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ARTICLE INFO ABSTRACT

Msc Flow past disperse solid particles or bubbles induces fluctuations in carrier fluid velocity, which correlate with
0000 temperature fluctuations in non-isothermal flows resulting in the pseudo-turbulent heat flux (PTHF). In the
1111

Eulerian-Eulerian (EE) two-fluid (TF) model, the transport of PTHF is shown to be an important contributor
to the overall energy budget, and is modeled using a pseudo-turbulent thermal diffusivity (PTTD). The PTHF
and PTTD were originally quantified using particle-resolved direct numerical simulation (PR-DNS) data, and
Gas-solid heat transfer correlations were developed over a range of solid volume fraction (0.1 < £, <0.5) and mean slip Reynolds number
Computational fluid dynamics (1 £ Re,, < 100) for a Prandtl number of 0.7. However, the original PTTD correlation diverges to infinity as the
Direct numerical simulation solid volume fraction goes to zero, which is physically unrealistic. This singular behavior is problematic for EE
TF simulations at particle material fronts where solid volume fraction values can fall below the lower limit of
existing data (¢, = 0.1) to zero in the pure carrier phase. In this work, additional PR-DNS data are reported for
e, <0.1, and improved correlations are developed for the PTHF and PTTD. The new PTTD correlation is non-
singular, and both the PTHF and PTTD decay exponentially to zero as the solid volume fraction approaches
zero, which is physically reasonable. This improves prediction of PTHF transport in dilute flow using EE TF heat
transfer simulations.

Keywords:
Pseudo-turbulent heat flux

1. Introduction that can simultaneously occupy the same spatial location at the same
time. The conservation equations contain coupling terms representing

Gas-solid heat transfer plays a critical role in applications ranging the interphase transfer of mass, momentum, and energy. In device-scale
from chemical looping combustion (Shen et al., 2008) to carbon-neutral applications, the modeling of these coupling terms determines the pre-

energy generation (Abanades et al., 2004). Understanding gas-solid heat dictive capability of multiphase CFD simulations.
transfer is essential for design process and process optimization in unit
operations. Such technological advances are key to limiting climate
change and achieving carbon neutrality by 2050 (Shukla et al., 2019).
Multiphase computational fluid dynamics (MCFD) has drawn the atten-
tion of researchers in the exploration of complex physical phenomena
of gas-solid flow due to relatively low cost compared to experiments
at scale (Papadikis et al., 2009; Boateng and Mtui, 2012; Xue et al.,
2011). For MCFD simulations, the Eulerian-Eulerian (EE) two-fluid (TF) investigated based on the velocity and temperature fields generated by
model in which the particulate and the fluid phases are considered to PR-DNS (Mehrabadi et al., 2015, 2016; Sun et al., 2015, 2016).

Particle-resolved direct numerical simulation (PR-DNS) provides a
model-free solution with complete three-dimensional time-dependent
fields of velocity, pressure, and temperature of gas-solid heat transfer.
Therefore, PR-DNS can be used to model the unclosed terms that appear
in EE TF model (Tenneti and Subramaniam, 2014). The average inter-
phase transfer of momentum and energy of the EE TF model has been

be interpenetrating continua (Drew, 1983) is widely used. Based on this Specifically, in the absence of mass transfer between phases, the gov-
assumption, the average flow variables in each phase are modeled as erning equation of the fluid-phase heat transfer in the Eulerian-Eulerian
continua governed by conservation laws for phase-averaged quantities two-fluid model (Syamlal et al., 1993; Garg, 2009) is
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where (7)) is the average fluid-phase temperature, and it can be com-
puted by averaging temperature field conditional on the presence of the
fluid phase, such that

(x0T (x,1))
(Ip(x,1))

where I,(x,1) is the fluid-phase indicator function that is unity if the
point x lies on the fluid phase at time ¢, and zero otherwise, and the
angle brackets denote ensemble-averaging of random fields over all par-
ticle configurations. In Eq. (1), p, and c, are, respectively, the density
and specific heat of the fluid phase, e, is the fluid volume fraction,
q; is the heat flux vector, " = ;- (u;.f)> and 7" =T —(TD) are,
respectively, the velocity and temperature fluctuations.

The flux term (I, u"(f )Ty in the average fluid temperature equa-
tion (Eq. (1)) is called pseudo-turbulent heat flux (PTHF). In this un-
closed term, the velocity fluctuation component u”) can arise from
inherent turbulent flow, but it can also be generated in laminar flow
by the interactions of wakes due to the presence of particles. The PTHF
term represents the covariance of gas-phase velocity fluctuations and
temperature, and its transport in two-fluid CFD simulations is usually
neglected due to lack of information. Sun et al. (2016) quantified the
PTHF based on particle-resolved direct numerical simulation (PR-DNS)
of steady thermally fully-developed flow past homogeneous particle as-
semblies. Their analysis showed that the transport of PTHF is an impor-
tant contributor to the overall energy budget, as expressed in the mean
fluid temperature equation. The transport of PTHF in multiphase CFD
can be modeled using a gradient-diffusion hypothesis by introducing
a pseudo-turbulent thermal diffusivity (PTTD) apy ., which is defined
by the relation (Ifu;.'(f)T”(ﬁ) = —apr ;;,(TY))/dx,. Sun et al. (2016)
characterized the PTTD over the same range of solid volume fraction
(0.1 <&, <0.5) and mean slip Reynolds number (1 < Re,, < 100), and
developed a correlation for the PTTD as a function of solid volume frac-
tion and mean slip Reynolds number. Peng et al. (2019) incorporated
this transport model for the PTTD and showed its importance in multi-
phase CFD simulations.

Although the PTHF has been investigated as summarized, one prob-
lem that is encountered in multiphase CFD, which typically involves
inhomogeneous solid volume fraction fields, is the behavior of PTHF
and PTTD at the edge of particle material fronts where the solid volume
fraction goes to zero in the pure fluid region. Such particle material
fronts are encountered at the top of the freeboard in a fluidized bed.
Sun’s correlation for PTTD predicts an infinite value as the solid vol-
ume fraction goes to zero, which is unphysical and leads to instabilities
in the numerical solution of the multiphase CFD equations. Therefore,
in this work we examine the behavior of PTHF and PTTD at very low
volume fractions to definitively address their behavior in this limit. We
also propose improved PTHF and PTTD correlations that are accurate
at low solid volume fraction, resulting in stable MCFD simulations. This
article is structured as follows. Section 2 introduces the PR-DNS method
for flow past a fixed particle assembly that is used for quantifying PTHF
and PTTD. Section 3 provides quantitative analysis of the PTHF at lower
volume fractions and proposes the improved PTHF and PTTD correla-
tions. Section 4 summarizes the principal findings of this work.

(T, 1) = : @

2. Problem formulation

The heat transfer problem formulation in this study is identical to
that described in Sun et al. (2016) for steady flow past a homogeneous

Chemical Engineering Science 283 (2024) 119371

assembly of monodisperse spherical particles. We briefly summarize the
problem formulation, governing equations, and PR-DNS setup in this
section.

We have previously argued (Tenneti et al., 2013) that in order to
specify closure models for the unclosed terms it is natural to simulate a
statistically homogeneous gas—solid suspension using PR-DNS. The clo-
sure for the average interphase momentum transfer or ‘drag law’ in the
hydrodynamic problem has been inferred from PR-DNS of steady flow
past statistically homogeneous particle suspensions driven by a constant
mean pressure gradient in periodic domains. This problem setup ensures
that the flow field is statistically homogeneous such that the mean ve-
locity is a constant that does not vary in space, and although the mean
pressure varies linearly in the flow direction, the fluctuating pressure is
periodic. Statistics such as the average interphase momentum transfer
can be easily obtained by volume averaging.

