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The hydrological cycle in South America during austral summer, including extreme precipitation and
floods, is significantly influenced by northerly low-level jets (LLJs) along the eastern Andes. These
synoptic weather events have been associated with three different types of LLJs (Central, Northern,
and Andes) and are sensitive to remote large-scale forcings. This study investigates how tropical
forcings related to El Nifilo/Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) regulate
the duration and frequency of each LLJ type and their impacts on extreme precipitation. Our analysis
reveals that ENSO and PDO are important in driving the variability of LLJs over the past 65 years.
Specifically, the Central LLJ type is more prevalent during El Nifilo and Warm/Neutral PDO phases,
leading to heightened extreme precipitation in southern South America. Conversely, La Nifa years
during Cold PDO phases tend to favor the Northern and Andes LLJs, which are associated with
increased precipitation extremes in the western Amazon and southeastern South America. Central
and Andes LLJs tend to persist longer during these favored conditions, causing more pronounced
precipitation events in the areas under their influence. This study enhances our understanding of the
influence of large-scale atmospheric forcings on the regional precipitation dynamics in South America.

Low-level jets (LLJs) are highly efficient in transporting heat, moisture, and
momentum due to their strong intensity and the availability of abundant
lower-atmosphere moisture. Originating from local-to-regional boundary
layer processes, LLJs typically peak at nighttime and are observed across
diverse climates'’. They usually feature a horizontal extension ranging over
hundreds to thousands of kilometers, influenced by topographic features
and atmospheric pressure gradients. Vertically, they exhibit a pronounced
wind speed maximum near the 850 hPa level, which facilitates enhanced
moisture transport, particularly during nocturnal stable conditions’, In
addition, LL]Js are not only influenced by synoptic-to-large-scale atmo-
spheric circulation patterns in their local area but also by remote forcing
mechanisms®”, Despite recent advancements, we still lack a comprehensive
understanding of their local and remote forcing mechanisms and related
impacts on precipitation beyond the synoptic time scale. Here, for brevity,
we refer to nocturnal northerly low-level jets along the eastern Andes, which
is the most essential feature of LLJs over South America, as simply LLJs.
In South America, three types of LLJs along the eastern Andes have
been identified"’. The Central type, also known as the South American low-
level Jet (SALLJ), is located along the eastern slopes of the central Andes

(Bolivia, Paraguay, northern Argentina), playing a vital role in precipitation
and often triggering heavy rainfall and mesoscale convective systems
(MCSs) in southeastern South America®*"'™", The Northern type, also
known as Orinoco LLJ, is found in the northern Andes (northeastern Peru,
Colombia, Venezuela) and brings Atlantic moisture inland, enhancing
rainfall in the northern Andes and western Amazon”'*"*'"?!, In addition,
Jones et al."’ identified the Andes (simultaneous occurrence in northern and
central Andes), and Peru (short-lived and less frequent) types.

The interaction between upper-level wave trains and the subtropical jet
has significant implications for the activity of the LLJ. The upper-level
Rossby wave trains, often initiated by large-scale atmospheric phenomena
such as the El Nifio/Southern Oscillation (ENSO), propagate along the
subtropical jet, modifying LLJ strength and position. During El Nifio phases,
these wave trains often strengthen the subtropical jet by amplifying zonal
wind speeds and creating positive 200 hPa geopotential height anomalies,
which enhance the meridional pressure gradient, driving stronger Central
LLJ events™. Remote forcings from the equatorial Pacific on intraseasonal-
to-interannual time scales influence the variability and evolution of LLJs".
On interannual time scales, for instance, ENSO plays an important role in
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linking LLJs and precipitation in South America. El Nifio years increase the
frequency and duration of Central LLJ events, which, in turn, extend the
duration of precipitation events in South American subtropical region
(SESA). In contrast, La Nifia years favor an increase of Northern LLJ events
and their duration, leading to greater persistence of precipitation in the
central Andes and southwestern Amazon.

Other modes of low-frequency variability such as the Pacific Decadal
Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO) also
have a significant impact on climate variability in South America (e.g.”**™").
The PDO, for example, has been shown to influence the South American
climate by modulating rainfall variability, which can lead to extreme climate
conditions such as floods and multi-year droughts®*, During the warm
phase of the PDO, southeastern South America experiences positive pre-
cipitation anomalies, whereas negative precipitation anomalies occur in
northern South America. In the cold PDO phase, the pattern reverses™™". In
addition, the warm and cold phases of the PDO can enhance the El Nifio and
La Nifia phases and amplify their teleconnections’. During the warm
phases of PDO and El Nifio, there is an intensification of warm water
conditions in the tropical Pacific, leading to further weakening of the trade
winds and more extreme wet-dry conditions across various regions of the
globe™*’, The AMO-negative phase can strengthen and displace the South
Atlantic Convergence Zone, shifting its precipitation band further south.
This displacement could enhance the Andes LLJs, particularly those directed
toward southeastern Brazil, due to increased moisture transport and
favorable large-scale atmospheric circulation patterns. However, during this
phase, Central LL] activity is often weakened, which may be attributed to
changes in the meridional pressure gradient and altered moisture pathways
that favor the Andes region””.

