulse approximation (PWIA), in which the
outgoing proton wave is approximated by a free scattering (plane)
wave, the (e,e′p) cross section can be factorized into an off-shell
electron–proton cross section and the spectral function [14]:

S(Em,pm) = 1
kσep

d6σ
dEe′dΩe′dEpdΩp

. (17)

The off-shell electron–proton cross section, σep, is approximated
from the on-shell electron–proton cross section using the σcc1
model, as proposed in [63]. The factorization shown in Equation 17
does not hold true for the DWIA, but (e,e′p) cross sections,
both experimental and theoretical, are typically divided by σcc1
when displayed. In principle, corrections due to two-step processes
could be considered, but they are estimated to make negligible
contributions for the transitions considered in this study [5].

The calculations of the (e,e′p) cross sections in [19] were
performed by employing DOM ingredients that were constrained
by the experimental data discussed in Section 2.2. Appropriate
distorted waves and overlap functions with their normalization were
thus generated that allow for a DWIA description of the exclusive(e,e′p) cross section for valence holes in 40Ca. An agreement
with cross sections, therefore, not only supports the description of
the reaction in a DWIA framework but also confirms the overall
consistency of the DOM approach including its interpretation of the
normalization of the overlap functions as spectroscopic factors that
can be confronted with data.

3.1 40Ca(e,e′p)39K
The first nonlocal DOM description of 40Ca data is presented

in [22]. Meanwhile, additional experimental higher-energy proton
reaction cross sections [64] had been incorporated, which caused
some adjustments of the DOM parameters compared to [22]. The
updated parameters are collected in App. A of [19]. Adjusting
the parameters from the previous values [22] to describe these
additional experimental results leads to an equivalent description
for all data except these reaction cross sections. These higher-
energy data dictate that the proton reaction cross section remain
flat for energies in the region of approximately 150 MeV, as shown
in Figure 2. This means there is more absorption at higher energies
than in the previous fit, leading to increased strength in the
imaginary part of the self-energy. Due to the dispersion relation,
Equation 9, this increases the spectral strength at positive energies
when the Dyson equation is solved.The sum rule discussed in detail
in [65], which relates to the integral over all energies of the strength
of the valence holes, implies that strength is transferred from below
the Fermi energy to the energies with an increased imaginary part.
This resulting loss of strength below the Fermi energy reduces the
spectroscopic factors by approximately 0.05 compared to the results
reported in [22].

FIGURE 2
Proton reaction cross section for 40Ca. The solid line represents the
newest fit [19], while the dashed line depicts the original fit [22]. The
circular data points were included in the original fit, while the square
data points [64] were added in the newest fit. Figure adapted from [19].

FIGURE 3
Experimental and fitted 40Ca charge density. The solid line is calculated
using the DOM propagator, while the experimental band represents
the 1% error associated with the extracted charge density from elastic
electron scattering experiments [66, 67]. Figure adapted from Ref. [19].

To accurately calculate the (e,e′p) cross section in the DWIA, it
is imperative that the DOM self-energy not only precisely generates
available elastic scattering data but also bound-state information.
This is due to the fact that the shape of the cross section is primarily
determined by the bound-state overlap function [5]. Thus, not only
should the experimental charge radius be reproduced but also the
charge density should match the experimental data, as shown in
Figure 3, where the DOM charge density is shown as the solid line
and compared with the deduced charge density (Fourier–Bessel
parametrization) obtained from [66] with the band representing
the 1% error.

The 40Ca DOM self-energy leads to the spectral strength
distributions shown in Figure 4. The experimental bars are the
results of an angular-momentumdecomposition of the experimental
spectral function at Tp = 100 MeV, as described in [15]. The
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FIGURE 4
Spectral strength as a function of excitation energy for (A) the 1s1/2and (B) the 0d3/2proton orbitals, calculated from the DOM using Equation (3)) (solid
line) and extracted from the 40Ca(e,e′p) 39K experiment [5, 15] (bars). The peaks in the DOM curves and experimental data correspond to the energies of
the quasihole protons in 40Ca. Notably, the experimental fragments in (B) above 4 MeV mostly correspond to 0d5/2strength. Figure adapted from [19].

experimental distributions for ℓ = 0,2 clearly show that the strength
is already strongly fragmented at low energies. The main peak in
each case represents the valence hole transition of interest. This
fragmentation is smeared in the DOM via the non-zero imaginary
component of the self-energy, which is why the DOM curves shown
in Figure 4 are continuous rather than discrete. The imaginary part
of the self-energy approaches 0 near εF, which results in the sharp
peaks of the DOM curve shown in Figure 4 (analogous to what is
observed in Figure 1).The DOM, therefore, does not yet include the
details of the low-energy fragmentation of the valence hole states,
which requires the introduction of pole structure in the self-energy
[68].The spectroscopic factor of Equation 8 corresponds to themain
peak of each distribution shown in Figure 4. It is calculated directly
from the 40Ca DOM self-energy, which results in values of 0.71 and
0.74 for the 0d3/2 and 1s1/2 peaks, respectively. The results are
probed in more detail by analyzing the momentum distributions of
the 40Ca(e,e′p) 39K reaction.