In the heat transfer problem, the effect of continuous heating (or
cooling) of the fluid by the particles along the flow direction causes
the average fluid temperature to vary in that direction. Although the
hydrodynamic problem is statistically homogeneous, anisotropy in the
mean fluid velocity results in a statistically inhomogeneous average
fluid temperature field. Fig. 1a shows the contours of non-dimensional
fluid temperature (defined by Eq. (8)) in steady flow through a cu-
bic domain due to a constant imposed mean pressure gradient in the
streamwise direction, revealing how the fluid is cooled by the particles.
Fig. 1b shows that the average non-dimensional fluid temperature (de-
fined by Eq. (14)) monotonically decreases in the streamwise direction
because the fluid that is hotter than the particles at the inlet is pro-
gressively cooled as it flows over the particles and loses heat to them.
Although the hydrodynamic problem is statistically homogeneous, the
average fluid temperature field is statistically inhomogeneous. Statistics
such as the average Nusselt number cannot be obtained by volume aver-
aging, but vary in the streamwise coordinate and are subject to greater
statistical variability. Therefore, PR-DNS methodologies that are used
to specify a closure model for the average Nusselt number in terms of
the average solid volume fraction and mean slip Reynolds number must
account for this inhomogeneity in the fluid temperature field.

One approach is to solve the heat transfer problem with an inflow
boundary condition on the inlet side and an outflow boundary condition
on the outlet side (Tavassoli et al., 2013). This results in a thermally de-
veloping flow right next to the inlet plane in which the average Nusselt
number varies with axial distance, eventually transitioning to a ther-
mally fully developed flow where the average Nusselt number becomes
independent of axial location. In this setup, averaging should only be
performed in the thermally fully-developed region of the flow domain
when computing statistics such as the average Nusselt number. This re-
duces the available region in the solution domain to obtain desired heat
transfer statistics and it also introduces uncertainties in the definition
of the thermally fully developed region.

In order to circumvent these problems, we adopt the PR-DNS
methodology of Tenneti et al. (2013) to study heat transfer in sta-
tistically homogeneous gas-solid flow in periodic domains, while still
accounting for spatial inhomogeneity in the average fluid temperature
and using the entire thermally fully developed flow domain to extract
desired statistics. Following Tenneti et al. (2013) we use the analogy of
thermally fully developed flow in a fixed bed of particles (in an average
sense) with thermally fully developed flow in internal pipes to develop a
thermal self-similarity condition that guarantees a statistically homoge-
neous Nusselt number (Tenneti et al., 2013). For internal pipe flow with
isothermal walls held at T, the flow is said to be thermally fully devel-

T(x,1) -
T,(x)-T,
driving force (temperature difference) in the numerator to the response
in the denominator (heat flux is written as a heat transfer coefficient
times this temperature difference), does not change with the stream-
wise coordinate x. Here T, is the bulk or ‘mixing cup’ temperature that
is defined in particle-laden flows for each particle configuration w by

oped when the scaled temperature , which is the ratio of the
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where e, is the unit vector along the streamwise direction, and A/ is the
cross-sectional area occupied by the fluid perpendicular to the stream-
wise direction.

Tenneti et al. (2013) and Sun et al. (2015) developed a thermal self-
similarity condition in terms of a locally scaled fluid temperature field
0(x, 1) defined as

T, 0T,

TR

(©)]
where T is the constant temperature of the isothermal particles, and
(T,,)(x) is the average bulk fluid temperature at a streamwise location
x, defined by

(Tm)(x,t)E/Tm(x,t;a))de, 5)
weQ

where w represents a particle configuration which occurs with proba-
bility dP,,. Clearly (T,,) — T, in Eq. (4) is analogous to T,, — T, in the
definition of scaled temperature for internal pipe flow, and it is in this
sense that thermally fully developed particle-laden flow is analogous
(in an average sense) to internal pipe flow. This thermal self-similarity
condition requires that

0 _ 0 ( Txn-T, \_
e (moamr)= ©

for the flow to be thermally fully developed. Just as in thermally fully
developed pipe flow, this condition guarantees that at steady state the
ratio of the driving force (temperature difference) in the numerator to
the response (heat flux) in the denominator does not change with the
flow coordinate x.

2.1. Governing equations

The assumptions made in this heat transfer problem are: (i) isother-
mal particles (see Appendix A) with a single spatially uniform tem-
perature for all particles that is constant in time, (ii) negligible free
convection (see Appendix B), and (iii) neglect of radiation and viscous
heating. In the absence of viscous heating, radiation, and free con-
vection effects, the governing equation for the fluid temperature field
T(x,t) is

oT  0w;T) 2T
aT =, 0T
faxjﬁxj

ot * ox; )
where a, =k, /p,c,, is the thermal diffusivity in the fluid phase, and k
is the thermal conductivity in the fluid phase. The Dirichlet boundary
condition T' =T, is applied at the surface of each particle corresponding
to isothermal particles.

Since the boundary conditions at the domain boundaries are in terms
of 6, it would appear to be easier to rewrite Eq. (7) in terms of 6 and
solve directly for 8. However, the evolution equation for 6 contains
additional terms that represent the evolution of the bulk temperature
T,,. Therefore, in order to solve for 6 we need to solve an additional
equation for 7,,. Moreover, solving for the evolution equation for T,, re-
quires the computation of heat flux from every particle that intersects
the plane perpendicular to the mean flow at each x location in the direc-
tion of the mean flow. Since there is a finite number of particles in the
computational domain, the solution may suffer from statistical error.
Therefore, it turns out to be easier to transform the periodic bound-
ary conditions on 6 to obtain similarity conditions on the temperature
field T'(x,7) and solve Eq. (7) for T(x, 7). In order to simplify the thermal
similarity conditions, and also to homogenize the boundary conditions
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Fig. 1. (a) Contour of the non-dimensional fluid temperature field (see Eq. (8))
in flow past a fixed particle assembly. (b) The corresponding average non-
dimensional fluid temperature along the axial location. (W) is the mean slip
velocity between the solid and fluid phase, T/ is the fluid temperature, and (¢)
is the average non-dimensional fluid temperature (see Egs. (2) and (8)).

on the particle surfaces, we define a non-dimensional temperature field
¢(x,1) as follows:
T(x,t)—=T;
ox. )= . 8
(Tm,in> - Ts
where (T, ;,) is the average bulk fluid temperature (7, )(x) evaluated at
x=0.
The governing equation for the non-dimensional fluid temperature
field ¢(x,7) can be derived as

op ;) ¢
—_— + =ay .
ot 0xj 0xj6xj

9

The isothermal boundary conditions on the particle surface reduce to
¢ =0, and the thermal similarity conditions now appear in a very simple
form as

#0,y,2) =r;¢(L,y, 2) (10a)
$(x,0,2) = ¢(x, L, 2) (10b)
$(x,,0)=¢(x,y, L) (10c)
where r), is the heat ratio defined by
Tin) =T,
— ( m,m) s , (11)

"= N
(T ,aut) - ’1—;

m
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where (T, ,,,) is the average bulk fluid temperature evaluated at x= L,
and L is the length of the computational domain in the streamwise
direction.

2.2. Computation of PTHF

Certain simplifications arise in computing the scaled PTHF
(I1,u!"P¢")y (where the non-dimensional fluid temperature fluctua-
tion is defined as ¢"") = ¢ — (¢'")) from the thermally fully developed
solution that results from the thermal self-similarity condition imposed
in periodic domains as described above. The non-dimensional fluid
temperature field ¢(x,7) in Eq. (8) can be written as the product of
the scaled non-dimensional fluid temperature and the average non-
dimensional bulk fluid temperature (¢,,)(x,1):

T(x,1)—T; (L)1) = T
(Tm>(X, I) - Ts > ( <Tm,in> - Ts )
= 006, 1)(hyn) (x, ).

Multiplying the above equation by the fluid indicator function 7, tak-
ing the expectation based on the definition in Eq. (2) leads to the
corresponding relation

d(x,1) = (
12

(D), 1) = (0 (x, )by ) (x, D). (13

Since the scaled temperature field 6 is statistically homogeneous, the
above equation can be further simplified as

(), 1) = (0D)(1)(b,, Y(x. 1), a4

revealing that all spatial inhomogeneity in (¢)) arises purely from
(¢,,)- This observation leads to simplifications in computing the scaled
PTHEF.

