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ABSTRACT

Photometric redshifts will be a key data product for the Rubin Observatory Legacy Survey of Space and
Time (LSST) as well as for future ground and space-based surveys. The need for photometric redshifts, or
photo-zs, arises from sparse spectroscopic coverage of observed galaxies. LSST is expected to observe billions
of objects, making it crucial to have a photo-z estimator that is accurate and efficient. To that end, we present
DEeepDISC pHOTO-Z, a photo-z estimator that is an extension of the DEepDISC framework. The base DeepDISC
network simultaneously detects, segments, and classifies objects in multi-band coadded images. We introduce
photo-z capabilities to DEepDISC by adding a redshift estimation Region of Interest head, which produces
a photo-z probability distribution function for each detected object. On simulated LSST images, DEepDISC
photo-z outperforms traditional catalog-based estimators, in both point estimate and probabilistic metrics. We
validate DeepDISC by examining dependencies on systematics including galactic extinction, blending and
PSF effects. We also examine the impact of the data quality and the size of the training set and model.
We find that the biggest factor in DEepDISC photo-z quality is the signal-to-noise of the imaging data, and
see a reduction in photo-z scatter approximately proportional to the image data signal-to-noise. Our code is
fully public and integrated in the RAIL photo-z package for ease of use and comparison to other codes at
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1. INTRODUCTION

Accurate and reliable redshift measurements are of great
importance in a multitude of astronomical analyses. Redshifts
are necessary to convert observed angular sizes to distances,
and needed in studies of weak and strong gravitational lens-
ing (Mandelbaum 2018; Treu 2010), large scale structure (Seo
et al. 2012; Abbott et al. 2022), galaxy evolution (Finkelstein
et al. 2015), galaxy clusters (Allen et al. 2011; Wen & Han
2021) and more (Newman & Gruen 2022). The most reliable
method of measuring an object’s redshift comes from com-
paring the true and observed wavelengths of known spectral
features. However, spectroscopic follow-up is time consuming
and expensive for large surveys. In the era of the Legacy Sur-
vey of Space and Time (Ivezi¢ et al. 2019), billions of objects
will be observed, making even a 10% complete spectroscopic
catalog impossible. Despite a lack of complete spectroscopy,
redshifts can still be obtained using photometry, because the

* Corresponding Author: gmerz3 @illinois.edu.
T Corresponding Author: xinliuxl@illinois.edu.

photometric flux or magnitude of an object in a given filter
is equivalent to the underlying spectral energy distribution
(SED) integrated over the filter transmission function. Mea-
sured fluxes of an object thus represent a sparse sampling of
the SED, and spectral features will appear as color differences
in the source photometry, which can be used to estimate red-
shift. Photometric redshifts (photo-zs) provide a much more
efficient alternative at the price of a lower precision and accu-
racy, enabling processing of large numbers of objects. While
efficient, photo-z methods face the inherent challenge of es-
timating an object’s redshift from a low-dimensional set of
photometric features. Degeneracies in the photometric fea-
ture space can cause catastrophic photo-z outliers (Massarotti
et al. 2001). Given this limitation, it is common for these al-
gorithms to produce a probability density function (PDF) for
each redshift, rather than a single number. This allows for a
full characterization of the redshift uncertainty due to ambigu-
ous spectral feature localization from the low SED resolution
provided by the photometry. Photo-z PDFs can subsequently
be integrated into Bayesian analyses (Myers et al. 2009; Dark
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Energy Survey Collaboration et al. 2016; DES 2018; Myles
etal. 2021; Miyatake et al. 2023; Mitra et al. 2023) and will be
a necessary product for LSST (LSST Science Collaboration
et al. 2009).

Standard photometric redshift estimation methods largely
fall into two categories: template-based SED fitting and ma-
chine learning algorithms (See Salvato et al. 2019, for a re-
view), although hybrid approaches have been implemented
(Tanigawa et al. 2024). Standard photo-z methods assume a
pre-defined set of features; most commonly fluxes or mag-
nitudes and colors that are derived from image processing
pipelines are used as input. In contrast, there has been in-
creasing focus on using images themselves rather than pre-
computed features (D’Isanto & Polsterer 2018; Pasquet et al.
2019; Dey et al. 2022; Hayat et al. 2021; Schuldt et al. 2021;
Treyer et al. 2024; Roster et al. 2024). Using pixel-level in-
formation incorporates morphological features such as size
and color gradients across a source light profile. Leverag-
ing this information, feature extractors such as convolutional
neural networks (CNNs) have been shown to outperform tra-
ditional photo-z methods. In addition to new architectures,
new training methodologies have been explored such as ad-
versarial training (Campagne 2020) and contrastive learning
approaches that pre-train a model to extract features, and then
use those features for downstream tasks, e.g., photo-z estima-
tion (Hayat et al. 2021; Lanusse et al. 2023).

While many image-based methods outperform traditional
feature-based methods, there are still some inherent limita-
tions. Most photo-z studies employing machine learning meth-
ods rely on pre-classification of sources in order to avoid stellar
contamination or to focus on a particular class of object (e.g.
Schuldt et al. 2021). However, D’Isanto & Polsterer (2018)
test an image-based photo-z estimator on a mixed sample of
stars, quasars, and galaxies, and do not find a significant drop
in performance due to contamination. D’Isanto & Polsterer
(2018) recommend that future studies utilizing image-based
methods adopt this methodology to test model performances
in the face of contamination, but this has not been widely
adopted by the community. Stellar contamination strongly
increases as fainter objects are observed, due to traditional
morphological classification schemes that confuse stars for
small point-source-like galaxies (Bosch et al. 2018).

Another problem that affects not just image-based methods
is blending. Blending, or the visual overlap of sources in as-
tronomical images, is a systematic problem that now plagues
modern astronomical surveys. Most blending is caused by the
projection of sources existing in the same line of sight, with
a minority of cases being physical mergers. Increased ob-
servational depth causes more sources to be detected, which
increases the observed rate of blending (Melchior et al. 2021).
In the shallowest fields of the Hyper Suprime-Cam Subaru
Strategic Program (HSC SSP Aihara et al. 2018), blending
already affects a majority of sources (Bosch et al. 2018). This
systematic and can cause significant biases in weak lensing
studies which rely on accurate shape measurements (Mandel-
baum 2018). Blending also effects source photometry (Bou-
caud et al. 2020) which will naturally affect photo-z estima-
tion. With most image-based methods, all pixels in a cutout
are used, meaning that blended objects are included in the
automatic feature extraction of the networks (Pasquet et al.
2019; Dey et al. 2022; Hayat et al. 2021). Schuldt et al. (2021)
employ a masking procedure to address blended companions,
which they find increases their model performance. Image-
based estimators provide an advantage in their simultaneous

treatment of blending and photo-z estimation, but typically
rely on source catalogs produced by traditional detection and
deblending pipelines for curating the input images.

In this work, we aim to address both blending and source
classification with an image-based photo-z estimator DEEp-
DISC puoto-z. DEEPDISC Merz et al. (2023) is a framework
for applying instance segmentation models to astronomical im-
ages and is derived from the method developed in Burke et al.
(2019). Instance segmentation models are designed to detect
and segment objects in images, as well as perform downstream
tasks such as classification. Fundamentally, instance segmen-
tation models are composed of a backbone network that learns
to extract features from images, a Region Proposal Network
which learns to detect and localize objects, and Region of
Interest heads which learn to predict a downstream measure-
ment for each detected object. Merz et al. (2023) applied this
framework to multi-band HSC imaging to detect, segment,
and classify objects as stars or galaxies. In their comparison
study using different backbone networks, they found that vi-
sion transformer backbone networks (Li et al. 2022; Liu et al.
2021) outperformed convolutional neural networks at detec-
tion, segmentation and classification of astronomical scenes.
Merz et al. (2023) used models pre-trained on ImageNet, a set
of terrestrial RGB image data, and fine-tune on 3 filter (g, r
and i) images with different contrast scalings. As a supervised
model, one of the main limitations of DeepDISC is that a de-
blended ground truth must be provided during training in order
to detect and segment deblended objects during inference or
testing. Biases in the ground truth (which cannot be known
with real data) may propagate to the inferred output.

We present the development of the photo-z module of
the DeepDISC framework, DegpDISC-pHOTOZ. It estimates
probabilistic photometric redshifts directly from multi-band
images, circumventing the need for feature extraction, pre-
classification of sources, and the need for a separate detection
step entirely. DeepDISC produces probabilistic redshift es-
timates, capturing meaningful uncertainties and degeneracies
inherent in mapping redshifts from photometry, evident in
the structure of its estimated PDFs. The aim of this work is
to compare DEepDISC photo-z to catalog-based methods by
benchmarking on simulated data, and to investigate the per-
formance of our model under different observing conditions
and training methodologies. We interface DEepDISC with an
open-source library designed for end-to-end photo-z testing
and place DeepDISC photo-z in the wider context of photo-z
literature, with a focus on application to LSST data.

This paper is organized as follows. In §2, we describe the
simulated data and pre-processing steps. In §3, we describe
our model and training methodology as well as the other photo-
z estimators used in our analysis. We present the results of our
trained photo-z code in §4, and quantify our photo-z estimation
performance using various metrics. We discuss the results
along with limitations and future applications in §5. In §6, we
contextualize our findings and conclude.

2. DATA

In this work, we utilize the second Data Challenge (DC2)
simulated data from the LSST Dark Energy Science Collab-
oration (DESC). The simulated images and associated truth
catalogs give a ground truth which allows us to perform a con-
trolled experiment. In using a representative data set we have
ignored selection effects in spectroscopic samples. The data
production is described in LSST Dark Energy Science Col-
laboration (LSST DESC) et al. (2021). To briefly summarize,
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FiG. 1.— An example DC2 image used for training the network. The RGB
image corresponds to i, r and g bands and has been scaled with a Lupton asinh
scaling (Lupton et al. 2004) for visualization purposes.
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FiG. 2.— Histogram of the redshift distribution of objects in the training
set. While the detection and segmentation branches of DeepDISC include all
objects during training, the redshift estimation branch only trains using the
magnitude-limited “gold" sample.

the cosmoDC?2 extragalactic catalog (Korytov et al. 2019) is
created starting with an N-body simulation of 10,2403 par-
ticles in a volume of 4.225 Gpc®. Simulations are repeated
to obtain a volume sufficient for redshifts of z < 3. Particle
and halo lightcones are produced by interpolating snapshots
in time. Galaxies are assigned to halos using the UniverseMa-
chine synthetic galaxy catalog, which contains halos populated
with sythetic galaxies. Galaxies are assigned to cosmoDC2
halos based on UniverseMachine halos of similar mass, while
preserving the conditional distributions of star formation rate,
stellar mass, and halo occupation density. Galaxy proper-
ties are assigned based on a combination of empirical and
semi-analytic modeling. These properties include SEDs, pho-

tometry, and morphology. A bulge+disk model is used for
each galaxy’s morphology, with separate SEDs for each com-
ponent. Disk and bulge sizes are determined from a fit to the
size-luminosity relation of Sloan Digital Sky Survey data from
Zhang & Yang (2019). Additionally, more realism is added to
the galaxy morphologies with “knots" of point sources which
model star-forming regions. Knots are assigned based on an
empirical model fit to HST data and use the same SED as the
disk.

