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Abstract—Efficient and low-energy camera signal process-
ing is critical for battery-supported sensing and surveillance
applications. In this research, we develop a video object detec-
tion and tracking framework which adaptively down-samples
frame pixels to minimize computation and memory costs, and
thereby the energy consumed, while maintaining a high level
of accuracy. Instead of always operating with the highest sen-
sor pixel resolution (compute-intensive), video frame (pixel)
content is down-sampled spatially, to adapt to changing
camera environments (size of object tracked, peak-signal-to-
noise-ratio (i.e, PSNR) of video frames). Object detection and
tracking is supported by a novel video resolution-aware adap-
tive hyperdimensional computing framework. This leverages
a low memory overhead non-linear hypervector encoding
scheme specifically tailored for handling multiple degrees
of resolution. Previous classification decisions of a moving
object based on its tracking label are used to improve tracking
robustness. Energy savings of up to 1.6 orders of magnitude
and up to an order of magnitude compute speedup is obtained
on a range of experiments performed on benchmark systems.

Index Terms—hyperdimensional computing, Resolution
Adaptation, object detection and tracking,

I. INTRODUCTION

The continuous increase in available camera resolution
over recent years has led to greater computational complexity
and overhead in real-time object classification for multi-
object tracking, especially for low-power edge applications
[1]. A significant body of work presupposes fixed image
resolution, thus accruing significant overhead when using
modern high-resolution camera systems [2] across diverse
video environments. The core idea of this research is based on
the notion that significant reductions in power consumption
can be obtained by modulating the amount of computation
performed in proportion to the quality of the video being
processed at any time. As an example, for object detection
and tracking (labeling), the pixel resolution allocated to each
tracked object may vary with the degree of lighting, frame
image quality as induced by fog or snow, or distance from
the camera to save power (lower resolution for higher quality
video and vice versa). There are two aspects to this approach:
(a) the need for a control policy to determine under what
conditions to switch the pixel resolution of a tracked object
from lower (achieved by pixel downsampling) to higher or
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from higher resolution to lower, across video frames and
(b) efficient processing of down-sampled frame images; here
we leverage a novel image encoding scheme enabled by
hyperdimensional computing (HDC) [3]. Note that different
parts of a frame image may be down-sampled differently
and the resulting variable-resolution video is processed on
a frame-to-frame basis in an adaptive manner.
The key contributions of this paper are as follows:

e ADARE-HD uses a novel approach for video object
detection and tracking that combines adaptive pixel
downsampling as a means of adaptive resolution video
processing with hyperdimensional computing for min-
imal energy consumption. Adaptive resolution video
(frame/image) processing is performed within each
frame (spatial dimension) through a novel policy that
ensures efficient object classification as well as object
recognition (i.e, feature matching) at optimal resolution
to balance overhead and accuracy.

e A novel, low memory overhead non-linear hyperdimen-
sional vector encoding scheme specifically designed for
adaptive HDC systems is developed. When combined
with the resolution adaptation module and a detection
tracking algorithm, ADARE-HD is 6.23 times faster than
deep learning based object detection and tracking [4]
and 1.6 more energy efficient.

 In uncertain video environments, mislabeling of objects
can occur due to low image (frame) fidelity. A novel
approach is developed that takes into account previous
classification decisions of a moving object based on
its tracking label for generating reliable classification
decisions.

II. Prior WORK

Prior work on adaptive resolution algorithms for object de-
tection and tracking is based on signal processing techniques
such as background subtraction, quadtree segmentation, and
histogram of oriented gradients (HOG) feature extractors [5]-
[7]. To enhance their accuracy, a trend has been to augment
such solutions with algorithms relying on deep learning.
However, these are compute-intensive and power-hungry.
Lightweight object detection algorithms [8] are commonly
employed for multi-object tracking tasks in conjunction with
modern trackers [9], [10] and feature matching networks



[11]. Although these techniques provide high accuracy driven
by deep learning, their high memory access overhead is not
conducive for integration with edge devices. Dynamic adjust-
ment of image resolution has been explored as a means of
reducing the computation overhead of deep learning systems
[12]. However, memory overhead and energy use remains a
problem for deep learning based computer vision [13].