While previous studies have investigated how ENSO modifies the
variability of LL]Js in South America***"’, the relationships among ENSO,
PDO, and LLJs have not been fully studied and understood. The main
objective of this study is to decipher the role of large-scale modes on the
variability of LLJs and precipitation extremes in South America on
interannual-to-decadal time scales. Specifically, building upon Jones et al.'’
this study aims to investigate the importance of the joint variability of ENSO
and PDO in controlling the activity of the LL] and precipitation in South
America during austral summers. We use 65 years of reanalysis to char-
acterize the LLJ variability and large-scale teleconnections associated with
ENSO and PDO. Since the typical period of the AMO spans several decades,
and only one complete cycle has been observed over the past 65 years, we do
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Fig. 1 | Northerly Low-level Jets. Composites of Mean DJF Nighttime Winds (850-
hPa) and spatial domains for a Central, b Northern, and ¢ Andes LL] types in South
America. The color shading indicates wind speed in meters per second with arrows

50°W

not examine its impacts. A particular emphasis is placed on the linkages
among ENSO-PDO, LLJ activity in the northern and central Andes, and
extreme precipitation across South America. Decadal changes in pre-
cipitation in South America are also assessed with a combination of rea-
nalysis and observed gridded precipitation.

Results

Trends in LLJ intensity and frequency

The following analysis focuses on LL]Js occurring in the northern and central
parts of the Andes Mountains (see “Methods”) during austral summers
(DJF). Fig. 1 shows the wind climatology at 850-hPa and the spatial extents
of the Central, Northern, and Andes types. Note that in any given LLJ type
day, the LLJ may not extend through all the spatial domain regions
simultaneously (Fig. 1). During austral summers (1957-2022), the Northern
and Central types account for 20% and 34.7% of the total LLJ cases,
respectively. Moreover, consistent with Jones et al."’ the Andes type has the
highest frequency (44.4%). The Peru LLJ type (0.9% frequency) identified in
ref. 10 is excluded from this study since its frequency is much less than the
other types. The three major LLJ types (Northern, Central, and Andes)
account for 99% of all 4946 LL]J cases.

The variability of the LL] types during austral summer is shown in Fig. 2a
and indicates that the Andes type is most frequent from December to Feb-
ruary, with the Northern type being the least for all 3 months. The trends
shown in Fig. 2 reflect changes in the frequency and intensity of LLJs over the
65-year period of the study. The observed trends provide a contextual back-
ground to understand the modulation of LLJ activity by ENSO and PDO
phases. While we show trends in LLJ types (Fig. 2), we did not analyze trends
in ENSO or PDO phases themselves, so any potential shifts in their frequency
were not examined in this study. By identifying these trends, we can better
interpret how ENSO and PDO influence LLJ behavior within the broader
context of changing climatic conditions. Positive trends in frequency are
statistically significant for the Northern and Andes types, but Central LL]Js
display a significant negative trend (Fig. 2b-d). Interestingly, the Northern LLJ
type also shows a positive significant trend in wind speeds (850-hPa) (Fig. 2e).
These results suggest that the frequency and intensity of LL]s in the northern
Andes have both increased in the last 65 years, which is consistent with Jones"”.

The role of large-scale remote forcings
To examine the role of large-scale forcings connected with trends in fre-
quency and intensity of the LL], we employ the National Oceanic and
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depicting the direction and relative magnitude of the winds. Nighttime corresponds
t023-09 UTC (19:00-05:00 Bolivia local time). Black boxes show the spatial domain
masks to identify LLJs.
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Fig. 2 | Frequency and wind speed trends of austral summer LL]Js. a Bars represent
monthly mean frequencies of three LLJ types. Dashed lines indicate the mean fre-

quency of the LLJ types across all months. Time series of LLJ frequency for Central
(b), Northern (c), and Andes (d) types from 1957-2022. e Time series of LL] wind
speeds for the Northern type from 1957 to 2022. Dashed lines show trends with gray
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shading representing confidence intervals. The statistical significance of the trends,
determined using Mann-Kendall tests, is shown in the insets. Monthly LL] fre-
quency is calculated by dividing the number of LL] days by the total number of days
in each month.

Atmospheric Administration (NOAA) ENSO and PDO seasonal indices
along with ERA5 reanalysis. As the warm and cold phases of the PDO can
enhance El Nifio and La Nifia episodes, respectively, and thus amplify their
effects’™”, we examined the in-phase and out-of-phase ENSO-PDO com-
binations. The relatively long data records and large number of LL]J cases
facilitate an investigation of interannual-to-decadal large-scale forcings on
the LLJs and give rise to more robust conclusions.