The image simulation software, imSim, uses GalSim (Rowe
etal. 2015) and includes physical effects due to the atmosphere
and models LSST sensor features such as brighter-fatter and
tree-ring effects. For a complete description, see LSST Dark
Energy Science Collaboration (LSST DESC) et al. (2021).
Systematic effects such as blending and variations in observing
conditions are present in the simulated images and propagate
into aperture photometry measurements. An example image
is shown in Figure 1.

In this work, we validate DeepDISC by self-consistently
comparing with other photo-z methods using this dataset, and
investigate how the model performs under different observa-
tional systematics and methodological setups. While phys-
ically and empirically motivated, the simulated data we use
here has certain limitations which prevent full realism. Sim-
ple parametric bulge+disk+knot light profiles do not capture
the full complexity of real galaxies, which may be much more
useful for image-based estimators. The size-redshift relations
used in the cosmoDC?2 catalogs may not fully capture the rich
diversity of galaxy properties over cosmic time. Additionally,
due to computational limitations, there were a limited number
of SEDs to assign to galaxies at high redshifts. This pro-
duces some unrealistic discreteness in the color space at high
redshifts, which may benefit machine learning methods.

We create a training and test set of images and ground truth
information using the GCRCatalogs! package and LSST But-
ler (Jenness et al. 2022). We use coadded imaging data cor-
responding to 5 years of observing. The training set consists
of 1048 cutouts of 525 pixels square. We randomly sample
cutouts from a set of 12 LSST tracts. In order to train Degp-
DISC, we must provide the network with object locations,
segmentation masks, and redshifts for objects in the training
set of cutouts. Since we wish to produce a deblended catalog
of photo-zs during inference, the ground truth we provide dur-
ing training must be deblended. We provide the network with
deblended truth information for each training set cutout by
querying the truth catalogs within each image’s footprint, up
to a magnitude cut corresponding to S0 above the sky back-
ground in any filter. This magnitude cut is applied to train
the network to detect objects with sufficient signal-to-noise.
Then, we produce deblended bounding boxes and segmenta-
tion masks for the training set by running the deblending code
scarlet (Melchior et al. 2018) using the scheme outlined in
the quick start tutorial>. We provide the multi-band PSF im-
age evaluated at the center of each cutout to scarlet to aid in
deblending.

Using the method described above, each image contains
roughly 500-700 true objects. Distributions of object redshifts
are shown in Figure 2. We further limit the sample for redshift
estimation to the LSST “gold” sample, defined by sources with
i-band magnitude < 25.3 mag. In total, the redshift estimation
branch of the network is trained with 161,205 objects. We set

1 https://github.com/LSSTDESC/gcr-catalogs
2 https://pmelchior.github.io/scarlet/O-quickstart.html
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aside 48 images in the training set as a validation set. The
test set is composed of 1925 images of 1050 pixels square.
Once trained, DEepDISC can be applied to images of any
size, provided enough compute resources. The details of the
redshift estimation are described in the following section.

3. METHODS

DeepDISC3 is implemented with PyTorch (Paszke et al.
2017) and the detectron2 repository (Wu et al. 2019). We
choose as baseline backbone network a Multi-scale Vision
Transformer (MViTv2; Li et al. 2022) with a feature pyramid
architecture (Lin et al. 2016) and cascade Region of Interest
(ROI) heads (Cai & Vasconcelos 2018). The feature pyramid
network extracts features from different resolution scales in the
input image, allowing for increased flexibility with objects of
different sizes. Features are then sent to the Region Proposal
Network (RPN) to predict where objects are in the image,
and then the features corresponding to each region are pooled
and sent to the ROI heads. A cascade ROI head iterates the
detection stage at increasing confidence thresholds in order to
produce higher quality detection inferences. A diagram of the
DeepDISC architecture is shown in Figure 3.

Object detections are handled by the RPN and ROI heads.
The RPN proposes a set of bounding boxes as object detec-
tions. Proposed bounding boxes are matched to the ground
truth bounding boxes using an intersection-over-union (IOU)
threshold. Perfectly overlapping detected/truth boxes yield an
IOU of 1, those with no overlap at all yield an IOU of 0.
We use the detectron2 standard IOU thresholds of [0.3,0.7],
where predicted objects with a ground truth IOU less than 0.3
are considered "background", i.e., not a detection, those with
0.3<I0U<0.7 are ignored, and those with IOU>0.7 are con-
sidered to be a positive detection. Highly blended objects may
result in a mismatched detection during training if the IOU
criterion is met, but the goal of the RPN and ROI heads are to
refine these detections during training, with the provided truth
information. For more details on the RPN detection process,
we refer the reader to Ren et al. (2015) and He et al. (2017).

In order to produce a redshift estimate for each object, we
add a Mixture Density Network (MDN Bishop 1994) to the
ROI heads. This allows the network to produce a PDF for
each object’s redshift, by using a Gaussian mixture model
parametrization. D’Isanto & Polsterer (2018) use a convolu-
tional neural network and a MDN to produce photo-z PDFs for
galaxy and quasar images in SDSS, and find that 5 Gaussians
in the MDN work best. We adopt this value for our MDN,
after tests with 3 and 7 showed no significant improvements.
The output of the MDN is a vector of length 15, where the
first 5 components are the weights, the next 5 are the means,
and the last 5 are the log of the standard deviations of the
Gaussian components. We use the negative log likelihood as
the loss function in the redshift branch of the network. During
training, all ground-truth objects are input into the network
and used for detection and segmentation, but we only supply
objects with an i-band magnitude < 25.3 mag to the redshift
ROI head. This magnitude-limited "gold" sample contains
objects with a high signal-to-noise ratio and will be used for
cosmological studies for LSST (LSST Science Collaboration
et al. 2009). We include the reddening due to Milky Way dust
as an extra neuron input to the MDN, by using the dust map
from Schlafly & Finkbeiner (2011) provided by the dustmaps
(Green 2018) package to get the E(B-V) value at the position

3 https://github.com/grantmerz/deepdisc

shape activation
Layer | (12544 + 1, 1024) tanh
Layer 2 (1024, 64) tanh
Layer 3 (64, 15) -
TABLE 1

NUMBER OF LAYERS AND NEURONS IN THE MDN. AFTER FEATURES HAVE
BEEN EXTRACTED AND LOCALIZED, THEY ARE FLATTENED INTO A 12544
VECTOR FOR EACH OBJECT. AFTER THE DUST EXTINCTION IS CONCATENATED TO
THIS VECTOR, IT IS INPUT TO THE MDN, WHICH OUTPUTS THE MEANS,
STANDARD DEVIATIONS, AND NORMALIZED WEIGHTS FOR 5 GAUSSIANS.

of the objects in the training set.

We adopt the same transfer learning strategy as in Merz
et al. (2023) by using a MViTv2 backbone (Li et al. 2022)
with weights that have been initialized from pre-training on
the ImageNetlk (Deng et al. 2009) dataset of terrestrial im-
ages. Pre-training is often employed to speed up network
convergence and reduce training costs. While the ImageNet
data is very different from astronomical scenes, Burke et al.
(2019) and Merz et al. (2023) show that transfer learning is
a viable strategy in training instance segmentation models to
infer object properties in simulated and real astronomical data.
We discuss the implications and potential drawbacks of pre-
training with ImageNet more in Section 4.

Burke et al. (2019) and Merz et al. (2023) used astronomical
images with 3 filters, testing knowledge transfer from the RGB
to another 3-color space. Photo-z estimation should use all
available filters to sample object SEDs across the widest range
of wavelengths possible. In this work, we use all available
filters for DC2 (ugrizy) and thus test the viability of transfer
learning to new color domains. In principle, DeepDISC can
be applied to data with different filter sets, which in practice
amounts to changing a single user-defined parameter before
training.

Our choice of MViTv2 backbone network is motivated by
the comparison study in Merz et al. (2023). This backbone
produced the best results for object detection, deblending,
and star-galaxy classification, and was more robust to contrast
scalings. Contrast scaling is a commonly employed strategy
to reduce the dynamic range of images input to a neural net-
work (Gonzdlez et al. 2018). Astronomical images can have
dynamic ranges that span several orders of magnitude, and so
common strategies are to normalize images so that pixels fall
in the range [0,1] and/or apply scaling functions such as an
asinh scaling (Lupton et al. 2004) to ensure that faint extended
regions of objects are not ignored due to very bright central
regions. Merz et al. (2023) found the MVilTv2 backbone to
be very robust to different contrast scalings for instance seg-
mentation tasks. Networks trained with scalings with large or
small dynamic ranges showed little difference in performance.
Based on those results, we apply no scaling to the DC2 data
and use the raw images. This poses the advantage of main-
taining noise and background properties that may otherwise
be altered through changing the dynamic range.

For our initial training steps, we set the learning rate to 0.001
and train the entire network without fine-tuning, i.e., no freez-
ing of the backbone weights. We train for 50 total epochs,
lowering the learning rate by a factor of 10 each time at 15,
25, and 35 epochs. A common strategy in transfer learning
is to fine-tune, or freeze the deep layers of the network and
only train the first few layers on the new data. Fine-tuning is
commonly used in studies where the number of channels (col-
ors) in the dataset used in the pre-training phase matches the
number of dataset channels in the full training phase. How-
ever, the 6-channel ugrizy astronomical images we use to train
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Fic. 3.— Top: High-level diagram of the DeepDISC architecture. A multi-band image is input to the backbone network, which extracts features used for
downstream tasks. The Region Proposal Network (RPN) is trained to identify which parts of the image contain an object. After these regions are identified,
the corresponding features from the backbone are extracted and pooled together. The Region of Interest (ROI) heads then perform the downstream tasks of
bounding box and segmentation mask regression and object classification. In this work, we add a redshift estimation ROI head. Bottom: The redshift estimation
is performed with a Mixture Density Network which will take the features from the previous stages and output a collection of weights, means, and standard

deviations of a Gaussian mixture model which parametrizes the redshift PDF.

the network are very different from the ImageNet RGB images
of everyday objects and scenes. The MViTv2 backbone must
learn to extract this information to help the rest of the network.
Therefore, we do not fine-tune, and instead let all layers of
the network learn during training. It takes 6.5 hours to train
DEeepDISC on 4 NVIDIA V100 GPUs using our training set
of images.

3.1. RAIL integration

In order to interface DEpDISC to the existing DESC photo-
z ecosystem, we present RAIL_DEEPDISC*, an open-source
repo that interfaces DEepDISC with the DESC software Red-
shift Assessment Infrastructure Layers (LSST-DESC PZ WG
2023). RAIL is designed for end-to-end photo-z pipeline
testing, with modules for creating data, applying photo-z
estimators and evaluating their performance. We design
RAIL_DEEPDISC to live under the RAIL ecosystem, meaning
that once rail is installed, a user can import RAIL_DEEPDISC
as an optional dependency along with other photo-z estima-
tors. RAIL_DEEPDISC includes a streamlined configuration file
API, interfaces with existing RAIL code, and fully parallel
training and testing capabilities. Both raIL_DEEPDISC and
DEeepDISC have been integrated with the LINCC Frameworks

4 https://github.com/LSSTDESC/rail_deepdisc

Python Project Template Oldag et al. (2024), which includes
continuous integration tools for code tests, coverage, docu-
mentation, and package installation. We encourage the use
of RAIL_DEEPDISC as a guide to implement other image-based
codes within RAIL.