In the past, the DWIA calculations by the Nikhef group have
been performed using the DWEEPY code [13]. The momentum
distributions in [19] are calculated by adapting a recent version of the
DWEEPY code [69] to use the DOM-bound states, distorted waves,
and spectroscopic factors as inputs. Before confronting the DOM
calculations with the experimental cross sections, it is necessary to
consider the consequences of the low-energy fragmentation shown
in Figure 4. For the 0d3/2 ground-state transition (panel (b) of
Figure 4), there is a clear separationwith higher-lying fragments, the
majority of which cannot be distinguished from 0d5/2 contributions
as the experiments did not provide the necessary polarization
information. In addition, these higher-lying fragments appear to
carry little 0d3/2 strength [70], so the DOM spectroscopic factor
can, therefore, be directly used to calculate the cross section of the
ground-state peak.

The situation is different for the 1s1/2 distribution, which, while
dominated by the large fragment at 2.522 MeV, exhibits substantial
surrounding strength, as shown in Figure 4a. These contributions
come from other discrete poles in the propagator, reflecting the
mixing of the 1s1/2 orbit to more complicated excitations nearby in

energy. The origin of these additional discrete poles is not explicitly
included in the DOM, although there is a smooth energy-dependent
imaginary term in the self-energy to approximate their effect on the
spectral strength [17].This approximation is sufficient for discussing
integrated values such as the charge density and particle number,
but it falls short when considering the details of the low-energy
fragmentation into discrete energies, as in the present situation.The
calculated DOM spectroscopic factor, therefore, includes strength
in the neighborhood of the quasihole energy, resulting in an inflated
value. This effect is only noticeable in the ℓ = 0 case because there
is a non-negligible amount of strength in the region near the peak.
We turn to experimental data to account for this effect by enforcing
that the ratio between the strength of the peak to the total spectral
strength shown in the energy domain of Figure 4 is the samebetween
the data as for the DOM:

ZDOM
F∫dE SDOM (E) = Zexp

F∫dE Sexp (E) . (18)

Accounting for the contributions to the momentum distribution
from different energies by scaling the DOM spectroscopic factor is
justified by observing that the shape of the momentum distribution
calculated at similar energies is identical, with the strength being
the only difference [5]. The scaling of the spectroscopic factor leads
to a reduction from 0.74 to 0.60. As mentioned, no correction is
needed for the 0d3/2 spectroscopic factor.The resultingmomentum
distributions are shown in Figure 5. The previous analysis of
the Nikhef group at Tp = 100 MeV [5] produced a comparable
reproduction of the data with somewhat smaller spectroscopic
factors, as shown in Table 1.

In order to estimate the uncertainty for the DOM spectroscopic
factors, we followed the bootstrap method from [71], which was
also employed in [40] to assess the uncertainty for the neutron
skin in 48Ca. New modified datasets were created from the original
data by randomly renormalizing each angular distribution or
excitation function within the experimental error to incorporate
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FIGURE 5
40Ca(e,e′p) 39K spectral functions in parallel kinematics at an outgoing proton kinetic energies of 70, 100, and 135 MeV. The solid line is the calculation
employing the DOM, while the points from the experiment are detailed in [5]. (A) Distribution for the removal of the 0d3/2. The curve contains the
DWIA for the 3/2+ ground state including a spectroscopic factor of 0.71. (B) Distribution for the removal of the 1s1/2 proton with a spectroscopic factor
of 0.60 for the 1/2+ excited state at 2.522 MeV. Panels (C) and (E) are the same as (A) except the outgoing proton energy is 100 MeV and 135 MeV,
respectively. Panels (D) and (F) are the same as (A) except that the outgoing proton energy is 100 MeV and 135 MeV, respectively. Figure
adapted from [19].

fluctuations from the systematic errors. The resulting uncertainties
are listed in Table 1.

The DOM results yield at least as good agreement with the data
as the standard analysis of [5] for the 100-MeV outgoing protons.
The main difference in the description can be pinpointed to the

use of nonlocal potentials to describe the distorted waves. Nonlocal
potentials tend to somewhat suppress interior wave functions of
scattering states and introduce an additional ℓ dependence, as
compared to local potentials. We, therefore, concluded that this
consistent treatment clarifies that spectroscopic factors will be

Frontiers in Physics 08 frontiersin.org

https://doi.org/10.3389/fphy.2024.1505982
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Atkinson and Dickhoff 10.3389/fphy.2024.1505982

TABLE 1 Comparison of spectroscopic factors deduced from the
previous analysis [5] using the Schwandt optical potential [61] to the
normalization of the corresponding overlap functions obtained in the
present analysis from the DOM including an error estimate, as described
in the text.

Z 0d3/2 1s1/2
Reference [5] 0.65± 0.06 0.51± 0.05

DOM 0.71± 0.04 0.60± 0.03
larger by approximately 0.05 when the proper nonlocal dispersive
potentials are employed.