The problem of low-overhead, intelligent adaptive-
resolution algorithm design is addressed in this work by
building on the unique capabilities of hyperdimensional com-
puting (HDC) [3]. We introduce ADARE-HD, an innovative
adaptive-resolution framework for object classification in
video sequences. ADARE-HD integrates a prior lightweight
motion-based object detection mechanism with a novel multi-
resolution tracking and hyperdimensional object classifica-
tion algorithm. There has been research in the past on
dynamic resolution networks [12] that adapt the resolution
of the camera image using a neural network. Concurrently,
bio-inspired hyperdimensional computing systems have been
proposed for object recognition [14]. Such systems have
diverse applications ranging from voice recognition [14] to
bio-informatics [14]

Several encoding systems have been designed for hyper-
dimensional computing. These include CNN-based encoding
[15], kernel-based encoding [16], and binary encoding [14].
These represent different tradeoffs between complexity and
accuracy of the underlying learning algorithms. Adaptive
algorithms using HDC were introduced in [17]. Two different
encoding systems associated with high and low dimension
class hypervectors respectively, are used. An HDC-based de-
cision algorithm forwards the input signal to the appropriate
classifier. There has also been significant prior work on object
tracking and detection [4], [18], [19]. These combine deep
learning with classical computer vision techniques such as
background subtraction [20] for object detection. The asso-
ciated algorithms have been used for single camera multi-
object-tracking tasks such as the MOT [21] challenge, or a
combination of multi-camera and single camera multi-object
tracking tasks such as the AI CITY Challenge 2022 Track 1
[22]. While there has been independent research on adaptive
resolution object detection and tracking and in the do-
main of hyperdimensional computing for vision applications,
this research combines adaptive resolution video processing
with hyperdimensional computing for energy-efficient, accurate
multi-object tracking and classification. In the following, an
overview of the proposed approach is first presented, fol-
lowed by algorithmic details and experimental results.

III. OVERVIEW

Fig. 1 gives an overview of the operation of ADARE-HD.
The goal is to track objects in video sequences and classify
them (such as trucks vs cars on roadways) with minimal
amounts of computation. This is described below.

Step-1: Motion-based Object Detection: In Block-1 of Fig.
2, moving objects in the input video are detected without
the high overhead of a deep learning-based approach. The
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Fig. 1: ADARE-HD: Overview

detection of moving objects is performed after background
subtraction (by taking an absolute difference between suc-
cessive frames), non-maxima suppression and dilatation to
suppress small objects and objects with a high overlap

Step-2: Resolution Adaptation: Our approach is grounded in
the understanding that object recognition does not require
high-resolution imagery. In this step (Block-2 of Fig. 2), the
system selects the minimum resolution that allows objects to
be classified accurately in video sequences. Image frames are
represented using quadtrees with lower levels of the quadtree
representing increasing image resolution. The quadtree depth
is modulated dynamically across different regions of the
image based on information loss as measured by PSNR. The
optimal resolution is one that achieves a low information loss
score above a specified threshold.

Step-3: HDC Classification: In contrast to deep learning-
based classification techniques, we adopt a hyperdimensional
computing framework [3] This module consists of a set of
N hyperdimensional computing based classifiers, where N
refers to the number of resolution levels. Each classifier has
a lightweight convolutional Radial Basis Function (RBF) [23]
kernel based encoding. An independently trained classifier
is attached to each level of pixel resolution (obtained from
Step-2).