The variability of LLJs on interannual-to-decadal time scales is shown
in Fig. 3, where the temporal distributions of the three LLJ types are color-
coded according to warm (red), neutral (gray), and cold (blue) phases of
ENSO and PDO to illustrate the joint impacts of ENSO and PDO. Note that
there is only 1 year of El Nifio+Cold cases, and this combination is not
discussed further. For the Central LL]J, the highest frequency is observed
during El Niflo+Warm PDO, where 459 events were recorded, accounting
for 48.3% of the total LL] events for that ENSO-PDO joint phase (Fig. 3d). In
contrast, the lowest frequency for the Central LLJ occurs during La Nina
+Cold with 229 events The Northern LL] displays a different pattern, with
the highest frequency during La Nifia+Cold, recording 260 events (Fig. 3e).
The Andes LLJ, on the other hand, shows its highest frequency during La
Nina-+Cold phases, with 531 events, representing 52.1% of the total for that
joint phase (Fig. 3f). The lowest frequency of the Andes LL] is during El Nifio
+Warm PDO, which is 37% of the total for that joint phase.

Overall, the analysis reveals distinct patterns in the frequencies of
Central, Northern, and Andes LLJs during different ENSO-PDO phases.
The Central LLJ shows a strong dominance during El Nifio conditions,
particularly when coupled with a warm PDO, while the Northern LLJ
exhibits higher frequency during La Nifia and cold conditions, with reduced
occurrences during El Nifio. The Andes LLJ exhibits a clear preference for La
Nifia phases, especially when combined with cold PDO, highlighting the
variability in the behavior of these LL]s in response to large-scale climatic
oscillations.

Figure 4 displays heatmaps of differences in proportions of LLJ
occurrences (Central, Northern, and Andes) for various joint ENSO-PDO
phases. For the Central LLJ, there are significantly higher occurrences of
events during the El Nilo+Warm/El Nifio +Neutral compared to La Nina
+Cold, La Nifia +Warm, La Nifia +Neutral, Neutral4-Cold, and Neutral
+Neutral, as indicated by the red color and asterisks (Fig. 4a). However, El
Nifio+Warm has a statistically higher frequency than both El Nifio
+Neutral and Neutral+Warm. Additionally, El Nifio+Neutral is not
higher than Neutral+Warm. The Central type also has significantly lower
occurrences during the La Nifia+Cold compared to all other phase com-
binations. This suggests that the La Nifia +Cold is less favorable for the
occurrence of Central LL] compared to other phases, particularly those
involving El Nifio or neutral ENSO with varying PDO phases. The Northern
LLJ shows a contrasting pattern with a predominance of red cells, showing
statistically significant higher occurrences for La Nifa+Cold/Warm com-
pared to El Nifio+Neutral/Warm, La Nina+Neutral, and Neutral+Warm
(Fig. 4b). For the Andes type, La Nifla+Cold exhibits higher occurrences
compared to El Nifo+Neutral/Warm, La Nia +Warm, and Neutral
-+Warm/Neutral, as indicated by the red cells and asterisks. In addition, La
Nina+Neutral also shows significant differences but lacks Neutral+Neu-
tral, but both La Nifia+Cold and Neutral PDO are statistically more fre-
quent than La Nifa+Warm.

Figure 5 illustrates the distribution of persistence for different LL] types
(Central, Northern, Andes) during various combinations of ENSO and
PDO phases. The violin plots summarize the data distribution, with
embedded boxplots highlighting the median and interquartile range, and
outliers marked as black dots. For the Central type, the majority of the values
cluster around lower persistence days, with occasional outliers indicating
longer persistence of events (Fig. 5a). Notably, the El Nilo+Warm exhibits
more persistent LL]s, as indicated by the higher medians and the presence of
several outliers reaching above 10 days. However, Neutral+Neutral and
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Fig. 3 | LLJ frequencies during ENSO and PDO phases. Annual frequencies (%)
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Fig. 4 | Heatmaps of differences in LLJ occurrences during ENSO-PDO phase
combinations. Heatmaps display the differences in percentages of events in

a Central, b Northern, and ¢ Andes LLJs for various combinations of ENSO and
PDO phases. The x axis and y axis represent different phase combinations, with
colors indicating the magnitude and direction of the differences in occurrences: blue

signifies that the occurrence is lower for the phase combination on the x axis
compared to the phase combination on the y axis, while red signifies higher
occurrences for the phase combination on the x axis compared to the phase com-
bination on the y axis. Asterisks (*) denote statistically significant differences
determined using two-tailed Z-tests (P < 0.05).
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geopotential height (m) (Z200) and 200-hPa zonal wind (U200) anomalies during