The DOM treatment of experimental data associated with both
the particle and hole aspects of the single-particle propagator
further allows for an assessment of the quality of the DWIA
to describe exclusive (e,e′p) cross sections with outgoing proton
energies of approximately 100 MeV. It is, therefore, fortunate that
additional data were obtained at 70 and 135 MeV to further
delineate the domain of validity for the DWIA description of the
reaction. Figures 5A, B show the results when the DOM is employed
at this lower energy for the two valence hole states in 39K. The only
difference in the DOM calculations for these cases is the energy
of the outgoing proton wave function; the overlap functions and
spectroscopic factors remain the same.

The agreement with the data at 135 MeV shown in Figures 5E, F
is slightly worse but still acceptable. At this energy (and the
corresponding value of the electron three-momentum transfer), the
contribution of the transverse component of the excitation operator,
where other mechanisms contribute in addition to those included
in the present operator, will be larger. Given these results, it seems
that parallel kinematics, with the longitudinal part of the operator
dominating and proton energy of approximately 100 MeV, as chosen
by the Nikhef group, is optimal for probing the removal probability
of valence protons. We note that this can only be achieved if an
analysis is conducted in which all nuclear constituents are provided
by a nucleon self-energy constrained by all relevant available data,
as in the DOM. The excellent agreement found here, therefore,
supports the validity of theDOMapproach, which can automatically
account for the DWIA cross section in the domain where this
approximation is expected to be valid.

The DOM results also generate the complete spectral
distribution for the 0d3/2 and 1s1/2 orbits according to

Sn−ℓj (E) = ∑
α,β ψn

ℓj (α)Shℓj (α,β;E)ψn
ℓj (β) (19)

and similarly for the strength above the Fermi surface [65]

Sn+ℓj (E) = ∫drr2∫dr′r′2ψn
ℓj (r)Spℓj (r, r′;E)ψn

ℓj (r′) , (20)

where the actual procedure involves a double integral in coordinate
space over the particle spectral amplitude. Distributions calculated
using Equations 19, 20 are displayed in Figure 6 from −100 to
100 MeV.The energy axis refers to the A− 1 system below the Fermi
energy and the A+ 1 system above it. For clarity, a small imaginary
strength in the self-energy near the Fermi energy was employed,
providing the peaks a small width. The occupation probabilities are

FIGURE 6
Spectral distribution of the 0d3/2 and 1s1/2 orbits as a function of
energy. Additional strength outside this domain is not shown. Figure
adapted from [19].

obtained from

nnℓj = ∫ϵF−∞dESn−ℓj (E) . (21)

For the 0d3/2 and 1s1/2 orbits, Equation 21 results in 0.80 and
0.82, respectively.The strength at negative energy not residing in the
DOM peak, therefore, corresponds to 9% and 7%, respectively. This
information is constrained by the proton particle number and the
charge density. The strength above the Fermi energy is constrained
by the elastic-scattering data and generates 0.17 and 0.15 for the
0d3/2 and 1s1/2 orbits, respectively, when Equation 22,

dnℓj = ∫∞εF dE Sn+ℓj (E) , (22)

is employed up to 200 MeV. The sum rule given by Equation 23

1 = nnℓj + dnℓj = 〈ΨA
0 |a†nℓjanℓj + anℓja†nℓj|ΨA

0 〉, (23)

associated with the anticommutation relation of the fermion
operators, therefore, suggests that an additional 3% of the strength
resides above 200 MeV, which is similar to what was found in [65].
Strength above the energy, where surface physics dominates, can
be ascribed to the effects of short-range and tensor correlations.
The main characterization of the strength distribution shown in
Fig. 55 of [68] is therefore confirmed for 40Ca. The present results,
thus, suggest that it is possible to generate a consistent view
of the strength distributions of these orbits while employing all
the available experimental constraints. We, therefore, conclude
that it is indeed quite meaningful to employ concepts like
spectroscopic factors and occupation probabilities when discussing
correlations in nuclei.

3.2 48Ca(e,e′p)47K
The first DOM fit of 48Ca was published in [40]. However, just

as in the case of 40Ca in [19, 22], the proton reaction cross section is
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FIGURE 7
Proton reaction cross sections for 48Ca and 40Ca. The solid line
represents the current 48Ca fit [20], while the dashed line depicts the
previous 48Ca fit [40]. The dotted line represents the 40Ca fit from [19].
The circular points are the same 48Ca experimental data used in [49]
and were included in the previous fit. The square points are
extrapolated from the σ40react(E) experimental data points at the
corresponding energies and included in the current 48Ca fit. Figure
adapted from [20].

underestimated by approximately 200 MeV. Although there are no
experimental data for 48Ca at these energies, there is a data point
at 700 MeV of the proton reaction cross section for 40Ca and 48Ca
[72]. Comparing the available data for σ40react(E) at 200 MeV and
700 MeV reveals that the reaction cross section essentially remains
flat between these energies. It is reasonable to expect that σ48react(E)
assumes the same shape as σ40react(E) at high energies. Thus, data
points are extrapolated from the 40Ca experimental data at energies
above 100 MeV by applying the ratio that is seen in the 700 MeV
data for σ48react(E)/σ40react(E) [20]. The extrapolated points are shown
as blue squares in Figure 7, while the updated fit is represented
with the solid curve. The remainder of the fit did not change
significantly from [40].