3.2. Code Comparison

Hereafter, we use the terms "train" and "inform" inter-
changeably to match the RAIL convention. After training, we
evaluate the performance of DEepDISC and compare to two
catalog-based codes: Bayseian Photometric Redshifts (BPZ;
Benitez 2000) and FLexZBoost (FZB; Izbicki & Lee 2017;
Dalmasso et al. 2020). Both codes exist as RAIL packages
5-6 and were among the most competitive template-based and
machine learning codes in the comparison study conducted by
Schmidt & Malz et al. (2020) on simulated LSST data.

Both catalog-level codes are informed by the same train-
ing data set. In order to conduct a fair comparison with
DEeepDISC, we take the set of 161,205 gold sample entries
in the truth catalog used by DEepDISC and take the corre-
sponding matched set of entries in the object catalog. The
object catalog is produced by running the LSST Science

5 https://github.com/LSSTDESC/rail_bpz
6 https://github.com/LSSTDESC/rail_flexzboost/
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pipelines software on the simulated images, which detects and
deblends objects (LSST Dark Energy Science Collaboration
(LSST DESC) et al. 2021). We train BPZ and FZB using
the object catalog as this incorporates blending and other
imaging systematics, which DEepDISC encounters at the im-
age level. This ensures all methods are informed with as
close to the same prior information as possible. However, we
note that due to a flaw in the dust extinction law assumed in
the simulations, the colors of our simulated galaxies are not
fully represented by the template set employed by BPZ. This
mismatch, along with the presence of imaging systematics in
the derived photometric catalog will very likely degrade the
performance of BPZ relative to Schmidt et al. (2020).

In order to assign redshifts to the object catalog to use for
training, we use the DC2 truth_match catalogs. Entries in
the truth catalog are matched to entries in the object cat-
alog by first taking all truth entries within 1”of an object
entry, and within an r-band magnitude difference of 1 mag.
Then, the truth entry with the smallest r-band magnitude
difference is matched to a object entry. If no truth entry
meets this criterion, the closest truth entry is matched. We
also filter by selecting truth_match entries with the flag de-
tect_isPrimary=True. This flag helps to produce a catalog
of unique objects, as it filters out duplicate objects appearing
in the overlapping region of multiple patches. It also filters out
isolated objects that had the deblender applied to them, in favor
of using nondeblended measurements for isolated objects.

As with DEepDISC photo-zs, we limit the training of BPZ
and FZB to objects with an i-band magnitude of less than 25.3
mag. We use forced photometry cModel magnitudes and mag-
nitude errors as inputs for both BPZ and FZB, and account for
Milky Way dust reddening by applying a magnitude correction
in each band

Mmaggereddened = mag — Ry * E(B -V) ()

where R, is calculated at the effective wavelength of each of
the ugrizy filters using the extinction law from (Cardelli et al.
1989) and E(B-V) is the reddening due to Milky Way dust.
We use the SFD dustmap available in the dustmaps (Green
2018) python package to obtain the E(B-V) at the location of
each object. Negative flux values due to background over-
subtraction and/or large noise fluctuations lead to inf or NaN
values for magnitudes in a given filter. These are replaced with
the 1o limiting magnitude of that filter at 5 years. Although
this design choice is made to allow the catalog-level codes
to handle negative flux measurements, we note that it biases
or removes information from the catalog-level estimators and
will affect photo-z likelihoods. An alternative approach worth
exploring in future work would be to replace per-band negative
fluxes with values sampled from a distribution derived from a
normalizing flow trained on the training set (Crenshaw et al.
2024).

3.2.1. BPZ

BPZ is a template-based code which uses a model to de-
termine the likelihood of a galaxy’s colors given an input set
of template SEDs and a redshift grid. For BPZ photo-zs,
We use a set of 200 template SEDs specialized for the simu-
lated DC2 data. We note that the simulated internal galactic
dust extinction contained an underlying unphysical feature in
its parametrization which the principle component analysis
method used to construct the SED templates was not able to
capture. This feature manifests mostly at z > 1.5, and thus

high redshift performance of the BPZ algorithm will not be
optimal at those redshifts, as the theoretical SEDs will not
match those of the observed data.

The following notation uses magnitudes, as is the origi-
nal convention from Benitez (2000). However, we note that
the BPZ algorithm converts input magnitudes to fluxes that
are more well-behaved and have Gaussian errors. BPZ de-
fines the posterior probability of a galaxy having redshift z
as p(z|C,mp) where C is the galaxy colors obtained from
the observed magnitudes and my is the apparent magnitude
in a single band (here, i-band). The posterior is obtained by
marginalizing over a set of template SEDs

p(z|C,mo) o ZP(C|Za T)p(z.T|mo) 2
T

where p(z|T,myp) is a prior probability of a galaxy having
redshift z given its apparent magnitude and template type T
and p(C|z,T) is the likelihood of a galaxy having colors C
given a redshift and template type. This prior is parametrized
in Benitez (2000) and is determined from a best-fit to the
data. This training of the prior, or “informing" the algorithm,
makes BPZ a competitive template-fitting code. For more de-
tailed functional forms of the likelihood and prior, see Benitez
(2000). The BPZ model is informed with our input training
catalog on a single CPU in 35 minutes.

3.2.2. FZB

FZB is a machine-learning code which projects the con-
ditional photo-z likelihood f(z|x), where x represents the
galaxy’s observed magnitudes and magnitude errors, onto a
series of orthonormal basis functions

fzlx) = Zﬁiu)«zs,-(z), 3)

in this case, a Fourier cosine basis requiring a post-hoc nor-
malization procedure defined by algorithm-specific hyperpa-
rameters. The expansion coefficients §;(x) can be deter-
mined via regression with the data using xg-boost (Chen
& Guestrin 2016). To train the FZB model, we use a max-
imum of 35 cosine basis functions, and the RAIL default hyper-
parameters bumpmin = 0.02, bumpmax = 0.35, nbump = 20,
sharpmin = 0.7, sharpmax = 2.1, nsharp = 15, and
max_depth = 8 The FZB model is informed with our input
training catalog on a single CPU in 24 minutes.

4. RESULTS

In this section, we compare all codes and quantify the qual-
ity of our photo-z estimation results using several metrics
designed to measure the accuracy of point estimates derived
from the PDFs. After training DEepDISC, we apply the model
to our test set of images. This takes about 40 minutes to run
on a single NVIDIA V100 GPU and produces a catalog of
3,177,538 objects. We compute object locations using the
centers of predicted bounding boxes, and use each image’s
world coordinate system (WCS) to convert these pixel val-
ues to RA and DEC coordinates. In order to compare to the
catalog-based codes, we cross-match to the DC2 object cat-
alog by taking the closest gold sample match within 1””. This
produces a test set of 1,254,379 objects for comparison. This
detection catalog is 94.2% complete with gold sample objects
in the DC2 truth catalog and 96.9% complete with the gold
sample of the DC2 object catalog. We find that DEepDISC
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FiG. 4.— Redshift point estimates of DEepDISC (left), BPZ (middle) and FLEXZBoosT (right) compared to the true redshift. We use the mode of each photo-z
PDF as our point estimate. The dashed line is along ziue = Zphot> and the solid lines define the 3ogr outlier boundary. Color corresponds to the number density
of objects in each bin. Bias, scatter and outlier fraction (Equations 4, 5 and 6, respectively) are shown in the legends.
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detection completeness tends to decrease with brighter i-band
magnitudes, which may be due to both overdeblending, or
large, bright objects being truncated by the image cutout.

‘We then obtain BPZ and FZB PDFs by applying these mod-
els to the cModel magnitudes (corrected for Milky Way dust
reddening) and errors of the matched test set. As with the
training set, the 10~ limiting magnitude is used for instances of
non-detections or pipeline failures. We parallelize BPZ and
FZB estimation over 16 CPUs. BPZ takes 31.64 minutes and
FZB takes 5.08 minutes to estimate the photo-z PDFs of all
test set objects.

We use the mode of the PDF as our point estimate zppot, and

quantify the bias e, in our estimates by

€z = (thot = Zurue) / (1 + Zurue)- 4

We also quantify the scatter of the estimates as ojgr. This is
the interquartile range, or

o = (ez75 — €225)/1.349 )

where e;75 and e;»5 are the 75th and 25th percentile of e,, and
we divide by 1.349 to ensure that the area spanned by oigr
is equivalent to the area within one standard deviation for a
standard Normal distribution. The outlier fraction is given by

n= Noul/Ntot (6)

with Ny, as the number of galaxies with |e,| >
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max(30igr, 0.06), following the definition of Schmidt & Malz
et al. (2020).

A 2D histogram of zyue VS Zphot for all three codes is shown
in Figure 4. In general, the dense regions lie along the zyye VS
Zphot line, with catastrophic outliers filling in other regions of
the plot. The bias, scatter, and outlier fraction for the entire
sample are listed in Table 2. Overall, DEepDISC performs
better than BPZ or FZB. The performance as a function of true
redshift is shown in Figure 5, with error bars derived from the
standard deviation of a bootstrapped distribution of zppe per
Ziue bin. Each code has distinct failure modes, highlighting
the challenge of photometric redshift estimation.

At low redshifts, DEepDISC and FZB perform the best in
terms of bias and scatter. Despite this region being under-
represented in the training as there are relatively few low-z
objects in the training sample N(z) (see Figure 2), DEepDISC
is able to perform on par with or better than FLExZBoosT.
BPZ performs the worst at this low redshift range. This is
likely due to a degeneracy between the Balmer break at low-z
and Lyman break at high-z causing confusion between high
and low-z objects, as seen in Figure 4.

At mid-range redshifts, the codes show similar performance,
with DEepDISC maintaining a slightly lower bias and scatter.
All codes exhibit a trend towards larger negative bias and larger
scatter as redshift increases. This is expected, as high-z ob-
jects are underrepesented in the training and are susceptible to
the fact that the Balmer break transitions out of the y-band at
z~1.4. As mentioned in 3.2, the BPZ template SEDs are not
completely representative at high-z due to unphysical dust ex-
tinction, which likely contributes to its degraded performance
seen at these redshifts. At1.5 < z > 2.5, DeepDISC maintains
a significantly lower scatter and absolute bias value, indicating
that the high dimensional space of features it learns from the
images encodes more information than the photometry. We
discuss this point more in Section 4.2 and Appendix A.

BPZ and FZB see a decrease in scatter beyond z~2.5, at
which the Lyman break enters the u-band. However, all codes
underpredict the redshifts at high-z. Some poor performance
at the edges of the redshift distribution is expected, due to noise
and the choice of redshift grid used to parametrize the PDFs.
Additionally, mode point estimates fail in the case of highly
bimodal PDFs (high redshift blue galaxies may be confused
for low redshift red galaxies). However, DEepDISC is espe-
cially sensitive to this regime, as no photo-z PDFs produced
by DeepDISC yield a mode above z~2.5. During training,
there is on average less than one gold sample object with
z>2.5 per image. Many different attempts to address this issue
were made, including weighting the redshift loss function in
proportion to the redshift distribution N(z), resampling pre-
dicted regions produced by the Region Proposal Network to a
more uniform redshift distribution, and doubling the training
set size and number of epochs. It appears that the information
that DEepDISC is able to extract from the images of sources
is more meaningful for photo-z estimation when compared to
source photometry. However, it is susceptible to the number
of objects at a given redshift in the training set. We discuss
this result and possible solutions more in Section 5.

