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Flow past disperse solid particles or bubbles induces fluctuations in carrier fluid velocity, which correlate with 
temperature fluctuations in non-isothermal flows resulting in the pseudo-turbulent heat flux (PTHF). In the 
Eulerian-Eulerian (EE) two-fluid (TF) model, the transport of PTHF is shown to be an important contributor 
to the overall energy budget, and is modeled using a pseudo-turbulent thermal diffusivity (PTTD). The PTHF 
and PTTD were originally quantified using particle-resolved direct numerical simulation (PR-DNS) data, and 
correlations were developed over a range of solid volume fraction (0.1 ≤ 𝜀𝑠 ≤ 0.5) and mean slip Reynolds number 
(1 ≤ 𝑅𝑒𝑚 ≤ 100) for a Prandtl number of 0.7. However, the original PTTD correlation diverges to infinity as the 
solid volume fraction goes to zero, which is physically unrealistic. This singular behavior is problematic for EE 
TF simulations at particle material fronts where solid volume fraction values can fall below the lower limit of 
existing data (𝜀𝑠 = 0.1) to zero in the pure carrier phase. In this work, additional PR-DNS data are reported for 
𝜀𝑠 < 0.1, and improved correlations are developed for the PTHF and PTTD. The new PTTD correlation is non-
singular, and both the PTHF and PTTD decay exponentially to zero as the solid volume fraction approaches 
zero, which is physically reasonable. This improves prediction of PTHF transport in dilute flow using EE TF heat 
transfer simulations.
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 Introduction

Gas-solid heat transfer plays a critical role in applications ranging 
om chemical looping combustion (Shen et al., 2008) to carbon-neutral 
ergy generation (Abanades et al., 2004). Understanding gas-solid heat 
ansfer is essential for design process and process optimization in unit 
erations. Such technological advances are key to limiting climate 
ange and achieving carbon neutrality by 2050 (Shukla et al., 2019). 
ultiphase computational fluid dynamics (MCFD) has drawn the atten-
n of researchers in the exploration of complex physical phenomena 
 gas-solid flow due to relatively low cost compared to experiments 
 scale (Papadikis et al., 2009; Boateng and Mtui, 2012; Xue et al., 
11). For MCFD simulations, the Eulerian-Eulerian (EE) two-fluid (TF) 
odel in which the particulate and the fluid phases are considered to 
 interpenetrating continua (Drew, 1983) is widely used. Based on this 
sumption, the average flow variables in each phase are modeled as 
ntinua governed by conservation laws for phase-averaged quantities 
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that can simultaneously occupy the same spatial location at the same 
time. The conservation equations contain coupling terms representing 
the interphase transfer of mass, momentum, and energy. In device-scale 
applications, the modeling of these coupling terms determines the pre-
dictive capability of multiphase CFD simulations.

Particle-resolved direct numerical simulation (PR-DNS) provides a 
model-free solution with complete three-dimensional time-dependent 
fields of velocity, pressure, and temperature of gas-solid heat transfer. 
Therefore, PR-DNS can be used to model the unclosed terms that appear 
in EE TF model (Tenneti and Subramaniam, 2014). The average inter-
phase transfer of momentum and energy of the EE TF model has been 
investigated based on the velocity and temperature fields generated by 
PR-DNS (Mehrabadi et al., 2015, 2016; Sun et al., 2015, 2016).

Specifically, in the absence of mass transfer between phases, the gov-
erning equation of the fluid-phase heat transfer in the Eulerian-Eulerian 
two-fluid model (Syamlal et al., 1993; Garg, 2009) is
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𝑡
{𝜌𝑓 𝜀𝑓 𝑐𝑝𝑓 ⟨𝑇 (𝑓 )⟩}

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
unsteady term

+ 𝜕

𝜕𝑥𝑗

{𝜌𝑓 𝜀𝑓 𝑐𝑝𝑓 ⟨𝑢(𝑓 )𝑗
⟩⟨𝑇 (𝑓 )⟩}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mean flow convection⟨

𝜕𝐼𝑓

𝜕𝑥𝑗

𝑞𝑗

⟩
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(1) average gas-solid
heat transfer

− 𝜕

𝜕𝑥𝑗

⟨𝐼𝑓 𝑞𝑗⟩
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(2) average conduction
in the fluid phase

− 𝜕

𝜕𝑥𝑗

{𝜌𝑓 𝑐𝑝𝑓 ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑗

𝑇 ′′(𝑓 )⟩}
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(3) pseudo-turbulent
heat flux term

,
(1)

here ⟨𝑇 (𝑓 )⟩ is the average fluid-phase temperature, and it can be com-
ted by averaging temperature field conditional on the presence of the 
id phase, such that

(𝑓 )⟩(𝒙, 𝑡) =
⟨𝐼𝑓 (𝒙, 𝑡)𝑇 (𝒙, 𝑡)⟩⟨𝐼𝑓 (𝒙, 𝑡)⟩ , (2)

here 𝐼𝑓 (𝒙, 𝑡) is the fluid-phase indicator function that is unity if the 
int 𝒙 lies on the fluid phase at time 𝑡, and zero otherwise, and the 
gle brackets denote ensemble-averaging of random fields over all par-
le configurations. In Eq. (1), 𝜌𝑓 and 𝑐𝑝𝑓 are, respectively, the density 
d specific heat of the fluid phase, 𝜀𝑓 is the fluid volume fraction, 
is the heat flux vector, 𝑢′′(𝑓 )

𝑗
= 𝑢𝑗 − ⟨𝑢(𝑓 )

𝑗
⟩ and 𝑇 ′′(𝑓 ) = 𝑇 − ⟨𝑇 (𝑓 )⟩ are, 

spectively, the velocity and temperature fluctuations.
The flux term ⟨𝐼𝑓 𝑢

′′(𝑓 )
𝑗

𝑇 ′′(𝑓 )⟩ in the average fluid temperature equa-
n (Eq. (1)) is called pseudo-turbulent heat flux (PTHF). In this un-
osed term, the velocity fluctuation component 𝑢′′(𝑓 )

𝑗
can arise from 

herent turbulent flow, but it can also be generated in laminar flow 
 the interactions of wakes due to the presence of particles. The PTHF 
rm represents the covariance of gas-phase velocity fluctuations and 
mperature, and its transport in two-fluid CFD simulations is usually 
glected due to lack of information. Sun et al. (2016) quantified the 
HF based on particle-resolved direct numerical simulation (PR-DNS) 
 steady thermally fully-developed flow past homogeneous particle as-
mblies. Their analysis showed that the transport of PTHF is an impor-
nt contributor to the overall energy budget, as expressed in the mean 
id temperature equation. The transport of PTHF in multiphase CFD 
n be modeled using a gradient-diffusion hypothesis by introducing 
pseudo-turbulent thermal diffusivity (PTTD) 𝛼𝑃𝑇 ,𝑗𝑘, which is defined 
 the relation ⟨𝐼𝑓 𝑢

′′(𝑓 )
𝑗

𝑇 ′′(𝑓 )⟩ = −𝛼𝑃𝑇 ,𝑗𝑘𝜕⟨𝑇 (𝑓 )⟩∕𝜕𝑥𝑘. Sun et al. (2016)
aracterized the PTTD over the same range of solid volume fraction 
.1 ≤ 𝜀𝑠 ≤ 0.5) and mean slip Reynolds number (1 ≤ 𝑅𝑒𝑚 ≤ 100), and 
veloped a correlation for the PTTD as a function of solid volume frac-
n and mean slip Reynolds number. Peng et al. (2019) incorporated 
is transport model for the PTTD and showed its importance in multi-
ase CFD simulations.
Although the PTHF has been investigated as summarized, one prob-

m that is encountered in multiphase CFD, which typically involves 
homogeneous solid volume fraction fields, is the behavior of PTHF 
d PTTD at the edge of particle material fronts where the solid volume 
action goes to zero in the pure fluid region. Such particle material 
onts are encountered at the top of the freeboard in a fluidized bed. 
n’s correlation for PTTD predicts an infinite value as the solid vol-
e fraction goes to zero, which is unphysical and leads to instabilities 

 the numerical solution of the multiphase CFD equations. Therefore, 
 this work we examine the behavior of PTHF and PTTD at very low 
lume fractions to definitively address their behavior in this limit. We 
so propose improved PTHF and PTTD correlations that are accurate 
 low solid volume fraction, resulting in stable MCFD simulations. This 
ticle is structured as follows. Section 2 introduces the PR-DNS method 
r flow past a fixed particle assembly that is used for quantifying PTHF 
d PTTD. Section 3 provides quantitative analysis of the PTHF at lower 
lume fractions and proposes the improved PTHF and PTTD correla-
ns. Section 4 summarizes the principal findings of this work.

 Problem formulation

The heat transfer problem formulation in this study is identical to 
2

at described in Sun et al. (2016) for steady flow past a homogeneous is
Chemical Engineering Science 283 (2024) 119371

sembly of monodisperse spherical particles. We briefly summarize the 
oblem formulation, governing equations, and PR-DNS setup in this 
ction.

We have previously argued (Tenneti et al., 2013) that in order to 
ecify closure models for the unclosed terms it is natural to simulate a 
atistically homogeneous gas–solid suspension using PR-DNS. The clo-
re for the average interphase momentum transfer or ‘drag law’ in the 
drodynamic problem has been inferred from PR-DNS of steady flow 
st statistically homogeneous particle suspensions driven by a constant 
ean pressure gradient in periodic domains. This problem setup ensures 
at the flow field is statistically homogeneous such that the mean ve-
city is a constant that does not vary in space, and although the mean 
essure varies linearly in the flow direction, the fluctuating pressure is 
riodic. Statistics such as the average interphase momentum transfer 
n be easily obtained by volume averaging.
In the heat transfer problem, the effect of continuous heating (or 
oling) of the fluid by the particles along the flow direction causes 
e average fluid temperature to vary in that direction. Although the 
drodynamic problem is statistically homogeneous, anisotropy in the 
ean fluid velocity results in a statistically inhomogeneous average 
id temperature field. Fig. 1a shows the contours of non-dimensional 
id temperature (defined by Eq. (8)) in steady flow through a cu-
c domain due to a constant imposed mean pressure gradient in the 
reamwise direction, revealing how the fluid is cooled by the particles. 
g. 1b shows that the average non-dimensional fluid temperature (de-
ed by Eq. (14)) monotonically decreases in the streamwise direction 
cause the fluid that is hotter than the particles at the inlet is pro-
essively cooled as it flows over the particles and loses heat to them. 
though the hydrodynamic problem is statistically homogeneous, the 
erage fluid temperature field is statistically inhomogeneous. Statistics 
ch as the average Nusselt number cannot be obtained by volume aver-
ing, but vary in the streamwise coordinate and are subject to greater 
atistical variability. Therefore, PR-DNS methodologies that are used 
 specify a closure model for the average Nusselt number in terms of 
e average solid volume fraction and mean slip Reynolds number must 
count for this inhomogeneity in the fluid temperature field.
One approach is to solve the heat transfer problem with an inflow 
undary condition on the inlet side and an outflow boundary condition 
 the outlet side (Tavassoli et al., 2013). This results in a thermally de-
loping flow right next to the inlet plane in which the average Nusselt 
mber varies with axial distance, eventually transitioning to a ther-
ally fully developed flow where the average Nusselt number becomes 
dependent of axial location. In this setup, averaging should only be 
rformed in the thermally fully-developed region of the flow domain 
hen computing statistics such as the average Nusselt number. This re-
ces the available region in the solution domain to obtain desired heat 
ansfer statistics and it also introduces uncertainties in the definition 
 the thermally fully developed region.
In order to circumvent these problems, we adopt the PR-DNS 
ethodology of Tenneti et al. (2013) to study heat transfer in sta-
tically homogeneous gas–solid flow in periodic domains, while still 
counting for spatial inhomogeneity in the average fluid temperature 
d using the entire thermally fully developed flow domain to extract 
sired statistics. Following Tenneti et al. (2013) we use the analogy of 
ermally fully developed flow in a fixed bed of particles (in an average 
nse) with thermally fully developed flow in internal pipes to develop a 
ermal self-similarity condition that guarantees a statistically homoge-
ous Nusselt number (Tenneti et al., 2013). For internal pipe flow with 
othermal walls held at 𝑇𝑤, the flow is said to be thermally fully devel-