We now deduce the PTHF in terms of the scaled fluid tempera-
ture 6(x,t) that is statistically homogeneous. Substituting the defini-
tion of the non-dimensional fluid temperature fluctuations ¢")(x) =
¢(x) — (¢)(x) into the expression for the ensemble-averaged PTHF
14 fu;'(f )¢/"N)(x) and using the relation ¢ = 6(¢,,) (see Eq. (12)), leads
to the following expression

R = (1] D" D)) = (1 0) () ) = R} () 0. (15)

where jo;) = (1,u/""6). Note that although (I,u"¢"") is inhomo-
geneous in x, the covariance of velocity and scaled temperature R%) is
expected to be statistically homogeneous since both the fluid velocity
field u; and the scaled fluid temperature field 6 are statistically ho-
mogeneous. Again, all spatial inhomogeneity in the scaled PTHF arises
purely from (¢,,). In a previous study (Sun et al., 2016) showed that
the average non-dimensional bulk fluid temperature (¢,,)(x) decays ex-
ponentially with axial distance.

2.3. PR-DNS method

The PR-DNS approach in this study is identical to that described
in Sun et al. (2016) for steady flow past a homogeneous assembly of
monodisperse spherical particles. The particles are maintained at a con-
stant temperature and distributed in a random configuration over a
cubic domain with periodic boundary conditions to produce a prede-
fined solid volume fraction. In this work, the solid volume fraction is
extended to low values and each case is simulated at three different
Reynolds numbers. Table 1 summarizes the relevant simulation param-
eters for generating the PR-DNS data in this study.

A couple of details regarding the implementation of the governing
equations (Eq. (9)) along with its boundary conditions (Egs. (10)) and
Eq. (11) are noteworthy. When solving Eq. (9), the fluid velocity field
is taken to be a given quantity that is obtained from the hydrodynamic
solution for that particle configuration. In this formulation, because of
the isothermal boundary condition on particles, the fluid velocity field
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Table 1

Parameters for heat transfer simulation in steady flow past random fixed assem-
blies of particles. The physical parameters are the solid volume fraction ¢, and
the mean slip Reynolds number Re,,. The numerical parameters are the ratio of
the box length to the particle diameter L/D and the grid resolution D,, = D/Ax.
The number of particles N, is determined by ¢, and L. Five independent simu-
lations of each case are simulated to reduce statistical variability.

£ Re,, L/D N, D,
0.01 1,50,100 18 111 20
0.03 1,50,100 15 193 20
0.05 1,50,100 12 165 20
0.1 1,50,100 7.5 80 20
0.2 1,50,100 7.5 161 20
0.3 1,50,100 5 71 30
0.4 1,50,100 5 95 30
0.5 1,50,100 4 61 40

does not need to be evolved in time and is maintained the same while
the temperature field evolves to a steady state. The average bulk tem-
perature at the inlet appears in the definition of ¢ (see Eq. (8)), and
the average bulk temperature at a given axial location x appears in the
definition of 6(x). Although mathematically the average bulk tempera-
ture is defined by Eq. (5), in practice the average bulk temperature is
computed separately for each realization as a cross-sectional average
(see Eq. (3)). If the ensemble-average were used then multiple inde-
pendent simulations would need to be performed in parallel, and the
ensemble-averaged bulk temperature at the inlet would have to be com-
puted at every time step. The same procedure would be needed when
post-processing statistics related to 6 (Eq. (4)). However, in practice 0
is also computed using the same cross-sectionally averaged T,, for that
realization.

In the following, we first quantify (I fu,'.’(f)é') and then propose an
improved PTHF correlation for it in Sec. 3.1. In Sec. 3.2 we modify the
exponentially decaying coefficient for the average bulk fluid temper-
ature model that is later used in the gradient-diffusion model for the
PTHF. In Sec. 3.3 we propose a modification to the PTTD correlation
in which the modified PTHF correlation and the modified decay coef-
ficient appear. In Sec. 3.4, a scale analysis is conducted to validate the
scale separation assumption for local closure model development in sta-
tistically homogeneous gas-solid flow.

3. Results and discussion
3.1. Quantifying and modeling the PTHF

In order to quantify the PTHF term, we first solve Eq. (9) by using
the PR-DNS approach to extract the non-dimensional fluid temperature
field ¢(x,7) and the average non-dimensional bulk fluid temperature
(¢)(x,1). By using the relation ¢ = 6(¢,,) (see Eq. (12)), we can com-
pute the non-dimensional scaled fluid temperature field 8(x, t) for quan-
tifying the statistical homogeneous (I fu;'(f 9.

It is of interest to examine the covariance of velocity and scaled
temperature in an orthogonal coordinate system aligned with the mean
velocity vector. Our observations indicate that the component of fluc-
tuating velocity aligned with the mean flow direction shows strong
correlation with the scaled temperature (see Fig. 2a), while the fluc-
tuating velocity components perpendicular to the mean flow exhibit
weak correlation with the scaled temperature (see Figs. 2b and 2c). The
joint probability distribution function (PDF) of the velocity and scaled

temperature is presented in Fig. 2d, showing that the PDFs of Ifu'y’(f g

and Ifu'z'(f )9 are almost identical to a zero-mean Gaussian distribution.
As a result, the PTHF in the cross-stream directions (/ fu'l’(f )9) are neg-
ligible, while the streamwise component of the PTHF ([ fu‘/‘, u )9) is the
dominant and non-negligible contribution to the flux. This observation
is consistent with the characteristics of the pseudo-turbulent Reynolds
stress tensor, defined as (/ fu‘('(f )u;'(f )) /{Is), where the cross-correlation
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Fig. 2. Covariance of fluctuating velocity and scaled temperature obtained from PR-DNS data at &, = 0.01 and Re, = | normalized by ¢ =
2k /3)'2((I;6"0")/(I,))"/?, where k, represents the kinetic energy in fluid-phase velocity fluctuations and 6" =6 — (9") is the scaled temperature fluctua-
tion. The mean flow velocity is in the positive x direction and the mean temperature gradient is aligned with the mean flow. The left panel displays contours of
1! P0/(1 oD @) D0/ )6, (0) 1,u}"0/(1 )6, and (c) 1,10/(1,)s'/. The right panel (d) shows the joint probability distribution function (PDF) of
the velocity and scaled temperature. Note that the mean value of the joint PDF represents the covariance in the PTHF. Each PDF has been shifted up by two decades

with respect to the lower one. Associating || with x and 1, and 1, with y and z, respectively, we see that (/,u

components are negligible.

between the streamwise and cross-stream velocity fluctuations is neg-
ligible (I fuill v )ui(f )) ~ 0 (see Mehrabadi et al., 2015.) These findings
hold when the mean temperature gradient is not imposed but is estab-
lished along the mean flow direction because of cooling (or heating) of
fluid by the particles, as is the case in this PTHF study. For this setup
we found that only the streamwise component of the PTHF (/ fuill ¢ )9)
is non-negligible. However, it should be noted that when the mean flow
direction and the mean fluid temperature gradient are not aligned, the
PTHF may have non-negligible contributions in other components as
well.

We quantify the magnitude of PTHF over a cross-sectional plane at
a given axial location over M realizations as

M A
(Ifuil'(f)O)(x)z % Z {%/{Ifuil/(f)e}(x;w)dA}, (16)
w=1 0

where A is the cross-section area that is located at x and ul,l,(f ) is the com-

ponent of fluctuating fluid velocity in the streamwise direction. Fig. 3 il-
lustrates the ensemble-averaged cross-sectional PTHF obtained from the
PR-DNS simulations of heat transfer in steady flow past random fixed
assemblies of particles in the volume fraction range 0.01 < ¢, <0.03 at
Re,, = 100. This result also confirms that the statistical homogeneity in
the ensemble-averaging of PTHF can be achieved by using five real-

izations (m = 5) as suggested in the previous study. Next, we compute
11(f)

(I 7 0) by using a volume average as
L
(I 0) = % / (Il DoY), a7
0

and this quantity only depends on the average solid volume fraction
and mean slip Reynolds number.

e

§ o 0)is dominant and nonzero whereas the other

0.25

o &, =0.01, Re,, = 100
o &, =0.03,Rey, = 100
02} A gy =0.05, Re,, = 100

N Y -I
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Fig. 3. Variation of the ensemble-averaged PTHF normalized by the magnitude
of mean slip velocity |[(W')| along axial location x over 5 MIS in the range
0.01 <&, <0.03 at Re,, = 100. The error bars indicate 95% confidence intervals.

