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Quantum repeaters are critical to the development of quantum networks, enabling rates of entanglement

distribution beyond those attainable by direct transmission. We consider multiple continuous-variable, squeezed

light-based entanglement flows through a repeater involving noiseless linear amplification and dual homodyne

detection. By analyzing a single-repeater-enhanced channel model with asymmetric half-channel losses across

the repeater, we determine placements of the central repeater hub in a four-user hub-and-spoke network that

enhance the rate of each entanglement flow.
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I. INTRODUCTION

The second quantum revolution [1] has given rise to

novel technologies such as quantum computation [2], quan-

tum sensing [3], and quantum cryptography [4–6]. There is a

growing interest in forming networks of quantum computers

and sensors for distributed applications. Developing quantum

networks and interconnecting them to form a global-scale

“quantum internet” [7,8] requires reliable quantum commu-

nication over long-haul interconnecting links. Due to their

ability to be transmitted over vast distances photons are a nat-

ural choice of information carrier. Consequently, the primary

challenge to overcome in realizing quantum networks and the

quantum internet is photon loss in the form of fiber losses, free

space attenuation, coupling losses, and detector inefficiencies.

In classical communications, data rate deterioration due to

photon loss can be mitigated using electrical regenerators or

optical amplifiers at intermediary nodes. In quantum com-

munications, the directly analogous deterministic quantum-

limited amplifiers (both phase insensitive and phase sensitive)

are ineffective in mitigating the effects of photon loss [9].

Thus, special purpose quantum regenerative repeaters, in the

form of quantum processors equipped with optical sources,

detectors, and quantum memories have been proposed to “ef-

fectively” amplify quantum information-bearing signals and

extend the range of communication. A variety of different

quantum repeater architectures have been analyzed. They dif-

fer in the type of quantum information encoding [10,11], or in

the type of the underlying protocols [12].

For the so-called continuous-variable (CV) quadrature-

based bosonic encodings [11] such as the coherent and

squeezed states of light, there are several proposed quantum
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repeater architectures [13,14]. One proposed architecture in-

volves the use of the quantum scissor (QS) [15]. The QS is

a nondeterministic operation that, when successful, approxi-

mates the action of a noiseless linear amplifier (NLA) on low

mean photon number states [16]. In CV entanglement distri-

bution based on transmission of two-mode squeezed vacuum

(TMSV) light from spontaneous parametric downconversion,

the QS acting on the lossy transmitted mode can probabilis-

tically herald high-purity states of higher entanglement, in

terms of the logarithmic negativity and entanglement of for-

mation, than the original lossy TMSV state [17]. In particular,

it is possible to tune the gain parameter of the QS such that the

heralded states have distillable entanglement [18] exceeding

the direct transmission entanglement distribution capacity of

the channel, Cdirect, which can be expressed as [19]

Cdirect = −log2(1 − η) ebits/mode

at any given transmission distance, where η is the transmis-

sivity of the channel [20]. Such distilled entangled states

shared over two adjacent quantum links can then be used

to extend the range of entanglement via entanglement swap-

ping. The QS has been shown to support quantum repeater

action for entanglement distribution when used with TMSV

light sources, mode multiplexing, and multimode quantum

memories [14,21,22]. The entanglement distribution rate vs

end-to-end distance has been determined also for the limiting

case of an ideal NLA consisting of infinitely many QSs [23].

We consider the CV repeater architecture based on mul-

tiplexed TMSV state transmissions, QS-based entanglement

distillation, and coherent dual homodyne detection (DHD)

based entanglement swapping in the context of a hub-

and-spoke network. The network consists of quantum links

between four end users and the central repeater hub node,

with DHD being performed at the hub between any two links.