To analyze the proton spectroscopic factors, the 48Ca(e,e′p)47K
cross section is calculated using the DWIA, following the same
procedure detailed in Section 3.1 for 40Ca. The experimental data
on the 48Ca(e,e′p)47K reaction were obtained in parallel kinematics
for outgoing proton kinetic energies of Tp = 100 MeV at Nikhef
and previously published in [70]. As shown in [19], the DOM
spectroscopic factors need to be renormalized by incorporating
the observed experimental fragmentation of the strength near the
Fermi energy that is not yet included in the DOM self-energy.
The experimental strength distributions for ℓ = 0 and the ℓ = 2
excitations of 47K are shown in Figure 8, which are overlaid with the
corresponding DOM spectral functions calculated from Equation 3.
Similar to the 40Ca calculation, the distributions shown in Figure 8
are used to renormalize the DOM spectroscopic factors using
Equation 18.This scaling results in a reduction from 0.64 to 0.55 for
the 1s1/2 orbital and 0.60 to 0.58 for the 0d3/2 orbital. These values
are in good agreement with the originally published spectroscopic
factors [70], as shown in Table 2. The uncertainties in the values of
the spectroscopic factors were determined using the same bootstrap
method discussed in Section 3.1.

Employing the resulting renormalized spectroscopic factors
leads to quantitative agreement with the experimental momentum
distributions shown in Figure 9. The comparison of the

spectroscopic factors in 48Ca and 40Ca, Z48 and Z40, shown in
Table 3 reveals that both orbitals experience a reduction with the
addition of eight neutrons. This indicates that strength from the
spectroscopic factors is pulled to the continuum in S(E) when eight
neutrons are added to 40Ca. Thus, the stronger coupling to surface
excitations in 48Ca, demonstrated by the larger proton reaction cross
section when compared to 40Ca (see Figure 7), strongly contributes
to the quenching of the proton spectroscopic factor. It is important
to note how crucial the extrapolated high-energy proton reaction
cross-section data are in drawing these conclusions. Without them,
there is no constraint for the strength of the spectral function at
large positive energies, which could result in no quenching of the
spectroscopic factors of 48Ca due to the sum rule, Equation 23,
that requires the strength to integrate to one when all energies are
considered [17, 65].

In addition to the depletion of the spectroscopic factor due
to long-range correlations, strength is also pulled to continuum
energies due to SRC. A large portion of high-momentum content is
caused by the tensor force in the nucleon–nucleon (NN) interaction.
In particular, the tensor force preferentially acts on pairs of neutrons
and protons (np pairs) with the total spin S = 1. This phenomenon
is known as np dominance [73] and is demonstrated by a factor of
20 difference between the number of observed np SRC pairs and
the number of observed pp and nn SRC pairs in exclusive (e,e′pp)
and (e,e′p) cross-sectionmeasurements of 12C, 27Al, 56Fe, and 208 Pb
[73]. The dominance of np SRC pairs would imply that the number
of high-momentum protons observed in a nucleus is dependent on
how many neutrons it contains. More specifically, one would expect
that the high-momentum content of protons would increase with
neutron excess since there are more neutrons available to make
np SRC pairs. The CLAS collaboration confirmed this asymmetry
dependence by measuring the high-momentum content of protons
and neutrons from (e,e′p) and (e,e′n) cross-section measurements
in 12C, 27Al, 56Fe, and 208Pb [74].

This effect can be studied by comparing the DOM-generated
momentum distributions for 40Ca and 48Ca since the only difference
between them is the eight additional neutrons in 48Ca thatmainly fill
the 0f7/2 shell. It is clearly shown in Figure 10 that the 48Ca proton
momentumdistribution (solid blue line) hasmore high-momentum
content than the 40Ca proton momentum distribution (dashed blue
line). Since the number of protons does not change between 40Ca
and 48Ca, the added high-momentum content in the tail of 48Ca
is accounted for by a reduction in the distribution of the k < kF
region. Focusing on the neutrons shown in Figure 10 (red lines),
the 48Ca momentum distribution is significantly greater than the
40Ca distribution for k < kF. This is not surprising since there are
now eight more neutrons that are dominated by a low-momentum
content. The high-momentum content of the neutrons in 40Ca
decreases from 14.7% to 12.6% when eight neutrons are added
to form 48Ca, while the high-momentum content of the protons
increases from 14.0% to 14.6%.The effects of the asymmetry of 48Ca
on the high-momentum content are evident in the fact that there
aremore high-momentum protons than neutrons. Both the increase
in the proton high-momentum content and the decrease in the
neutron high-momentum content are qualitatively consistent with
the CLAS measurements of neutron-rich nuclei [74] and support
the np-dominance picture, as predicted in [75, 76]. Notably, at
this stage of the DOM development, no attempt has been made to
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FIGURE 8
Spectral strength as a function of excitation energy in 48Ca. The solid lines are DOM spectral functions for (A) the 1s1/2 and (B) the 0d3/2 proton
orbitals. The histograms are the excitation energy spectra in 47K extracted from the 48Ca(e,e′p) 47K experiment [15, 70]. The peaks in the DOM curves
and experimental data correspond to the quasihole energies of the protons in 48Ca. The experimental spectrum in (B) is the isolated 0d3/2 orbital.
Figure adapted from [20].