120°E  150°E  180°  150°W  120°W  90°W

the Central LL] type and e El Nifo plus Warm PDO, f El Nifo plus Cold PDO, g La
Nina plus Warm PDO and h La Nifa plus Cold PDO phases. Z200 anomalies are
shown in colors. Positive (negative) U200 anomalies are shown in solid (dashed)

contours (1 ms™

significant at a 95% confidence level.

interval), with zero contour omitted. Anomalies are statistically

npj Climate and Atmospheric Science| (2024)7:297


www.nature.com/npjclimatsci

https://doi.org/10.1038/s41612-024-00852-6

Article

Neutral+Warm also exhibit long Central LL] persistence. The Northern
type shows relatively low variability across the different ENSO and PDO
phases (Fig. 5b). The persistence values are generally lower, with fewer
outliers compared to the Central and Andes types. This indicates that none
of the phase combinations result in significantly higher persistence for
Northern LLJs. For the Andes type, while several phase combinations, such
as La Nifa+Neutral and Neutral+Neutral, show comparable median
persistence, the La Nifia + Cold phase stands out with the highest number of
outliers (Fig. 5¢). Our findings suggest that the changes in frequency and
persistence are more pronounced under the different ENSO and PDO
phases. However, the mean wind speed, used as a proxy for LL] intensity, did
not show a clear pattern of variation in relation to these phases, and those
results are not included here.

To further examine large-scale atmospheric circulation patterns,
Figs. 6-8 show composites of meridional winds (850-hPa, V850), zonal
winds (200-hPa, U200), and geopotential height (200-hPa, Z200) anomalies
during the favored phases of ENSO and PDO combinations for each LLJ
type. For the Central LLJ, during El Nifio+PDO phases (Figs. 6a, b and S2a),
V850 anomalies generally display southerly components over northern
South America and northerly components over southern South America,
which may reduce the formation of Northern LL]Js. The upper-level Z200
anomalies show a wave train pattern extending from the Pacific into South
America, potentially modulating the subtropical jet stream. Positive U200
wind anomalies are observed crossing the central Andes and interacting
with positive/negative Z200 anomalies in subtropical South America during
El Nifio+Warm/Neutral PDO, possibly enhancing the subtropical jet.
During La Nifa, the upper-level conditions typically feature stronger zonal
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Fig. 7 | Composites of austral summer low-level (850-hPa) meridional winds and
upper-level anomalies during Northern LLJ and ENSO-PDO phases. The left
column shows 850-hPa meridional wind (V850) anomalies (m s ') during Northern
LLJ and a EI Nifio plus Warm PDO, b El Nifo plus Cold PDO, ¢ La Nifia plus Warm
PDO and d La Nina plus Cold PDO phases. The right column shows 200-hPa
geopotential height (m) (Z200) and 200-hPa zonal wind (U200) anomalies during

flows with positive anomalies over the central Pacific, which may stabilize
the atmosphere and reduce convective activity, potentially reducing the
Central LL] occurrences (Fig. 6g, h). However, during La Nifia+Warm PDO
(Fig. 6¢), V850 anomalies show strong northerly winds over central South
America, indicating that individual LLJ events may be more intense during
this phase. Despite these wind anomalies, the overall frequency of Central
LLJ events tends to be higher during El Nifio + Warm PDO phases.

For the Northern LL]J, V850 wind anomalies show extended southerly
components over central South America during Warm PDO phases
(Fig. 7a, ¢). This configuration indicates stronger southward wind flow, which
might influence the typical northward transport of moist air associated with
the South American Monsoon System (SAMS). La Nifia combined with Cold
PDO phases (Fig. 7, d) tends to show northerly wind anomalies over northern
South America, which could strengthen the southward flow. The upper-level
anomalies are marked by negative anomalies over the central Andes which
may weaken the subtropical jet and suppress the occurrence of the Central
type (Fig. 7g, h). During La Nifia, the Andes type has negative V850 anomalies
in the North Atlantic and flows along the eastern slopes of the northern and
central Andes (Fig. 8¢, d). In the upper levels (Fig. 8e-h), the zonal propagation
of 2200 anomalies seems to have less influence on the subtropical jet, though
La Nifia+Warm PDO favors northerly winds, potentially supporting Andes
LL] formation (Fig. 8c). The La Nifa+Cold PDO combination also reinforces
northerly wind patterns, particularly in the northern Andes domain.

It has been demonstrated that ENSO modifies the mean atmospheric
state and, thus, rainfall and temperature variability in South America (e.g.”>™).
Additional understanding is gained by compositing low-level meridional
winds under different combinations of ENSO-PDO phases to examine their
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shown in colors. Positive (negative) U200 anomalies are shown in solid (dashed)
contours (1 m s~ interval), with zero contour omitted. Anomalies are statistically
significant at a 95% confidence level.
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in-phase and out-of-phase contributions to changes in the low-level mer-
idional circulation (Fig. 9). Note that composites are calculated by averaging
V850 anomalies during all days in the respective PDO and ENSO phases
regardless of the occurrence of LL]Js.