Our paper considers a generalized repeater-enhanced chan-

nel model with nonsymmetric parameters (i.e., transmissivity,

scissor gain, and squeezing amplitude) for the two links being

connected by the repeater node. This general model allows us
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FIG. 1. (a) We model two-user channels based on two sets of asymmetric half channels; each comprises a two-mode squeezed vacuum

(TMSV) source and a quantum scissor (QS) separated by a pure loss channel. One mode from each half channel is mixed using dual homodyne

detection (DHD) resulting in the two-user channel. (b) Our network model consists of four users, each possessing the necessary equipment to

function as either “Alice” or “Bob,” placed on the vertices of a square. They all share a single repeater node “Charlie” placed somewhere in

the center of the square. We compare the rates we achieve to the repeaterless capacity for both the shortest path between the users (ηmin) and

the path going through our Charlie node (η1η2).

to explore arbitrary placements of our hub repeater node that

could cater to multiple entanglement flows between different

pairs of end users, creating a nontrivial optimization problem.

Moreover, the model also corresponds to and enables us to

analyze more realistic real-world network scenarios than pre-

viously considered grid networks with regular spacings. Using

provable lower bounds on the distillable entanglement of the

final two-mode state, we find placements for which the re-

peater hub can help surpass the repeaterless capacity for each

entanglement flow within a square network. Our paper paves

the way towards implementing repeater-enhanced distributed

sensors [24–27] and long baseline telescopes [28,29], which

are important applications of the quantum internet.

The paper is organized as follows. In Sec. II we explain

our repeater model and motivate a definition for entanglement

rate. Section III contains our results. In Sec. IV we discuss nu-

ances in our model, summarize, and look at future directions

for this work.

II. REPEATER MODEL AND RATE FORMULA

Our model of a two-user repeater-enhanced end-to-end

quantum channel with nonsymmetric parameters for entangle-

ment distribution is shown in Fig. 1(a). It consists of two sets

of multiplexed, adjacent “half channels,” one from each of the

two users to a repeater node between them. Each half channel

consists of a TMSV source, pure-loss transmission of arbi-

trary transmissivity of one of two modes in the TMSV state,

and a QS-based approximate NLA. A successfully heralded

half channel from each of the two sets is picked with the help

of a switch and the two are connected by a coherent DHD

entanglement swap operation at the repeater node, resulting

in the two-user end-to-end channel. Below we mathematically

describe each of these elements.

The TMSV state is traditionally described in terms of

the mode annihilation operators, â and b̂, and the squeez-

ing operator S(ζ ) = eζ ∗âb̂−ζ â†b̂†

acting on the joint vacuum

state |0, 0〉AB. We find it useful to expand this in the

Fock basis:

|Ç〉AB ≡ S(ζ ) |0, 0〉AB =
√

1 − Ç2

∞
∑

n=0

Çn |n, n〉AB , (1)

where we take ζ � 0 and define Ç ≡ tanh(ζ ) so that 0 �

Ç < 1. When one of the two modes from the TMSV state is

transmitted through a pure loss bosonic channel of transmis-

sivity η, the distillable entanglement of the distributed state in

the limit of infinite squeezing attains the capacity of the un-

derlying lossy bosonic channel for entanglement distribution.

This can be shown by calculating the reverse coherent infor-

mation (RCI) based Hashing lower bound on the distillable

entanglement of the lossy TMSV state, which in the limit of

Ç → 1 attains its maximum value that matches the capacity

Cdirect [30].

The action of an ideal NLA on a generic quantum state |È〉
is defined as

|È〉 ≡
∞

∑

n=0

cn |n〉 �→ T̂∞ |È〉 = A

∞
∑

n=0

gncn |n〉 , (2)

where T̂k sends Fock state |n〉 �→ gn |n〉 if n � k and removes

all higher-order modes. The QS, as shown in Fig. 1(b) of

[21] and experimentally realized in [31], is an operation based

on single-photon injection and detection that can probabilisti-

cally herald an approximation of this transformation for low

mean photon number states. The QS operation truncates the

input quantum state to only its {0, 1} Fock state support, while

amplifying its 1 photon component relative to the vacuum

component. This is mathematically described as

|È〉 �→ T̂1 |È〉 = A(c0 |0〉 + gc1 |1〉), (3)

and succeeds with probability

PNLA =
(1 − Ç2)(Ç2(ηg2 + η − 1) + 1)

(1 + g2)((η − 1)Ç2 + 1)2
, (4)

where A is a normalizing constant and g is called the NLA

gain.