ed when the scaled temperature 
𝑇 (x, 𝑡) − 𝑇𝑤

𝑇𝑚(𝑥) − 𝑇𝑤

, which is the ratio of the 

iving force (temperature difference) in the numerator to the response 
 the denominator (heat flux is written as a heat transfer coefficient 
es this temperature difference), does not change with the stream-

ise coordinate 𝑥. Here 𝑇𝑚 is the bulk or ‘mixing cup’ temperature that 

 defined in particle-laden flows for each particle configuration 𝜔 by
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(𝑥, 𝑡;𝜔) =

∫
𝐴𝑓

(𝒖𝑇 ) ⋅ 𝒆1𝑑𝐴𝑓

∫
𝐴𝑓

𝒖 ⋅ 𝒆1𝑑𝐴𝑓

, (3)

here 𝒆1 is the unit vector along the streamwise direction, and 𝐴𝑓 is the 
oss-sectional area occupied by the fluid perpendicular to the stream-
ise direction.
Tenneti et al. (2013) and Sun et al. (2015) developed a thermal self-

milarity condition in terms of a locally scaled fluid temperature field 
x, 𝑡) defined as

x, 𝑡) =
𝑇 (x, 𝑡) − 𝑇𝑠⟨𝑇𝑚⟩(𝑥) − 𝑇𝑠

, (4)

here 𝑇𝑠 is the constant temperature of the isothermal particles, and 
𝑚⟩(𝑥) is the average bulk fluid temperature at a streamwise location 
 defined by

𝑚⟩(𝑥, 𝑡) ≡ ∫
𝜔∈Ω

𝑇𝑚(𝑥, 𝑡;𝜔)𝑑𝑃𝜔, (5)

here 𝜔 represents a particle configuration which occurs with proba-
lity 𝑑𝑃𝜔. Clearly ⟨𝑇𝑚⟩ − 𝑇𝑠 in Eq. (4) is analogous to 𝑇𝑚 − 𝑇𝑤 in the 
finition of scaled temperature for internal pipe flow, and it is in this 
nse that thermally fully developed particle-laden flow is analogous 
n an average sense) to internal pipe flow. This thermal self-similarity 
ndition requires that

𝜃 = 𝜕

𝜕𝑥

(
𝑇 (x, 𝑡) − 𝑇𝑠⟨𝑇𝑚(𝑥, 𝑡)⟩− 𝑇𝑠

)
= 0 (6)

r the flow to be thermally fully developed. Just as in thermally fully 
veloped pipe flow, this condition guarantees that at steady state the 
tio of the driving force (temperature difference) in the numerator to 
e response (heat flux) in the denominator does not change with the 
w coordinate 𝑥.

1. Governing equations

The assumptions made in this heat transfer problem are: (i) isother-
al particles (see Appendix A) with a single spatially uniform tem-
rature for all particles that is constant in time, (ii) negligible free 
nvection (see Appendix B), and (iii) neglect of radiation and viscous 
ating. In the absence of viscous heating, radiation, and free con-
ction effects, the governing equation for the fluid temperature field 
(𝒙, 𝑡) is

𝑡
+

𝜕(𝑢𝑗𝑇 )
𝜕𝑥𝑗

= 𝛼𝑓
𝜕2𝑇

𝜕𝑥𝑗𝜕𝑥𝑗

, (7)

here 𝛼𝑓 = 𝑘𝑓∕𝜌𝑓 𝑐𝑝𝑓 is the thermal diffusivity in the fluid phase, and 𝑘𝑓

 the thermal conductivity in the fluid phase. The Dirichlet boundary 
ndition 𝑇 = 𝑇𝑠 is applied at the surface of each particle corresponding 
 isothermal particles.
Since the boundary conditions at the domain boundaries are in terms 

 𝜃, it would appear to be easier to rewrite Eq. (7) in terms of 𝜃 and 
lve directly for 𝜃. However, the evolution equation for 𝜃 contains 
ditional terms that represent the evolution of the bulk temperature 
. Therefore, in order to solve for 𝜃 we need to solve an additional 
uation for 𝑇𝑚. Moreover, solving for the evolution equation for 𝑇𝑚 re-

ires the computation of heat flux from every particle that intersects 
e plane perpendicular to the mean flow at each 𝑥 location in the direc-
n of the mean flow. Since there is a finite number of particles in the 
mputational domain, the solution may suffer from statistical error. 
erefore, it turns out to be easier to transform the periodic bound-
y conditions on 𝜃 to obtain similarity conditions on the temperature 
ld 𝑇 (𝒙, 𝑡) and solve Eq. (7) for 𝑇 (𝒙, 𝑡). In order to simplify the thermal 
3

milarity conditions, and also to homogenize the boundary conditions 𝑟ℎ
Chemical Engineering Science 283 (2024) 119371

g. 1. (a) Contour of the non-dimensional fluid temperature field (see Eq. (8)) 
 flow past a fixed particle assembly. (b) The corresponding average non-
mensional fluid temperature along the axial location. ⟨𝑾 ⟩ is the mean slip 
locity between the solid and fluid phase, 𝑇𝑓 is the fluid temperature, and ⟨𝜙⟩
the average non-dimensional fluid temperature (see Eqs. (2) and (8)).

 the particle surfaces, we define a non-dimensional temperature field 
𝒙, 𝑡) as follows:

𝒙, 𝑡) =
𝑇 (𝒙, 𝑡) − 𝑇𝑠⟨𝑇𝑚,𝑖𝑛⟩− 𝑇𝑠

, (8)

here ⟨𝑇𝑚,𝑖𝑛⟩ is the average bulk fluid temperature ⟨𝑇𝑚⟩(𝑥) evaluated at 
= 0.
The governing equation for the non-dimensional fluid temperature 
ld 𝜙(𝒙, 𝑡) can be derived as

𝑡
+

𝜕(𝑢𝑗𝜙)
𝜕𝑥𝑗

= 𝛼𝑓

𝜕2𝜙

𝜕𝑥𝑗𝜕𝑥𝑗

. (9)

e isothermal boundary conditions on the particle surface reduce to 
= 0, and the thermal similarity conditions now appear in a very simple 
rm as

0, 𝑦, 𝑧) = 𝑟ℎ𝜙(𝐿,𝑦, 𝑧) (10a)

𝑥,0, 𝑧) = 𝜙(𝑥,𝐿, 𝑧) (10b)

𝑥, 𝑦,0) = 𝜙(𝑥, 𝑦,𝐿) (10c)

here 𝑟ℎ is the heat ratio defined by

⟨𝑇𝑚,𝑖𝑛⟩− 𝑇𝑠
= ⟨𝑇𝑚,𝑜𝑢𝑡⟩− 𝑇𝑠

, (11)
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here ⟨𝑇𝑚,𝑜𝑢𝑡⟩ is the average bulk fluid temperature evaluated at 𝑥 =𝐿, 
d 𝐿 is the length of the computational domain in the streamwise 
rection.

2. Computation of PTHF

Certain simplifications arise in computing the scaled PTHF
𝑓 𝑢

′′(𝑓 )
𝑖

𝜙′′(𝑓 )⟩ (where the non-dimensional fluid temperature fluctua-
n is defined as 𝜙′′(𝑓 ) = 𝜙 − ⟨𝜙(𝑓 )⟩) from the thermally fully developed 
lution that results from the thermal self-similarity condition imposed 
 periodic domains as described above. The non-dimensional fluid 
mperature field 𝜙(𝒙, 𝑡) in Eq. (8) can be written as the product of 
e scaled non-dimensional fluid temperature and the average non-
mensional bulk fluid temperature ⟨𝜙𝑚⟩(𝑥, 𝑡):

𝒙, 𝑡) =
(

𝑇 (𝒙, 𝑡) − 𝑇𝑠⟨𝑇𝑚⟩(𝑥, 𝑡) − 𝑇𝑠

)(⟨𝑇𝑚⟩(𝑥, 𝑡) − 𝑇𝑠⟨𝑇𝑚,𝑖𝑛⟩− 𝑇𝑠

)
= 𝜃(𝒙, 𝑡)⟨𝜙𝑚⟩(𝑥, 𝑡).

(12)

ultiplying the above equation by the fluid indicator function 𝐼𝑓 , tak-
g the expectation based on the definition in Eq. (2) leads to the 
rresponding relation

(𝑓 )⟩(𝒙, 𝑡) = ⟨𝜃(𝑓 )⟩(𝒙, 𝑡)⟨𝜙𝑚⟩(𝑥, 𝑡). (13)

nce the scaled temperature field 𝜃 is statistically homogeneous, the 
ove equation can be further simplified as

(𝑓 )⟩(𝒙, 𝑡) = ⟨𝜃(𝑓 )⟩(𝑡)⟨𝜙𝑚⟩(𝑥, 𝑡), (14)

vealing that all spatial inhomogeneity in ⟨𝜙(𝑓 )⟩ arises purely from 
𝑚⟩. This observation leads to simplifications in computing the scaled 
HF.