TABLE 2 Comparison of spectroscopic factors in 48Ca deduced from the
previous analysis [70] using the Schwandt optical potential [61] to the
normalization of the corresponding overlap functions obtained in the
present analysis from the DOM including an error estimate, as described
in the text.

Z 0d3/2 1s1/2
Reference [70] 0.57± 0.04 0.54± 0.04

DOM 0.58± 0.03 0.55± 0.03
quantitatively account (i.e., introduce additional constraints) for the
CLAS observations.

Another manifestation of the more correlated protons can be
seen in the spectral functions of Figure 1. The broader peaks of the
proton spectral functions shown in Figure 1A, compared to those
of the neutrons in Figure 1B, indicate that the protons are more
correlated. Furthermore, the increased proton high-momentum
content in 48Ca is a result from the added strength in the continuum
of the hole spectral function when compared to that of 40Ca.
To conserve the proton number (and preserve the sum rule of
Equation 23), an increase in strength at continuum energies in
Sℓj(E) of 48Ca must be compensated by a decrease in strength from
energies close to the proton Fermi energy in 48Ca. In particular,
this contributes to the quenching of the spectroscopic factors of the
0d3/2 and 1s1/2 orbitals, before renormalization (see Equation 18),
in 48Ca from the values for 40Ca, as shown in Table 3. In this way, the
spectroscopic factor provides a link between the low-momentum-
knockout experiments done at Nikhef and the high-momentum-
knockout experiments done at JLAB by the CLAS collaboration.

The success of the DOM in describing both 40Ca(e,e′p)39K and
48Ca(e,e′p)47K results has provided a foothold for understanding
the quenching of spectroscopic factors. A DOM investigation across
the nuclear chart would deepen our understanding as a data-
informed spectroscopic factor could be generated for each nucleus

using Equation 8. This would require a global parametrization of
the DOM, which is currently in development. Meanwhile, we note
that for 208Pb (see [54] for fit), the DOM values of the valence
spectroscopic factors are consistent with the observations of [77]
and the interpretation of [78]. The past extraction of spectroscopic
factors using the 208Pb(e,e′p)207Tl reaction yielded a value of
approximately 0.65 for the valence 2s1/2 orbit [8] based on the results
of [79, 80]. Although the use of nonlocal optical potentials may
slightly increase this value, as shown in [19], it may be concluded
that the value of 0.69 obtained from the DOM analysis is consistent
with the past result. Nikhef data obtained in a large missing energy
and momentum domain [81] can now be consistently analyzed,
employing the complete DOM spectral functions.

4 Proton-induced knockouts

As discussed in Section 1, knockout reactions can be induced by
nuclear projectiles such as protons. Although these reactions are not
as clean due to the probe interacting through the nuclear pp force
rather than the electromagnetic ep force, theDWIAdescription does
a fairly good job of reproducing experimental data. Furthermore,
these reactions are not limited to forward kinematics like their
electron-induced counterparts; the proton can act as both the beam
and the target. This is useful because it allows for the study of nuclei
far from stability by utilizing rare isotope beams in laboratories such
as the DOE flagship facility for rare isotope beams (FRIBs).

Since we have an accurate description of 40Ca(e,e′p)39K using
the DOM, we are in a good position to investigate the reaction
description of the analogous 40Ca(p,2p)39K reaction.The kinematics
of the (p,2p) experiment are setup in a similar manner to those
of the (e,e′p) experiment, and the outgoing proton energy is
100 MeV, which we showed is an optimal energy for a good
DWIA description of knockout [19]. While the experiment we
compare to was performed using a proton beam on a stable
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FIGURE 9
48Ca(e,e′p) 47K spectral functions in parallel kinematics at an outgoing proton kinetic energy of 100 MeV. The solid line is the calculation employing the
DOM, while the points are from the experiment detailed in [70]. (A) Distribution for the removal of the 1s1/2 proton. The curve contains the DWIA for
the 1/2+ ground state using the DOM-generated spectroscopic factor of 0.55 (renormalized using Equation (18)). (B) Distribution for the removal of the
0d3/2 with a DOM-generated spectroscopic factor of 0.58 (renormalized using Equation (18)) for the 3/2+ excited state at 0.36 MeV. Figure
adapted from [20].