Coherent DHD involves mixing two modes on a 50:50

beam splitter followed by measurement of two conjugate

quadratures on the two modes. When performed on one mode

from each of two half channels at a repeater it accomplishes

entanglement swapping, resulting in conditional long-range

entanglement between the other unmeasured modes of the two
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half channels. The DHD is depicted in the center of Fig. 1(a).

The mixing and measuring can be modeled by projecting

these two modes onto the eigenstates defined by the complex

measurement outcome γ [21]:

|γ 〉FC =
1

√
Ã

∞
∑

n=0

D̂C (γ ) |n〉C |n〉F

=
1

√
Ã

∞
∑

n=0

e−|γ |2/2eγ ĉ†

e−γ ∗ ĉ |n〉C |n〉F , (5)

where the modes F and C are the modes being mixed and

measured with DHD. The mode notation is described in the

Appendix.

In multiplexed quantum repeaters [14,32], where one suc-

cessful half channel is heralded from each set of multiplexed

half channels over adjacent quantum links, a lower bound on

the per-mode end-to-end entanglement distribution rate can

be calculated in terms of the probability that at least one

half channel per link succeeds, the probability of success-

ful entanglement swap, the multiplexing M, and the RCI of

the conditional end-to-end entangled state. For the two-user

channel considered in this paper, where they are connected

through a single repeater node, given identical half-channel

success probabilities p over the two sets of half channels,

entanglement swap success probability q, multiplexing M,

and end-to-end entangled state Ä, the rate lower bound is given

by

R =
IAB(Ä) × q × [1 − (1 − p)M]2

M
ebits/mode, (6)

where IAB(Ä) is the RCI. Because DHD is a deterministic mea-

surement, we use q = 1 in this paper. The improvement due

to multiplexing comes from the ratio [1 − (1 − p)M]2/(M p2)

going above 1 when 1 < M � 1/p2 and p 	 1. This ratio

peaks at about 0.4/p when M ≈ 1/p. For the asymmetric

half channel based on TMSV and QS with a gain g cho-

sen from the power law discussed in [14], in the regime

η 	 1 we have p = PNLA ∼ η1/4. Because IAB(Ä) ∼ η, this

implies Ropt ∼ IAB(Ä)η−1/4 ∼ η3/4, as shown in Fig. 2 as

the solid curve. However, with greater distance this requires

exponentially more multiplexed channels to achieve the opti-

mal entanglement distribution rate per mode.

For a two-user channel between Alice (A) and Bob (B)

obtained by connecting two half channels of, in general, non-

symmetric parameters at a repeater node (C) by DHD (with

outcome γ ), we determine the exact form of the density oper-

ator of the conditional end-to-end quantum state ÄAB(γ ). We

numerically approximate this by truncating it in the Fock basis

to a point where the trace is 99% of the theoretical trace. The

density operator ÄAB(γ ) is normalized as
ÄAB (γ )

Tr[ÄAB (γ )]
, where the

normalization (denominator) is the un-normalized probability

distribution of γ . The eigenvalues of both ÄAB(γ ) and ÄA(γ )

are numerically determined for every γ in the complex plane

that gives a non-negligible RCI and used to evaluate the RCI

lower bound. Using Tr[ÄAB(γ )] for each γ , the entanglement
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FIG. 2. Comparison of all setups. The asymmetric distribution

case is optimal, attaining better-than-repeaterless-capacity scaling

when we allow optimizing the multiplexing factor, M, at every

distance.

rate is averaged over the γ distribution to give us an achievable

entanglement distribution rate which we call the “ergodic”

rate [20]. Details are in the Appendix.