Step-4: Tracklet-based Filtering: We also address the chal-
lenge of consistent object classification when the same object
is viewed from different angles and positions. By leveraging
the consistency of object classes across frames, this step
refines the classification results of Step-2. The classification
history (also called the tracklet) of each object is populated
with its predicted label. A median filter is then applied to
each tracklet, smoothing out the classification label time-
series to ensure consistency.

IV. METHODOLOGY AND ALGORITHMS
A. ADARE-HD: Motion based Object Detection

Object detection algorithms range from simpler approaches
such as Cascade Haar [24] to more complex methods based
on deep learning-based detectors (e.g, YOLOV7 [25]) . Al-
though these detectors vary in computational overhead and
classification accuracy, most of them require extensive train-
ing. In this paper, our objective is to effectively classify



and track moving objects in scenes captured by a fixed
camera. We opt for an unsupervised, motion-based method
for object detection derived from state-of-the-art [26]. The
detection pipeline comprises: 1- background subtraction (i.e.,
Dy = ||I;4+1 — It||, where I 11 and I; denote frames at time
t+1 and time t, respectively), This pipeline is followed by a
2- contours detection and a non-maxima suppression post-
processing. Figure 2 shows the object detection algorithm
step by step.

(1]
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Fig. 2: Object detection steps

B. ADARE-HD: Resolution Adaptation

In this section, we present the Adaptive Resolution Hierar-
chical Deep Convolutional (ADARE-HD) mechanism , which
aims to make predictions based on the optimal resolution
level for a given video frame object, balancing overhead
and accuracy. The aim of this strategy is to identify the
lowest resolution at which the object label can be accurately
predicted. The fundamental concept here is that the quality
of information diminishes progressively with each reduction
in resolution, indicating that crucial details may be forfeited
when working at extremely low resolutions. We determine
that an object inside a video frame at a specific resolution
possesses sufficient information if the loss of information
between that resolution and its subsequent higher resolution
is minimal.

The input image is captured at N distinct resolution levels,
ranging from Ry to Ry (Ryp < Ry). The process begins
at the lowest resolution level, Ry. The information loss,
measured through the Peak Signal-to-Noise Ratio (PSNR),
between the images at Ry and R; is then computed. If the
PSNR value is below a predefined threshold, PSN Ry, the
analysis proceeds to R;, and compares its PSNR with that
of Ry. This stepwise progression continues until the optimal
resolution level, Ry, is identified.

The underlying rationale for this approach is that the
mutual information between consecutive resolution levels

will decrease as the resolution is reduced. This is expressed as
PSNR(Rg, R1) < PSNR(Ry_1, Ry). However, determining
the optimal resolution based on PSNR levels necessitates
defining an appropriate PSNR threshold. This is done using
the training dataset. Algorithm 1 outlines the procedure for
establishing the PSNR threshold.

Algorithm 1 PSNR Threshold Tuning

1: for I, Y in Training set do

2 R+ Ry > Ry refers to the lowest resolution
3 Iy = Downscale(L,Ry)

4 while R < R4 and Y #Y do

5: Ri+1 — R; + AR

6 IR, = Downscale(LR;)

7 Y = ADARE-HD(/j,)

8

end while
9: P+ PSNR(IRHNIRL,)
10: end for

11: return P, can, Psta

For each element in the training set (line 1), we first
Downscale the object inside the video frame I to Ry,
which corresponds to the lowest resolution level (lines 2-
3). Subsequently, we upsample the image I by a resolution
increment of R; + Ap (line 5) and predict its label using
ADARE-HD (line 6). This terminates when the resolution
reaches the original image resolution, R,.4, or when the
object label is predicted correctly (line 4). We then calculate
the PSNR between the images at the last recorded resolution
and the one preceding it (line 9). Finally, we compute the
mean and standard deviation of the recorded PSNR values
across the dataset (line 11). The PSNR threshold for resolution
adaptation on the test dataset is defined as follows (Eq.1):

PSNRrp = PSNRpean +2.PSNRg4 (1)

where PSN R4 is multiplied by 2 to target the 2-sigma
Gaussian right tail.