Point estimate metrics as a function of i-band cModel mag-
nitude are shown in the right panel of Figure 4. In general,
scatter and outlier fraction increase with magnitude for all
codes. This is expected, as the signal-to-noise for faint ob-
jects is small. DeepDISC and FZB tend to perform better
than BPZ at bright magnitudes despite the smaller sample size
of objects. The larger bias of BPZ photo-zs at bright mag-

nitudes reflect a phenomenon with template fitting codes due
to the smaller photometric uncertainties measured at bright
magnitudes. Smaller errors can lead to larger x? values in the
likelihood fitting process which exaggerate the importance of
biased flux values. This will be especially noticeable if the
photometric errors measured by the LSST science pipeline are
underestimated.

4.1. PDF metrics

We use probability integral transform (PIT) histograms to
visually judge the calibration of our PDFs, i.e., if the errors
our model produces are reliable. The PIT histogram is a visual
diagnostic tool to determine whether the PDFs in an ensemble
are too broad or too narrow (D’Isanto & Polsterer (2018),
Schmidt & Malz et al. (2020)). The PIT value for each PDF
is calculated as the cumulative distribution function (CDF)
evaluated at the true redshift.

PIT = CDF (Ztrye) = /

—00

Ztrue

PDF(z)dz 7

An ideal PIT histogram is a uniform distribution, as true red-
shifts should be randomly sampled from their underlying dis-
tributions and thus give uniform CDFs. Overly narrow (over-
constrained) PDFs will tend to produce a PIT histogram with
an abundance of values at 0 and 1, as there is no probability
mass in the region of the true redshift. Overly broad (un-
derconstrained) PDFs tend to contain near equal amounts of
probability for redshifts z < zyye and z > zyye, and thus pro-
duce a PIT histogram with a bulge around 0.5. The ideal PIT
histogram follows a uniform distribution, indicating neither
too broad nor too narrow uncertainties. Systematic biases can
be seen as deviations from uniformity. The quality of the
PDFs can be seen in Figure 6. DEePDISC produces the least
outliers at PIT values close to O and 1, and appears to produce
the most uniform PIT histogram. The BPZ PIT histogram is
noticeably overconstrained, indicating BPZ tends to underes-
timate the uncertainty on its redshift estimates. This may also
be due to underestimated photometric uncertainties which are
measured from the simulated coadded images using the LSST
Science pipelines software.

As a further test of the PDF quality, we calculate the CDE
loss, Kolmogorov-Smirnov (KS), Cramer von Mises (CvM),
and Anderson-Darling (AD) statistics for each code. The CDE
loss is estimated (up to a constant) by

CDEzE[ / f<z|x>2dz]—zEz,X Fzl  ®

where f(z|x) is the estimated photo-z PDF given the input
observables, Z is the space of all possible redshifts (in practice
the grid of values on which the PDF estimates are binned), and
E is the expectation value. This metric is analogous to a root-
mean-square error in traditional regression problems, and a
large, negative CDE loss is optimal. The KS, CvM and AD
statistics all quantify how close an empirical distribution of
CDFs § is to the ideal theoretical distribution of CDFs, which
is in our case a uniform distribution y = U/(0,1). The KS
statistic is given as

KS = max(|CDF[$,z] - CDF[y,z]|) ©)

where ¥ is the empirical distribution of PIT values. The CvM
statistic is

CvM? =/w(CDF[ﬁ,z]—CDF[y,z])deDF[y, z] (10)
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bias TIQR n cde loss KS CvM AD
DeepDISC  0.0007 0.0412 0.1191 | -4249 0.0I15 100.6 4553
BPZ 0.0041 0.0608 0.1288 | 0.5973  0.1455 9061 50260
FZB -0.0024  0.0450 0.1371 | -3.577 0.0430 498.7 6474
TABLE 2

PoINT ESTIMATE AND PDF METRICS ON THE TEST SET PZ ESTIMATES FOR EACH CODE. DEEPDISC ouTPERFORMS BPZ AND FZB IN ALL CASES.
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the primary. We only include secondary peaks with a weight of at least 0.1 in
the Figure, and plot the peak weight on the x-axis. The high recovery fractions
indicate that the PDFs are encoding the true redshift even if the primary peak
is not a reliable point estimate.

and since it is a sum of squared differences, is more sensitive to
large deviations and many deviations over the entire empirical
CDF distribution. Lastly, the AD statistic

) ® (CDF[$,z] - CDF|y,z])*
AD™= Nior /_w (CDF[$,z](1 - CDF[y,z])

dCDFly,z],
an

which is more sensitive to the tails of the empirical CDF dis-

tribution. Since all of these PDF metrics quantify deviations
from the ideal theoretical distribution, lower is better. We list
the these metrics for each code in Table 2. DeepDISC pro-
duces the lowest (best) value of each of these metrics for the
test set.

To further investigate the reliability of DEepDISC PDF esti-
mates, we examine the multimodal nature of the PDFs encoded
by the MDN. We use a peak finding algorithm to determine
secondary modes of the PDFs, and examine whether the sec-
ondary modes capture meaningful information. We find that
23.5% of the DeepDISC PDFs have secondary peaks. We

define the relative peak weight for each PDF p(z) by %

where z; are the peaks. 13.3% of DeepDISC PDFs have a
secondary peak with a weight above 0.1. For BPZ, 61.5% of
the PDFs have a secondary peak and 37.9% of the PDFs have a
weight above 0.1. FZB yields 52.4% of PDFs with secondary
peaks and 43.7% with the peak weight above 0.1. Given the
relatively simple nature of the DEepDISC Gaussian mixture
model parametrization, a lower number of secondary peaks
compared to the other codes is not unexpected. However, to
see whether these secondary modes contain meaningful infor-
mation, we evaluate the recovery fraction for these PDFs. The
recovery fraction is defined as the fraction of photo-z outliers
that no longer qualify as outliers if z,po is taken to be at the
secondary mode of the PDF rather than the first mode. We
show the recovery fraction as a function of secondary peak
weights in Figure 7, limiting the analysis to PDFs with sec-
ondary peaks with a weight above 0.1. For all codes, recovery
fractions are above 50% for strong and weak peaks, indicat-
ing that the photo-z estimators are able to capture meaningful
degeneracies in the PDFs.

Overall, we have shown that under conditions of closely
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matched prior information, is very competitive in its photo-
z estimation. In our experimental setup, DEepDISC photo-z
outperforms traditional photo-z codes in terms of bias, scat-
ter, and outlier fraction. Going beyond single point metrics,
we examine the quality of the errors encoded in the PDFs by
looking at the PIT histograms and additional metrics designed
to measure how well-calibrated our ensemble of PDFs is. We
again find that DEepDISC produces a PIT distribution closest
to the ideal uniform, indicating that errors are neither too broad
nor too narrow. We also find that for all codes, a majority of
outliers have coverage at the secondary peak of their PDFs,
suggesting that the models captures physically meaningful de-
generacies. In the next Sections, we examine possible limiting
factors of our model and dependencies of our results. We
examine the effects of imaging systematics, the dependence
on data quality, and possible scaling laws in the context of our
model.

4.2. Observational Systematics

Due to the many exposures that will be collected by LSST
over its observing run, the image coaddition process will re-
sult in an averaging over several systematics. However, it is
still important to characterize the performance of our photo-z
estimator as a function of imaging systematics to understand
weaknesses and biases that may propagate to downstream mea-
surements. In this work, we have only explicitly accounted for
Milky Way dust reddening by adding the E(B-V) values as ex-
tra input to the redshift ROI head of DeepDISC. We examine
photo-z performance as a function of E(B-V) as well as point
spread function (PSF) variations and blending in Figures 8§, 9
and 10.

Milky Way dust in the line of sight of a source will scatter
and absorb light and thermally re-emit in the infrared. Ob-
servationally, this will appear as a dimming and reddening
(Draine 2003). For catalog-based photo-z codes that use mea-
sured fluxes or magnitudes, it is important to correct for this
effect by using the measured reddening E(B-V) and extinction
law for each photometric filter. The DC2 area was chosen to
be at high Galactic latitude in a relatively uniform, low-dust
region, which results in the small maximum E(B-V) and ap-
parent bimodality in the distribution in Figure 8. We see a
slightly positive trend in bias vs E(B-V) for DEepDISC and an
uptick in outlier fraction at the highest E(B-V) values. How-
ever, the bias remains minimal and below the LSST science
requirements error budget. No strong trend is seen in scatter.
FZB and BPZ also appear largely insensitive to E(B-V), which
is expected due to the aforementioned dust correction.

In order to deblend sources, the LSST science pipeline de-
termines footprints, or image regions of above-threshold flux
that contain at least one peak. Multiple peaks in a footprint are
dubbed "child" sources. The deblending algorithm attempts
to extract the light profile associated with each peak in a foot-
print. Blendedness is a measure of how much the flux of a
deblended object may be affected by neighboring objects in
the footprint

Sfluxcniig

blendedness = 1 —
fluxparent

12)

where fluxcpigq is the deblended child flux and fluxparene is
the total flux in the footprint. Isolated sources thus have a
blendedness of 0, and a blendedness above 0.2 can be consid-
ered a significant blend. For details of the blendedness metric,
see Bosch et al. (2018). The effect of blending on all codes is

shown in Figure 9. Up to a blendedness of around 0.5, BPZ
bias increases, FZB bias slightly increases, and DeepDISC
bias slightly decreases. However, beyond a blendedness of
0.5, BPZ and FZB bias start to dramatically decrease, while
DeepDISC bias only slightly decreases. For all codes, photo-z
scatter increases as a function of blendedness, although Deep-
DISC is the least sensitive to this systematic. It appears that the
features extracted by DeepDISC are more robust to blending
than the deblended cModel magnitudes produced by the LSST
science pipelines deblender. This may be due to the fact that
all pixel-level information is considered in DeepDISC fea-
ture extraction, which provides more information regarding
source light profiles and SEDs than aperture magnitude mea-
surements. We discuss this more in Section 5 and Appendix
A. Additionally, raising the positive IOU threshold discussed
in Section 3 could prevent more detection/truth mismatches
during training, which could further improve the robustness to
this systematic.

We examine any systematics trends due to i-band PSF
FWHM in Figure 10. The PSF characterizes the distortion
of an observed image due to atmospheric effects such as re-
fraction. Traditional image analysis pipelines often explicitly
use the PSF as input, potentially giving them an advantage
over neural network approaches that do not, as is the case
with DEEpPDISC. Since DeepDISC uses image data and thus
is encoding pixel-level features and distortions, we examine
if there is any dependence in performance with PSF FWHM.
No clear trends can be seen in Figure 10, except a potential
dip in outlier fraction at high values. This is encouraging, in
that it shows that training with a variety of images and using a
“data-driven" approach is sufficient to account for (small) PSF
variations rather than explicitly inputting this information into
the network.

Overall, DEepDISC shows little sensitivity to these system-
atics, comparable to the catalog-based methods which incor-
porate systematics mitigation during pre-processing, e.g., de-
blending, or post-processing, e.g., correcting for reddening.
We find that DEepDISC in particular is more robust to blending
than the catalog-based codes, with significantly less photo-z
scatter at high levels of blending. In future applications with
real data, a variety of images taken from a wide footprint
should be used in order to help the network marginalize over
varying systematics. Understanding the photo-z uncertainties
due to imaging systematics will be an important endeavor for
downstream science cases.