III. RESULTS

We analyze the end-to-end entanglement distribution rate

[per mode, calculated according to (6)] vs distance for a two-

user channel for all three possible different orientations of the

quantum links: (i) the setup shown in Fig. 1(a) where the users

have different equipment, (ii) a setup where both users have a

QS, and (iii) a setup where both users have a TMSV source.

For the case of half channels with symmetric transmission

losses, Fig. 2 plots the rate-distance tradeoff for the different

orientations of half channels; two of these are found to beat the

repeaterless capacity with M = 1000. This figure also shows

that optimizing M at each distance without an upper bound

for the asymmetric orientation leads to better scaling than the

repeaterless capacity. Though this optimization is trivial, we

do not include it in our network entanglement rate analysis

because doing so is infeasible for a physical implementation.

Among the different orientations, the one where one end user

has a TMSV source (Alice) and the other has a QS-based

approximate NLA (Bob), while the intermediate repeater node

(Charlie) has one of each, as shown in Fig. 1(a) yields the

highest rates. All results shown subsequently are for this sce-

nario with M = 1000.

For any placement of Charlie (defined by η1 and η2) we can

optimize the TMSV and NLA parameters (Ç1, Ç2, g1, and g2)

to maximize the entanglement rate. For brevity we choose not

to optimize over Ç1 and Ç2, which we set to 0.3 universally,

and we quasioptimize g1 and g2 by the power law discussed

in [14] using the respective half-channel losses. This gives us

noticeable improvements over fixing g1 and g2.

Now that we can approximate the optimal achievable rate

for a general single repeater-enhanced end-to-end channel, we

set up our four-user network and analyze the rates. Our net-

work model is depicted in Fig. 1(b), consisting of four users

with the one central hub repeater node, “Charlie,” that can act
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FIG. 3. (a) The area within the square beating the shortest path repeaterless capacity between two diagonal users. The size of the area

in which we beat the repeaterless capacity grows to some maximum and then shrinks. (b) The area beating the through Charlie repeaterless

capacity for two side users.

as a repeater for any two users wanting to communicate. We

compare the rates to three baselines: (a) repeaterless capac-

ity through the intermediary node, (b) repeaterless capacity

through the shortest possible path between the nodes, and (c)

rate achieved using only direct DHD at an end user.

We mainly focus on baseline (a), since for long distance

scenarios we envision a practical network will be planned

such that all users have access to at least one shared repeater

node facilitating communication between them, whereas only

a smaller subset of nodes will have the possibility to com-

municate via a direct connection. Baseline (c) can be seen as

an experimentally possible outcome as opposed to the purely

theoretical upper limits of baselines (a) and (b). We set the

squeezing parameter for baseline (c) to be Ç = 0.3 to match

our modeled TMSV sources used in the repeater links, but we

use the optimal setup of assuming the DHD swap occurs at an

end user instead of at the repeater node.

We looked at the percentage of placements within the

square network where our repeater node surpasses the base-

lines listed above for diagonal and adjacent user pairs. For

every network scale we split the network into a 31×31 grid

and calculated the rates of each user pair for every Charlie

placement on that grid assuming standard 0.2-dB/km loss.

Examples comparing our rates to baselines (a) and (b) are

shown in Fig. 3. How often we beat these benchmarks in

the network scenario is shown in Fig. 4. Figure 3 gives some

intuition as to why the curves in Fig. 4 initially rise and then

drop back down again after recognizing that our rates are low-

ered in cases of asymmetric loss. We note that in the case of

baseline (a), placing Charlie at the center of the network will

always service any user pair better than repeaterless capacity

for network scales longer than about 200 km, however in the

case of baseline (b) there is no placement at any scale that

surpasses repeaterless capacity for all user pairs. With our

numerics we were able to service all user pairs better than

benchmark (b) only after placing a minimum of three Charlie

nodes within the network. With respect to both baselines (a)

and (b), we beat the repeaterless capacity by up to a factor

of about 40 (as seen in Fig. 4) and the direct DHD perfor-

mance [baseline (c)] by up to a factor of about 1750. These

correspond to the vertical distances between the asymptoti-

cally parallel lines in Fig. 2.