C. ADARE-HD: HDC Classification

The ADARE-HD classification encoding module consists
of a CNN based feature extractor followed by an RBF kernel
encoder.

1) ADARE-HD: CNN Feature Extractor: Hyperdimensional
Computing is known to allow lightweight and efficient clas-
sification. However, for it fails extracting relevant features
when it comes to image data. To help the HDC system re-
trieve those feature we desgined a compact feature extractor
derived from FasterRCNN [27] pre-trained on MSCOCO [28]
and composed of 64 convolutional layer followed by a frozen
batch normalization layer and one maxpooling layer.

2) ADARE-HD: RBF Encoding: In this section, we present a
kernel-based hyperdimensional computing encoding scheme
inspired by the notion that data not separable in linear
space may be separable in high-dimensional nonlinear space
[29]. Let the function K (z,y) = ®(x).®(y) denote the dot
product of x and y in a high-dimensional space acquired



by the projection function ®. Previous research [23] has
demonstrated that the inner product can approximate the
RBF Function, where K(z,y) = ®(z).2(y) = z(z).2(y)
The Gaussian kernel can now be approximated using the dot
product of two functions. We opt for Fourier-based functions
z(z) € {cos(wo.x + o), sin(wi.z + 11)}. To encode a
hypervector H = hy,ha,...,hp € RP using a data point
in feature space F = fi, fo,..., fn, one can employ the
following encoding system:

h; = cos(F - B; + b) sin(F - B;) (2)

Here, B denotes a random basis matrix, B; a column
of that matrix composed B;; elements. B;; € N(0,1),
d(Bi, Bj) = dij, and b € U[0, 2rr] where d(x,y) refers to the
cosine similarity between x and y. However, this approach
[16] is memory-intensive since it requires B € Mz p(R),
representing F.D real numbers. Alternatively, we can replace
F.B;¥i € [1, D] with F'xB, where * denotes the convolutional
operation, and the initial F' representing the data point
features are filter values and the random basis B is the
signal. Consequently, B € Mp, r_ requires only F+D—1
elements. In this manner: h = cos(F * B + b)sin(F * B)
Replacing the matrix dot product with a convolutional op-
eration preserves the variance hence the information inside
the hypervector. This is proven in Lemma IV.1.

Lemma IV.1. Given a hypervector H with elements {h;}? ,
a feature space F with feature vectors { f;}_, and a randomly
generated basis matrix B € Myp(R) where each element
Bi; ~ N(0,1) encoding the hypervector H as in Equation 2,
and a random vector B€ M, p_1(R) encoding the hypervec-
tor H as in Equation IV-C2. The variance of each hypervector
element h; can be expressed as: O’ii = %(1 - 6_2‘72“57:) where
op.B; denotes the standard deviation of the inner product
distribution of F and B;, where each f; are deterministic.
Moreover, under the assumption that all B;; of B; are i.id,

U(QF*B)i = U(2F.B)i
Proof Sketch. The variance of the hypervector element is
given by:

oh, = E(h7) —E(h:)’ (3)
we have 1 ,
E(h7) = (1 —e777Fm) )
Given that F.B ~ N(0,0r.5) and b ~ U[0, 27], we have
E2(h;) = 0 )

2
From Equations 3, 4 and 5, we have: 0}, = 11 —e 27 s;)
Here, oy, represents the standard deviation of F.B; or

(F'B)i. Given that all B;; are i.i.d, we can derive:

N
opp, = Var(Y_ FpBy) =||F||2

oo (6)

otpepy = Var()_ Fi.Bir) = ||F|l2
k=0

Consequently, U?F*B)i = 0%, |

3) Hyperdimensional computing Training: During the
learning phase, the HDC system recognizes recurring pat-
terns and avoids over-saturation of class hypervectors in
single-pass training [30] by adjusting the contribution of
each encoded data point to the class hypervectors based
on the novelty it brings. If a data point is already present
in a class hypervector, HDC adds little or no data to the
model to avert hypervector saturation. If the prediction aligns
with the anticipated outcome, no modifications are made to
prevent overfitting. Suppose we have a new training data
point, H. HDC calculates the cosine similarity between H and
all class hypervectors, Cs. The similarity of this data point
with class ¢ is computed as: §; = 6(H,C;). HDC updates
the model according to the § similarity. If the input data
has a label [ that accurately corresponds to the class, the
model updates as follows C; < C; + m1(1 — §;) x H where
1 refers to the learning rate. If the similarity between the
class hypervector and the training hypervector is large (i.e,
0; ~ 1) the algorithm should retain a small part of the
training hypervector. If the input I is misclassified or very
similar to the wrong class hypervector (i.e, §; ~ 1), we add
the hypervector to the correct class hypervector and subtract
a portion (i.e, §;7) of it from the wrong class hypervector as
follows: Cyy < Cp —n2(6;) X H

D. ADARE-HD: Tracking & Tracklet label filtering

In order to conduct multi-object tracking in our research,
we have employed a two-step mechanism: detection followed
by tracking. The detection phase is rooted in motion analysis,
as elucidated in the preceding section, while the tracking
process is executed using the SORT [31] algorithm. Object
association is achieved through descriptor matching, with
descriptors derived from the same network responsible for
extracting features in the ADARE-HD.

Although the tracking of objects relies on existing method-
ologies, it serves to enhance the classification of moving
entities. Consider an object, A, belonging to class C4. We
initiate the tracking of object A within the scene and concur-
rently conduct classification using ADARE-HD. Subsequently,
a classification history also called tracklet is constructed for
object A. We perform a median filter on the history to
eliminate abrupt change in the object classification.

The process of tracklet label filtering may be executed in
one of two modes: online or offline. In the online mode, the
median filter is applied contemporaneously to the current
tracklet, refining classifications in real-time. In the offline
mode, all tracklet labels are adjusted post-completion of the
tracking task.

V. EVALUATION

A. Experimental Setup

The training of the ADARE-HD model was performed on
a CPU (11th Gen Intel® Core™ i7), while the testing was
carried out on both FPGA and CPU platforms.



For FPGA implementation, the ADARE-HD model was
first synthesized using Xilinx Vitis High-Level Synthesis
(HLS) and subsequently tested with the Xilinx Vivado Design
Suite. The power consumption of the ADARE-HD model,
excluding the resolution adaptation module, was determined
using Xilinx Vivado XPower software and directly measured
on the FPGA using PMBus (Power Management Bus) when
the resolution adaptation module was included. The FPGA
employed for testing was the Xilinx Zynq UltraScale+ MPSoC
ZCU104.

For the object detection and tracking task we evaluate our
method on the 1% track of Al City challenge [22] using the
following metrics:

o (HOTA) Higher Order Tracking Accuracy [32]: Geomet-
ric mean of detection accuracy and association accuracy.
Averaged across localization thresholds.

o Association Accuracy (AssA): Association Jaccard index
averaged over all matching detection and then averaged
over localization thresholds.

e Detection Accuracy (DetA): Detection Jaccard index
averaged over localization thresholds.

o Localization Accuracy (LocA): Localization similarity av-
eraged over all matching detections and over localization
thresholds.

e ID F1 Score (IDF1):The ratio of correctly identified de-
tection over the average number of ground-truth and
computed detection.

o Mostly tracked targets (MT). It is the ratio of ground-
truth trajectories that are covered by a track hypothesis
for at least 80% of their respective life span

e Mostly lost targets (ML) The ratio of ground-truth tra-
jectories that are covered by a track hypothesis for at
most 20% of their respective life span

In this paper, ADARE-HD was not applied to a more common
multi object tracking datasets such as MOT as the camera
capturing the scene is often moving or objects are stationary

1) AI City Challenge Truck vs Car Dataset: A variety of
fast-moving road vehicles makes classification of ‘truck’ and
‘car’ in real-time a challenging task that requires certain
assumptions to be made. The AI Cities Challenge policy thus
follows certain rules:

e These vehicles are categorized as “cars” sedan cars,
SUVs, vans, buses, and smaller trucks.

e These vehicles are classified as “trucks”: medium-sized
trucks such as moving trucks and garbage trucks, as well
as larger trucks like tractor-trailers.