We now deduce the PTHF in terms of the scaled fluid tempera-
re 𝜃(𝒙, 𝑡) that is statistically homogeneous. Substituting the defini-
n of the non-dimensional fluid temperature fluctuations 𝜙′′(𝑓 )(𝒙) =
𝒙) − ⟨𝜙(𝑓 )⟩(𝑥) into the expression for the ensemble-averaged PTHF 
𝑓 𝑢

′′(𝑓 )
𝑖

𝜙′′(𝑓 )⟩(𝑥) and using the relation 𝜙 = 𝜃⟨𝜙𝑚⟩ (see Eq. (12)), leads 
 the following expression

(𝑓 )
𝑖𝜙

≡ ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝜙′′(𝑓 )⟩(𝑥) = ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝜃⟩⟨𝜙𝑚⟩(𝑥) = 𝑅
(𝑓 )
𝑖 𝜃

⟨𝜙𝑚⟩(𝑥), (15)

here 𝑅(𝑓 )
𝑖 𝜃

≡ ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝜃⟩. Note that although ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝜙′′(𝑓 )⟩ is inhomo-
neous in 𝑥, the covariance of velocity and scaled temperature 𝑅(𝑓 )

𝑖 𝜃
is 

pected to be statistically homogeneous since both the fluid velocity 
ld 𝑢𝑖 and the scaled fluid temperature field 𝜃 are statistically ho-
ogeneous. Again, all spatial inhomogeneity in the scaled PTHF arises 
rely from ⟨𝜙𝑚⟩. In a previous study (Sun et al., 2016) showed that 
e average non-dimensional bulk fluid temperature ⟨𝜙𝑚⟩(𝑥) decays ex-
nentially with axial distance.

3. PR-DNS method

The PR-DNS approach in this study is identical to that described 
 Sun et al. (2016) for steady flow past a homogeneous assembly of 
onodisperse spherical particles. The particles are maintained at a con-
ant temperature and distributed in a random configuration over a 
bic domain with periodic boundary conditions to produce a prede-
ed solid volume fraction. In this work, the solid volume fraction is 
tended to low values and each case is simulated at three different 
ynolds numbers. Table 1 summarizes the relevant simulation param-
ers for generating the PR-DNS data in this study.
A couple of details regarding the implementation of the governing 
uations (Eq. (9)) along with its boundary conditions (Eqs. (10)) and 
. (11) are noteworthy. When solving Eq. (9), the fluid velocity field 

 taken to be a given quantity that is obtained from the hydrodynamic 
lution for that particle configuration. In this formulation, because of 
4

e isothermal boundary condition on particles, the fluid velocity field st
Chemical Engineering Science 283 (2024) 119371

ble 1

rameters for heat transfer simulation in steady flow past random fixed assem-
ies of particles. The physical parameters are the solid volume fraction 𝜀𝑠 and 
e mean slip Reynolds number 𝑅𝑒𝑚 . The numerical parameters are the ratio of 
e box length to the particle diameter 𝐿∕𝐷 and the grid resolution 𝐷𝑚 = 𝐷∕Δ𝑥. 
e number of particles 𝑁𝑝 is determined by 𝜀𝑠 and 𝐿. Five independent simu-
tions of each case are simulated to reduce statistical variability.
𝜀𝑠 𝑅𝑒𝑚 𝐿∕𝐷 𝑁𝑝 𝐷𝑚

0.01 1,50,100 18 111 20

0.03 1,50,100 15 193 20

0.05 1,50,100 12 165 20

0.1 1,50,100 7.5 80 20

0.2 1,50,100 7.5 161 20

0.3 1,50,100 5 71 30

0.4 1,50,100 5 95 30

0.5 1,50,100 4 61 40

es not need to be evolved in time and is maintained the same while 
e temperature field evolves to a steady state. The average bulk tem-
rature at the inlet appears in the definition of 𝜙 (see Eq. (8)), and 
e average bulk temperature at a given axial location 𝑥 appears in the 
finition of 𝜃(𝑥). Although mathematically the average bulk tempera-
re is defined by Eq. (5), in practice the average bulk temperature is 
mputed separately for each realization as a cross-sectional average 
ee Eq. (3)). If the ensemble-average were used then multiple inde-
ndent simulations would need to be performed in parallel, and the 
semble–averaged bulk temperature at the inlet would have to be com-
ted at every time step. The same procedure would be needed when 
st-processing statistics related to 𝜃 (Eq. (4)). However, in practice 𝜃

 also computed using the same cross-sectionally averaged 𝑇𝑚 for that 
alization.

In the following, we first quantify ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝜃⟩ and then propose an 
proved PTHF correlation for it in Sec. 3.1. In Sec. 3.2 we modify the 
ponentially decaying coefficient for the average bulk fluid temper-
ure model that is later used in the gradient-diffusion model for the 
HF. In Sec. 3.3 we propose a modification to the PTTD correlation 
 which the modified PTHF correlation and the modified decay coef-
ient appear. In Sec. 3.4, a scale analysis is conducted to validate the 
ale separation assumption for local closure model development in sta-
tically homogeneous gas-solid flow.

 Results and discussion

1. Quantifying and modeling the PTHF

In order to quantify the PTHF term, we first solve Eq. (9) by using 
e PR-DNS approach to extract the non-dimensional fluid temperature 
ld 𝜙(𝒙, 𝑡) and the average non-dimensional bulk fluid temperature 
𝑚⟩(𝑥, 𝑡). By using the relation 𝜙 = 𝜃⟨𝜙𝑚⟩ (see Eq. (12)), we can com-
te the non-dimensional scaled fluid temperature field 𝜃(𝒙, 𝑡) for quan-
ying the statistical homogeneous ⟨𝐼𝑓 𝑢

′′(𝑓 )
𝑖

𝜃⟩.
It is of interest to examine the covariance of velocity and scaled 
mperature in an orthogonal coordinate system aligned with the mean 
locity vector. Our observations indicate that the component of fluc-
ating velocity aligned with the mean flow direction shows strong 
rrelation with the scaled temperature (see Fig. 2a), while the fluc-
ating velocity components perpendicular to the mean flow exhibit 
eak correlation with the scaled temperature (see Figs. 2b and 2c). The 
int probability distribution function (PDF) of the velocity and scaled 
mperature is presented in Fig. 2d, showing that the PDFs of 𝐼𝑓 𝑢

′′(𝑓 )
𝑦 𝜃

d 𝐼𝑓 𝑢
′′(𝑓 )
𝑧 𝜃 are almost identical to a zero-mean Gaussian distribution. 

 a result, the PTHF in the cross-stream directions ⟨𝐼𝑓 𝑢
′′(𝑓 )
⟂ 𝜃⟩ are neg-

ible, while the streamwise component of the PTHF ⟨𝐼𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩ is the 

minant and non-negligible contribution to the flux. This observation 
 consistent with the characteristics of the pseudo-turbulent Reynolds 

ress tensor, defined as ⟨𝐼𝑓 𝑢

′′(𝑓 )
𝑖

𝑢
′′(𝑓 )
𝑗

⟩∕⟨𝐼𝑓 ⟩, where the cross-correlation 
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Fig. 2. Covariance of fluctuating velocity and scaled temperature obtained from PR-DNS data at 𝜀𝑠 = 0.01 and 𝑅𝑒𝑚 = 1 normalized by 𝜎(𝑓 ) =
(2𝑘𝑓∕3)1∕2(⟨𝐼𝑓 𝜃′′𝜃′′⟩∕⟨𝐼𝑓 ⟩)1∕2 , where 𝑘𝑓 represents the kinetic energy in fluid-phase velocity fluctuations and 𝜃′′ = 𝜃 − ⟨𝜃(𝑓 )⟩ is the scaled temperature fluctua-
tion. The mean flow velocity is in the positive 𝑥 direction and the mean temperature gradient is aligned with the mean flow. The left panel displays contours of 
𝐼𝑓 𝑢

′′(𝑓 )
𝑖

𝜃∕⟨𝐼𝑓 ⟩𝜎(𝑓 ): (a) 𝐼𝑓 𝑢
′′(𝑓 )
𝑥 𝜃∕⟨𝐼𝑓 ⟩𝜎(𝑓 ), (b) 𝐼𝑓 𝑢

′′(𝑓 )
𝑦 𝜃∕⟨𝐼𝑓 ⟩𝜎(𝑓 ), and (c) 𝐼𝑓 𝑢

′′(𝑓 )
𝑧 𝜃∕⟨𝐼𝑓 ⟩𝜎(𝑓 ) . The right panel (d) shows the joint probability distribution function (PDF) of 

the velocity and scaled temperature. Note that the mean value of the joint PDF represents the covariance in the PTHF. Each PDF has been shifted up by two decades 
with respect to the lower one. Associating ∥ with 𝑥 and ⟂1 and ⟂2 with 𝑦 and 𝑧, respectively, we see that ⟨𝐼𝑓 𝑢

′′(𝑓 )
∥ 𝜃⟩ is dominant and nonzero whereas the other 

components are negligible.
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tween the streamwise and cross-stream velocity fluctuations is neg-
ible ⟨𝐼𝑓 𝑢

′′(𝑓 )
∥ 𝑢

′′(𝑓 )
⟂ ⟩ ≈ 0 (see Mehrabadi et al., 2015.) These findings 

ld when the mean temperature gradient is not imposed but is estab-
hed along the mean flow direction because of cooling (or heating) of 
id by the particles, as is the case in this PTHF study. For this setup 
e found that only the streamwise component of the PTHF ⟨𝐼𝑓 𝑢

′′(𝑓 )
∥ 𝜃⟩

 non-negligible. However, it should be noted that when the mean flow 
rection and the mean fluid temperature gradient are not aligned, the 
HF may have non-negligible contributions in other components as 
ell.

We quantify the magnitude of PTHF over a cross-sectional plane at 
given axial location over 𝑀 realizations as

𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩(𝑥) ≈ 1

𝑀

𝑀∑
𝜔=1

{
1
𝐴

𝐴

∫
0

{𝐼𝑓 𝑢
′′(𝑓 )
∥ 𝜃}(𝒙;𝜔)𝑑𝐴

}
, (16)

here A is the cross-section area that is located at 𝑥 and 𝑢′′(𝑓 )∥ is the com-
nent of fluctuating fluid velocity in the streamwise direction. Fig. 3 il-
strates the ensemble-averaged cross-sectional PTHF obtained from the 
-DNS simulations of heat transfer in steady flow past random fixed 
semblies of particles in the volume fraction range 0.01 ≤ 𝜀𝑠 ≤ 0.03 at 
𝑒𝑚 = 100. This result also confirms that the statistical homogeneity in 
e ensemble-averaging of PTHF can be achieved by using five real-
ations (𝑚 = 5) as suggested in the previous study. Next, we compute 
𝑓 𝑢

′′(𝑓 )
∥ 𝜃⟩ by using a volume average as

𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩ = 1

𝐿

𝐿

∫
0

⟨𝐼𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩(𝑥)𝑑𝑥, (17)

d this quantity only depends on the average solid volume fraction 
5

d mean slip Reynolds number. vo
g. 3. Variation of the ensemble-averaged PTHF normalized by the magnitude 
 mean slip velocity |⟨𝑾 ⟩| along axial location 𝑥 over 5 MIS in the range 
01 ≤ 𝜀𝑠 ≤ 0.03 at 𝑅𝑒𝑚 = 100. The error bars indicate 95% confidence intervals.