During the El Nifio+Warm PDO phase, the V850 anomalies enhance
northerly winds over the central Andes, promoting the formation of the
Central LLJ type (Fig. 9a). When La Nifia coincides with Warm PDO, the V850
anomalies show enhanced northerly winds over the northern Andes (Fig. 9b).
The differences in composites (Fig. 9c, d) suggest that the in-phase component,
ie., El Nifio minus La Nifia (Fig. 9c), dominates the out-of-phase component,
ie, El Nifo plus La Nifia Warm PDO phases (Fig. 9d). The El Nifio+Cold
PDO phase is less favorable for any specific LLJ type, creating a complex and
variable atmospheric environment (Fig. 9¢). The Cold PDO tends to moderate
the typical El Nifio effects, leading to less pronounced atmospheric stability and
moisture transport”. In contrast, changes in the mean atmospheric state
during La Nifia years occurring in Cold PDO phases favor the occurrence of
the Northern and Andes types (Fig. 9f). The differences in composites
(Fig. 9g, h) also indicate that the linear component dominates. Furthermore,
ENSO teleconnections in low-level circulation appear to be stronger over South
America during the Cold PDO. During La Nifia plus Cold PDO phases, the
differences in the anticyclonic activity in the North Atlantic Ocean (Fig. 9b, f)
and the waveguides in the Southern Hemisphere are enhanced (Fig. 9¢, g),
creating more favorable conditions for the Northern and Andes LLJs.

When the PDO is neutral during El Nifio conditions, enhanced
northerly winds over the central Andes continue to support the Central LLJ
(Fig. 9i). Similarly, during La Nifia4-Neutral PDO, the V850 anomalies

continue to show northerly winds over the northern Andes, but it is weaker
compared to the La Nifia+Cold PDO phase. Comparing these phases, El
Nifio phases, especially when combined with a warm PDO, consistently
favor the Central LL] in the central Andes. La Nifia phases, particularly with
a cold PDO, enhance northerly winds, favoring the Northern and Andes
LLJs. Neutral PDO phases moderate these effects, maintaining the influence
of ENSO-driven patterns on LLJ formation.

Precipitation extremes during LLJ types

Moisture transport by LLJs is critical in modulating precipitation variability
in South America as well as the formation and maintenance of MCS
(e.g."""*"*'°). For the Northern LL], La Nifia years favor longer precipitation
events than El Nifo years. In contrast, El Nifio years favor persistence with
longer duration than in La Nifia years during Central types'’. The previous
results indicate that the Central type is more likely to occur during El Nifio
+Warm/Neutral PDO, while the occurrence of the Northern type is favored
by La Nifia4+Cold/Warm PDO phases. Therefore, the specific purpose is to
investigate how the combination of ENSO-PDO phases influences the
frequency of extreme precipitation events in South America, particularly
through their modulation of LLJ behavior. We hypothesize that these cli-
mate oscillations not only impact the occurrence of LL] types but also
directly influence the frequency of extreme precipitation.

The importance of LLJs in modulating precipitation variability is further
investigated by calculating precipitation extreme anomalies in the SESA and
western Amazon Basin (black boxes in Fig. 10). During Central LLJs, positive
precipitation extreme anomalies are spatially coherent in the SESA region
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(Fig. 10a), consistent with the influence of the Central type on MCS
formation'®. In contrast, during Northern LLJs (Fig. 10b), a large area of
precipitation extreme anomalies extends over the Amazon Basin and western
Brazil. While there are small pockets of precipitation extremes in the SESA
domain, there is a clear reduction of extremes. Precipitation extreme
anomalies during Andes types (Fig. 10c) show positive anomalies over parts of
the Amazon Basin, Central Brazil, and SESA. To examine the relationship
between extreme precipitation and LLJs, Fig. 10d shows scatterplots of the
frequency of precipitation extreme anomalies and LL]Js frequency. The rela-
tionships are separated by Central, Northern, and Andes types and show
positive correlations, especially for the Northern LL]J type and precipitation
extremes in the northwestern Amazon. Lastly, Fig. 10e shows the seasonal
frequency of precipitation extreme anomalies during 1981-2021 associated
with each LLJ type. An increase in precipitation extremes over the western
Amazon is related to the increase in the Northern LLJ activity (compare Fig. 2).