FIG. 4. (a), (b) The proportion of area beating repeaterless capacity for both a side and diagonal connection. We see an initial increase

followed by a decrease once the asymmetric losses lower our rate too much.
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IV. DISCUSSION

We chose to calculate the so-called ergodic rate rather than

the rate achieved by the average state because it is higher than

the latter while remaining achievable. The ergodic rate can in

principle be attained by considering independent asymptotic

entanglement distillation protocols implemented over multi-

ple infinitesimally small bins spanning the complex plane.

To assess when such CV repeater enhanced networks will

be experimentally viable future work should seek to fully

optimize the half-channel squeezing and gain parameters, cap

the gain parameters at some gmax, and consider a more realistic

model for the half channel inclusive of added thermal noise

from the environment. Currently, the highest recorded gain

approximating an NLA is 12 [31]. In the absence of thermal

noise, we begin to see an improvement in the repeaterless

capacity at a gain of 13.

Another consideration is the minimum equipment required

to access the network. We have found rates in our network to

be optimal when one end user has a TMSV and the other has

a QS. Therefore, in order for all pairs to be able to communi-

cate, every user will need to be in possession of both a TMSV

source and a QS, in contrast to the symmetric case where users

only need one of the two.

By doing an RCI analysis of a generalized link model with

nonsymmetric parameters, we have shown that a QS acting

as an approximate NLA can be used in quantum repeaters that

surpass the repeaterless capacity at large distances. Within our

four-user network we surpass repeaterless capacity through

Charlie for all user pairs with a single Charlie placed in the

center of the square for side lengths greater than 200 km. Us-

ing a model with nonsymmetric half-channel losses allowed

us to show that this setup is robust enough to asymmetries in

loss to be used as a shared repeater node in a network while

allowing most, if not all, user pairs to surpass the repeaterless

capacity simultaneously. Our paper paves the way to realizing

realistic CV repeater networks, including distributed sensing

and computing applications as well as quantum key distribu-

tion over the future quantum internet.
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APPENDIX: DENSITY-MATRIX CALCULATIONS

We begin with the states in [21] and follow much of the

same algebra. We label the modes implied in Fig. 1 as follows:

(1) A, Alice’s stored mode; (2) B, Bob’s stored mode; (3) C,

the mode between Charlie’s QS and the DHD; (4) D, the envi-

ronment mode on the link between Alice and Charlie; (5) E ,

the environment mode on the link between Bob and Charlie;

and (6) F , the mode between Charlie’s TMSV source and the

DHD. This gives us the following independent half-channel

states just before the DHD, written in the Fock basis:

|È〉ACD =

√

1 − Ç2
1

1 + g2
1

[ ∞
∑

n=0

Çn
1 αn

1 |n, 0, n〉ACD

+ g1

√
η1

∞
∑

n=1

Çn
1

√
nαn−1

1 |n, 1, n − 1〉ACD

]

, (A1)

|È〉BEF =

√

1 − Ç2
2

1 + g2
2

[ ∞
∑

n=0

Çn
2 αn

2 |0, n, n〉BEF

+ g2

√
η2

∞
∑

n=1

Çn
2

√
nαn−1

2 |1, n, n − 1〉BEF

]

,

(A2)

where η1 and η2 are the half-channel transmissivities,

Ç1 and Ç2 are the squeezing parameters for Alice and Bob,

g1 and g2 are the QS gains on Alice and Bob’s half

channels, and αk ≡
√

1 − ηk . Taking the inner product of

the tensor product of these two with the measurement

eigenstate

|γ 〉FC =
1

√
Ã

∞
∑

n=0

D̂C (γ ) |n〉C |n〉F

=
1

√
Ã

∞
∑

n=0

e−|γ |2/2eγ ĉ†

e−γ ∗ ĉ |n〉C |n〉F , (A3)

corresponding to dual homodyne detection on modes F and

C, and tracing out the D and E environment modes, we obtain

the final conditional density operator ÄAB(γ ) of modes A and

B (expanded in the Fock basis) given by

ÄAB =
e−γ 2

Ã

(

1 − Ç2
1

1 + g2
1

)(

1 − Ç2
2

1 + g2
2

)