The quantified PTHF term as a function of solid volume fraction and 
ynolds number is shown as circles in Fig. 4. The original PTHF data 
t (0.1 ≤ 𝜀𝑠 ≤ 0.5) is shown as black circles while the PTHF data from 
is work is shown as red circles. The original PTHF correlation is given 

𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩ = (1 − 𝜀𝑠)(0.2 + 1.2𝜀𝑠 − 1.24𝜀2𝑠 ) exp (−0.002𝑅𝑒𝑚)|⟨𝑾 ⟩|, (18)

hich predicts the PTHF over the range of solid volume fraction (0.1 ≤
≤ 0.5) and mean slip Reynolds number (1 ≤ 𝑅𝑒𝑚 ≤ 100) for Prandtl 
mber of 0.7, where |⟨𝑾 ⟩| is the mean slip velocity.
Fig. 4 shows how the PTHF term varies with respect to the solid 

lume fraction and mean slip Reynolds number. At higher solid vol-
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Fig. 4. Least squares fit of PTHF numerical results for the proposed PTHF correlation. Circle represent the volume-averaged ⟨𝐼𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩ results using Eqs. (16) and 

(17) over 5 PR-DNS data. Red is PTHF for the range 0.01 ≤ 𝜀𝑠 ≤ 0.03 and 1 ≤ 𝑅𝑒𝑚 ≤ 100, which is obtained from this study while black circles originated from a 
previous study.

Fig. 5. Comparison of the pseudo-turbulent heat flux (PTHF) in the range 0 ≤ 𝜀𝑠 ≤ 0.5 and 1 ≤ 𝑅𝑒𝑚 ≤ 100: symbols represent the PTHF obtained from PR-DNS data; 
black (original) and red (modified) lines represent the PTHF correlation. Error bars represent 95% confidence intervals using 5 MIS.
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e fraction (𝜀𝑠 > 0.1), the PTHF term is relatively constant, while at 
wer solid volume fraction (𝜀𝑠 < 0.1), the PTHF exponentially decays to 
ro as solid volume fraction goes to zero (𝜀𝑠 → 0). However, its varia-
n with Reynolds number is relatively small compared to solid volume 
action. Consequently, the modified PTHF correlation should capture 
ose trends. Inspired by the original PTHF correlation, our new corre-
tion is proposed as

𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩ = {(1−𝜀𝑠)(𝑐1𝜀𝑠+𝑐2𝜀

2
𝑠 +𝑐3𝜀

3
𝑠 )+[1−exp(𝑐4𝜀𝑠)]} exp(𝑐5𝑅𝑒𝑚)|⟨𝑾 ⟩|,

(19)

ith the following constants,

= −5.11, 𝑐2 = 10.10, 𝑐3 = −10.85, 𝑐4 = −10.96, 𝑐5 = −0.002089.

e above coefficients are computed based on a least-squares fit with 
e PTHF results obtained from the PR-DNS simulations (Fig. 4). The 
athematical form of the new correlation is similar to those of the 
evious but with a few exceptions. There is a constant term in the 
lynomial of the original PTHF (Eq. (18)), contributing to the non-
ro limit of PTHF when particles no longer exist (𝜀𝑠 = 0), which is 
consistent with the flow physics and PR-DNS data extracted at low 
6

. In practice, this may cause problems when using the PTHF model at gr
e edge of particle material fronts where the solid volume fraction is 
arly zero in the pure fluid region. The PTHF term should be zero at 
= 0 in such applications. Based on this expectation, the form of the 
w correlation is constructed so that it is zero when the solid volume 
action equals zero. Another difference is that we include an exponen-
l function, accompanied by the high-order polynomial, to capture 
e exponential decay trend when the solid volume fraction approaches 
ro. Therefore, the new PTHF correlation, modified from the origi-
l counterpart, can be viewed as a combination of a polynomial that 

 dominant in dense flow regions with an exponential decay function 
at is responsible for capturing the physical behavior of PTHF in dilute 
w (e.g., gas-solid flows at the top of the freeboard in a fluidized bed). 
 Fig. 5, the black and red lines illustrate the behavior of the origi-
l and modified PTHF correlations, respectively, as a function of solid 
lume fraction and mean slip Reynolds number.

2. Decay coefficient modification

In Eq. (1), the transport of PTHF term needs to be modeled in CFD 
mulations based on the two-fluid model. A gradient-diffusion model, 
milar to the turbulent scalar flux models in single-phase flow (Fox, 
03), has been proposed and validated by Sun et al. (2016). The 

adient-diffusion model is:
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𝑓 𝑢
′′(𝑓 )
𝑖

𝜙′′(𝑓 )⟩⟨𝐼𝑓 ⟩ = −𝛼𝑃𝑇 ,𝑖𝑗

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥𝑗

, (20)

here 𝛼𝑃𝑇 ,𝑖𝑗 is the pseudo-turbulent thermal diffusivity (PTTD). In gen-
al, 𝛼𝑃𝑇 ,𝑖𝑗 should be a second-order, anisotropic tensor characterizing 
e transport of PTHF in different directions not necessarily aligned 
ith the gradient of phase-averaged mean fluid temperature.
Mehrabadi et al. (2015) quantified the pseudo-turbulent Reynolds 

ress (PTRS) tensor 𝑅(𝑓 )
𝑖𝑗

= ⟨𝐼𝑓 𝑢
′′(𝑓 )
𝑖

𝑢
′′(𝑓 )
𝑗

⟩∕⟨𝐼𝑓 ⟩ in steady flow past fixed 
semblies of spheres using PR-DNS simulation. The anisotropy of the 
RS tensor was computed over a range of solid volume fraction and 
ean slip Reynolds number. It was found that the PTRS tensor exhibits 
o independent diagonal components, 𝑅(𝑓 )

∥,∥ and 𝑅
(𝑓 )
⟂,⟂, that character-

e the PTRS parallel and perpendicular to the mean flow direction, 
spectively. The cross-correlation between the streamwise and cross-
ream velocity fluctuations was found to be negligible ⟨𝐼𝑓 𝑢

′′(𝑓 )
∥ 𝑢

′′(𝑓 )
⟂ ⟩ ≈

 Hence, the PTRS is orthotropic corresponding to two-component ax-
ymmetric turbulence (Pope, 2000). Those PR-DNS simulations also 
vealed that the PTRS component in the parallel direction 𝑅(𝑓 )

∥,∥ is dom-
ant compared to the perpendicular direction 𝑅(𝑓 )

⟂,⟂. This lends support 
 our findings that the streamwise component of the PTHF is non-zero 
hereas the other components are negligible in this setup.
In the general case where the mean temperature gradient is imposed 

 an arbitrary angle to the mean flow direction, it will have non-
ro components in the cross-stream directions also. Generalizing the 
adient-diffusion assumption by introducing a pseudo-turbulent ther-
al diffusivity (PTTD) tensor results in the following model:

(𝑓 )
𝑖𝜙

= 𝛼𝑃𝑇 ,𝑖𝑗

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥𝑗

(21)

here the pseudo-turbulent thermal diffusivity (PTTD) 𝛼𝑃𝑇 ,𝑖𝑗 is a 
cond-order tensor. The subscript ‘𝑃𝑇 ’ will be omitted in the index no-
tion in the tensor components for simplicity. Rewriting this relation 
 terms of the parallel and perpendicular components and expanding 
ch component, we have

(𝑓 )
∥𝜙

= 𝛼∥,∥
𝜕⟨𝜙(𝑓 )⟩

𝜕𝑥∥
+ 𝛼∥,⟂1

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂1

+ 𝛼∥,⟂2

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂2

(22)

(𝑓 )
⟂1 𝜙

= 𝛼⟂1 ,∥
𝜕⟨𝜙(𝑓 )⟩

𝜕𝑥∥
+ 𝛼⟂1 ,⟂1

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂1

+ 𝛼⟂1 ,⟂2

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂2

(23)

(𝑓 )
⟂2 𝜙

= 𝛼⟂2 ,∥
𝜕⟨𝜙(𝑓 )⟩

𝜕𝑥∥
+ 𝛼⟂2 ,⟂1

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂1

+ 𝛼⟂2 ,⟂2

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥⟂2

(24)

is is a under-determined problem for the general case because we 
ve only three equations but nine unknown components of the PTTD 
nsor (it is not clear that the physics of pseudo-turbulence dictate that 
mmetry relations should be applicable for the PTTD in general).
In our current collinear setup with the mean temperature gradient 

igned with the mean slip velocity, statistical symmetry implies that 
ly one of the cross-stream components is independent, thereby reduc-
g the number of unknown PTTD components to four: 𝛼∥,∥, 𝛼∥,⟂, 𝛼⟂,∥, 
d 𝛼⟂,⟂. With a mean temperature gradient that has only a nonzero 
reamwise component, we can infer 𝛼∥,∥ from the first equation, and 
e remaining equations tell us that 𝛼⟂1 ,∥ and 𝛼⟂2 ,∥ are zero because the 
ean gradient does not induce PTHF components in the cross-stream 
rections (cf. Figs. 2b and 2c.). Assuming symmetry of 𝛼∥,⟂ and 𝛼⟂,∥
aves only one component 𝛼⟂,⟂ undetermined in this case. Peng et al. 
019) assumed that the orthotropic nature of the PTRS is preserved in 
e PTTD to determine the 𝛼⟂,⟂ component by:

,⟂ =

(
𝑅
(𝑓 )
⟂,⟂

𝑅
(𝑓 )
∥,∥

)
𝛼∥,∥. (25)

e findings of this paper do not contradict the assumption of Peng et 
7

. (2019), but neither do they provide validation for it. as
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PR-DNS simulations of gas-solid heat transfer where there is a 
nzero angle between the mean flow and the gradient of the mean 
id temperature are required to test this assumption. In such cases, the 
oss-stream PTHF will depend on the angle between the mean flow and 
e mean fluid temperature gradient. A comprehensive examination of 
e anisotropic transport of the PTHF would require an inhomogeneous 
-DNS set-up where there is transport of PTHF in different directions 
om that of the mean fluid temperature gradient. Such an investigation 
 beyond the scope of this paper. In this study, the PR-DNS set-up al-
ws only the gradient of the mean fluid temperature in the streamwise 
rection to be non-zero. Therefore, we only quantify the axial compo-
nt of the PTHF, which is aligned with the gradient of the mean fluid 
mperature. As a result, the pseudo-turbulent thermal diffusivity tensor 
duces to a scalar 𝛼𝑃𝑇 that represents the transport of PTHF parallel to 
e mean flow direction. Hence, the gradient-diffusion model along the 
reamwise direction is:

𝑓 𝑢
′′(𝑓 )
∥ 𝜙′′(𝑓 )⟩(𝑥)⟨𝐼𝑓 ⟩ = −𝛼𝑃𝑇

𝜕⟨𝜙(𝑓 )⟩
𝜕𝑥

. (26)

The above definition states that the magnitude of the PTHF is pro-
rtional to the spatial gradient of the average non-dimensional fluid 
mperature ⟨𝜙(𝑓 )⟩. In thermally fully developed gas-solid flow, the av-
age bulk fluid temperature shows an exponential decay with respect 
 axial distance, which is similar to internal forced heat convection in 
pipe problem. It should be noted that the average fluid temperature 
ld ⟨𝜙(𝑓 )⟩ defined in Eq. (14) is a product of the scaled temperature 
ld 𝜃 and the average bulk fluid temperature ⟨𝜙𝑚⟩(𝑥), and obeys the 
rm

𝑚⟩(𝑥) = 𝑒−𝜆𝑚𝑥∕𝐷, (27)

here 𝜆𝑚 is the non-dimensional decay coefficient. Sun et al. (2016)
oposed a decay coefficient of the form

=
6𝜋𝜀𝑠⟨𝑁𝑢⟩

4(𝑅𝑒𝑚 + 1.4)𝑃𝑟
. (28)

nsequently, a mathematical model for the pseudo-turbulent thermal 
ffusivity 𝛼𝑃𝑇 can then be derived by substituting Eqs. (14), (15), and 
7) into Eq. (26) to obtain

𝑇 = 𝐷

𝜆𝑚

⟨𝐼𝑓 𝑢
′′(𝑓 )
∥ 𝜃⟩

(1 − 𝜀𝑠)⟨𝜃(𝑓 )⟩ . (29)

Fig. 6 compares the mathematical model for PTTD computed by us-
g the original and modified PTHF correlations (Eqs. (18) and (19)) 
d the original decay coefficient (Eq. (28)). Note that although the de-
y coefficient will be modified by including the lower solid volume 
action PR-DNS data, we want to first examine the limitation of 𝛼𝑃𝑇

r which only the PTHF term has been modified. According to the fig-
e, both PTTD models, derived from the original and modified PTHF, 
e not equal to zero when the solid volume fraction equals zero. For 
e PTTD in its original form, the value diverges to infinity as 𝜀𝑠 → 0.
In order to address this problem, we propose the following argu-
ent. In the mathematical definition of PTTD (Eq. (29)) the denomina-
r which contains the decay coefficient in terms of 𝜀𝑠 goes to zero as 
→ 0. In order to ensure that lim𝜀𝑠→0 𝛼𝑃𝑇 exists, the numerator must go 
 zero faster than the denominator as 𝜀𝑠 → 0. In other words, a slower 
riation of the decay coefficient with 𝜀𝑠 → 0, coupled with the expo-
ntial decay rate of PTHF, is necessary for specifying a zero limit of 
TD as solid volume fraction approaches zero.
Based on this analysis, the solid volume fraction 𝜀𝑠 in the decay coef-
ient 𝜆𝑚 has been replaced by a polynomial, in which the degree of the 
lynomial is chosen from an infinite geometric series (1, 1∕2, 1∕4, ...) 
at converges absolutely. By fitting this polynomial to the PR-DNS data 
om 0.01 ≤ 𝜀𝑠 ≤ 0.5 and 1 ≤ 𝑅𝑒𝑚 ≤ 100, we find a new decay coefficient 

 follows
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g. 6. Comparison of the PTTD model in the range 0.01 ≤ 𝜀𝑠 ≤ 0.03 and 𝑅𝑒𝑚 =
0. The solid and dash lines represent the PTTD associated with Eqs. (18) and 
9), respectively. The symbol represents the PTTD obtained from PR-DNS data. 
te that the PTTD model is not vanishing as the solid volume fraction goes to 
ro.

g. 7. Comparison of the non-dimensional decay coefficient in the range 0 ≤
≤ 0.5 and 1 ≤ 𝑅𝑒𝑚 ≤ 100: symbols represent the decay coefficient obtained 
m PR-DNS data; black (original) and red (modified) lines represent decay 
efficient.

=
6𝜋(1.17𝜀𝑠 − 0.2021𝜀1∕2𝑠 + 0.08568𝜀1∕4𝑠 )⟨𝑁𝑢⟩

4(𝑅𝑒𝑚 + 1.4)𝑃𝑟
. (30)

Fig. 7 compares the modified decay coefficient (Eq. (30)) to the 
iginal decay coefficient (Eq. (28)) with the PR-DNS result for differ-
t solid volume fraction and mean slip Reynolds number. It can be 
en that both the original and modified decay coefficients are close to 
e PR-DNS results at higher solid volume fractions (𝜀𝑠 > 0.1), which 
 to be expected. At lower solid volume fractions (𝜀𝑠 < 0.1), the poly-
mial decay trend similar to that of the PTHF with decreasing solid 
lume fraction is observed in the 𝜆𝑚 values. However, near the lowest 
lue of 𝜆𝑚, the original decay coefficient decays much faster than the 
odified decay coefficient, indicating that the denominator may decay 
ster than the numerator in the PTTD expression (see Eq. (29)), even-
ally leading to blow-up of the PTTD correlation (Fig. 6). Through this 
alysis, it is safe to conclude that the prediction of the original decay 
efficient at lower solid volume fractions is insufficient to determine 
e limiting value of PTTD. However, the modified decay coefficient 
ercomes this problem because of its slower decay rate, which still 
llows the PR-DNS result at lower solid volume fractions.

3. PTTD modification

The goal of modifying the PTHF correlation and the decay coeffi-
8

ent is to ensure that the derived PTTD correlation approaches zero as ni
Chemical Engineering Science 283 (2024) 119371

g. 8. Comparison of the pseudo-turbulent thermal diffusivity (PTTD) in the 
nge 0 ≤ 𝜀𝑠 ≤ 0.5 and 1 ≤ 𝑅𝑒𝑚 ≤ 100: symbols represent the PTTD obtained 
m PR-DNS data; black (original) and red (modified) lines represent the PTTD 
rrelation. Error bars represent 95% confidence intervals using 5 MIS.

e solid volume fraction decreases to zero, which is not predicted by 
e previous study. Therefore, substituting the modified PTHF correla-
n (Eq. (19)) along with the modified decay coefficient (Eq. (30)) into 
e expression for the PTTD (Eq. (29)) results in the following expres-
on

𝑇

𝑓

=
2𝑅𝑒𝑚(𝑅𝑒𝑚 + 1.4)𝑃𝑟2exp(−0.002089𝑅𝑒𝑚)

3𝜋⟨𝑁𝑢⟩
(1 − 𝜀𝑠)(−5.11𝜀𝑠 + 10.1𝜀2

𝑠
− 10.85𝜀3

𝑠
) + 1 − exp(−10.96𝜀𝑠)

.17𝜀𝑠 − 0.2021𝜀1∕2𝑠 + 0.08568𝜀1∕4𝑠 )(1 − 𝜀𝑠)2[1 − 1.6𝜀𝑠(1 − 𝜀𝑠) − 3𝜀𝑠(1 − 𝜀𝑠)4exp(−𝑅𝑒0.4
𝑚

𝜀𝑠)]
.

(31)

 verify this model for the pseudo-turbulent thermal diffusivity 𝛼𝑃𝑇 , 
e compare Sun’s correlation for 𝛼𝑃𝑇 and the PTTD data extracted 
om the PR-DNS simulations. Fig. 8 shows a comparison of the PTTD 
 a function of solid volume fraction at different Reynolds numbers. 
verall, the modified PTTD, the original PTTD, and the PTTD from the 
-DNS simulations are in very good agreement for 𝜀𝑠 > 0.1. For lower 
lid volume fractions, particularly those at the edge of particle mate-
al fronts, the trend of polynomial decay in the PTTD gives a prediction 
sed on the gradient-diffusion model, which is consistent with the nu-
erical results from PR-DNS, whereas the original PTTD diverges.

4. Validity of closure models based on statistically homogeneous gas-solid 
w

Here we discuss the validity of closure models developed from PR-
NS of a statistically homogeneous problem to practical applications 
at involve statistically inhomogeneous gas-solid flow. The central idea 
re is identical to how DNS of canonical flows such as homogeneous 
otropic turbulence is used in single-phase turbulent flow to develop 
odels for general inhomogeneous flows. Essentially we are assuming 
cal homogeneity of the averaged flow fields such as average fluid and 
rticle velocity and average solid volume fraction. This assumption 
lds when there is a separation of scales between the variation of these 
erage quantities and the length scale associated with two-point cor-
lations of pertinent fields.
In the hydrodynamic problem, statistically homogeneous gas-solid 
w is simulated by establishing steady flow past statistically homoge-
ous random assemblies of stationary spherical particles in periodic 
mains (Tenneti et al., 2013). This problem has been thoroughly in-
stigated and the validity of using ensemble-averaging of PR-DNS 
ta from the statistically homogeneous flow fields to develop closure 
odels, such as the drag law, for averaged Eulerian-Eulerian two-fluid 
E-TF) models has been rigorously established (Tenneti and Subrama-

am, 2014; Mehrabadi et al., 2016). Several articles have also been 
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blished on the heat transfer problem, and closure models for the aver-
e Nusselt number have been extracted from PR-DNS of a statistically 
mogeneous gas-solid flow using periodic boundary conditions for the 
velopment of EE TF models.
However, the validity of the closure models developed from PR-DNS 

 contingent upon the existence of scale separation: i.e., the charac-
ristic length scale of macroscopic quantities is larger than that of 
esoscale structures, which forms the basis for local closure models 
ubramaniam, 2013). Sun (2016) validated the scale separation as-
mption by comparing the characteristic length scale of variation of 
ean quantities such as average bulk fluid temperature with a charac-
ristic length scale from higher order statistics such as particle pair cor-
lation or Eulerian two-point correlation of temperature and velocity. 
e length scale that characterizes the variation of average (nondimen-
onal) bulk fluid temperature can be obtained by extracting the decay 
efficient from the exponential decay model for the average bulk fluid 
mperature:

𝑚⟩(𝑥) = 𝑒−𝜆𝑚𝑥∕𝐷, (32)

here 𝜆𝑚 is the non-dimensional decay coefficient. By fitting the PR-
NS data, a characteristic length scale can be defined as