Figure 11 shows the seasonal frequency of extreme precipitation events
across different types (Central, Northern, and Andes) under varying com-
binations of the ENSO-PDO. Due to the small sample size for the El Nifio
+Cold and Neutral+Warm during the CHIRPS periods, these combina-
tions are not shown in the plot. For the Central Andes, the occurrence of
extreme precipitation events is most frequent during El Nifio phases, par-
ticularly when the PDO is neutral or warm (Fig. 11a). The Central LLJ
positive influence on precipitation is evident from the higher median fre-
quencies of extreme events during El Niflo+Warm/Neutral phases. In the
Northern Andes, extreme precipitation events are favored during La Nifa
phases, especially when combined with a Cold PDO (Fig. 11b). During La
Nina plus Cold PDO phases, the meridional circulation is enhanced along
the eastern Andes, strengthening the Northern LLJ and leading to increased
precipitation extremes in the exit region. The Andes type shows a complex
relationship with extreme precipitation (Fig. 11c). These events are not
favored by any single ENSO-PDO phase combination strongly but exhibit
variability depending on the interactions between the phases.

Discussion

This study uses 65 years of ERA5 reanalysis to investigate the variability of LLJs
along the eastern Andes on interannual-to-decadal scales. The research focuses
on the joint variability of ENSO and PDO phases and their influence in con-
trolling the activity of LLJs in the northern and central Andes. The results reveal
distinct patterns in LLJ behavior contingent on ENSO and PDO phases,
demonstrating the complex interactions between these large-scale forcings and
LLJ dynamics. ElNifio years during Warm and Neutral PDO phases were found
to favor high frequency and persistence of the Central LL] type while inhibiting
the formation of LLJs in the northern Andes. Conversely, La Nifia years during
Cold PDO phases enhance the frequency and persistence of the Northern and
Andes LL] types and suppress the Central LLJ type. The influence of out-of-
phase ENSO and PDO combinations on LLJs is notably weaker, highlighting the
critical role of phase synchronization in modulating LLJ activity.

The frequency and intensity of the Northern LL] type show positive
trends in the sixty-five years of ERA5 reanalysis. In contrast, the Central type
shows a statistically significant negative trend in the frequency of occurrence
but not in its intensity. While the frequency of the Andes type also shows a
positive increase, the increase in its intensity is not statistically significant.
The increase in frequency and intensity of LLJs in the northern Andes is
consistent with Jones, who used a different methodology of LLJs identifi-
cation and found similar positive trends'’. The temporal distributions of LL]
types differentiated by ENSO and PDO phases (Fig. 3) show a higher
number of joint occurrences of La Nifia and Cold PDO phases since the
early 2000s than in the preceding period. These conditions favor the activity
of the Northern type and suppress the occurrence of the Central LL]. Jones
found negative trends in wind shear anomalies over the central Andes,
which, therefore, create less favorable conditions for the Central LLJ type”.

LLJs transport significant amounts of warm and moist air from
the equatorial Atlantic and Amazon Basin and, consequently, supply the
moisture for the formation of MCSs'* . This study contextualizes the
findings within broader precipitation extreme variability across South
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America. In summary, the Central LL] is most active and promotes extreme
precipitation during El Nifio phases with a Warm or Neutral PDO. The
Northern LL] is favored during La Nifia phases with a Cold PDO, leading to
increased precipitation extremes in the northern Andes regions. The Andes
LLJ, representing simultaneous occurrences of LL]Js in both central and
northern Andes, is influenced by La Nina phases, especially with a Cold
PDO, contributing to extreme precipitation events across a broader area.
These findings align with the understanding that ENSO and PDO phases
modulate LLJ activity and extreme precipitation patterns in South America.

Zhang et al. reported a noticeable multidecadal positive moistening
trend during the twentieth century over southeastern South America, fol-
lowed by a decadal negative trend in rainfall starting around 2000". They
concluded that the decrease in decadal rainfall is primarily attributed to the
observed strengthening of the Pacific trade winds, which is likely associated
with natural Pacific decadal variability"’. While earlier studies'**” identified
positive precipitation trends in southern Brazil of SESA, our analysis using
ERA5 and CPC data shows no significant positive precipitation trends in
SESA from 1957 to 2022 (Supplementary Fig. 4). In addition, the CHIRPS
dataset reveals no significant trends in extreme events during Central and
Andes LLJ types over the past 40 years. Both Central and Andes LLJs
influence precipitation in the SESA region, but their contributions and
trends differ. The Central LLJ, with a significant decreasing trend in fre-
quency, is less frequent during recent decades, corresponding to fewer El
Nifio events during Warm/Neutral PDO phases. Conversely, the Andes LLJ
shows a significant increasing trend in frequency, primarily driven by La
Nifia phases with Cold PDO, contributing more to recent extreme pre-
cipitation events. However, Andes LL]Js exhibit low correlations with SESA
precipitation extremes (0.51, Fig. 10d), indicating that while they play roles

in modulating precipitation, other factors also contribute to precipitation
variability in the region.