TABLE 3 Comparison of DOM spectroscopic factors in 48Ca and 40Ca.
These factors have not been renormalized and represent the aggregate
strength near the Fermi energy.

Z 0d3/2 1s1/2
40Ca 0.71± 0.04 0.74± 0.03
48Ca 0.60± 0.03 0.64± 0.03

FIGURE 10
Comparison of DOM-calculated momentum distributions of protons
(blue) and neutrons (red) in 48Ca (solid) and 40Ca (dashed). The dotted
line marks the value used for kF. Figure adapted from [20].

40Ca target [82], it serves as a benchmark for the DWIA
description of proton-induced knockout, allowing it to be applied
in more exotic cases where protons are used as targets for rare
isotope beams.

4.1 DWIA in (p,2p)
In [21], the factorized form of the nonrelativistic DWIA with

the spin degrees of freedom is employed. The transition matrix
T within the distorted wave impulse approximation framework
is given by

Tμ1μ2μ0μj = ∑
μ′1μ′2μ′0μp ̃tμ′1μ′2μ′0μp∫dRχ(−)∗1,μ′1μ1 (R)χ(−)∗2,μ′2μ2 (R)χ(+)0,μ′0μ0 (R)e−iαRK0⋅R

×∑
m
(ℓmspμp|jμj)ψn

ℓjm (R) . (24)

In Equation 24, the incident and two emitted protons are labeled
as particle 0–2, while the bound proton in the initial state is
labeled as p. χi,μ′i μi is a distorted wave of particle i = 0,1,2 having
the asymptotic (local) third component μi (μ′i ) of its spin si = 1/2.
The outgoing and incoming boundary conditions of the distorted
waves are denoted by superscripts (+) and (−), respectively. K0 is
the momentum (wave number) of the incident proton, and αR is
the mass ratio of the struck particle and the target. n is the radial
quantum number, and ℓ, j,m are the single-particle orbital angular
momentum, total angular momentum, and third component of
ℓ, respectively. ψn

ℓjm is the single-particle wave function (SPWF)
normalized to unity. ̃tμ′1μ′2μ′0μp is the matrix element of the pp effective
interaction tpp: ̃tμ′1μ′2μ′0μp = ⟨κ′,μ′1μ′2|tpp|κ,μ′0μp⟩, (25)

where κ and κ′ are relative momenta of two protons in the
initial and the final states, respectively. The factorization procedure
of tpp is explained using the local semi-classical approximation
(LSCA) and the asymptotic momentum approximation (AMA) in
the appendix of [21]. It should be noted that the factorized DWIA is
often regarded as a result of the zero-range approximation, but tpp is
a finite-range interaction.
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The triple differential cross section (TDX) with respect to the
emitted proton energy Tlab

1 and emission angles Ωlab
1 and Ωlab

2
is given as

d3σlab

dTlab
1 dΩlab

1 dΩlab
2
=Zn

lj JlabGFkin
(2π)4
ℏvα

1(2s0 + 1) (2j+ 1) ∑μ1μ2μ0μj |Tμ1μ2μ0μj|2,
(26)

with Zn
lj , JlabG, Fkin, and vα being the spectroscopic factor, the

Jacobian from the center-of-mass frame to the laboratory frame,
kinetic factor, and the relative velocity of the incident proton and the
target, respectively. Quantities in Equation 26 with the superscript
lab are evaluated in the laboratory frame, while the others are in the
center-of-mass frame. For details, see Section 3.1 of [36].

Equations 15, 25, 26 for electron- and proton-induced knockout,
respectively, have many similarities. They both employ the same
spectroscopic factor, bound-state wave function, and 100-MeV
outgoing proton distorted wave. The proton-induced expression
includes two additional proton distorted waves to account for the
incoming and outgoing projectile proton, but the main difference
between these two equations is the appearance of the pp interaction
in the form of ̃tμ′1μ′2μ′0μp in Equation 25. In the electron case, this is
factorized outside of the hadronic part of the cross section, which
is not possible in the proton-induced case. We probe this difference
by employing the same DOM wave functions between (e,e′p) and(p,2p) cases.
4.2 Results and discussion

Theoretical knockout cross sections are calculated using the
DWIA framework with the DOM SPWF and distorted waves. The
reaction kinematics is in a coplanar kinematics, and the opening
angles of the emitted protons are fixed at the same angle: ϕL1 =
0°, ϕL2 = 180°, and θL1 = θL2 = 42.0° in the Madison convention [83].
The kinematics of the three particles is then uniquely determined
by TL

1. The DOM-DWIA result is compared with those of the
phenomenological SPWF and the optical potential in panel (a) of
Figure 11. For this comparison, the DOM-DWIA cross section is
adjusted to the data rather than employing the DOM-generated
spectroscopic factor from Equation 8. The phenomenological
SPWF suggested by [70], the Koning–Delaroche optical potential
parameter set (KD) [84], and the Dirac phenomenology (DP)
[85–87] are also considered. Spectroscopic factors are, therefore,
extracted from the ratio of the present calculations and the
experimental data taken by the E258 experiment at the RCNP [82]
by minimizing

χ2 (Z0d3/2) =∑
i

(Z0d3/2σDWIA
i − σi)2
δ2i

, (27)

where σDWIA
i and σi are theoretical and experimental cross sections

at data points i, respectively, and δi is the associated error of the
experimental data. Obtained spectroscopic factors are summarized
in Table 1. Following [36], only the data points around the peak,
larger than 25μb/(MeV sr2), are fit to reduce the uncertainty.