𝜙𝑚⟩ = 𝐷∕𝜆𝑚, (33)

d it characterizes the variation of macroscopic average quantities. 
r the mesoscale, Sun et al. (2016) defined a two-point fluctuating 
locity-(scaled) temperature correlation as follows:

∥𝜃(𝒓) =
⟨𝐼𝑓 (𝒙)𝜃′′(𝑓 )(𝒙) ⋅ 𝐼𝑓 (𝒙+ 𝒓)𝑢′′(𝑓 )∥ (𝒙+ 𝒓)⟩

⟨𝐼𝑓 (𝒙)𝜃′′(𝑓 )(𝒙) ⋅ 𝐼𝑓 (𝒙)𝑢
′′(𝑓 )
∥ (𝒙)⟩ , (34)

sed on which the corresponding characteristic length scale can be 
fined as:

∥𝜃 =

∞

∫
0

𝜌𝑢∥𝜃(𝒓)𝑑𝒓. (35)

om PR-DNS of flow past a fixed bed of particles, it is found that 
∥𝜃 ∼ 3 −4𝐷 (Sun et al., 2016). In other words, if 𝓁⟨𝜙𝑚⟩ ≥ 𝓁𝑢∥𝜃 , scale sep-
ation exists and the assumption of locally homogeneous mean fluid 
mperature is valid. If 𝓁⟨𝜙𝑚⟩ < 𝓁𝑢∥𝜃 , the scale separation assumption 
ases to be valid. In cases where the fluid is heated rapidly over a 
ry short length scale by a dense bed of hot particles, the scale sepa-
tion assumption breaks down and nonlocal closure models might be 
eded. Another situation where the scale separation assumption might 
eak down is in cluster-induced turbulence where particles falling un-
r gravity form large clusters on the order of hundreds of particle 
ameters. Without additional justification, it is not appropriate to use 
odels based on PR-DNS of statistically homogeneous problems with 
riodic boundary conditions for these problems.

 Conclusion

In order to address the issue of robust modeling of the PTHF near 
rticle material fronts where the average solid volume fraction falls 
pidly to zero, this study has extended the PR-DNS heat transfer sim-
ation at steady flow past a random assembly of fixed, isothermal, 
onodisperse, spherical particles to low solid volume fractions (0.01-
5) for a Prandtl number of 0.7 and mean slip Reynolds numbers in 
e range 1-100. The PR-DNS results indicate that the PTHF decays 
ponentially as the solid volume fraction approaches zero, which is 
ysically reasonable and not predicted by Sun’s PTHF correlation (Sun 
 al., 2016). At low volume fractions (𝜀𝑠 < 0.1), Sun’s correlation of 
HF encounters two problems. First, the non-zero limit of PTHF, dur-
g which the presence of particles is diminishing, is inevitable, causing 
accuracy in implementing the PTHF model in CFD simulations of two-
9

id heat transfer, especially for dilute flow. Secondly, a discrepancy be
Chemical Engineering Science 283 (2024) 119371

tween Sun’s correlation and the PR-DNS results was observed, indi-
ting that Sun’s correlation cannot capture the PTHF physics when 
< 0.1. In order to address these two problems, a modified correla-
n for the PTHF has been proposed. The original form of the PTTD 
proaches infinity as 𝜀𝑠 → 0. In order to address this problem, an 
proved correlation for the decay coefficient of the mean fluid tem-
rature has been developed.
Consequently, the modified PTTD decays polynomially as the solid 
lume fraction approaches zero, illustrating the extent of the trans-
rt of PTHF for 𝜀𝑠 < 0.1. Furthermore, the modified PTTD guarantees 
zero limit at 𝜀𝑠 = 0, where, previously, the implementation of the 
iginal PTTD in two-fluid heat transfer was limited. Finally, the im-
oved PTTD has already been tested by Peng et al. (2019) which yields 
able results in inhomogeneous problems where the solid volume frac-
n approaches zero at the particle material fronts. As discussed in 
ppendix B, the neglect of free convection in obtaining these modifica-
ns to the PTHF and PTTD is valid for most of the Reynolds number 
gime, but free convection effects should be included when consider-
g very low Reynolds number cases in certain applications such as fast 
rolysis of biomass or CO2 capture using dry sorbent particles.
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ppendix A. Verification of the isothermal particle assumption

We discuss the validity of the isothermal boundary condition in the 
llowing. The most general boundary condition at the particle-fluid 
terface is continuity of the temperature and the heat flux at the inter-
ce. This requires a fully coupled solution of the temperature equation 
 the particle and fluid phases, given by

𝜕𝑇𝑠

𝜕𝑡
= 𝛼𝑠𝛁2𝑇𝑠 (A.1a)

𝑓

𝑡
+ 𝒖 ⋅𝛁𝑇𝑓 = 𝛼𝑓𝛁2𝑇𝑓 , (A.1b)

here the subscripts ‘𝑠’ and ‘𝑓 ’ refer to the particle and fluid phases, 
spectively. At every point on the particle-fluid interface the boundary 
nditions require:

𝑇𝑠(𝒙, 𝑡) = 𝑇𝑓 (𝒙, 𝑡) (A.2)

𝑘𝑠 𝒏 ⋅𝛁𝑇𝑠(𝒙, 𝑡) = −𝑘𝑓 𝒏 ⋅𝛁𝑇𝑓 (𝒙, 𝑡), (A.3)

here 𝑘𝑠 and 𝑘𝑓 are the thermal conductivity in the particle and fluid 
ases, respectively, and 𝒏 is the outward unit normal to the particle.
This coupled solution is expensive and unnecessary if the tempera-
re field inside the particle is uniform, which holds if the Biot number 
𝑖 = ℎ𝐷∕𝑘𝑠 is small (usually it is required that 𝐵𝑖 ≪ 1, but 𝐵𝑖 ≤ 0.1 is 
emed sufficient). The Biot number depends on the convective heat 
ansfer coefficient ℎ, the particle diameter 𝐷, and the thermal con-
ctivity of the particle 𝑘𝑠. For the target applications the particle 
ameter is usually quite small (100-400 μm) (see Table A.2) and it is 
orth checking if this simplifying assumption is valid. Substituting for 
e convective heat transfer coefficient ℎ in terms of the Nusselt num-

r using ℎ = 𝑘𝑓 𝑁𝑢∕𝐷, we obtain 𝐵𝑖 = 𝑁𝑢 (𝑘𝑓∕𝑘𝑠). Unfortunately the 
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Table A.2

Typical particle properties encountered in gas-solid heat transfer applications such as CO2 capture 
(Yi et al. (2007)), biomass pyrolysis (Xue et al. (2011)), and chemical looping combustion (CLC) 
(Shen et al. (2008)). The gas and solid phase for each gas-solid heat transfer application are: CO2 and 
NaCO3 in CO2 capture; N2 and bagasse in biomass pyrolysis; CO and CaSO4 in CLC. The Biot number 
is computed as 𝐵𝑖 = 𝑁𝑢 (𝑘𝑓∕𝑘𝑠) for Nusselt number values in the range 2 to 10.

𝑘𝑠(W∕m ⋅ K) 𝑘𝑓 (W∕m ⋅ K) 𝑘𝑠∕𝑘𝑓 𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 𝐷(𝜇m) 𝐵𝑖

CO2 capture 0.5 0.017 30 6254 404 0.067 ; 0.33

Biomass 0.6 0.054 11 1772 500 0.182 ; 0.91

CLC 0.9 0.052 17 12843 100 0.118 ; 0.59
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1

ot number criterion for uniform particle temperature cannot be ver-
ed a priori because it involves the Nusselt number corresponding to 
s–solid heat transfer, which is the output of the PR-DNS. As an a pos-
riori justification, taking the range of Nusselt number from Sun et al. 
015) we estimate the range of Biot number to be 0.067-0.91. These 
mple estimates indicate that for lower values of the Nusselt number 
 < 𝑁𝑢 < 10), the Biot number criterion indicates that the particle tem-
rature is fairly uniform for the lower limit of the Nusselt number, but 
is may not hold for higher Nusselt number values (𝑁𝑢 > 10), espe-
ally for the biomass and CLC applications.
If the Biot number is small, the lumped capacitance analysis holds 
d we can solve for the volume-averaged temperature of the particle 

𝑠, which is assumed to be uniform inside the particle. In this case the 
neral boundary conditions at the particle-fluid interface simplify to

𝑇 𝑠(𝑡) = 𝑇𝑓 (𝒙, 𝑡) (A.4)

𝑐𝑝,𝑠𝑉𝑠

𝜕𝑇 𝑠(𝑡)
𝜕𝑡

= −∫
𝐴𝑠

𝑘𝑓 𝒏 ⋅𝛁𝑇𝑓 (𝒙, 𝑡)𝑑𝐴𝑠, (A.5)

here 𝑉𝑠 is the particle volume and 𝐴𝑠 is the particle surface area. 
ote that although the particle and fluid solutions are still coupled, the 
rticle temperature equation is now an ordinary differential equation 
hich is much simpler to solve.
If the time scale of evolution of the volume-averaged particle tem-
rature in the lumped capacitance model is very large compared to 
e time it takes for the Nusselt number to reach a steady value in the 
-DNS, then we can assume an isothermal particle that has a uniform 
mperature field that does not vary in time. In this case the boundary 
nditions at the particle-fluid interface simplify to

𝑠 = 𝑇𝑓 (𝒙, 𝑡), (A.6)

hich is the boundary condition used in the PR-DNS results presented 
 this paper. This boundary condition has the additional advantage of 
lowing the thermally fully developed condition to be satisfied in the 
riodic domain setup of the problem. Note that in the PR-DNS results 
own in this paper a steady fluid velocity field is taken from a prior 
drodynamic simulation. The thermally fully developed formulation 
 a periodic domain has not been tested for a time–varying particle 
mperature that is coupled to an evolving fluid velocity field.
We have performed simulations with time–varying particle temper-
ure using a different PUReIBM setup, which provide justification for 
r assumption of isothermal particles. Sun (2016) developed a fully 
ite-difference (FFD) PUReIBM implementation that extends the work 
 Garg et al. (2011) and Tenneti et al. (2010, 2011, 2013) who devel-
ed the pseudo-spectral (PS) implementation of PUReIBM to simulate 
s-solid flow by imposing periodic boundary conditions. With the FFD 
ReIBM implementation, it is possible to simulate a time-varying par-
le temperature boundary condition (cf. Eq. (A.4)), and to also impose 
flow/outflow boundary conditions in the streamwise direction, while 
all boundary conditions can be imposed in the cross-stream directions. 
us FFD PUReIBM enables simulations of transient heat transfer from 
sphere in a duct flow.
Fig. A.9 shows the time history of the non-dimensional particle tem-
10

rature 𝜑𝑠 for different particle-to-fluid thermal inertia ratios at the de
me particle Reynolds number (100) based on Prandtl number (0.7). 
e inlet condition corresponds to a uniform velocity 𝑈∞ and tempera-
re 𝑇∞.