4.3. Dependence on Image Depth

Simulated DC2 images are available for both 1 year and 5
years of observations (Figure 11) . We compare the results of
using the 1 year vs 5 year observations to see how DEepDISC
photo-z results scale with depth in Figure 12 and Table 3. The
only difference in the runs is the input imaging data. After
training and inference, we take the intersection of the sets of
objects detected by each model. This is to ensure that we are
ignoring any effects from evaluating on different samples of
objects, and judging solely the effect of increased signal in
the images. We find that after 5 years of observations, the
bias changes from -0.0039 to -0.0001. The scatter changes
from 0.0756 to 0.0363, a factor of almost one half, and the
outlier fraction evolves from 0.1161 to 0.0967. Given that the
signal-to-noise ratio (SNR) is proportional to the square root
of the observing time, we see that the scatter in photo-z mode
predictions is roughly inversely proportional to the SNR of
the data. Similarly, the CDE loss also scales proportionally to
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FiG. 12.— Redshift point estimates for Year 1 (left) and Year 5 (right) data. The mode is used to produce a single point estimate for each pdf. The dashed line
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outlier fraction (Equations 4, 5 and 6, respectively) are shown in the legends. The comparison is made on the common set of objects detected by both models.
Year 5 data greatly improves the estimates overall, and notably improves the high-z regime.

the SNR. Notably, DEepDISC can produce more high redshift
photo-z estimates when trained with the 5 year data, as seen
in Figure 12.

bias TIQR n cde loss

DeepDISC Y1 -0.0039 0.0756 0.1161 | -2.280

DeepDISC Y5 -0.0001 0.0363 0.0967 | -4.674
TABLE 3

ComPARING DEEPDISC PHOTO-ZS WHEN USING THE | YEAR VS 5 YEAR
OBSERVATIONS. SAME METRICS AS TABLE 2.

4.4. Model Scalability

Scaling laws describe model performance as a function of
increased training set size or model size. They are a useful
tool for experimental design, especially in the case of lim-
ited training data or compute resources. It is important to
be able to quantify potential gains and evaluate trade-offs as
models increase in size and compute resource requirements.
Generally, it has been found that increasing the model size
and/or training set size improves performance of neural net-
works (Zhai et al. 2021; Hestness et al. 2017). However, these
findings typically stem from experiments with ImageNet or
other terrestrial datasets. Investigation of scaling laws into as-
tronomical data sets is fairly under-explored (Walmsley et al.
2024; Smith et al. 2024).

An investigation of the scaling laws governing our DEgp-
DISC model is shown in Figures 13 and 14. We train using
the Year 5 data and show the effects of independently increas-
ing the model and training set size, quantified by the photo-z
metrics used thus far. Overall, there does not appear to be a
strong scaling law for either model size or training set size,
in terms of both point estimate and PDF metrics. This is
mostly consistent with Walmsley et al. (2024), as they find
that while models pre-trained on ImageNet modestly benefit
from increased model size, the largest gains were realized with
pre-training in-domain on astronomical images. Our baseline
model appears to have reached a "saturation" of possible gains
with increased size or data, indicating other avenues to improve

0.16 1 o bias
O1gr
0.14{7* "

0.121

0.101

Metric

0.02

0.00] &— ¢ —e

800000

200000 400000 600000

Training Set Size

/\-

0.12

0.104

—o— bias
Oior
—*—

0.001 — . —

100 200 300 400 500 600
Parameters (Million)

FiG. 13.— Scaling laws for redshift point estimates. There appears to be
no obvious relationship with model or training set size and point estimate
metrics. The top panel shows the effect of increasing the training set size
by 2x and 5x, and the bottom panel shows the effect of using larger model
backbones, in our case the MViTv2 Base, Large, and Huge models.
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F1G. 14.— Scaling laws for redshift PDF estimates. The top panel shows the effect of increasing the training set size by 2x and 5x, and the bottom panel shows
the effect of using larger model backbones, in our case the MViTv2 Base, Large, and Huge models. Similar to the point estimate metrics, there is no conclusive

gain from increasing either the training set size or model size.

performance may be more fruitful. A full investigation of how
DEeepDISC scales in different pre-training contexts merits is
left to future work. Here, we are testing whether a simple
change to the training set or model size yields noticeable ben-
efits.

5. DISCUSSION

DEeepDISC pHOTO-Z is designed as an end-to-end pipeline
for downstream photo-z measurements. Like other computer
vision models, DEePDISC skips the need for photometry as
an intermediate step and directly produces a photo-z catalog.
The features that the DEepDISC backbone learns during train-
ing do not have obvious physical meaning, but do capture
relevant information. In the previous sections, we examined
DeepDISC performance as a function of object properties and
imaging systematics to quantify and understand some of the
performance gains relative to traditional catalog-level photo-z
algorithms. DeepDISC appears to be able to handle cases in
which traditional algorithms struggle, such as highly blended
objects and regions of redshift space in which strong spectral
features are not covered by the optical LSST filters. This per-
formance gain is likely due to the extra information gathered
from pixel values and extracted by the backbone network, as
opposed to traditional aperture photometry.

We test this hypothesis by decoupling the photo-z estimation
from the feature extraction. To do this, we compare an FZB
model trained on photometry with an FZB model trained on
the corresponding features produced by a trained DeepDISC
model. The feature tensor output by the backbone is large
(256x7x7 for each object) so we first flatten it and run principle
component analysis (PCA) to reduce the dimensionality of
the features to 12 values per object, matching the size of the
photometric catalog (magnitudes + errors for 6 filters). Some
spatial information may be lost due to the flattening, so the
results here can be considered a lower bound on the relative
performance. We run the trained DEepDISC model on a small
subset of images from the main test set. We perform the same
catalog-matching and dust reddening corrections described
in Section 3.2 and Section 4 to produce a matched catalog
of photometry and corresponding DeepDISC features. We
then divide this catalog into a training and test set for FZB.
We train FZB using the same hyperparameters described in
Section 3.2, varying only whether the model uses photometry
or DEepDISC features.

The test set point estimates for DEepDISC and both mod-
els are shown in Figure 15. The FZB model trained with

DEeepDISC features produces less scatter in its point estimates
compared to the model trained with photometry (middle ver-
sus right panels). PIT histograms for the models are shown in
Figure 16. Differences are small, but the model trained with
DEeepDISC features produces a slightly flatter histogram, and
less outliers at the edge of the distribution. Overall, we find
that the backbone network is able to extract more information
relative to general photo-z estimation than colors/magnitudes
derived from aperture photometry.

5.1. Sample Selection

In the analysis in Section 4, the BPZ and FZB methods were
trained on catalog photometry matched to the DC2 truth
catalog that DEepDISC was trained on. However, the test set
selection is determined by DEepDISC inference matched with
the DC2 object catalog, potentially privileging our method
as it determines the sample selection that the other codes use
for inference. I.e., the selection effects may make the training
data non-ideal for FZB and BPZ in the previous analysis. This
effect is accounted for in the analysis above, as training and test
data for FZB is taken from the DEepDISC selection catalog.
Comparing the left and middle panels of Figures 15 and 16
shows the relative results when this selection is accounted
for. DeepDISC still produces a lower scatter than FZB, but
its bias is slightly higher (although still within LSST science
requirements). The PIT histogram appears slightly flatter for
DEeepDISC, with less outliers at the edges. We further discuss
the relevance of sample selection in the context of weak lensing
below.

5.2. Weak Lensing

For studies of weak lensing that require tomographic bin-
ning of redshifts to produce n(z) distributions, characterizing
major sources of bias in the weak lensing measurement is
necessary so that they may be accounted for and mitigated
(Mandelbaum 2018). Particularly relevant for weak lensing
with DEepDISC photo-zs are selection biases due to source
detection and photo-z estimation. Source detection may im-
plicitly depend upon galaxy shape through its correlation with
lensing. The photo-z estimation may also be dependent on
galaxy shape due to the incorporation of morphological in-
formation. A rigorous investigation of these effects and a full
weak lensing analysis is deserving of its own work and outside
the current scope here. However, selection biases have been
well-studied in the literature, so there are paths forward.

One way to account for selection effects is through self-
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calibration, commonly done with the METACALIBRATION algo-
rithm (Huff & Mandelbaum 2017; Sheldon & Huff 2017). This
process involves artificially applying a shear to real galaxy im-
ages and measuring the response of some measurement to the
shear. Selection biases can then be quantified and removed
from subsequent weak lensing analysis. METACALIBRATION
has been applied to galaxy shape estimators (Gatti et al. 2021),
photo-z estimators (Troxel et al. 2018), and object detection
algorithms (Sheldon et al. 2020). Future work will adapt DEep-
DISC to simultaneously estimate redshift and galaxy shapes,
providing a single method to detect, deblend, measure and
calibrate selection biases.

5.3. Limitations

The simulations used in this work include many realistic
effects, both due to physical phenomena and instrumental de-
sign. While they encapsulate an enormous effort to represent
the universe as close to the “truth” as possible, there are still
fundamental limitations in our experiment and thus poten-

tial differences in how the model will perform on real data
compared to the results here. As described in Section 2, the
morphological model for objects in the DC2 simulations is
a simple bulge+disk+knot model. The size-luminosity rela-
tion for disk and bulge components is determined from fitting
a half-light radius to the functional form of Zhang & Yang
(2019), such that parameters for SDSS galaxies are recovered
at z = 0 and sizes decrease with redshift following a sigmoid
function. This relation, along with the simple morphological
profiles, cannot capture the true diversity of galaxy shapes and
sizes that will be observed by LSST. However, higher fidelity
simulations with generative models or real morphological pro-
files may help to bridge the simulation-reality gap. We are also
encouraged by preliminary results on real JWST images (Merz
et al., in prep).

In this work, our training sample is completely repre-
sentative of our test sample, which is a best case scenario
for machine learning methods like DEepDISC and FZB. It
is worthwhile to note that in these ideal conditions, DEgp-
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DISC outperforms FZB, but the metrics can in some sense be
thought of as upper bounds on the performance. Moskowitz
et al. (2024) show that underrepresented training samples can
severely bias FZB photo-z estimation, and since DEepDISC
is also a machine-learning estimator, is it likely also suscepti-
ble to this effect. The solution proposed by Moskowitz et al.
(2024) is to use data augmentation to help the model learn in
underrepresented regimes. For image-based methods such as
DEeepDISC, simulated images could be generated from aug-
mented catalogs, or the DC2 images themselves could be used
to give the networks a more complete picture of the color-
redshift space.

One of the main limitations of DEpDISC pHOTO-Z is evident
in the lack of PDF modes above z = 2.5. While all codes
struggle in this high-z regime, it is particularly stark in the
DEeepDISC scatter plot in Figure 4. Photo-z estimation in this
regime is fundamentally a challenge, as the low sample size of
objects limits the network’s ability to learn relevant features.
One potential avenue to improve DEepDISC estimates in the
high-z regime is through increasing the amount of high-z data
in the training sample. While we investigated the scaling
laws in Section 4.4 and found no strong improvement of point
estimate metrics with increased training set size, those metrics
were calculated over the whole sample and did not capture the
behavior of the networks in different regimes. We find that the
models trained with 2x and 5x training data are able to provide
mode point estimates beyond the z = 2.5 cutoff (see Figure 17).
This test increased the number of high-z objects in the training
set, but preserved the overall n(z). In future work, targeted
data augmentation like that of Moskowitz et al. (2024) could be
implemented in order to specifically increase n(z > 2.5). The
models are very sensitive to regimes with low representation,
so added data does make a difference. Different pre-training
schemes and architectures may also lead to improved high-z
performance and will be explored in follow-up work.