The quantified PTHF term as a function of solid volume fraction and
Reynolds number is shown as circles in Fig. 4. The original PTHF data
set (0.1 <&, <0.5) is shown as black circles while the PTHF data from
this work is shown as red circles. The original PTHF correlation is given
by

(Ifu["ma) =(1 - £,)(0.2+ 1.26, — 1.246%) exp (=0.002Re, ) |(W)|,  (18)

which predicts the PTHF over the range of solid volume fraction (0.1 <
£, <0.5) and mean slip Reynolds number (1 < Re,, < 100) for Prandtl
number of 0.7, where |(W)| is the mean slip velocity.

Fig. 4 shows how the PTHF term varies with respect to the solid
volume fraction and mean slip Reynolds number. At higher solid vol-
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40
Re,,

Fig. 4. Least squares fit of PTHF numerical results for the proposed PTHF correlation. Circle represent the volume-averaged (1 ;u
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i 0) results using Eqgs. (16) and

(17) over 5 PR-DNS data. Red is PTHF for the range 0.01 <&, <0.03 and 1 < Re,, < 100, which is obtained from this study while black circles originated from a

previous study.

0.5

O Ren= 1,PR-DNS
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— = - Re;, = 50,Sun
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s
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Fig. 5. Comparison of the pseudo-turbulent heat flux (PTHF) in the range 0 <&, <0.5 and 1 < Re,, < 100: symbols represent the PTHF obtained from PR-DNS data;
black (original) and red (modified) lines represent the PTHF correlation. Error bars represent 95% confidence intervals using 5 MIS.

ume fraction (¢, > 0.1), the PTHF term is relatively constant, while at
lower solid volume fraction (¢, < 0.1), the PTHF exponentially decays to
zero as solid volume fraction goes to zero (¢, — 0). However, its varia-
tion with Reynolds number is relatively small compared to solid volume
fraction. Consequently, the modified PTHF correlation should capture
those trends. Inspired by the original PTHF correlation, our new corre-
lation is proposed as

(Tu9) = {(1=g,)(cr €, +ere] +e360)+ [1—explese, )T} exples Re, ) (W),
19)

with the following constants,

¢ ==511, ¢,=10.10, ¢;=-1085 ¢, =-1096, c5=—0.002089.

The above coefficients are computed based on a least-squares fit with
the PTHF results obtained from the PR-DNS simulations (Fig. 4). The
mathematical form of the new correlation is similar to those of the
previous but with a few exceptions. There is a constant term in the
polynomial of the original PTHF (Eq. (18)), contributing to the non-
zero limit of PTHF when particles no longer exist (¢, = 0), which is
inconsistent with the flow physics and PR-DNS data extracted at low
€,. In practice, this may cause problems when using the PTHF model at

the edge of particle material fronts where the solid volume fraction is
nearly zero in the pure fluid region. The PTHF term should be zero at
e, =0 in such applications. Based on this expectation, the form of the
new correlation is constructed so that it is zero when the solid volume
fraction equals zero. Another difference is that we include an exponen-
tial function, accompanied by the high-order polynomial, to capture
the exponential decay trend when the solid volume fraction approaches
zero. Therefore, the new PTHF correlation, modified from the origi-
nal counterpart, can be viewed as a combination of a polynomial that
is dominant in dense flow regions with an exponential decay function
that is responsible for capturing the physical behavior of PTHF in dilute
flow (e.g., gas-solid flows at the top of the freeboard in a fluidized bed).
In Fig. 5, the black and red lines illustrate the behavior of the origi-
nal and modified PTHF correlations, respectively, as a function of solid
volume fraction and mean slip Reynolds number.

3.2. Decay coefficient modification

In Eq. (1), the transport of PTHF term needs to be modeled in CFD
simulations based on the two-fluid model. A gradient-diffusion model,
similar to the turbulent scalar flux models in single-phase flow (Fox,
2003), has been proposed and validated by Sun et al. (2016). The
gradient-diffusion model is:
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<Ifu;/(f)¢//(f)>
T = —®prij

a<¢<f)>

, 20
o 20)

where apr;; is the pseudo-turbulent thermal diffusivity (PTTD). In gen-
eral, apr;; should be a second-order, anisotropic tensor characterizing
the transport of PTHF in different directions not necessarily aligned
with the gradient of phase-averaged mean fluid temperature.
Mehrabadi et al. (2015) quantified the pseudo-turbulent Reynolds
stress (PTRS) tensor Rfjf ) =(1 /u;'(f )u;’(f DY ) in steady flow past fixed
assemblies of spheres using PR-DNS simulation. The anisotropy of the
PTRS tensor was computed over a range of solid volume fraction and
mean slip Reynolds number. It was found that the PTRS tensor exhibits
two independent diagonal components, R(lf ) and R(f)l, that character-
ize the PTRS parallel and perpendicular to the mean flow direction,
respectively. The cross-correlation between the streamwise and cross-
stream velocity fluctuations was found to be negligible (I f“ﬂ,(f )“I(f )Yy &
0. Hence, the PTRS is orthotropic corresponding to two-component ax-
isymmetric turbulence (Pope, 2000). Those PR-DNS simulations also

revealed that the PTRS component in the parallel direction R‘(‘f”) is dom-

inant compared to the perpendicular direction R(lfj_ This lends support
to our findings that the streamwise component of ‘the PTHF is non-zero
whereas the other components are negligible in this setup.

In the general case where the mean temperature gradient is imposed
at an arbitrary angle to the mean flow direction, it will have non-
zero components in the cross-stream directions also. Generalizing the
gradient-diffusion assumption by introducing a pseudo-turbulent ther-
mal diffusivity (PTTD) tensor results in the following model:

29)

o 1)

RE(,{) =apr,ij
where the pseudo-turbulent thermal diffusivity (PTTD) apy;; is a
second-order tensor. The subscript ‘ PT’ will be omitted in the index no-
tation in the tensor components for simplicity. Rewriting this relation
in terms of the parallel and perpendicular components and expanding
each component, we have

R S0 S k)

) —

Rl = —5x T4 It gy (22)
29) 29) 29)

)

RV = 23

1, ¢ LARN dx” L4y axLl fENE] axlz 23
{(p)) Py Py

N _

R =01, ax, Lohi Tx ) 1.1, ox,, (24)

This is a under-determined problem for the general case because we
have only three equations but nine unknown components of the PTTD
tensor (it is not clear that the physics of pseudo-turbulence dictate that
symmetry relations should be applicable for the PTTD in general).

In our current collinear setup with the mean temperature gradient
aligned with the mean slip velocity, statistical symmetry implies that
only one of the cross-stream components is independent, thereby reduc-
ing the number of unknown PTTD components to four: o), a1, @ >
and «, ;. With a mean temperature gradient that has only a nonzero
streamwise component, we can infer ¢ from the first equation, and
the remaining equations tell us that a, ; and «,,  are zero because the
mean gradient does not induce PTHF components in the cross-stream
directions (cf. Figs. 2b and 2c.). Assuming symmetry of ¢, and «,
leaves only one component «, ; undetermined in this case. Peng et al.
(2019) assumed that the orthotropic nature of the PTRS is preserved in
the PTTD to determine the «; ; component by:

RY)
1.1
a =\ — |- (25)
<R(f)> 111

[L.11
The findings of this paper do not contradict the assumption of Peng et
al. (2019), but neither do they provide validation for it.
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PR-DNS simulations of gas-solid heat transfer where there is a
nonzero angle between the mean flow and the gradient of the mean
fluid temperature are required to test this assumption. In such cases, the
cross-stream PTHF will depend on the angle between the mean flow and
the mean fluid temperature gradient. A comprehensive examination of
the anisotropic transport of the PTHF would require an inhomogeneous
PR-DNS set-up where there is transport of PTHF in different directions
from that of the mean fluid temperature gradient. Such an investigation
is beyond the scope of this paper. In this study, the PR-DNS set-up al-
lows only the gradient of the mean fluid temperature in the streamwise
direction to be non-zero. Therefore, we only quantify the axial compo-
nent of the PTHF, which is aligned with the gradient of the mean fluid
temperature. As a result, the pseudo-turbulent thermal diffusivity tensor
reduces to a scalar ap; that represents the transport of PTHF parallel to
the mean flow direction. Hence, the gradient-diffusion model along the
streamwise direction is:

<Ifu""(f)¢”(f)>(x) L a<¢(f)>
(I TP ox

(26)

The above definition states that the magnitude of the PTHF is pro-
portional to the spatial gradient of the average non-dimensional fluid
temperature (¢). In thermally fully developed gas-solid flow, the av-
erage bulk fluid temperature shows an exponential decay with respect
to axial distance, which is similar to internal forced heat convection in
a pipe problem. It should be noted that the average fluid temperature
field (¢")) defined in Eq. (14) is a product of the scaled temperature
field 6 and the average bulk fluid temperature (¢,,)(x), and obeys the
form

(P )(x) = e/ D, 27)

where 4,, is the non-dimensional decay coefficient. Sun et al. (2016)
proposed a decay coefficient of the form

6re (Nu)

dy=—
"~ A(Re,, + 1.4)Pr

(28)
Consequently, a mathematical model for the pseudo-turbulent thermal
diffusivity apy can then be derived by substituting Egs. (14), (15), and
(27) into Eq. (26) to obtain
11(f)
p {0

T R =)0y 7

Fig. 6 compares the mathematical model for PTTD computed by us-
ing the original and modified PTHF correlations (Egs. (18) and (19))
and the original decay coefficient (Eq. (28)). Note that although the de-
cay coefficient will be modified by including the lower solid volume
fraction PR-DNS data, we want to first examine the limitation of ap
for which only the PTHF term has been modified. According to the fig-
ure, both PTTD models, derived from the original and modified PTHF,
are not equal to zero when the solid volume fraction equals zero. For
the PTTD in its original form, the value diverges to infinity as ¢, — 0.

In order to address this problem, we propose the following argu-
ment. In the mathematical definition of PTTD (Eq. (29)) the denomina-
tor which contains the decay coefficient in terms of ¢, goes to zero as
€, — 0. In order to ensure that lim, _,, apy exists, the numerator must go
to zero faster than the denominator as ¢, — 0. In other words, a slower
variation of the decay coefficient with ¢, — 0, coupled with the expo-
nential decay rate of PTHF, is necessary for specifying a zero limit of
PTTD as solid volume fraction approaches zero.

Based on this analysis, the solid volume fraction ¢, in the decay coef-
ficient 4,, has been replaced by a polynomial, in which the degree of the
polynomial is chosen from an infinite geometric series (1,1/2,1/4,...)
that converges absolutely. By fitting this polynomial to the PR-DNS data
from 0.01 <&, <0.5 and 1 < Re,, < 100, we find a new decay coefficient
as follows
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Fig. 6. Comparison of the PTTD model in the range 0.01 <¢, <0.03 and Re,, =
100. The solid and dash lines represent the PTTD associated with Egs. (18) and
(19), respectively. The symbol represents the PTTD obtained from PR-DNS data.
Note that the PTTD model is not vanishing as the solid volume fraction goes to
zero.
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Fig. 7. Comparison of the non-dimensional decay coefficient in the range 0 <
€, <0.5 and 1 < Re,, < 100: symbols represent the decay coefficient obtained
from PR-DNS data; black (original) and red (modified) lines represent decay
coefficient.

_ 6x(1.17¢, — 0.2021¢,”* +0.08568¢,”*)( Nu)

" 4(Re,, + 1.4)Pr

(30)

Fig. 7 compares the modified decay coefficient (Eq. (30)) to the
original decay coefficient (Eq. (28)) with the PR-DNS result for differ-
ent solid volume fraction and mean slip Reynolds number. It can be
seen that both the original and modified decay coefficients are close to
the PR-DNS results at higher solid volume fractions (e, > 0.1), which
is to be expected. At lower solid volume fractions (e, < 0.1), the poly-
nomial decay trend similar to that of the PTHF with decreasing solid
volume fraction is observed in the 4,, values. However, near the lowest
value of 4,,, the original decay coefficient decays much faster than the
modified decay coefficient, indicating that the denominator may decay
faster than the numerator in the PTTD expression (see Eq. (29)), even-
tually leading to blow-up of the PTTD correlation (Fig. 6). Through this
analysis, it is safe to conclude that the prediction of the original decay
coefficient at lower solid volume fractions is insufficient to determine
the limiting value of PTTD. However, the modified decay coefficient
overcomes this problem because of its slower decay rate, which still
follows the PR-DNS result at lower solid volume fractions.

3.3. PTTD modification

The goal of modifying the PTHF correlation and the decay coeffi-
cient is to ensure that the derived PTTD correlation approaches zero as
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Fig. 8. Comparison of the pseudo-turbulent thermal diffusivity (PTTD) in the
range 0 < e, <0.5 and 1 < Re,, < 100: symbols represent the PTTD obtained
from PR-DNS data; black (original) and red (modified) lines represent the PTTD
correlation. Error bars represent 95% confidence intervals using 5 MIS.

the solid volume fraction decreases to zero, which is not predicted by

the previous study. Therefore, substituting the modified PTHF correla-

tion (Eq. (19)) along with the modified decay coefficient (Eq. (30)) into

the expression for the PTTD (Eq. (29)) results in the following expres-

sion

apr  2Re,(Re,, + 1.4)Pr’exp(—0.002089Re,,)

? - 3z(Nu)

(1—,)(=5.11¢, + 10.162 = 10.85¢3) + 1 — exp(—10.96¢,)

(1.17¢, —0.2021€}/> +0.08568¢)/*)(1 — £,)2[1 — 1.6¢,(1 — £,) — 3e,(1 — &, exp(—Re4e )]

(€20)]

To verify this model for the pseudo-turbulent thermal diffusivity apy,
we compare Sun’s correlation for ap; and the PTTD data extracted
from the PR-DNS simulations. Fig. 8 shows a comparison of the PTTD
as a function of solid volume fraction at different Reynolds numbers.
Overall, the modified PTTD, the original PTTD, and the PTTD from the
PR-DNS simulations are in very good agreement for ¢, > 0.1. For lower
solid volume fractions, particularly those at the edge of particle mate-
rial fronts, the trend of polynomial decay in the PTTD gives a prediction
based on the gradient-diffusion model, which is consistent with the nu-
merical results from PR-DNS, whereas the original PTTD diverges.

3.4. Validity of closure models based on statistically homogeneous gas-solid

flow

Here we discuss the validity of closure models developed from PR-
DNS of a statistically homogeneous problem to practical applications
that involve statistically inhomogeneous gas-solid flow. The central idea
here is identical to how DNS of canonical flows such as homogeneous
isotropic turbulence is used in single-phase turbulent flow to develop
models for general inhomogeneous flows. Essentially we are assuming
local homogeneity of the averaged flow fields such as average fluid and
particle velocity and average solid volume fraction. This assumption
holds when there is a separation of scales between the variation of these
average quantities and the length scale associated with two-point cor-
relations of pertinent fields.

In the hydrodynamic problem, statistically homogeneous gas-solid
flow is simulated by establishing steady flow past statistically homoge-
neous random assemblies of stationary spherical particles in periodic
domains (Tenneti et al., 2013). This problem has been thoroughly in-
vestigated and the validity of using ensemble-averaging of PR-DNS
data from the statistically homogeneous flow fields to develop closure
models, such as the drag law, for averaged Eulerian-Eulerian two-fluid
(EE-TF) models has been rigorously established (Tenneti and Subrama-
niam, 2014; Mehrabadi et al., 2016). Several articles have also been
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published on the heat transfer problem, and closure models for the aver-
age Nusselt number have been extracted from PR-DNS of a statistically
homogeneous gas-solid flow using periodic boundary conditions for the
development of EE TF models.