Accuracy (%)
Tracklet Filtering
Online [ Offline

No Filtering

R=8x8 64.65 67.0 83.13

Resolutions R=12x12 73.1 85.14 87.15
R=16x16 73.5 86.74 90.76

R=Ropt 72.7 85.5 91.56

TABLE I: Tracklet label filtering accuracy results
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B. ADARE-HD Efficiency

Figure 3 presents an evaluation of the impact of selecting
an optimal PSNR threshold to define the best resolution.
We measure the consumed energy by the ADARE-HD and
its accuracy level when applying different PSNR threshold
values. A higher PSNR threshold indicates minimal informa-
tion loss between two resolution levels, implying that higher
resolution levels correspond to higher PSNR thresholds, and
lower resolutions correspond to lower PSNR thresholds.

We incorporated the PSNR threshold selection algorithm
discussed previously and determined the optimal PSNR
threshold to be 16.57, corresponding to an average resolution
of R = 19.83. The orange line in Fig. 3 represents the linear
extrapolation of the accuracy curve using the adjacent reso-
lution levels of R = 17.06 and R = 20. The accuracy at the
adaptive resolution (i.e., corresponding to the PSNR threshold
equal to 16.57) surpasses all values on that orange extrapo-
lated line. This leads to the conclusion that the ADARE-HD
with adaptive resolution delivers superior accuracy compared
to a fixed resolution level, while maintaining the same level
of energy overhead.

C. ADARE-HD & Tracklet Label Filtering

In this study, we examined the influence of tracklet-based
filtering on accuracy using the AI CITY Challenge dataset
[22]. We evaluated both the online and offline approaches
discussed in Section IV-D, the results of which are presented
in Table I

In terms of accuracy, the offline method outperformed the
online method by an average of +8%. On the other hand,
the online method displayed superior accuracy compared to
the baseline, with an average increase of +12.5%. It was
seen that the tracklet label filtering introduced virtually no
additional overhead. This outcome was expected, since the
classification history for the offline method contains more
elements, reducing the likelihood of a failure at the median
filtering stage. However, it is important to recognize that
choosing between the two methods is contingent upon the
specific application domain — real-time or offline.

D. ADARE-HD Object Tracking Assessment

In this section we assess the detection and tracking per-
formance of ADARE-HD on the AI CITY Challenge dataset.
The main task in challenge consists of single- or multi-camera



Tracking Method Detection network Tracking & Detection Results
YOLOV3 Mask SSD  Motion | HOTA'  AssA  MTT ML] DetAT  LocAT  IDFIT
v 23.658 43.638 349 180 12.953 69.423 27.145
DeepSort v 17.996 42.384 311 207 7.71 69.044 16.981
v 23.588 43.614 349 157 12.833 69.696 26.983
v 23.959 44.498 388 213 13.01 69.46 27.998
Tracklet v 19.897 42.12 468 130 9.512 69.256 20.539
v 25.126 | 45.465 471 142 14.006 69.841 30.057
v 23.249 40.27 461 88 13.619 69.482 27.629
Moana v 20.15 39.214 541 41 10.489 69.661 21.449
v 23.831 38.835 571 54 14.772 70.046 28.384
ADARE-HD (ours) v 27.937 31.52 176 279 25.635 | 70.645 35.32

TABLE II: Tracking & Detection results on Al

1
|
A

Fig. 4: Example tracking and detection results using ADARE-

0 ADARE-HD Adaptive ADARE-HD Fixed

- DeepSort
Resolution Resolution

HD with Adaptive (left) and fixed resolutions(center). Latency

overhead is shown on the right.

multi-vehicle tracking. In this paper we limited the experi-
ments to single camera multi object tracking. Table II shows
the tracking and detection results of the baselines: DeepSort
[4], Tracklet [10] and Moana [19] tracking algorithms using
different deep neural network (DNN) based object detection
models (YOLOv3 [33], Mask-RCNN [34] and SSD-512 [35]).