6. CONCLUSIONS

Photometric redshift estimation will be of major importance
in upcoming Wide-Fast-Deep surveys for precision cosmol-

ogy, studies of galaxy evolution, and more. A multitude of
different photo-z codes have been developed under different
frameworks. While codes that use catalog level photometry
remain popular, a growing focus has been applied to image-
based codes that use deep learning to map pixel level inputs
to redshift estimations. In this work, we present DEepDISC
photo-z, an image-based photo-z estimator built on the DEgp-
DISC framework (Merz et al. 2023). DeepDISC utilizes object
detection networks to simultaneously find objects and make
predictions in an image. This provides an advantage over
image-based codes that typically assume each input image has
a single object located at the center. DeepDISC makes no
assumptions about the spatial location or the number of ob-
jects, lending itself to application on massive datasets of raw
images. Another advantage of DeepDISC is its ability to be
tuned after training. For instance, it can be applied to images
of variable size.

In this work we train on image cutouts with a size of 525
pixels square and apply the trained network to cutouts of size
1050 pixels square to demonstrate the ability of the network
to generalize to large scenes. Additional hyperparameters can
be tuned after training to increase the detection sensitivity.
In order to validate DEepDISC pHOTO-Z, We conduct a con-
trolled experiment using simulated LSST DESC DC2 data.
We compare DeepDISC photo-z to the catalog-level codes
BavEsiaN PHOTOMETRIC REDSHIFTS, which is template-based
and FLExZBoosT, which uses machine learning.

Our model is trained on 4 NVIDIA V100 GPUs for 6 hours
and estimates 3 million photo-zs on a single V100 GPU in
40 minutes. Though our model is computationally expen-
sive to train compared to the catalog-based codes used in this
study, it is fairly competitive in estimating photo-zs on a large
test set. When parallelized across 16 CPUs, BPZ estimation
takes roughly 0.001 seconds per object, and FZB estimation
takes 0.0002 seconds per object. Considering DEepDISC pro-
duces a catalog roughly 3 times the size as the input catalog
used for BPZ and FZB estimation, our model takes roughly
0.0008 seconds per object to produce a photo-z PDF when ran
on a single GPU. DeepDISC can be parallelized to estimate
photo-zs across multiple GPUs, but more CPUs than GPUs are
generally available for researchers to use for parallelization, so
FZB and BPZ have an advantage in scaling on large datasets.
However, we note that DEepDISC runtime per image does not
scale strongly with the size of the image, and large enough
GPUs could potentially handle a full-sized CCD image (4k
pixels square for LSST).

In order to conduct a fair comparison of the codes, we supply
the other codes the object catalogs, which have been reduced
from the input images. This ensures all methods are trained
and applied to data that accounts for imaging systematics such
as blending. We find that DEepDISC outperforms the catalog-
based codes in almost all metrics on the test set, including
metrics designed to evaluate the quality of point estimates
and uncertainty predictions. We find that DEepDISC photo-
z tends to under-predict high redshifts and does not produce
mode point estimates above z ~ 2.5, likely due to the low
representation of these objects in the training. However, this
may be ameliorated with additional high-z data augmentation.

We compare the quality of the predicted redshift PDFs of
all codes by examining the PIT histograms and probabilistic
metrics. DEePDISC produces the empirical PIT histogram
closest to the ideal theoretical uniform distribution, shown in
the visualization and statistical measurements. We find that we
are able to recover a majority of photo-z outliers (i.e., they are
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no longer considered outliers) if zppo is taken be the secondary
peak of the PDF, indicating that meaningful degeneracies are
learned by the network.

Bias, scatter and outlier fraction are examined as a func-
tion of systematics that affect the imaging and thus could
potentially affect the photo-z estimates. Overall, we find no
strong dependence on dust extinction, or PSF FWHM. How-
ever, we find that DeepDISC is much more robust at esti-
mating photo-zs for blended sources, indicating that it is able
to learn rich information at the pixel-level. We do not fully
characterize the effects of object detection and unrecognized
blends in this study. Unrecognized blends arise when only
a single object is detected in a blend consisting of multiple
sources, and can make up 15-20% of total objects (Dawson
et al. 2016; Troxel et al. 2023). In this work, we have chosen
to compare our DeepDISC photo-z catalog to BPZ and FZB
by cross-matching DeepDISC detections and the DC2 object
catalog produced by LSST science pipelines. Thus, some of
the objects in our test set will be unrecognized blends due to
non-detections in the LSST science pipeline. Follow-up work
to isolate this effect and other potential differences due to the
different detection methods will include producing a photo-
metric catalog by running forced photometry on the images
using DeepDISC detections, and further removing samples of
unrecognized blends based on truth catalogs.

We test DEepDISC photo-zs using imaging created from 1
year worth of observations and 5 years worth of observations.
With the signal-to-noise increased by a factor of ~2.24 (SNR

oc Vtime), we see a roughly similar factor of decrease in scatter.
We also see the network estimate more high-z objects with the
5 year observations, as more signal is collected for these faint
sources.

In addition to the tests above, we examine possible scal-
ing laws that could govern our model. The backbone of the
network is a MViTv2 network, a vision transformer which is
known for being data hungry (Zhai et al. 2022). We investigate
if our models (pre-trained on ImageNet) have notable perfor-
mance gains when the data set size or model size is increased.
We find no strong relation for any metric, point or probabilis-
tic, as a function of model size or training set size. Scaling
studies often find power law dependencies, so it is possible
we are already in the saturated regime as we do not see any
notable gains. Walmsley et al. (2024) found that while pre-
training on ImageNet data can improve downstream galaxy
morphology tasks and does scale with data set and model size,
most performance gains come from additional pre-training on
galaxy images. Investigation into this effect for DEepDISC
will be a promising avenue of future work, especially as pre-
training using galaxy images has been shown to improve the
detection of galactic features through a Faster-RCNN network
(Popp et al. 2024). Pre-training on simulated images (such as
those used in this study) may help with training the model on
real data, which is incomplete in redshift and color-magnitude
space due to spectroscopic selection effects. Training sam-
ple augmentation has been shown to mitigate this bias and
it would be worthwhile to explore whether DEepDISC would
benefit from this method. Moskowitz et al. (2024) augmented
a photometric catalog to produce a new training set by using
a normalizing flow, and such a catalog could be used to sim-
ulate new images to produce an augmented training set for
DeepDISC.

We have demonstrated that DEepDISC is able to learn more
information relevant for photo-z estimation than catalog pho-

tometry can provide. This may help in redshift regimes where
strong spectral features are not visible through the available
filters, although the data used in this study is idealized in some
ways compared to real morphological profiles and SEDs. We
will continue to test our model on real data for practical imple-
mentations. Individual photo-z PDFs are useful for a variety of
science cases, but for future applications that use n(z) such as
weak lensing, thorough investigation of the selection biases of
DeepDISC will be done to properly calibrate measurements.
DeepDISC has shown promising performance on simulated
LSST data, which we aim to continue to improve and vet as
we quickly approach Rubin first light.

ACKNOWLEDGEMENTS

G.M. led the initial DeepDISC codebase development, data
curation, analysis, and paper writing. X.L. advised G.M.,
planned tests and analyses of the model and contributed to
writing the paper. S.S. provided expertise and code regard-
ing the use of catalog-based photo-z methods, suggestions
for analyses, and paper edits. A.M. contributed to the initial
formalization of rail_deepdisc, provided expertise regarding
RAIL, and paper edits. T.Z. contributed to the DeepDISC
codebase, reviewed first draft figures and provided paper edits
and suggestions. D.O. co-led the development of the code-
bases with G.M. D.B., M.D., J.K and O.L. developed both
DeepDISC and rail_deepdisc codebases. C.B. led the initial
work that inspired the creation of DeepDISC and contributed
paper edits. Y.L. and Y.E. contributed to the codebase.

This paper has undergone an internal review by the LSST
DESC, and we thank the internal reviewers, Eric Gawiser
and Ismael Mendoza, for thoughtful feedback that improved
the paper. We thank Athol Kemball, Matias Carrasco Kind,
Yuxiong Wang and Jeff Newman for illuminating discussions,
and the anonymous referees for helpful comments. We thank
Shirui Luo, Dawei Mu, and Volodymyr Kindratenko at the
National Center for Supercomputing Applications (NCSA) for
their assistance with the GPU cluster used in this work. G.M.,
X.L., Y.E. and Y.L. acknowledge support from the NCSA Fac-
ulty Fellowship, NCSA Student Pushing INnovation intern-
ship program, LSST-DA through grant 2023-SFF-LFI-03-Liu,
NSF grant AST-2308174, and NASA grant SONSSC24K0219.
G.M. thanks the LSST-DA Data Science Fellowship Program,
which is funded by LSST-DA, the Brinson Foundation, and
the Moore Foundation; his participation in the program has
benefited this work. This work was conducted as part of a
LINCC Frameworks Incubator. LINCC Frameworks is sup-
ported by Schmidt Sciences. AIM, TZ, DO, OL, DB, JK, and
MD are supported by Schmidt Sciences. C.J.B. is supported
by an NSF Astronomy and Astrophysics Postdoctoral Fellow-
ship under award AST-2303803. This material is based upon
work supported by the National Science Foundation under
Award No. 2303803. This research award is partially funded
by a generous gift of Charles Simonyi to the NSF Division of
Astronomical Sciences. The award is made in recognition of
significant contributions to Rubin Observatory’s Legacy Sur-
vey of Space and Time. This work utilizes resources supported
by the National Science Foundation’s Major Research Instru-
mentation program, grant #1725729, as well as the University
of Illinois at Urbana-Champaign.

The DESC acknowledges ongoing support from the Institut
National de Physique Nucléaire et de Physique des Particules
in France; the Science & Technology Facilities Council in
the United Kingdom; and the Department of Energy, the Na-
tional Science Foundation, and the LSST Corporation in the



18

United States. DESC uses resources of the IN2P3 Comput-
ing Center (CC-IN2P3-Lyon/Villeurbanne - France) funded
by the Centre National de la Recherche Scientifique; the Na-
tional Energy Research Scientific Computing Center, a DOE
Office of Science User Facility supported by the Office of Sci-
ence of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231; STFC DiRAC HPC Facilities, funded
by UK BEIS National E-infrastructure capital grants; and the
UK particle physics grid, supported by the GridPP Collabora-
tion. This work was performed in part under DOE Contract
DE-AC02-76SF00515.

We acknowledge use of Matplotlib (Hunter 2007), a
community-developed Python library for plotting. This re-

search made use of Astropy,” a community-developed core
Python package for Astronomy (Astropy Collaboration et al.
2013; Price-Whelan et al. 2018). This research has made use
of NASA’s Astrophysics Data System.

This paper makes use of software developed for the
Large Synoptic Survey Telescope. We thank the LSST
Project for making their code available as free software at
http://dm.Isst.org

This research has made use of the NASA/IPAC Infrared Sci-
ence Archive, which is funded by the National Aeronautics and
Space Administration and operated by the California Institute
of Technology.