However, the validity of the closure models developed from PR-DNS
is contingent upon the existence of scale separation: i.e., the charac-
teristic length scale of macroscopic quantities is larger than that of
mesoscale structures, which forms the basis for local closure models
(Subramaniam, 2013). Sun (2016) validated the scale separation as-
sumption by comparing the characteristic length scale of variation of
mean quantities such as average bulk fluid temperature with a charac-
teristic length scale from higher order statistics such as particle pair cor-
relation or Eulerian two-point correlation of temperature and velocity.
The length scale that characterizes the variation of average (nondimen-
sional) bulk fluid temperature can be obtained by extracting the decay
coefficient from the exponential decay model for the average bulk fluid
temperature:

(P (x) = e/ (32)
where 4, is the non-dimensional decay coefficient. By fitting the PR-
DNS data, a characteristic length scale can be defined as

C i) =D/ > (33)

and it characterizes the variation of macroscopic average quantities.
For the mesoscale, Sun et al. (2016) defined a two-point fluctuating
velocity-(scaled) temperature correlation as follows:

(I;)0" D (x) - Iy (x+ ) (x+1)
(34

Puyo(r) =
: (@0 D) - 1 (ou] " x)

based on which the corresponding characteristic length scale can be

defined as:

©

K’u”9=/pu”9(r)dr. (35)
0

From PR-DNS of flow past a fixed bed of particles, it is found that
Cupo ~3—4D (Sun et al., 2016). In other words, if £y, y > 05 scale sep-
aration exists and the assumption of locally homogeneous mean fluid
temperature is valid. If 4 , < fu”,,, the scale separation assumption
ceases to be valid. In cases where the fluid is heated rapidly over a
very short length scale by a dense bed of hot particles, the scale sepa-
ration assumption breaks down and nonlocal closure models might be
needed. Another situation where the scale separation assumption might
break down is in cluster-induced turbulence where particles falling un-
der gravity form large clusters on the order of hundreds of particle
diameters. Without additional justification, it is not appropriate to use
models based on PR-DNS of statistically homogeneous problems with
periodic boundary conditions for these problems.

4. Conclusion

In order to address the issue of robust modeling of the PTHF near
particle material fronts where the average solid volume fraction falls
rapidly to zero, this study has extended the PR-DNS heat transfer sim-
ulation at steady flow past a random assembly of fixed, isothermal,
monodisperse, spherical particles to low solid volume fractions (0.01-
0.5) for a Prandtl number of 0.7 and mean slip Reynolds numbers in
the range 1-100. The PR-DNS results indicate that the PTHF decays
exponentially as the solid volume fraction approaches zero, which is
physically reasonable and not predicted by Sun’s PTHF correlation (Sun
et al.,, 2016). At low volume fractions (¢, < 0.1), Sun’s correlation of
PTHF encounters two problems. First, the non-zero limit of PTHF, dur-
ing which the presence of particles is diminishing, is inevitable, causing
inaccuracy in implementing the PTHF model in CFD simulations of two-
fluid heat transfer, especially for dilute flow. Secondly, a discrepancy

Chemical Engineering Science 283 (2024) 119371

between Sun’s correlation and the PR-DNS results was observed, indi-
cating that Sun’s correlation cannot capture the PTHF physics when
e, <0.1. In order to address these two problems, a modified correla-
tion for the PTHF has been proposed. The original form of the PTTD
approaches infinity as e, — 0. In order to address this problem, an
improved correlation for the decay coefficient of the mean fluid tem-
perature has been developed.

Consequently, the modified PTTD decays polynomially as the solid
volume fraction approaches zero, illustrating the extent of the trans-
port of PTHF for ¢, < 0.1. Furthermore, the modified PTTD guarantees
a zero limit at e, = 0, where, previously, the implementation of the
original PTTD in two-fluid heat transfer was limited. Finally, the im-
proved PTTD has already been tested by Peng et al. (2019) which yields
stable results in inhomogeneous problems where the solid volume frac-
tion approaches zero at the particle material fronts. As discussed in
Appendix B, the neglect of free convection in obtaining these modifica-
tions to the PTHF and PTTD is valid for most of the Reynolds number
regime, but free convection effects should be included when consider-
ing very low Reynolds number cases in certain applications such as fast
pyrolysis of biomass or CO, capture using dry sorbent particles.
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Appendix A. Verification of the isothermal particle assumption

We discuss the validity of the isothermal boundary condition in the
following. The most general boundary condition at the particle-fluid
interface is continuity of the temperature and the heat flux at the inter-
face. This requires a fully coupled solution of the temperature equation
in the particle and fluid phases, given by

oT,

= ~uvT, (A12)
T, )
— +u-VI; =a,V*T}, (A.1b)

ot

where the subscripts ‘s’ and ‘f’ refer to the particle and fluid phases,
respectively. At every point on the particle-fluid interface the boundary
conditions require:

T,(x,1) =T (x.1) (A.2)
—kyn-VTy(x,1)= —kfn~VTf(x, 1), (A.3)

where k, and k, are the thermal conductivity in the particle and fluid
phases, respectively, and n is the outward unit normal to the particle.
This coupled solution is expensive and unnecessary if the tempera-
ture field inside the particle is uniform, which holds if the Biot number
Bi=hD/k, is small (usually it is required that Bi <« 1, but Bi <0.1 is
deemed sufficient). The Biot number depends on the convective heat
transfer coefficient h, the particle diameter D, and the thermal con-
ductivity of the particle k,. For the target applications the particle
diameter is usually quite small (100-400 um) (see Table A.2) and it is
worth checking if this simplifying assumption is valid. Substituting for
the convective heat transfer coefficient 4 in terms of the Nusselt num-
ber using h =k, Nu/D, we obtain Bi = Nu(k,/k,). Unfortunately the
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Table A.2
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Typical particle properties encountered in gas-solid heat transfer applications such as CO2 capture
(Yi et al. (2007)), biomass pyrolysis (Xue et al. (2011)), and chemical looping combustion (CLC)
(Shen et al. (2008)). The gas and solid phase for each gas-solid heat transfer application are: CO, and
NaCO; in CO, capture; N, and bagasse in biomass pyrolysis; CO and CaSO, in CLC. The Biot number
is computed as Bi = Nu(k,/k,) for Nusselt number values in the range 2 to 10.

ky(W/m - K) k,(W/m-K) ky/ks PsCos/PrCor D(um) Bi
CO, capture 0.5 0.017 30 6254 404 0.067; 0.33
Biomass 0.6 0.054 11 1772 500 0.182;0.91
CLC 0.9 0.052 17 12843 100 0.118; 0.59

Biot number criterion for uniform particle temperature cannot be ver-
ified a priori because it involves the Nusselt number corresponding to
gas—solid heat transfer, which is the output of the PR-DNS. As an a pos-
teriori justification, taking the range of Nusselt number from Sun et al.
(2015) we estimate the range of Biot number to be 0.067-0.91. These
simple estimates indicate that for lower values of the Nusselt number
(2 < Nu < 10), the Biot number criterion indicates that the particle tem-
perature is fairly uniform for the lower limit of the Nusselt number, but
this may not hold for higher Nusselt number values (Nu > 10), espe-
cially for the biomass and CLC applications.

If the Biot number is small, the lumped capacitance analysis holds
and we can solve for the volume-averaged temperature of the particle
T,, which is assumed to be uniform inside the particle. In this case the
general boundary conditions at the particle-fluid interface simplify to

T (1) =T;(x,1) (A.4)
oT (1)
Ps C/J,SVST :—/kfn-VT/-(x,t)dAS, (A.5)

A

s

where V; is the particle volume and A, is the particle surface area.
Note that although the particle and fluid solutions are still coupled, the
particle temperature equation is now an ordinary differential equation
which is much simpler to solve.