[ ∞
∑

n=0

∞
∑

m=0

Ç2n
1 α2n

1 Ç2m
2 α2m

2

(−γ )2m+1

m!
|n, 0〉 〈n, 0|AB

+
∞

∑

n=0

∞
∑

m=0

g2

√
η2Ç

2n
1 α2n

1 Ç2m+1
2 α2m

2

(−γ )2m

m!
|n, 0〉 〈n, 1|AB

+
∞

∑

n=0

∞
∑

m=0

m
∑

k=max(m−1,0)

g1

√
η1Ç

2n+1
1 α2n

1 Ç2m
2 α2m

2

√
n + 1

(−γ )m+k

k!
γ 1+k−m |n, 0〉 〈n + 1, 0|AB

+
∞

∑

n=0

∞
∑

m=0

m+1
∑

k=m

g1g2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m+1
2 α2m

2 (m + 1)
√

n + 1
(−γ )m+k

k!
γ k−m |n, 0〉 〈n + 1, 1|AB

+
∞

∑

n=0

∞
∑

m=1

g2
√

η2Ç
2n
1 α2n

1 Ç2m−1
2 α2m−2

2

(−γ )2m−1

(m − 1)!
|n, 1〉 〈n, 0|AB
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+
∞

∑

n=0

∞
∑

m=1

g2
2η2Ç

2n
1 α2n

1 Ç2m
2 α2m−2

2

(−γ )2m

(m − 1)!
|n, 1〉 〈n, 1|AB

+
∞

∑

n=0

∞
∑

m=1

m−1
∑

k=max(m−2,0)

g1g2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m−1
2 α2m−2

2

√
n + 1

(−γ )m+k

k!
γ 2+k−m |n, 1〉 〈n + 1, 0|AB

+
∞

∑

n=0

∞
∑

m=1

m
∑

k=max(m−1,0)

g1g2
2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m
2 α2m−2

2 m
√

n + 1
(−γ )m+k

k!
γ 1+k−m |n, 1〉 〈n + 1, 1|AB

+
∞

∑

n=1

∞
∑

m=0

m
∑

k=max(m−1,0)

g1

√
η1Ç

2n−1
1 α2n−2

1 Ç2m
2 α2m

2

√
n

(−γ )m+k

k!
γ 1+k−m |n, 0〉 〈n − 1, 0|AB

+
∞

∑

n=1

∞
∑

m=0

m
∑

k=max(m−1,0)

g1g2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m+1
2 α2m

2

√
n

(−γ )m+k+1

k!
γ 1+k−m |n, 0〉 〈n − 1, 1|AB

+
∞

∑

n=1

∞
∑

m=0

m
∑

k=max(m−1,0)

m
∑

j=max(m−1,0)

g2
1η1Ç

2n
1 α2n−2

1 Ç2m
2 α2m

2 nm!γ 2+k+ j−2m (−γ )k+ j

k! j!
|n, 0〉 〈n, 0|AB

+
∞

∑

n=1

∞
∑

m=0

m
∑

k=max(m−1,0)

m+1
∑

j=m

g2
1g2η1

√
η2Ç

2n
1 α2n−2

1 Ç2m+1
2 α2m

2 n(m + 1)!γ 1+k+ j−2m (−γ )k+ j

k! j!
|n, 0〉 〈n, 1|AB

+
∞

∑

n=1

∞
∑

m=1

m
∑

k=m−1

g1g2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m−1
2 α2m−2

2

√
nm

(−γ )m+k−1

k!
γ 1+k−m |n, 1〉 〈n − 1, 0|AB

+
∞

∑

n=1

∞
∑

m=1

m
∑

k=m−1

g1g2
2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m
2 α2m−2

2

√
nm

(−γ )m+k

k!
γ 1+k−m |n, 1〉 〈n − 1, 1|AB

+
∞

∑

n=1

∞
∑

m=1

m
∑

k=m−1

m−1
∑

j=max(m−2,0)