ADARE-HD shows better tracking and detection perfor-
mance reflected by HOTA, DetA and LocA, than the state-
of-the-art. One reason is that DNN based detectors capture
not only the moving object but also all static objects in the
frame, while the main purpose of this challenge is tracking
moving vehicles in a real-world traffic environment.

The ADARE-HD model achieves a superior ID F1 score
due to its incorporation of a feature matching module that
optimizes video frame objects at their optimal resolution. This
finding corroborates the experimental outcomes illustrated
in Figure 3, which demonstrate that optimal accuracy can
be attained at lower resolutions. Furthermore, by utilizing
adaptive resolution features, the distinctiveness of the video
frame objects is enhanced, leading to more accurate object
identification across consecutive frames (i.e, higher ID F1
score).

ADARE-HD

Adaptive Resolution | Fixed Resolution DeepSort
Latency (s) [ Detection 0.14 0.093 1.02
| Tracking 0.0014 0.0014 0.0036
Energy Efficiency 1.6 0.75 1

TABLE III: ADARE-HD Tracking, Detection Latency
Overhead and Energy Efficiency compared to
state-of-the-art

The aim of the experiment shown in Table III is to illustrate
the overhead, specifically latency and energy efficiency, asso-
ciated with the ADARE-HD Tracking and detection algorithm
in comparison to the state-of-the-art algorithm, DeepSort [4].

The evaluation is conducted on the AI-CITY Challenge test
set and executed on a CPU.

As clearly depicted in Table III, the adaptive resolution
ADARE-HD demonstrates significant speed, operating ap-
proximately 6.23 times faster than DeepSort [4]. This differ-
ence is largely attributed to the heavy reliance of DeepSort
[4] on a DNN object detector. Moreover, ADARE-HD with
adaptive resolution outperforms ADARE-HD with a fixed
resolution, being roughly 33% faster compared to the case
when the resolution is set at the highest value.

Utilizing the AI CITY Challenge dataset [22], we bench-
marked ADARE-HD’s energy efficiency against a deep
learning-based method under fixed and adaptive resolutions
(Table IIT). The adaptive variant outperformed DeepSort [4]
by 1.6 times, while the fixed resolution model showed re-
duced efficiency since it is fixed to the highest possible
resolution. The adaptive resolution module appears crucial
for ADARE-HD’s low-power object tracking efficacy.

Figure 4 presents an example of tracking and detection in
a scene from the AI-CITY Challenge Dataset. The left figure
displays the results of ADARE-HD with adaptive resolution.
Here, we see that the boxes around vehicles appear blurry
due to the adaptive resolution at which ADARE-HD operates.
The center figure illustrates the results of ADARE-HD with
fixed, high resolution. Notably, the fixed-resolution version
of ADARE-HD incorrectly classifies trucks, an error that is
not present in the adaptive resolution version. Finally, the
right figure delineates the speed of each algorithm on a CPU,
expressed in FPS.

VI. CoNCLUSION

The proliferation of edge computing devices necessitates
low-power, accurate embedded algorithms for machine learn-
ing applications. This paper presented ADARE-HD, a low-
power hyperdimensional framework for multi-object detec-



tion, classification and tracking. ADARE-HD adjusts its op-
erating resolution to balance overhead with performance,
providing low-overhead and accurate tracking capabilities.
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