The non-dimensional temperature is defined as 𝜑 = (𝑇 − 𝑇∞)∕(𝑇𝑠,𝑖 −
), where 𝑇𝑠,𝑖 is the initial particle temperature and 𝑇∞ is the inlet flow 
mperature.1 The evolution equations for non-dimensional particle and 
id temperature corresponding to the dimensional equations (see Eq. 
.1)) presented earlier are:

𝜕𝜑𝑠

𝜕𝜏
= 1

𝑃𝑒

𝛼𝑠

𝛼𝑓

∇̄2𝜑𝑠 (A.7a)

𝑓

𝜏
+𝑼 ⋅ ∇̄𝜑𝑓 = 1

𝑃𝑒
∇̄2𝜑𝑓 (A.7b)

here the Peclet number 𝑃𝑒 = 𝑅𝑒𝐷𝑃𝑟 characterizes the ratio of the 
nvective time scale and the diffusion time scale inside flow, and 
= 𝐷∇. The lumped capacitance model is obtained by integrating the 
rticle temperature over a spherical volume region 𝑉𝑠 to obtain the 
n-dimensional volume–averaged particle temperature 𝜑̄𝑠, which is 
rely time-dependent 𝜑̄𝑠(𝑡), and evolves by
𝜕𝜑𝑠

𝜕𝜏
𝑑𝑉𝑠 = 𝑉𝑠

𝑑𝜑̄𝑠

𝑑𝜏
= 1

𝑃𝑒

𝛼𝑠

𝛼𝑓 ∫
𝐴𝑠

∇̄𝜑𝑠 ⋅ 𝒏𝑑𝐴𝑠, (A.8)

here 𝜏 = 𝑡𝑈∞∕𝐷. Since the heat flux at the interface between the solid 
d fluid phases is continuous, the total heat transfer from solid to fluid 
n be expressed as:

∫
𝐴𝑠

𝑘𝑠∇̄𝜑𝑠 ⋅ 𝒏𝑑𝐴𝑠 = −∫
𝐴𝑠

𝑘𝑓 ∇̄𝜑𝑓 ⋅ 𝒏𝑑𝐴𝑠. (A.9)

erefore, the total heat transfer ∫
𝐴𝑠

𝑘𝑓 ∇̄𝜑𝑓 ⋅ 𝒏𝑑𝐴𝑠 can be computed 
om the gradient of fluid temperature.
The non-dimensional inlet temperature is 𝜑∞ = 0. The temperature 

 the duct wall is the same as the initial sphere temperature, such that 
𝑎𝑙𝑙 = 1 and is constant in time and space. The height of the duct is 
and the length of the duct is 10𝐷. The fixed sphere is located in the 
nter of the duct, and its initial temperature is set to 𝜑𝑠,𝑖 = 1. Once the 
w and temperature fields reach steady-state, the sphere temperature 

 allowed to evolve in time according to Eq. (A.8).
Figs. A.9(a) and (b) show that the non-dimensional particle tem-
rature is practically constant over the time interval that the Nusselt 
mber reaches its steady value. Note that all the target applications 
ve thermal inertia ratios between cases (a) and (b). In Fig. A.9(c) 
r a lower thermal inertia ratio, the non-dimensional particle tem-
rature decreases significantly with time, while the average Nusselt 
mber (𝑁𝑢 = ℎ𝐷∕𝑘𝑓 , where ℎ is the average heat transfer coeffi-
ent) decreases more rapidly and approaches an asymptotic value rel-
ively quickly for 𝜏 ≥ 1. These trends are similar to those found in 
her works (Feng and Michaelides, 2000; Balachandar and Ha, 2001) 
r unbounded flow past a sphere at 𝑃𝑟 = 0.7 for different particle 
ynolds numbers. Note that for 𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 = 1000 and 2000, the non-
mensional particle temperature decreases < 10% when the thermally 

Note that in the appendix, a different set of reference variables is used to 

fining the non-dimensional temperature, and its symbol is also different.
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Fig. A.9. Time history of non-dimensional sphere temperature 𝜑𝑠 and Nusselt number for the particle-to-fluid thermal inertia ratio 𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 equal to (a) 1000, (b) 
2000, and (c) 10. The solid lines represent the non-dimensional sphere temperature and the dashed lines represent the average Nusselt number. 𝑈∞ is the uniform 
inlet velocity.

Table A.3

Ratios of thermal time scales from typical particle properties encountered in gas-solid heat transfer 
applications. There are four timescales: (1) the conduction timescale in the solid phase 𝜏𝑠 = 𝐷2∕𝛼𝑠, 
(2) the conduction timescale in the fluid phase 𝜏𝑓 = 𝐷2∕𝛼𝑓 , (3) the convection timescale in the fluid 
phase 𝜏𝑐 = 𝐷∕𝑈∞, and (4) the timescale of interphase heat transfer 𝜏𝑝𝑓 = 𝑉𝑠𝜌𝑠𝑐𝑝𝑠∕ℎ𝐴𝑠 . The timescale 
ratios are computed for Nusselt number values in the range 2 to 10 and for Péclet number of 70 
(corresponding to heat transfer from a particle in air at a Reynolds number of 100).

𝜏𝑝𝑓

𝜏𝑠

=
𝑘𝑠

6𝑁𝑢𝑘𝑓

= 1
6𝐵𝑖

𝜏𝑝𝑓

𝜏𝑓

=
𝜌𝑠𝑐𝑝𝑠

6𝑁𝑢𝜌𝑓 𝑐𝑝𝑓

𝜏𝑝𝑓

𝜏𝑐

=
𝑃𝑒𝜌𝑠𝑐𝑝𝑠

6𝑁𝑢𝜌𝑓 𝑐𝑝𝑓

𝜏𝑠

𝜏𝑓

=
𝛼𝑓

𝛼𝑠

CO2 capture 0.50 ; 2.50 104 ; 521 7280 ; 36470 208

Biomass 0.18 ; 0.92 30 ; 148 2100 ; 10360 161

CLC 0.28 ; 1.42 214 ; 1070 14980 ; 74900 755
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lly developed flow is reached (Nusselt number goes to an asymptotic 
lue at 𝜏 ≈ 1).
This is because the convective timescale of the flow 𝜏𝑐 = 𝐷∕𝑈∞ is far 

ss than the characteristic timescale of the interphase heat transfer de-
ed as 𝜏𝑝𝑓 = 𝑉𝑠𝜌𝑠𝑐𝑝𝑠∕ℎ𝐴𝑠, that is, 𝜏𝑝𝑓∕𝜏𝑐 = 𝜌𝑠𝑐𝑝𝑠𝑉𝑠𝑃 𝑟𝑅𝑒𝐷∕𝜌𝑓 𝑐𝑝𝑓 𝐷𝐴𝑠𝑁𝑢

5000 for 𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 > 1000 and 𝑅𝑒𝐷 = 100. Table A.3 lists the princi-
l time scales involved in the gas-solid heat transfer problem. In other 
ords, the timescale at which the Nusselt number reaches steady-state 
 much smaller than the timescale for interphase heat transfer. There-
re, there exists a finite time interval during which the variation of 
e particle temperature is negligible while the average Nusselt number 
s reached steady-state. This justifies the use of a time–independent 
11

mperature boundary condition in the paper. te
By assuming a lumped capacitance model, Sun (2016) demonstrated 
e temporal uniformity of the particle temperature for 𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 >

00 and 𝑅𝑒𝐷 = 100, which is relevant to practical gas-solid systems. 
owever, the spatial uniformity of temperature inside the particle, 
hich is the second necessary condition for the isothermal particle as-
mption, is yet to be confirmed.
Zhou (2022) considered the free thermal evolution of a spherical 
rticle subjected to a non-isothermal stagnant flow and developed 
one-dimensional (1D) numerical model in spherical coordinates to 
vestigate the thermal history along the radial direction. This is essen-
lly solving a coupled heat conduction problem in both solid and fluid 
ases. The evolution equations of non-dimensional particle and fluid 

mperature (see Eq. (A.7)) can be simplified as follows:



J.

Fi

(0
co

Δ𝜏

an

tim

Fi

pa

ph

𝜕

𝜕

𝜕𝜑

𝜕

w

w

fie

al

an

th

𝑘𝑠

Th

𝜑

ca

th

nu

Th

th

𝜏𝑝

th

hi

so

ph

in

be

th

be

fo

a 
co

te

th

he

la

N

se

2-

in

he

ue

th

ne

ap

th

nu

A

ai

nu

𝐺

w

is

ity

nu

(𝐺

up

fe

th

Re

tio

(𝑔
la

fo

of
Zhou, B. Sun and S. Subramaniam

g. A.10. Time history of non-dimensional temperature 𝜑 inside the particle 
 ≤ 𝑅 ≤ 0.5) for (a) biomass pyrolysis, (b) CO2 capture, and (c) chemical looping 
mbustion. Black lines represent the consecutive solutions with the time step 
= 2𝜏𝑓 , while the blue line is the solution at the initial condition at 𝜏 = 0
d red is the final solution at 𝜏 = 10𝜏𝑓 , where 𝜏𝑓 = 𝐷2∕𝛼𝑓 is the conduction 
escale in the fluid phase.

g. A.11. Time history of the Nusselt number for various types of gas-solid 
rticles obtained from the 1D numerical model of coupled conduction in both 
ases.