If the time scale of evolution of the volume-averaged particle tem-
perature in the lumped capacitance model is very large compared to
the time it takes for the Nusselt number to reach a steady value in the
PR-DNS, then we can assume an isothermal particle that has a uniform
temperature field that does not vary in time. In this case the boundary
conditions at the particle-fluid interface simplify to

T, =T;(x1), (A.6)

which is the boundary condition used in the PR-DNS results presented
in this paper. This boundary condition has the additional advantage of
allowing the thermally fully developed condition to be satisfied in the
periodic domain setup of the problem. Note that in the PR-DNS results
shown in this paper a steady fluid velocity field is taken from a prior
hydrodynamic simulation. The thermally fully developed formulation
in a periodic domain has not been tested for a time-varying particle
temperature that is coupled to an evolving fluid velocity field.

We have performed simulations with time-varying particle temper-
ature using a different PUReIBM setup, which provide justification for
our assumption of isothermal particles. Sun (2016) developed a fully
finite-difference (FFD) PUReIBM implementation that extends the work
of Garg et al. (2011) and Tenneti et al. (2010, 2011, 2013) who devel-
oped the pseudo-spectral (PS) implementation of PUReIBM to simulate
gas-solid flow by imposing periodic boundary conditions. With the FFD
PUReIBM implementation, it is possible to simulate a time-varying par-
ticle temperature boundary condition (cf. Eq. (A.4)), and to also impose
inflow/outflow boundary conditions in the streamwise direction, while
wall boundary conditions can be imposed in the cross-stream directions.
Thus FFD PUReIBM enables simulations of transient heat transfer from
a sphere in a duct flow.

Fig. A.9 shows the time history of the non-dimensional particle tem-
perature ¢, for different particle-to-fluid thermal inertia ratios at the

10

same particle Reynolds number (100) based on Prandtl number (0.7).
The inlet condition corresponds to a uniform velocity U, and tempera-
ture T, .

The non-dimensional temperature is defined as ¢ = (T - T,)/(T,; —
T,,), where T} ; is the initial particle temperature and T, is the inlet flow
temperature.! The evolution equations for non-dimensional particle and
fluid temperature corresponding to the dimensional equations (see Eq.
(A.1)) presented earlier are:

90,

ar

1 o

V2 A.7a
Pe ay e ( )

s

6(,0/-

at

where the Peclet number Pe = Rej, Pr characterizes the ratio of the
convective time scale and the diffusion time scale inside flow, and
V = DV. The lumped capacitance model is obtained by integrating the
particle temperature over a spherical volume region V; to obtain the
non-dimensional volume-averaged particle temperature ¢, which is
purely time-dependent @,(7), and evolves by

/

V

s

_ 1 -
+U-Vo;= Evzrpf (A.7b)

1 q

90, a4,
AV, =V, = o
ea
r
A.T

ot ° dr “.8)

Vo, -ndA,,

where 7 =1U,/D. Since the heat flux at the interface between the solid
and fluid phases is continuous, the total heat transfer from solid to fluid
can be expressed as:

—/kSV(ps-ndAS:—/k/anf-ndAS.
A A

(A.9)

s s

Therefore, the total heat transfer |, u K V@, -ndA; can be computed
from the gradient of fluid temperature.

The non-dimensional inlet temperature is ¢, = 0. The temperature
of the duct wall is the same as the initial sphere temperature, such that
@wa = 1 and is constant in time and space. The height of the duct is
3D and the length of the duct is 10D. The fixed sphere is located in the
center of the duct, and its initial temperature is set to ¢,; = 1. Once the
flow and temperature fields reach steady-state, the sphere temperature
is allowed to evolve in time according to Eq. (A.8).

Figs. A.9(a) and (b) show that the non-dimensional particle tem-
perature is practically constant over the time interval that the Nusselt
number reaches its steady value. Note that all the target applications
have thermal inertia ratios between cases (a) and (b). In Fig. A.9(c)
for a lower thermal inertia ratio, the non-dimensional particle tem-
perature decreases significantly with time, while the average Nusselt
number (Nu = hD/k,, where h is the average heat transfer coeffi-
cient) decreases more rapidly and approaches an asymptotic value rel-
atively quickly for = > 1. These trends are similar to those found in
other works (Feng and Michaelides, 2000; Balachandar and Ha, 2001)
for unbounded flow past a sphere at Pr = 0.7 for different particle
Reynolds numbers. Note that for p,c,,/pc,, = 1000 and 2000, the non-
dimensional particle temperature decreases < 10% when the thermally

1 Note that in the appendix, a different set of reference variables is used to
defining the non-dimensional temperature, and its symbol is also different.
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Fig. A.9. Time history of non-dimensional sphere temperature ¢, and Nusselt number for the particle-to-fluid thermal inertia ratio p,c,,/p,c,, equal to (a) 1000, (b)
2000, and (c) 10. The solid lines represent the non-dimensional sphere temperature and the dashed lines represent the average Nusselt number. U, is the uniform

inlet velocity.

Table A.3

Ratios of thermal time scales from typical particle properties encountered in gas-solid heat transfer
applications. There are four timescales: (1) the conduction timescale in the solid phase 7, = D?/a,,
(2) the conduction timescale in the fluid phase = = D?/a > (3) the convection timescale in the fluid

phase 7. = D/U,,, and (4) the timescale of interphase heat transfer 7,, = V,p

5Cps

/hA,. The timescale

ratios are computed for Nusselt number values in the range 2 to 10 and for Péclet number of 70
(corresponding to heat transfer from a particle in air at a Reynolds number of 100).

Wk _ 1 b W Penty 5y
T, - 6Nuk, " 6Bi T - 6Nup,c,, 7, - 6Nupsc,, T - a
CO, capture 0.50;2.50 104;521 7280;36470 208
Biomass 0.18;0.92 30;148 2100;10360 161
CLC 0.28;1.42 214;1070 14980;74900 755

fully developed flow is reached (Nusselt number goes to an asymptotic
value at 7 ~ 1).

This is because the convective timescale of the flow 7, = D/U,, is far
less than the characteristic timescale of the interphase heat transfer de-
fined as 7,, = V,p,c,,/hA,, thatis, 7, /7, = psc, V;PrRep/psc, DA Nu
> 5000 for pyc,,/pse,y > 1000 and Rej, = 100. Table A.3 lists the princi-
pal time scales involved in the gas-solid heat transfer problem. In other
words, the timescale at which the Nusselt number reaches steady-state
is much smaller than the timescale for interphase heat transfer. There-
fore, there exists a finite time interval during which the variation of
the particle temperature is negligible while the average Nusselt number
has reached steady-state. This justifies the use of a time-independent
temperature boundary condition in the paper.

11

By assuming a lumped capacitance model, Sun (2016) demonstrated
the temporal uniformity of the particle temperature for pc,/psc,r >
1000 and Rejp = 100, which is relevant to practical gas-solid systems.
However, the spatial uniformity of temperature inside the particle,
which is the second necessary condition for the isothermal particle as-
sumption, is yet to be confirmed.

Zhou (2022) considered the free thermal evolution of a spherical
particle subjected to a non-isothermal stagnant flow and developed
a one-dimensional (1D) numerical model in spherical coordinates to
investigate the thermal history along the radial direction. This is essen-
tially solving a coupled heat conduction problem in both solid and fluid
phases. The evolution equations of non-dimensional particle and fluid
temperature (see Eq. (A.7)) can be simplified as follows:
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Fig. A.10. Time history of non-dimensional temperature ¢ inside the particle
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Fig. A.11. Time history of the Nusselt number for various types of gas-solid
particles obtained from the 1D numerical model of coupled conduction in both
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where R =r/D is the non-dimensional space in the radial direction,
with R=0.5 and R =5 being the particle-fluid interface and the far flow
field, respectively. The above two equations need to be solved together
along with the boundary conditions of dp/0R=0 at R=0 and R=5,
and the continuity condition of temperature and heat flux applied at
the particle-fluid interface given by

P =9y (Al1a)
do do
k= ==k —L (A.11b)

The initial conditions are identical to the lumped capacitance model.
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Fig. A.10 shows the time history of non-dimensional temperature
¢ for the particles listed in Table A.2. Several important observations
can be made. Firstly, the non-dimensional temperature decreases less
than 10% at the particle surface over the time it takes for the Nusselt
number to reach its asymptotic value at r ~ 1 as shown in Fig. A.11.
This is because the conduction timescale in the fluid phase is much less
than the characteristic timescale of the interphase heat transfer, i.e.,
Ty [Tr = psCpVs/Prcpr A;DNu ~ 0(10?) for the thermal inertia ratio of
the biomass particle (psc,;/psc,, =1772) and Nu =2 (see Table A.3).