The spectroscopic factors obtained from the phenomenological(p,2p) analysis (the first two rows of Table 4) are consistent with

the phenomenological (e,e′p) analysis, which resulted in 0.65± 0.06
[5]. On the other hand, the spectroscopic factor obtained using the
DOM wave functions to reproduce the (p,2p) cross section is in
disagreement with the DOMvalue (using Equation 8) of 0.71± 0.04.
Since the spectroscopic factor is a property of the quasihole bound
state, it should not depend on the reaction mechanism or beam
energy [90]. As shown in [36], the spectroscopic factors for the
valence levels near the Fermi energies of stable nuclei extracted
from (p,2p) reactions above 200 MeV, using the DWIA with local
potentials, are consistent with those from (e,e′p) with uncertainties
ranging from 10% to 15%. The nonlocality correction to the SPWF
and distorted waves is considered to be a primary source of
uncertainty in determining these spectroscopic factors [36].

Employing different potentials to generate the proton scattering
and bound-state wave functions complicates the interpretation of
these results. However, the DOM bound-state and scattering wave
functions are both fully consistent within the DWIA framework and
equivalent between the (e,e′p) and (p,2p) reactions. Nevertheless,
Z0d3/2 obtained with the DOM-DWIA analysis of the 40Ca(p,2p)
data at 200 MeV, inwhich the nonlocality is treated in a sophisticated
manner, differs by at least 21% from the value used to reproduce(e,e′p) data utilizing the same DOM. With the nucleus-dependent
ingredients of the DWIA description eliminated as causes for this
discrepancy (because the same DOM ingredients are used in both
the (e,e′p) and (p,2p) cases), we explore differences in the reaction
descriptions to uncover the source of discrepancy.

We first consider the consequences of using three distorted
proton waves in the (p,2p) reaction, as compared to just one in(e,e′p). There is an uncertainty associated with the DOM distorted
waves due to the experimental data points used in the DOM
fit. Recalling the strong correlation between the proton reaction
cross sections and the (e,e′p) cross sections demonstrated in
Section 3, we look to uncertainties in the experimental proton
reaction cross-section data points in energy regions corresponding
to those of the distorted proton waves to get a rough estimate
of the uncertainty associated with the DOM distorted waves. The
proton reaction cross-section data points from [91, 92] suggest
an uncertainty in the corresponding DOM distorted waves of
approximately 3%. Furthermore, due to the kinematics of the
reaction, one of the proton energies is as low as 36 MeV. In the
DOManalysis of 40Ca(e,e′p)39K, the description of the experimental
cross section for outgoing proton energies of 70 MeV, the lowest
of the considered proton energies, is somewhat less satisfactory
[19]. This indicates that the impulse approximation may not be
applicable at proton energies of 70 MeV and below. Since one of
the outgoing proton energies in this 40Ca(p,2p)39K reaction is even
less than 70 MeV, it is reasonable to expect some discrepancy in
the 40Ca(p,2p)39K TDX. This discrepancy may be reduced when
higher proton beam energies are considered, but this implies that
the DOM analysis has to be extended to higher energies. Noting
that previous analyses of (p,2p) and (e,e′p) resulted in consistent
spectroscopic factors, we conclude that any inaccuracies caused by
low-energy protons do not explain the high 21% discrepancy we
are observing between DOM descriptions of (e,e′p) and (p,2p).
We also investigated the uncertainty arising from a different choice
of the pp effective interactions when employing the DOM in the
DWIA.Three different types of pp effective interaction were utilized:
the Franey–Love effective interaction (FL) [88], the Melbourne
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FIGURE 11
(A) TDX with different optical potentials. The solid and dashed lines are TDXs with the Koning–Delaroche optical potential (KD) and Dirac
phenomenology (DP), respectively. The result with the DOM is also shown as the dotted line. All results reflect cross sections that are normalized with
the spectroscopic factors shown in Table 1. (B) TDX calculated using the DOM with different pp effective interactions. The solid, dashed, and dotted
lines are TDXs with the Franey–Love effective interaction [88] (FL), Melbourne g–matrix interaction at mean density [89] (Mel), and that at zero density
(Mel free), respectively. See Table 1 for corresponding normalization (spectroscopic) factors. The experimental data taken by the E258 experiment at
RCNP [82] are also shown. Figure adapted from [21].

TABLE 4 Normalization (spectroscopic) factors extracted in
40Ca(p,2p)39K using Equation (27).