𝜑𝑠

𝜏
=

𝛼𝑠

𝛼𝑓

1
𝑅2

𝜕

𝜕𝑅

(
𝑅2 𝜕𝜑𝑠

𝜕𝑅

)
(A.10a)

𝑓

𝜏
= 1

𝑅2
𝜕

𝜕𝑅

(
𝑅2 𝜕𝜑𝑓

𝜕𝑅

)
(A.10b)

here 𝑅 = 𝑟∕𝐷 is the non-dimensional space in the radial direction, 
ith 𝑅 = 0.5 and 𝑅 = 5 being the particle-fluid interface and the far flow 
ld, respectively. The above two equations need to be solved together 
ong with the boundary conditions of 𝜕𝜑∕𝜕𝑅 = 0 at 𝑅 = 0 and 𝑅 = 5, 
d the continuity condition of temperature and heat flux applied at 
e particle-fluid interface given by

𝜑𝑠 = 𝜑𝑓 (A.11a)

𝑑𝜑𝑠

𝑑𝑅
= −𝑘𝑓

𝑑𝜑𝑓

𝑑𝑅
(A.11b)
12

e initial conditions are identical to the lumped capacitance model. lim
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Fig. A.10 shows the time history of non-dimensional temperature 
for the particles listed in Table A.2. Several important observations 
n be made. Firstly, the non-dimensional temperature decreases less 
an 10% at the particle surface over the time it takes for the Nusselt 
mber to reach its asymptotic value at 𝜏 ≈ 1 as shown in Fig. A.11. 
is is because the conduction timescale in the fluid phase is much less 
an the characteristic timescale of the interphase heat transfer, i.e., 
𝑓∕𝜏𝑓 = 𝜌𝑠𝑐𝑝𝑠𝑉𝑠∕𝜌𝑓 𝑐𝑝𝑓 𝐴𝑠𝐷𝑁𝑢 ∼ 𝑂(102) for the thermal inertia ratio of 
e biomass particle (𝜌𝑠𝑐𝑝𝑠∕𝜌𝑓 𝑐𝑝𝑓 = 1772) and 𝑁𝑢 = 2 (see Table A.3).
Furthermore, the temperature distribution inside the particle ex-
bits non-uniformity. This is because the conduction timescale in the 
lid phase is much larger than the conduction timescale in the fluid 
ase, i.e., 𝜏𝑠∕𝜏𝑓 = 𝛼𝑓∕𝛼𝑠 = 𝑘𝑓 𝜌𝑠𝑐𝑝𝑠∕𝑘𝑠𝜌𝑓 𝑐𝑝𝑓 ∼ 𝑂(102) for the particles 
 gas-solid flow that are listed in Table A.3. Such a large separation 
tween 𝜏𝑠 and 𝜏𝑓 can result in a finite time interval during which 
e conduction in the solid phase is negligible while the Nusselt num-
r has reached a quasi-steady value. Although this argument is true 
r the pure conduction problem where 𝑁𝑢 = 2, it does not guarantee 
spatially uniform temperature distribution in the solid phase for the 
nvection problem considered in the PR-DNS. This is because the cri-
rion for negligible spatial variation of the particle temperature inside 
e solid in convective heat transfer is that the ratio of the interphase 
at transfer time scale𝜏𝑝𝑓 to the conduction in the solid phase 𝜏𝑠 be 
rge. This ratio 𝜏𝑝𝑓∕𝜏𝑠 = 𝑘𝑠∕6𝑁𝑢𝑘𝑓 significantly decreases for higher 
usselt number values, because it is inversely proportional to the Nus-
lt number. However, for lower Nusselt number values ranging from 
10 and Péclet number of 70, we find that the conduction timescale 
 the solid phase is comparable to the timescale of the interphase 
at transfer (see Table A.3). Since the highest Nusselt number val-
s encountered in the PR-DNS simulations (Sun et al., 2015) is less 
an 15, the isothermal particle assumption with a time-independent, 
ar-uniform temperature inside the particle is justified for the target 
plications considered. Table A.3 also indicates that the order of the 
ermal timescales for these applications at sufficiently high Reynolds 
mber is 𝜏𝑐 ≪ 𝜏𝑓 ≪ 𝜏𝑠 ≈ 𝜏𝑝𝑓 .

ppendix B. Verification of the free convection assumption

For a spherical particle of diameter 𝐷 at temperature 𝑇𝑠 placed in 
r at temperature 𝑇𝑓 , free convection is characterized by the Grashof 
mber which is defined by

𝑟 =
𝑔𝛽(𝑇𝑓 − 𝑇𝑠)𝐷3

𝜈2
𝑓

, (B.1)

here 𝛽 is the volumetric thermal expansion coefficient (𝛽 = 1∕𝑇𝑓 for 
obaric expansion in ideal gases), and 𝑔 is the acceleration due to grav-
. Free convection effects can be neglected if the ratio of the Grashof 
mber to the square of the Reynolds number is much less than one 
𝑟∕𝑅𝑒2𝑚 ≪ 1). For each Reynolds number, this constraint imposes an 
per limit on the particle diameter above which free convection ef-
cts cannot be neglected. In other words, for a given value of 𝑇𝑓∕𝑇𝑠, 
e upper limit on the particle diameter 𝐷 increases with increasing 
ynolds number. Considering a typical fluid-to-solid temperature ra-
 of 𝑇𝑓∕𝑇𝑠 = 5, assuming air as the fluid under terrestrial conditions 
= 9.81 m/s2) and applying the constraint of 𝐺𝑟∕𝑅𝑒2𝑚 ≤ 0.01, we calcu-
te the maximum particle diameter 𝐷𝑚𝑎𝑥 = [0.01𝑅𝑒2𝑚𝜈2

𝑓
∕𝑔𝛽(𝑇𝑓 − 𝑇𝑠)]1∕3

r which free convection can be neglected (𝐺𝑟∕𝑅𝑒2𝑚 ≪ 1) over the range 
 Reynolds number (1 ≤ 𝑅𝑒𝑚 ≤ 100). Fig. B.12 shows that the upper 

it on the particle diameter 𝐷𝑚𝑎𝑥 increases with increasing Reynolds 
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Table B.4

The minimum Reynolds number of gas-solid particles for ne-
glecting free convection. The criterion of the Reynolds number 
is computed from 𝐺𝑟∕𝑅𝑒2

𝑚
≤ 0.01, where 𝐺𝑟 = 𝑔𝛽(𝑇𝑓 −𝑇𝑠)𝐷3∕𝜈2

𝑓
. 

The fluid-to-solid temperature ratio is taken as 𝑇𝑓 ∕𝑇𝑠 = 5 and 
air is chosen to be the fluid phase under terrestrial condition. 
The kinematic viscosity of air is selected based on different 
gas-solid heat transfer conditions: 2.3 × 10−5 m2/s (Biomass), 
7 × 10−5 m2/s (CO2 capture), and 1.72 × 10−4 m2/s (CLC).

𝐷(𝜇𝑚) 𝑅𝑒𝑚,𝑚𝑖𝑛

CO2 capture 404 3.25

Biomass 500 13.62

CLC 100 0.16

g. B.12. The maximum particle diameter of the gas-solid heat transfer for 
glecting free convection. The criterion of the particle diameter is computed 
m 𝐺𝑟∕𝑅𝑒2

𝑚
≤ 0.01, where 𝐺𝑟 = 𝑔𝛽(𝑇𝑓 − 𝑇𝑠)𝐷3∕𝜈2

𝑓
. The fluid-to-solid tempera-

re ratio is taken as 𝑇𝑓 ∕𝑇𝑠 = 5 and air is chosen to be the fluid phase under 
rrestrial condition. The kinematic viscosity of air is selected based on differ-
t gas-solid heat transfer conditions: 2.3 × 10−5 m2/s (Biomass), 7 × 10−5 m2/s 
O2 capture), and 1.72 × 10−4 m2/s (CLC).

mber, indicating that the upper limit of 𝐷 for neglecting free con-
ction is less restrictive at high Reynolds number cases where forced 
nvection dominates. However, the upper limit on the particle diam-
er is more restrictive for lower Reynolds number cases. For instance, 
e particle diameter has to be less than 88 μm in order to neglect 
ee convection at 𝑅𝑒𝑚 = 1. Furthermore, we estimate the minimum 
ynolds number (𝑅𝑒𝑚,𝑚𝑖𝑛 = [𝑔𝛽(𝑇𝑓 − 𝑇𝑠)𝐷3∕0.01𝜈2

𝑓
]1∕2) that is required 

r negligible free convection if the particle diameter 𝐷 is given. Ta-
e B.4 summarizes the minimum Reynolds numbers of typical gas-solid 
rticles allowed for neglecting free convection. The results show that 
e minimum Reynolds numbers are outside the Stokes flow regime, 
ggesting that the free convection effects could become an important 
ctor affecting the velocity and temperature fluctuations, particularly 
hen the flow past particles is laminar and approaching Stokes regime.
Although the current PR-DNS has not yet explored the influence of 
e free convection on the behavior of PTHF, it is appropriate to use 
e current PTHF model by assuming negligible free convection based 
 the ratio of 𝐺𝑟∕𝑅𝑒2𝑚 ≪ 1 with physical properties for a specific heat 
ansfer problem, which applies to many situations for typical biomass 
rticles outside small Reynolds number flow. For low Reynolds num-
r flow, the PTHF model, developed under the assumption of negligi-
e free convection, needs to be re-evaluated in practical applications, 
ch as those involving CO2 capture by dry sorbents and fast pyrolysis 
13

 biomass (see Table B.5). Po
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Table B.5

The ratio of the Grashof number to the square of the Reynolds 
number in different PR-DNS cases (𝑅𝑒𝑚 and 𝜀𝑠 are varying) 
with practical applications in fast pyrolysis of biomass, CO2
capture using dry particle sorbents, and chemical looping com-
bustion (CLC). The calculation conditions of 𝐺𝑟∕𝑅𝑒2

𝑚
, where 

𝐺𝑟 = 𝑔𝛽(𝑇𝑓 − 𝑇𝑠)𝐷3∕𝜈2
𝑓
, are as follows: (a) The fluid-to-solid 

temperature ratio is taken as 𝑇𝑓∕𝑇𝑠 = 5. (b) Air is chosen to 
be the fluid phase under terrestrial conditions, and the kine-
matic viscosity of air is selected based on different gas-solid 
heat transfer conditions: 2.3 × 10−5 m2/s (Biomass), 7 × 10−5
m2/s (CO2 capture), and 1.72 × 10−4 m2/s (CLC). (c) The par-
ticle diameter 𝐷 is 500 μm (Biomass), 404 μm (CO2 capture), 
and 100 μm (CLC). At 𝑅𝑒𝑚 = 1, both CO2 sorbent and biomass 
cases violate the criterion of 𝐺𝑟∕𝑅𝑒2

𝑚
≤ 0.01 (highlighted in 

gray cells).
𝑅𝑒𝑚 = 1 𝑅𝑒𝑚 = 50 𝑅𝑒𝑚 = 100

CO2

𝜀𝑠 = 0.01 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.03 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.05 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.1 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.2 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.3 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.4 0.1056 4.22 × 10−5 1.06 × 10−5

𝜀𝑠 = 0.5 0.1056 4.22 × 10−5 1.06 × 10−5

Biomass

𝜀𝑠 = 0.01 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.03 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.05 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.1 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.2 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.3 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.4 1.8544 7.42 × 10−4 1.85 × 10−4

𝜀𝑠 = 0.5 1.8544 7.42 × 10−4 1.85 × 10−4

CLC

𝜀𝑠 = 0.01 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.03 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.05 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.1 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.2 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.3 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.4 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8

𝜀𝑠 = 0.5 2.65 × 10−4 1.06 × 10−7 2.65 × 10−8
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