REFERENCES

Abbott T. M. C., et al., 2022, Phys. Rev. D, 105, 043512

Aihara H., et al., 2018, Publications of the Astronomical Society of Japan,
70, S4

Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409

Astropy Collaboration et al., 2013, A&A, 558, A33

Benitez N., 2000, ApJ, 536, 571

Bishop C., 1994, Working paper, Mixture density networks. Aston University

Bosch J., et al., 2018, Publications of the Astronomical Society of Japan, 70,
S5

Boucaud A., et al., 2020, MNRAS, 491, 2481

Burke C.J., Aleo P. D., Chen Y.-C., Liu X, Peterson J. R., Sembroski G. H.,
LinJ. Y.-Y., 2019, MNRAS, 490, 3952

Cai Z., Vasconcelos N., 2018, in Proceedings of the IEEE conference on
computer vision and pattern recognition. pp 6154-6162

Campagne J.-E., 2020, Adversarial training applied to Convolutional Neural
Network for photometric redshift predictions (arXiv:2002.10154),
https://arxiv.org/pdf/2002.10154

Cardelli J. A., Clayton G. C., Mathis J. S., 1989, Apl, 345, 245

Chen T., Guestrin C., 2016, arXiv e-prints, p. arXiv:1603.02754

Crenshaw J. F., Kalmbach J. B., Gagliano A., Yan Z., Connolly A. J., Malz
A. 1, Schmidt S. J., The LSST Dark Energy Science Collaboration 2024,
AJ, 168, 80

DES 2018, Phys. Rev. D, 98, 043526

D’Isanto A., Polsterer K. L., 2018, A&A, 609, A111

Dalmasso N., Pospisil T., Lee A. B., Izbicki R., Freeman P. E., Malz A. 1.,
2020, Astronomy and Computing, 30, 100362

Dark Energy Survey Collaboration et al., 2016, MNRAS, 460, 1270

Dawson W. A., Schneider M. D., Tyson J. A., Jee M. J., 2016, ApJ, 816, 11

Deng J., Dong W., Socher R., Li L.-J., Li K., Fei-Fei L., 2009, in 2009 IEEE
Conference on Computer Vision and Pattern Recognition. pp 248-255,
doi:10.1109/CVPR.2009.5206848

Dey B., Andrews B. H., Newman J. A., Mao Y.-Y., Rau M. M., Zhou R.,
2022, MNRAS, 515, 5285

Draine B. T., 2003, ARA&A, 41, 241

Finkelstein S. L., et al., 2015, ApJ, 810, 71

Gatti M, et al., 2021, MNRAS, 504, 4312

Gonzdlez R. E., Mufioz R. P, Herndndez C. A., 2018, Astronomy and
Computing, 25, 103

Green G., 2018, The Journal of Open Source Software, 3, 695

Hayat M. A., Stein G., Harrington P., Luki¢ Z., Mustafa M., 2021, ApJ, 911,
L33

He K., Gkioxari G., Dollér P., Girshick R., 2017, in Proceedings of the IEEE
international conference on computer vision. pp 2961-2969

Hestness J., et al., 2017, arXiv e-prints, p. arXiv:1712.00409

Huff E., Mandelbaum R., 2017, arXiv e-prints, p. arXiv:1702.02600

Hunter J. D., 2007, Computing in Science & Engineering, 9, 90

Ivezi¢ Z., et al., 2019, ApJ, 873, 111

Izbicki R., Lee A. B., 2017, Electronic Journal of Statistics, 11, 2800

Jenness T., et al., 2022, in Software and Cyberinfrastructure for Astronomy
VIL p. 1218911 (arXiv:2206.14941), doi:10.1117/12.2629569

Korytov D., et al., 2019, ApJS, 245, 26

LSST-DESC PZ WG 2023, LSSTDESC/RAIL: v0.98.5,
doi:10.5281/zenodo.7927358,
https://doi.org/10.5281/zenodo.7927358

LSST Dark Energy Science Collaboration (LSST DESC) et al., 2021, ApJS,
253, 31

7 http://www.astropy.org

LSST Science Collaboration et al., 2009, arXiv e-prints, p. arXiv:0912.0201

Lanusse F., et al., 2023, arXiv e-prints, p. arXiv:2310.03024

Li Y., Wu C.-Y,, Fan H., Mangalam K., Xiong B., Malik J., Feichtenhofer C.,
2022, in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp 4804-4814

Lin T.-Y., Dolldr P., Girshick R., He K., Hariharan B., Belongie S., 2016,
arXiv e-prints, p. arXiv:1612.03144

LiuZ., Lin Y., Cao Y., Hu H., Wei Y., Zhang Z., Lin S., Guo B., 2021, in
Proceedings of the IEEE/CVF international conference on computer
vision. pp 10012-10022

Lupton R., Blanton M. R., Fekete G., Hogg D. W., O’Mullane W., Szalay A.,
Wherry N., 2004, PASP, 116, 133

Mandelbaum R., 2018, Annual Review of Astronomy and Astrophysics, 56,
393

Massarotti M., Iovino A., Buzzoni A., 2001, A&A, 368, 74

Melchior P., Moolekamp F., Jerdee M., Armstrong R., Sun A.-L., Bosch J.,
Lupton R., 2018, Astronomy and Computing, 24, 129

Melchior P., Joseph R., Sanchez J., MacCrann N., Gruen D., 2021, Nat Rev
Phys, 3, 712

Merz G., Liu Y., Burke C. J., Aleo P. D., Liu X., Carrasco Kind M.,
Kindratenko V., Liu Y., 2023, MNRAS, 526, 1122

Mitra A., Kessler R., More S., Hlozek R., LSST Dark Energy Science
Collaboration 2023, ApJ, 944, 212

Miyatake H., et al., 2023, Phys. Rev. D, 108, 123517

Moskowitz I., Gawiser E., Crenshaw J. F., Andrews B. H., Malz A. 1.,
Schmidt S., LSST Dark Energy Science Collaboration 2024, ApJ, 967, L6

Myers A. D., White M., Ball N. M., 2009, MNRAS, 399, 2279

Myles J., et al., 2021, MNRAS, 505, 4249

Newman J. A., Gruen D., 2022, ARA&A, 60, 363

Oldag D., et al., 2024, Research Notes of the AAS, 8, 141

Pasquet J., Bertin E., Treyer M., Arnouts S., Fouchez D., 2019, A&A, 621,
A26

Paszke A., et al., 2017, in NIPS-W.

Popp J. J., et al., 2024, RAS Techniques and Instruments, 3, 174

Price-Whelan A. M., et al., 2018, AJ, 156, 123

Ren S., He K., Girshick R., Sun J., 2015, in Cortes C., Lawrence N. D., Lee
D. D., Sugiyama M., Garnett R., eds, , Advances in Neural Information
Processing Systems 28. Curran Associates, Inc., pp 91-99

Roster W., et al., 2024, arXiv e-prints, p. arXiv:2411.07305

Rowe B. T. P, et al., 2015, Astronomy and Computing, 10, 121

Salvato M., Ilbert O., Hoyle B., 2019, Nature Astronomy, 3, 212

Schlafly E. F., Finkbeiner D. P., 2011, ApJ, 737, 103

Schmidt S. J., et al., 2020, MNRAS, 499, 1587

Schuldt S., Suyu S. H., Cafiameras R., Taubenberger S., Meinhardt T.,
Leal-Taixé L., Hsieh B. C., 2021, A&A, 651, A55

Seo H.-J, etal., 2012, ApJ, 761, 13

Sheldon E. S., Huff E. M., 2017, ApJ, 841, 24

Sheldon E. S., Becker M. R., MacCrann N., Jarvis M., 2020, ApJ, 902, 138

Smith M. J., Roberts R. J., Angeloudi E., Huertas-Company M., 2024, arXiv
e-prints, p. arXiv:2405.14930

SooJ. Y. H,, et al., 2018, MNRAS, 475, 3613

Tanigawa S., Glazebrook K., Jacobs C., Labbe I., Qin A. K., 2024, Monthly
Notices of the Royal Astronomical Society, 530, 2012

Treu T., 2010, ARA&A, 48, 87

Treyer M., Ait Ouahmed R., Pasquet J., Arnouts S., Bertin E., Fouchez D.,
2024, MNRAS, 527, 651