SPWF Optical pot pp int Z0d3/2
Kramer KD FL 0.623± 0.006
Kramer Dirac FL 0.672± 0.006
DOM DOM FL 0.560± 0.005
DOM DOM Mel 0.489± 0.005
DOM DOM Mel (free) 0.515± 0.005

g–matrix interaction at mean density (Mel) [89], and that at zero
density (Mel free) were utilized. The Franey–Love interaction is a
free-space t-matrix aimed at reproducing high-energy pp scattering
cross sections. The Melbourne interactions utilize the so-called g-
matrix, which is an approximation to account for the fact that the pp
interaction in (p,2p) takes place in a nucleus rather than a vacuum.
The g-matrix is typically calculated from the pp interaction via ladder
diagrams in infinite nuclearmatter andmapped to finite nuclei using
the density [89]. The mean density of the (p,2p) reaction is defined
in Section 6.1. of [36].The choice of the pp effective interaction does
not change the form of the TDX(see panel (b) of Figure 11), but it
does change the magnitude of the TDX, causing the normalization
factor to reproduce experimental data to vary (see Table 4).

The uncertainty due to the choice of the pp effective interaction
results in Z0d3/2 = 0.489–0.560, which is still inconsistent with
the DOM (e,e′p) results [19]. However, the variation in the
spectroscopic factors using the different interactions (see Table 1)
indicates that the (p,2p) reaction is sensitive to the chosen effective

pp interaction. We note that the main difference between (e,e′p)
and (p,2p) is the need to employ an in-medium pp interaction,
which is not well-constrained. We, therefore, hypothesize that the(p,2p) reaction must be investigated with a more sophisticated
treatment of the pp interaction beyond the standard t- or g-matrix
approach. One immediate concern is that present treatments of
this effective interaction do not allow for energy transfer in the
elementary process. Since a substantial excitation energy is involved
in the (p,2p) reaction, it implies that the mediators of the strong
interaction, in particular the pion, must be allowed to propagate
[93].The in-medium effective pp interaction should be calculated in
finite nuclei, which can be achieved by utilizing DOM propagators.
The formalism for this nucleus-dressed interaction is analogous to
that of the g-matrix, but instead of mapping the infinite nuclear
matter propagator to 40Ca via the density, we can explicitly employ
the DOM propagator (Equation 2) of 40Ca. The incorporation of
the 40Ca DOM propagator in the effective pp interaction should
contribute to improving the reaction description such that the DOM
spectroscopic factor of Z0d3/2 = 0.71 will ultimately describe both
40Ca(e,e′p)39K and 40Ca(p,2p)39K cross sections.

5 Conclusion and outlook

We have reviewed a nonlocal dispersive optical-model analysis
of 40Ca and 48Ca, in which we fit elastic-scattering angular
distributions, absorption and total cross sections, single-particle
energies, charge densities, ground-state binding energies, and
particle numbers. When sufficient data are available to constrain
the self-energy, the DOM can provide accurate predictions. In
particular, the unique capability of the DOM to simultaneously
describe bound-state and scattering wave functions leads to fully
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consistentDWIAdescriptions of knockout reactions. After updating
the high-energy reaction cross sections used to constrain the DOM
self-energies in 40Ca and 48Ca, the predictions 40Ca(e,e′p)39K and
48Ca(e,e′p)47K reproduced the Nikhef experimental data, resulting
in the updated spectroscopic factors for both 40Ca and 48Ca (see
Table 3) [19, 20]. Furthermore, we observe a reduction in the
spectroscopic factors from 40Ca to 48Ca, which is consistent with the
quenching observed in the systematic analysis of [29]. Through the
spectral function picture of the nucleus provided by the DOM, we
connect the quenching of spectroscopic factors to the increase in the
high-momentum content of protons when eight neutrons are added
to 40Ca to form 48Ca.

The DOM-DWIA description of the proton-induced knockout
from 40Ca, however, does not currently fit in the consistent story
of its electron-induced counterpart. Indeed, the DOM-DWIA
overestimates the 40Ca(p,2p)39K by 21% even though the same
DOM wave functions (bound and scattering) are employed, which
were so successful in describing the 40Ca(e,e′p)39K reaction. We
hypothesize that the main cause of this discrepancy is the fact
that the probe in (p,2p) interacts with the nucleus through the
nuclear pp interaction rather than the electromagnetic ep interaction
in (e,e′p). We are, therefore, working on improving the (p,2p)
description by utilizing DOM propagators to explicitly treat the
pp interaction as scattering inside 40Ca rather than in free-space
(t-matrix) or infinite nuclear matter (g-matrix). The ability of
the DOM to provide both bound and scattering nucleon wave
functions is opening the door to a new research opportunity for
the nucleon–nucleon scattering process in many-body systems.This
is of particular importance as nucleus-induced reactions, which
utilize theNN interaction in their theoretical description (including(p,2p)), can be employed in inverse kinematics to study nuclei off
stability at RIB facilities [27, 28].There is, therefore, a definite need to
improve the description of the effective interaction in the medium,
which will also be influenced by the nucleon asymmetry studied in
exotic systems.
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