Furthermore, the temperature distribution inside the particle ex-
hibits non-uniformity. This is because the conduction timescale in the
solid phase is much larger than the conduction timescale in the fluid
phase, i.e., 7,/t, =a;/a; =kpscy/kipre,r ~ 0(10?%) for the particles
in gas-solid flow that are listed in Table A.3. Such a large separation
between 7, and 7, can result in a finite time interval during which
the conduction in the solid phase is negligible while the Nusselt num-
ber has reached a quasi-steady value. Although this argument is true
for the pure conduction problem where Nu =2, it does not guarantee
a spatially uniform temperature distribution in the solid phase for the
convection problem considered in the PR-DNS. This is because the cri-
terion for negligible spatial variation of the particle temperature inside
the solid in convective heat transfer is that the ratio of the interphase
heat transfer time scaler,, to the conduction in the solid phase 7, be
large. This ratio 7, /7, = k,;/6Nuk significantly decreases for higher
Nusselt number values, because it is inversely proportional to the Nus-
selt number. However, for lower Nusselt number values ranging from
2-10 and Péclet number of 70, we find that the conduction timescale
in the solid phase is comparable to the timescale of the interphase
heat transfer (see Table A.3). Since the highest Nusselt number val-
ues encountered in the PR-DNS simulations (Sun et al., 2015) is less
than 15, the isothermal particle assumption with a time-independent,
near-uniform temperature inside the particle is justified for the target
applications considered. Table A.3 also indicates that the order of the
thermal timescales for these applications at sufficiently high Reynolds
number is 7, < 7, K7, X 7,/

Appendix B. Verification of the free convection assumption

For a spherical particle of diameter D at temperature 7, placed in
air at temperature T, free convection is characterized by the Grashof
number which is defined by

gp(T; —T,)D?
Gr=——,
V2
f

where § is the volumetric thermal expansion coefficient (f = 1/T, for
isobaric expansion in ideal gases), and g is the acceleration due to grav-
ity. Free convection effects can be neglected if the ratio of the Grashof
number to the square of the Reynolds number is much less than one
(Gr/Re?% < 1). For each Reynolds number, this constraint imposes an
upper limit on the particle diameter above which free convection ef-
fects cannot be neglected. In other words, for a given value of T, /T,
the upper limit on the particle diameter D increases with increasing
Reynolds number. Considering a typical fluid-to-solid temperature ra-
tio of T; /T =5, assuming air as the fluid under terrestrial conditions
(¢ =9.81 m/s?) and applying the constraint of Gr/Re2 <0.01, we calcu-
late the maximum particle diameter D,,,, = [0.01Re§1v§ /8B(T; = TH1'/3
for which free convection can be neglected (Gr/Re? < 1) over the range
of Reynolds number (1 < Re,, < 100). Fig. B.12 shows that the upper
limit on the particle diameter D,,,, increases with increasing Reynolds

(B.1)
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Table B.4

The minimum Reynolds number of gas-solid particles for ne-
glecting free convection. The criterion of the Reynolds number
is computed from Gr/Re}, < 0.01, where Gr = gf(T; ~T,)D’ /v;.
The fluid-to-solid temperature ratio is taken as T, /T, =5 and
air is chosen to be the fluid phase under terrestrial condition.
The kinematic viscosity of air is selected based on different
gas-solid heat transfer conditions: 2.3 x 10> m?/s (Biomass),
7% 107> m?/s (CO, capture), and 1.72 x 10~* m?/s (CLC).

D(pum) Re,, i
CO, capture 404 3.25
Biomass 500 13.62
CLC 100 0.16
1 04 . J . T

Biomass

—_— CO2 capture

—CLC
102 ) ) - - J

0 20 40 60 80 100
Re,,

Fig. B.12. The maximum particle diameter of the gas-solid heat transfer for
neglecting free convection. The criterion of the particle diameter is computed
from Gr/Re? <0.01, where Gr = gp(T, — T,)D*/ v%. The fluid-to-solid tempera-
ture ratio is taken as T, /T, =5 and air is chosen to be the fluid phase under
terrestrial condition. The kinematic viscosity of air is selected based on differ-
ent gas-solid heat transfer conditions: 2.3 x 10~ m?/s (Biomass), 7 x 10~ m?/s
(CO, capture), and 1.72 x 10~* m?/s (CLC).

number, indicating that the upper limit of D for neglecting free con-
vection is less restrictive at high Reynolds number cases where forced
convection dominates. However, the upper limit on the particle diam-
eter is more restrictive for lower Reynolds number cases. For instance,
the particle diameter has to be less than 88 um in order to neglect
free convection at Re,, = 1. Furthermore, we estimate the minimum
Reynolds number (Re,, ;, = [gf(T; — T,)D* /0.0lvi]l/ 2) that is required
for negligible free convection if the particle diameter D is given. Ta-
ble B.4 summarizes the minimum Reynolds numbers of typical gas-solid
particles allowed for neglecting free convection. The results show that
the minimum Reynolds numbers are outside the Stokes flow regime,
suggesting that the free convection effects could become an important
factor affecting the velocity and temperature fluctuations, particularly
when the flow past particles is laminar and approaching Stokes regime.

Although the current PR-DNS has not yet explored the influence of
the free convection on the behavior of PTHF, it is appropriate to use
the current PTHF model by assuming negligible free convection based
on the ratio of Gr/Re? < 1 with physical properties for a specific heat
transfer problem, which applies to many situations for typical biomass
particles outside small Reynolds number flow. For low Reynolds num-
ber flow, the PTHF model, developed under the assumption of negligi-
ble free convection, needs to be re-evaluated in practical applications,
such as those involving CO, capture by dry sorbents and fast pyrolysis
of biomass (see Table B.5).
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Table B.5

The ratio of the Grashof number to the square of the Reynolds
number in different PR-DNS cases (Re,, and ¢, are varying)
with practical applications in fast pyrolysis of biomass, CO,
capture using dry particle sorbents, and chemical looping com-
bustion (CLC). The calculation conditions of Gr/ Refn, where
Gr=gp(T, - T,)D? /vi, are as follows: (a) The fluid-to-solid
temperature ratio is taken as T, /T, = 5. (b) Air is chosen to
be the fluid phase under terrestrial conditions, and the kine-
matic viscosity of air is selected based on different gas-solid
heat transfer conditions: 2.3 x 107> m2/s (Biomass), 7 x 1073
m?/s (CO, capture), and 1.72 x 10~* m?/s (CLC). (c) The par-
ticle diameter D is 500 pm (Biomass), 404 um (CO, capture),
and 100 um (CLC). At Re,, = 1, both CO, sorbent and biomass
cases violate the criterion of Gr/Re? < 0.01 (highlighted in

gray cells).
Re,, =50 Re,, =100
422x107°  1.06x107°
422x107°  1.06x107°
422x10°  1.06x10°°
o 422x107%  1.06x107°
2 422x10°  1.06x107°
422x107°  1.06x107°
422x10°  1.06x107°
422x10°  1.06x107°
742x107*  1.85x107*
7.42x10%  1.85x107*
742x107%  1.85x107*
Biomass 742x 107 1.85x107*
742x107*  1.85x107*
7.42x107%  1.85x107*
7.42%x1074 1.85x107*
742x107*  1.85x107*
e, =001 265x10™%  1.06x107  2.65x10°®
£,=003 265x10™  1.06x107  2.65x107
£,=005 265x10™%  1.06x107  2.65x107®
e e, =0.1 265%10%  1.06x107  2.65x107
e, =02 265x107%  1.06x107  2.65x107
£,=03 265x107%  1.06x107  2.65x107®
e, =04 265%10%  1.06x107  2.65x107
£, =05 265x107%  1.06x107  2.65x1078
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