Changes in the activity of LL]s in the northern and central Andes can be
viewed as resulting from changes in large-scale atmospheric circulation on
interannual-to-decadal time scales. During El Nifio events, the warming of the
central and eastern Pacific leads to a weakening of the Walker circulation,
characterized by weaker trade winds and an eastward shift of the convection
zone™*****, This alteration in atmospheric circulation results in anomalous
westerly winds at lower levels and the strengthening of the subtropical jet, dis-
rupting the typical easterly flow and enhancing the formation of the Central
LLJ"**. In contrast, during La Nifia events, cooler SSTs in the central and
eastern Pacific strengthen the Walker circulation, enhancing the easterly trade
winds***~. These enhanced easterlies can extend into the northern and eastern
Andes, promoting the formation of the Northern LL]. In addition, the Cold PDO
phase, characterized by cooler sea surface temperatures (SST) in the North
Pacific, can reinforce La Nifia conditions by further enhancing the trade winds
and altering the subtropical jet™”. This explanation is consistent with the changes
in the mean atmospheric state during La Nifia years in Cold PDO phases (Fig. 9f),
which favor an increase in the activity of the Northern and Andes LLJs.

Some studies indicated that the cooling trends observed in the tropical
Pacific might be largely attributed to internal climate variability mechan-
isms, notably the Pacific Decadal Variability (PDV), as opposed to a direct
result of anthropogenic factors. Moreover, it is anticipated that this cooling
will eventually stabilize at a neutral state before transitioning into a period of
warming'*". If this transitioning scenario materializes to more frequent El
Nifio years occurring during Warm/Neutral PDO phases, our analysis
indicates a potential intensification of the Central LLJ type, while simulta-
neously reducing the activity of the Northern and Andes LLJs. These

npj Climate and Atmospheric Science| (2024)7:297


www.nature.com/npjclimatsci

https://doi.org/10.1038/s41612-024-00852-6

Article

Central Northern
1.00
L]
L]
L]
1.01
= 0.75
o
17}
©
o}
@2
&
>
©
S,
)
c 0.50
[0}
=}
o
Qo5
e

0.25

==

Andes

- Central
- Northern
- Andes

> S > S > > > > > O > > >
> Q) Gl &3 G G S G & G G & G ) >
S N P § PRGN R IR IS NI
07 & ’ ol \‘q}/ N 07 & g @7 \@}/ > I ’ o7 \{2}/ >
o/ Q7 - Q7 & D7 7 O/ > . o
SRS NG SRS O RG SRS NG
2 “ e N N S < b2 A N v ® < < vV @ ¥

Fig. 11 | Seasonal frequency of extreme precipitation events of LLJs during

ENSO-PDO phases. The boxplots represent the distribution of frequencies during
different phases of the ENSO and PDO from 1981 to 2021. El Nifio plus Cold PDO is
excluded due to insufficient samples during this period. The green, orange, and blue

colors correspond to a Central, b Northern, and ¢ Andes LL]Js, respectively. The
central line within each box plot indicates the median frequency, while the edges of
the box mark the interquartile range (IQR). Whiskers extend to the 1.5*IQR, and
outliers are represented by individual points.

changes are likely to exacerbate strengthened precipitation variability in
South America, leading to more frequent extreme rainfall events in SESA
and inducing drier conditions within the southwestern Amazon Basin. To
fully comprehend these complex interactions, there is a pressing need to
investigate deeper into the connections between large-scale atmospheric
forcings, the behavior of LLJs, and precipitation variability in South
America. Assessing the fidelity of global climate models in representing
these processes is a critical next step. It is essential to improve climate models
to more accurately simulate the observed relationships and, thus, enhance
predictive capabilities and mitigation strategies.

Methods

The European Centre for Medium-Range Weather Forecasts reanalysis v5
(ERA5)™ (available from 1940 to 2023) was used to identify LL]Js, clima-
tology, variability, and large-scale forcings. ERA5 was used with
0.25°x 0.25° latitude/longitude resolution during austral summers
(December 1st-Feb 28, 1957-2022) (DJF). Variables used include u-velo-
city, v-velocity at 850-hPa and 700-hPa pressure levels, geopotential height
at 200-hPa, and precipitation. Precipitation was used with daily resolution
and all other variables at the hourly resolution. We found a discontinuity in
ERAS data in representing the frequency and intensity of all LLJ types from
1940 to 1956 and, therefore, the analysis excluded data prior to November
1957 (see examples in Supplementary Fig. 5). LLJ definition was based on:
(a) nighttime (23-09 UTC) wind speed (850-hPa) greater than the 75th
percentile of the monthly frequency distribution; (b) wind shear between
850-hPa and 700-hPa greater than the 75th percentile; and (c) spatial extent
is identified by contiguous regions of wind speeds greater than 10 m/s. The
detailed LL] identification method is described in ref. 10. The Northern LLJ
occurs along the eastern Andes from Venezuela to Peru, while the Central
LLJ occurs in Bolivia and Paraguay. The Andes LLJ occurs simultaneously in
the northern and central Andes. The Peru LLJ type occurs primarily in

central eastern Peru and is characterized by its short-lived nature and small
spatial extent. The Peru-type LLJ, being the least frequent, was not included
in this study. LLJ frequency refers to the total days of LL] occurrence for each
year from December to February, and the LLJ intensity refers to the mean
wind speed (850-hPa) in the LLJ spatial extent where the wind speed is
greater than 10 m/s. Figure 1 shows the annual summertime time series of
frequency and intensity as well as linear trends for each type. Trends are
based on Mann-Kendall tests statistically significant at 95% confidence.