g2
1g2η1

√
η2Ç

2n
1 α2n−2

1 Ç2m−1
2 α2m−2

2 nm!γ 3+k+ j−2m (−γ )k+ j

k! j!
|n, 1〉 〈n, 0|AB

+
∞

∑

n=1

∞
∑

m=1

m
∑

k=m−1

m
∑

j=m−1

g2
1g2

2η1η2Ç
2n
1 α2n−2

1 Ç2m
2 α2m−2

2 nmm!γ 2+k+ j−2m (−γ ) j+k

k! j!
|n, 1〉 〈n, 1|AB

]

. (A4)

By then further tracing out Bob’s mode, B, we find

Alice’s conditional density operator ÄA(γ ). Using ÄAB(γ )

and ÄA(γ ), we calculate the RCI between Alice and

Bob as

IAB(γ ) = H (ÄA) − H (ÄAB), H (Ä) ≡ −
∑

λilog2λi, (A5)

where λi are the eigenvalues of Ä. In the integration win-

dow |γ | < γmax, the conditional entanglement distribution

rate R(γ ) is then calculated by multiplying the RCI of the con-

ditional end-to-end state IAB(γ ) by the multiplexing-boosted

success probability of quantum scissor-based probabilistic

noiseless linear amplification succeeding on at least one half

channel on either side of the repeater node. In other words, for

|γ | < γmax,

R(γ ) =
[1 − (1 − PNLA,1)M][1 − (1 − PNLA,2)M]

M

× max(IAB(γ ), 0). (A6)

We get the asymptotic ergodic entanglement distribution

rate by averaging R(γ ) over our window |γ | < γmax:

R̄ =
∫

|γ |<γmax

R(γ )P� (γ )d2γ

=
2Ã

∫ γmax

0
R(γ )TrAB[ÄAB(γ )]γ dγ

2Ã
∫ ∞

0
TrAB[ÄAB(γ )]γ dγ

, (A7)

noting that, just like in Ref. [21], we set up |γ 〉FC so that the

trace of ÄAB corresponds to P� (γ ), an un-normalized proba-

bility distribution of γ . γmax is chosen such that

∫

γ<|γmax|
P� (γ )d2γ =

∫ γmax

0

P� (γ )2Ãγ dγ � 0.99.

We choose to not integrate over the entire complex plane for

computational simplicity. Both the RCI and P� (γ ) vanish with

larger |γ |, with RCI eventually going negative, so in every

scenario the RCI lost to not averaging over the entire complex

plane is negligible if not zero.
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Similarly, for the symmetric case where TMSV sources are at Alice and Bob’s end, we can do almost identical algebra to

arrive at the following (un-normalized) joint density matrix (also expanded in the Fock basis):

ÄAB =
e−γ 2

Ã

(

1 − Ç2
1

1 + g2
1

)(

1 − Ç2
2

1 + g2
2

)