Troxel M. A., et al., 2018, Phys. Rev. D, 98, 043528

Troxel M. A, et al., 2023, MNRAS, 522, 2801


http://dx.doi.org/10.1103/PhysRevD.105.043512
https://ui.adsabs.harvard.edu/abs/2022PhRvD.105d3512A
http://dx.doi.org/10.1093/pasj/psx066
http://dx.doi.org/10.1146/annurev-astro-081710-102514
https://ui.adsabs.harvard.edu/abs/2011ARA&A..49..409A
http://dx.doi.org/10.1051/0004-6361/201322068
http://adsabs.harvard.edu/abs/2013A%26A...558A..33A
http://dx.doi.org/10.1086/308947
https://ui.adsabs.harvard.edu/abs/2000ApJ...536..571B
http://dx.doi.org/10.1093/pasj/psx080
http://dx.doi.org/10.1093/mnras/stz3056
https://ui.adsabs.harvard.edu/abs/2020MNRAS.491.2481B
http://dx.doi.org/10.1093/mnras/stz2845
https://ui.adsabs.harvard.edu/abs/2019MNRAS.490.3952B
http://arxiv.org/abs/2002.10154
https://arxiv.org/pdf/2002.10154
http://dx.doi.org/10.1086/167900
https://ui.adsabs.harvard.edu/abs/1989ApJ...345..245C
http://dx.doi.org/10.48550/arXiv.1603.02754
https://ui.adsabs.harvard.edu/abs/2016arXiv160302754C
http://dx.doi.org/10.3847/1538-3881/ad54bf
https://ui.adsabs.harvard.edu/abs/2024AJ....168...80C
http://dx.doi.org/10.1103/PhysRevD.98.043526
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98d3526A
http://dx.doi.org/10.1051/0004-6361/201731326
https://ui.adsabs.harvard.edu/abs/2018A&A...609A.111D
http://dx.doi.org/10.1016/j.ascom.2019.100362
https://ui.adsabs.harvard.edu/abs/2020A&C....3000362D
http://dx.doi.org/10.1093/mnras/stw641
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.1270D
http://dx.doi.org/10.3847/0004-637X/816/1/11
http://adsabs.harvard.edu/abs/2016ApJ...816...11D
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1093/mnras/stac2105
https://ui.adsabs.harvard.edu/abs/2022MNRAS.515.5285D
http://dx.doi.org/10.1146/annurev.astro.41.011802.094840
https://ui.adsabs.harvard.edu/abs/2003ARA&A..41..241D
http://dx.doi.org/10.1088/0004-637X/810/1/71
https://ui.adsabs.harvard.edu/abs/2015ApJ...810...71F
http://dx.doi.org/10.1093/mnras/stab918
https://ui.adsabs.harvard.edu/abs/2021MNRAS.504.4312G
http://dx.doi.org/10.1016/j.ascom.2018.09.004
http://dx.doi.org/10.1016/j.ascom.2018.09.004
https://ui.adsabs.harvard.edu/abs/2018A&C....25..103G
http://dx.doi.org/10.21105/joss.00695
https://ui.adsabs.harvard.edu/abs/2018JOSS....3..695M
http://dx.doi.org/10.3847/2041-8213/abf2c7
https://ui.adsabs.harvard.edu/abs/2021ApJ...911L..33H
https://ui.adsabs.harvard.edu/abs/2021ApJ...911L..33H
http://dx.doi.org/10.48550/arXiv.1712.00409
https://ui.adsabs.harvard.edu/abs/2017arXiv171200409H
http://dx.doi.org/10.48550/arXiv.1702.02600
https://ui.adsabs.harvard.edu/abs/2017arXiv170202600H
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.3847/1538-4357/ab042c
https://ui.adsabs.harvard.edu/abs/2019ApJ...873..111I
http://dx.doi.org/10.1214/17-EJS1302
http://arxiv.org/abs/2206.14941
http://dx.doi.org/10.1117/12.2629569
http://dx.doi.org/10.3847/1538-4365/ab510c
https://ui.adsabs.harvard.edu/abs/2019ApJS..245...26K
http://dx.doi.org/10.5281/zenodo.7927358
https://doi.org/10.5281/zenodo.7927358
http://dx.doi.org/10.3847/1538-4365/abd62c
https://ui.adsabs.harvard.edu/abs/2021ApJS..253...31L
http://www.astropy.org
http://dx.doi.org/10.48550/arXiv.0912.0201
https://ui.adsabs.harvard.edu/abs/2009arXiv0912.0201L
http://dx.doi.org/10.48550/arXiv.2310.03024
https://ui.adsabs.harvard.edu/abs/2023arXiv231003024L
http://dx.doi.org/10.48550/arXiv.1612.03144
https://ui.adsabs.harvard.edu/abs/2016arXiv161203144L
http://dx.doi.org/10.1086/382245
https://ui.adsabs.harvard.edu/abs/2004PASP..116..133L
http://dx.doi.org/https://doi.org/10.1146/annurev-astro-081817-051928
http://dx.doi.org/10.1051/0004-6361:20000553
https://ui.adsabs.harvard.edu/abs/2001A&A...368...74M
http://dx.doi.org/10.1016/j.ascom.2018.07.001
http://dx.doi.org/10.1038/s42254-021-00353-y
http://dx.doi.org/10.1038/s42254-021-00353-y
http://dx.doi.org/10.1093/mnras/stad2785
https://ui.adsabs.harvard.edu/abs/2023MNRAS.526.1122M
http://dx.doi.org/10.3847/1538-4357/acb057
https://ui.adsabs.harvard.edu/abs/2023ApJ...944..212M
http://dx.doi.org/10.1103/PhysRevD.108.123517
https://ui.adsabs.harvard.edu/abs/2023PhRvD.108l3517M
http://dx.doi.org/10.3847/2041-8213/ad4039
https://ui.adsabs.harvard.edu/abs/2024ApJ...967L...6M
http://dx.doi.org/10.1111/j.1365-2966.2009.15432.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.399.2279M
http://dx.doi.org/10.1093/mnras/stab1515
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.4249M
http://dx.doi.org/10.1146/annurev-astro-032122-014611
https://ui.adsabs.harvard.edu/abs/2022ARA&A..60..363N
http://dx.doi.org/10.3847/2515-5172/ad4da1
http://dx.doi.org/10.1051/0004-6361/201833617
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..26P
https://ui.adsabs.harvard.edu/abs/2019A&A...621A..26P
http://dx.doi.org/10.1093/rasti/rzae013
https://ui.adsabs.harvard.edu/abs/2024RASTI...3..174P
http://dx.doi.org/10.3847/1538-3881/aabc4f
https://ui.adsabs.harvard.edu/#abs/2018AJ....156..123T
http://dx.doi.org/10.48550/arXiv.2411.07305
https://ui.adsabs.harvard.edu/abs/2024arXiv241107305R
http://dx.doi.org/10.1016/j.ascom.2015.02.002
https://ui.adsabs.harvard.edu/abs/2015A&C....10..121R
http://dx.doi.org/10.1038/s41550-018-0478-0
https://ui.adsabs.harvard.edu/abs/2019NatAs...3..212S
http://dx.doi.org/10.1088/0004-637X/737/2/103
https://ui.adsabs.harvard.edu/abs/2011ApJ...737..103S
http://dx.doi.org/10.1093/mnras/staa2799
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.1587S
http://dx.doi.org/10.1051/0004-6361/202039945
https://ui.adsabs.harvard.edu/abs/2021A&A...651A..55S
http://dx.doi.org/10.1088/0004-637X/761/1/13
https://ui.adsabs.harvard.edu/abs/2012ApJ...761...13S
http://dx.doi.org/10.3847/1538-4357/aa704b
https://ui.adsabs.harvard.edu/abs/2017ApJ...841...24S
http://dx.doi.org/10.3847/1538-4357/abb595
https://ui.adsabs.harvard.edu/abs/2020ApJ...902..138S
http://dx.doi.org/10.48550/arXiv.2405.14930
http://dx.doi.org/10.48550/arXiv.2405.14930
https://ui.adsabs.harvard.edu/abs/2024arXiv240514930S
http://dx.doi.org/10.1093/mnras/stx3201
https://ui.adsabs.harvard.edu/abs/2018MNRAS.475.3613S
http://dx.doi.org/10.1093/mnras/stae411
http://dx.doi.org/10.1093/mnras/stae411
http://dx.doi.org/10.1146/annurev-astro-081309-130924
https://ui.adsabs.harvard.edu/abs/2010ARA&A..48...87T
http://dx.doi.org/10.1093/mnras/stad3171
https://ui.adsabs.harvard.edu/abs/2024MNRAS.527..651T
http://dx.doi.org/10.1103/PhysRevD.98.043528
https://ui.adsabs.harvard.edu/abs/2018PhRvD..98d3528T
http://dx.doi.org/10.1093/mnras/stad664
https://ui.adsabs.harvard.edu/abs/2023MNRAS.522.2801T

DeepDISC photo-z 19

Walmsley M., et al., 2024, arXiv e-prints, p. arXiv:2404.02973

WenZ. L.,HanJ. L., 2021, MNRAS, 500, 1003

Wilson D., Nayyeri H., Cooray A., HiuBler B., 2020, ApJ, 888, 83

Wu Y., Kirillov A., Massa F., Lo W.-Y., Girshick R., 2019, Detectron2,
https://github.com/facebookresearch/detectron2

Zhai X., Kolesnikov A., Houlsby N., Beyer L., 2021, arXiv e-prints, p.
arXiv:2106.04560

APPENDIX
SMOOTHED IMAGES

Image-based photo-z estimation has been shown to be com-
petitive with and often outperform traditional catalog-based
photo-z estimation. Pixels contain more information about
sources than aperture photometry, such as color gradients and
detailed morphological features. Interestingly, previous stud-
ies have found that adding morphological measurements to
catalog-level photo-z codes do not significantly improve the
photo-z estimations (Soo et al. 2018; Wilson et al. 2020).
However, image-based estimators remain extremely compet-
itive. Extracting features directly from the pixels gives deep
neural networks an access to more information over methods
that use pre-computed features, even if those features include
morphology. We show the importance of the pixel-level infor-
mation by comparing DEepDISC photo-zs to the same model
trained with images convolved with a Gaussian kernel of 25
pixels. This blurring removes pixel-level morphological in-
formation but preserves overall flux and color for a given
source. We then take the intersection of objects detected by
each model, and compare photo-zs in Figure 18. The model
trained and evaluated on blurred images performs worse than
the baseline, indicating that morphological information con-
tained at the pixel level is beneficial for the network. This
is consistent with Schuldt et al. (2021), who find that a con-
volutional neural network trained on multi-band PSF images
scaled to object magnitudes performs worse than a network
trained on the original images.

STELLAR CONTAMINATION

Towards the detection limit of a survey, stars and galaxies
become hard to distinguish because faint galaxies tend to ap-
pear smaller and approach the resolution limit of the telescope.
Thus, completeness and purity of star and galaxy samples at
faint magnitudes tends to drop (Bosch et al. 2018). D’Isanto
& Polsterer (2018) test the performance of a deep neural net-
work photo-z algorithm on a sample that includes stars, galax-
ies, and quasars, eliminating the need for pre-classification.
In our case, DEepDISC performs classification along with all
other tasks simultaneously. These amount to object detection,
segmentation, classification, and photo-z estimation. Our re-
sults shown in the main body of this work have been produced
from a pure galaxy sample using a network with the photo-z
head trained only on galaxies (but all other heads trained with

Zhai X., Kolesnikov A., Houlsby N., Beyer L., 2022, in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. pp
12104-12113

Zhang Y.-C., Yang X.-H., 2019, Research in Astronomy and Astrophysics,
19, 006

stars+galaxies). Here, we examine the effect of including stars
in our training and evaluation samples.

The classification head of the network uses a fully con-
nected and a softmax layer to output the probability of a
detected object belonging to each class (star/galaxy). The
completeness and purity of our classifier compared to the
LSST Science Pipelines extendedness metric is shown in
Table 4. DeepDISC obtains a higher galaxy completeness,
as well as stellar purity. The extendedness metric yields a
slightly higher stellar completeness.

DeepDISC  Completeness  Purity

Galaxy 0.998 0.989
Star 0.785 0.961
LSST
Galaxy 0.950 0.989
Star 0.795 0.446
TABLE 4

STAR/GALAXY CLASSIFICATION FOR DEEPDISC AND LSST EXTENDEDNESS

bias JIQR n
z-pure (pure eval) 0.0007 0.0410 0.1183
z-pure (contam eval)  0.0014  0.0422 0.1276
z-all (contam eval)  0.0002 0.0422 0.1279

TABLE 5
CompPARING DEEPDISC PHOTO-ZS WHEN ONLY TRAINING AND EVALUATING ON
A PURE GALAXY SET (FIRST ROW) VS TRAINING WITH STARS AND SELECTING
THE EVALUATION SET BASED ON THE NETWORK CLASSIFICATION (BOTTOM
ROW). THE NETWORK THAT HAS BEEN TRAINED TO HANDLE STARS

We define a model trained and evaluated only on galaxies as
z-pure, and a model trained with stars included in the redshift
branch as z-all. In Table B we compare point estimate met-
rics of z-all and z-pure evaluated on galaxies selected by the
DEeepDISC classifier, i.e. with some small amount of stellar
contamination. Comparing rows one and two shows the effect
of stellar contamination. Although we filter stars with our
classifier in row 2, some contamination remains. This leads
to an increase in bias, scatter, and outlier fraction. Comparing
rows two and three shows the effect of adding stellar redshifts
(z = 0) to the photo-z head during training. Adding stars to
the redshift head does not significantly affect the results. It
appears that with some level of stellar contamination in the
evaluation set, DEEPDISC photo-zs do not necessarily benefit
from including stars in the training.

This paper was built using the Open Journal of Astrophysics
IATEX template. The OJA is a journal which provides fast and
easy peer review for new papers in the astro-ph section of the
arXiv, making the reviewing process simpler for authors and
referees alike. Learn more at http://astro.theoj.org.
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FiG. 18.— The baseline DEepDISC model (left) compared to a model trained on blurred images (right). The model performs significantly worse on the blurred

images, indicating that DEepDISC utilizes pixel-level information to extract more information about the sources than just colors and magnitudes. The black,
dashed line follows the zirue = Zphot line, and solid lines define the 3o outlier boundary.
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