ENSO dlassification was based on the Climate Prediction Center, National
Centers for Environmental Prediction (https://origin.cpc.ncep.noaa.gov/) from
1957 to 2022. The Pacific Decadal Oscillation (PDO) index data was obtained
from the National Centers for Environmental Information (NCEI) (https://
www.ncei.noaa.gov/access/monitoring/pdo/) and covered the period from
December 1957 to February 2022. The mean (1) and standard deviation (o) of
the PDO index for the December to February period were calculated. A clas-
sification function was developed to categorize the PDO index values into three
phases: Warm, Cold, and Neutral. The criteria were based on the mean and
standard deviation of the PDO index, using a 0.5 standard deviation threshold:
Warm Phase: PDO >p 4 0.50; Cold Phase: PDO <y — 0.50; and Neutral Phase:
p— 050 <PDO < p+ 0.50. The dominant phase for each season year was
determined by identifying the phase with the highest count within that season.
To discriminate the joint effects of PDO and ENSO phases on the types of LLJ,
they are combined for eight joint phases, including EN+ Warm PDO, EN
+Cold PDO, EN+Neutral PDO, LN+Warm PDO, LN+ Cold PDO, LN
+Neutral PDO, Neutral ENSO+ Warm PDO, Neutral ENSO+ Cold PDO.
For each pair of phase combinations, we constructed a contingency table and
performed a Two-Tailed Z-test to compare the LLJ occurrences. The pro-
portions of occurrences were calculated for each combination, and the differ-
ence in these proportions between the two combinations was computed. A P
value threshold of 0.05 was used to determine significance, with P values below
this threshold indicating significant differences.
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To focus on the extratropic Rossby wave trains affecting South
America®, daily ERA5 200-hPa geopotential height was filtered to retain
variations between 2.5 and 30 days and eastward propagating 1-15 zonal
wavenumbers (Figs. 6-8). To show circulation anomalies during LLJs, the
annual cycle was removed from the time series of U and V at 850-hPa and
200-hPa by subtracting the climatology determined with the first two har-
monics. Basic states comparison (Fig. 9) uses the V850 anomalies during El
Nifo and La Nifia combined with Warm, Cold, and Neutral PDO phases
during DJF. Anomalies statistical significance is based on two-sample ¢ test
at 95% confidence level.

Daily precipitation data over South America were obtained from the
ERAS5 precipitation (0.25°, 1957-2023), CPC Global Unified Gauge-Based
Analysis of Daily Precipitation (0.5°, 1979-2023)**, and the Climate Hazards
Group InfraRed Precipitation with Station data (CHIRPS)*. Supplementary
Fig. 4 presents the aggregated precipitation data for the South American
subtropical region (SESA). It is derived by first summing the daily pre-
cipitation amounts over the DJF season and then calculating the average of
these sums across the SESA region. While all three precipitation datasets
have inherent biases, ERA5 and CPC show trends opposite to those reported
in the literature over the SESA region (Supplementary Fig. 4), we based our
results on CHIRPS data at 0.05° resolution from 1981 to 2022. Extreme
precipitation events were defined as the 95th percentile of daily precipita-
tion. To show the LLJ influence on precipitation extremes, we defined the
frequency of LLJ precipitation extremes anomaly as:

— (_LLJ extremes events 9
Anomaly LL] precipitation extremes — <#LLI precipitation evean) x100%

_ #No_LL] extremes events
#No_LL] precipitation events

)100%

In this equation, ‘#‘ denotes the number of events, and LLJ refers to the
type of jet (Central, Northern, and Andes). Given that the number of LLJ
events is only a subset of all precipitation events, we computed the anomaly
as the difference between the ratio of LL] extreme events and the ratio of
non-LLJ extreme events. The resulting precipitation extremes anomaly is
then multiplied by 100 and expressed as a percentage.

Data availability

ERA5 data are available at the Copernicus Climate Change Service (C3S)
Climate Date Store (https://doi.org/10.24381/cds.bd0915c6). CPC data are
available from (https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.
html). CHIRPS data are available from (https://data.chc.ucsb.edu/
products/CHIRPS-2.0/).

Code availability

Interactive Data Language (IDL) computer code was used for LLJ identifi-
cation and geopotential height filtering. All figures in this paper were pro-
duced on the NCAR Cheyenne server in Python and the source codes can be
obtained upon request to the corresponding author.
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