[ ∞
∑

n=0

∞
∑

m=0

Ç2n
1 α2n

1 Ç2m
2 α2m

2 |n, m〉 〈n, m|AB

+
∞

∑

n=0

∞
∑

m=0

g2

√
η2Ç

2n
1 α2n

1 Ç2m+1
2 α2m

2 (−γ )
√

m + 1 |n, m〉 〈n, m + 1|AB

+
∞

∑

n=0

∞
∑

m=0

g1

√
η1Ç

2n+1
1 α2n

1 Ç2m
2 α2m

2

√
n + 1γ |n, m〉 〈n + 1, m|AB

+
∞

∑

n=0

∞
∑

m=0

g1g2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m+1
2 α2m

2

√

(m + 1)(n + 1)(1 − |γ |2) |n, m〉 〈n + 1, m + 1|AB

+
∞

∑

n=0

∞
∑

m=1

g2
√

η2Ç
2n
1 α2n

1 Ç2m−1
2 α2m−2

2

√
m(−γ ) |n, m〉 〈n, m − 1|AB

+
∞

∑

n=0

∞
∑

m=1

g2
2η2Ç

2n
1 α2n

1 Ç2m
2 α2m−2

2 m|γ |2 |n, m〉 〈n, m|AB

+
∞

∑

n=0

∞
∑

m=1

g1g2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m−1
2 α2m−2

2

√

m(n + 1)(−γ 2) |n, m〉 〈n + 1, m − 1|AB

+
∞

∑

n=0

∞
∑

m=1

g1g2
2

√
η1η2Ç

2n+1
1 α2n

1 Ç2m
2 α2m−2

2 m
√

n + 1(−γ )(1 − |γ |2) |n, m〉 〈n + 1, m|AB

+
∞

∑

n=1

∞
∑

m=0

g1

√
η1Ç

2n−1
1 α2n−2

1 Ç2m
2 α2m

2

√
nγ ∗ |n, m〉 〈n − 1, m|AB

+
∞

∑

n=1

∞
∑

m=0

g1g2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m+1
2 α2m

2

√

n(m + 1)(−γ ∗2) |n, m〉 〈n − 1, m + 1|AB

+
∞

∑

n=1

∞
∑

m=0

g2
1η1Ç

2n
1 α2n−2

1 Ç2m
2 α2m

2 n|γ |2 |n, m〉 〈n, m|AB

+
∞

∑

n=1

∞
∑

m=0

g2
1g2η1

√
η2Ç

2n
1 α2n−2

1 Ç2m+1
2 α2m

2 n
√

(m + 1)γ ∗(1 − |γ |2) |n, m〉 〈n, m + 1|AB

+
∞

∑

n=1

∞
∑

m=1

g1g2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m−1
2 α2m−2

2

√
nm(1 − |γ |2) |n, m〉 〈n − 1, m − 1|AB

+
∞

∑

n=1

∞
∑

m=1

g1g2
2

√
η1η2Ç

2n−1
1 α2n−2

1 Ç2m
2 α2m−2

2

√
nm(−γ ∗)(1 − |γ |2) |n, m〉 〈n − 1, m|AB

+
∞

∑

n=1

∞
∑

m=1

g2
1g2η1

√
η2Ç

2n
1 α2n−2

1 Ç2m−1
2 α2m−2

2 n
√

m(1 − |γ |2)γ |n, m〉 〈n, m − 1|AB

+
∞

∑

n=1

∞
∑

m=1

g2
1g2

2η1η2Ç
2n
1 α2n−2

1 Ç2m
2 α2m−2

2 nm(1 − |γ |2)2 |n, m〉 〈n, m|AB

]

. (A8)

For the final case, symmetric distribution with the QSs at Alice and Bob’s nodes, we use covariance matrix algebra to simplify

the scenario. We can use the algebra from [33] to perform a Bell state measurement on one mode from each TMSV dual state,

leaving a two mode state that can then be propagated through the pure loss channel to reach the NLAs at Alice and Bob. It

can be shown that, before the pure loss channel, the resulting two mode state is identical to a TMSV with squeezing parameter
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Ç ′ = Ç1Ç2. After going through the QSs the resulting un-normalized density matrix is

ÄAB =

»

¼

¼

¼

¼

¼

¼

½

1

1−α2
1α2

2Ç ′2 0 0
g1g2

√
η1η2Ç

′

(1−α2
1α2

2Ç ′2 )2

0
g2

2α
2
1η2Ç

′2

(1− α2
1α2

2Ç ′2 )2 0 0

0 0
g2

1α
2
2η1Ç

′2

(1− α2
1α2

2Ç ′2 )2 0

g1g2
√

η1η2Ç
′

(1− α2
1α2

2Ç ′2 )2 0 0
g2

1g2
2α

2
1η1η2Ç

′2(1+ α2
1α2

2Ç ′2 )

(1− α2
1α2

2Ç ′2 )3

¾

¿

¿

¿

¿

¿

¿

À

. (A9)
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