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Abstract

Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for
decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly
estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in
modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here, we investigate the
consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree-species tree conflict. Our simulation
experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits,
and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that
evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive,
cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with
trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to
some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods,
highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling.
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Introduction

It is a tale nearly as old as time: you measure a set of traits
across a sample of organisms, and you seek to gain new in-
sights by testing for statistical relationships between two or
more of your studied traits. Both scientists and philosophers
alike have strived to understand biology for centuries by em-
ploying this strategy. The diversity of traits that can be studied
span any variable that can be reliability measured, from those
at the molecular (e.g. cell size, cell morphology, and gene ex-
pression; Gu 2016; Dunn et al. 2018; Chen et al. 2023) up
to the organismal (e.g. body size, head morphology, and
behavior; Al-Kahtani et al. 2004; Ross et al. 2004; Kamilar
and Cooper 2013) level; we are typically only limited by our
own curiosity, time, and funding perhaps. For this study, we
focus on quantitative traits of varying architectures. For ex-
ample, does body size predict brain size? Does the expression
of one gene predict the expression of another? Does propagule
size predict invasiveness? The possibilities seem endless, and
many classical approaches to linear regression appear
well-suited to these questions. Because we are living in the
21st century, we also know that phylogeny must be addressed
if we seek reasonable and rigorous answers (Felsenstein 19835;
Grafen 1989; Martins and Hansen 1997; Pagel 1997, 1999;

Rohlf 2001). What remains less clear, however, is which tree
should be considered.

With the advent of phylogenetic comparative methods
(PCMs), biologists are now painfully aware of the need to ad-
dress phylogeny because related species and their traits covary
according to shared ancestry—that is, they are not statistically
independent (Felsenstein 1985; Grafen 1989; Martins and
Hansen 1997; Pagel 1997, 1999; Rohlf 2001). If ignored, then
among-species covariance can lead us astray (Felsenstein
1985; Maddison and FitzJohn 2015; Uyeda et al. 2018;
Gardner and Organ 2021). By accounting for the effect of
shared ancestry, phylogenetic regression has become an icon
of modern comparative biology, inspiring a wave of ecological
and evolutionary progress in its wake. In the years since, its prin-
ciples have been debated, refined, supplemented, and expanded
to target diverse questions, hypotheses, and data types (Harvey
and Pagel 1991; Hansen 1997; Sanford et al. 2002; Blomberg
et al. 2003; Felenstein 2004; O’Meara et al. 2006; Revell et al.
2008; Beaulieu et al. 2012; Adams 2013; Pennell and Harmon
2013; Pennell et al. 2014; Maddison and FitzJohn 2015;
Uyeda et al. 2018). Few studies in evolutionary biology are
now published without at least a reference to PCMs and their
foundations in phylogenetic regression.
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Of course, a fundamental assumption of phylogenetic re-
gression and PCMs generally is that the required input tree,
and therefore the among-species covariance structure, is
known (e.g. Felsenstein 1985; Martins and Garland 1991;
Gittleman and Luh 1992; Miles and Dunham 1993;
Boettiger et al. 2012; Cressler et al. 2015; Harmon 2019;
Brahmantio et al. (2022); Schraiber et al. 2024). In practice,
this assumption is often difficult if not impossible to confirm
(Schluter 1995). Rarely does one expect that their assumed
tree is indeed the true tree, or even the best tree possible for a
given trait. Estimation error in the assumed phylogeny is likely
to be an issue; errors tend to beget errors, such that errors in the
assumed topology and branch lengths may propagate errors in
downstream evolutionary inferences that assume error-free
trees (Diaz-Uriarte and Garland 1996, 1998; Symonds 2002;
Stone (2001); Mendes et al. 2018). Thus, if an assumed phyl-
ogeny is unreliable, then inferences of trait evolution may
also be suspect (Harvey and Pagel 1991; Symonds 2002).
Bayesian PCMs that fit models to posterior probability distri-
butions of trees or coestimate phylogenetic character-evolution
parameters hold promise for incorporating estimation uncer-
tainty into the process (e.g. Villemereuil et al. 2012; Fuentes-
G et al. 2020; Bastide et al. 2021; Zhang et al. 2021).

Yet, mismatch between an assumed and true phylogeny can oc-
cur for reasons besides just estimation error. Perhaps we are sim-
ply looking at the wrong tree. That is, we impose a tree for
phylogenetic regression that is completely unrelated to our stud-
ied trait, its architecture, or its evolutionary past. Put plainly:
how confident are we in our ability to accurately (or at least ad-
equately) match our trait to its true phylogenetic history? We
know that variation in phylogenetic history is ubiquitous, arising
naturally from speciation, diversification, and evolution
(Maddison 1997; Nichols 2001; Degnan and Rosenberg 2009;
Kutschera et al. 2014). It is also well understood that traits vary
considerably in their architectures with respect to the precise
numbers, complexities, and genomic identities of encoding loci,
each of which may reflect their own genealogical history.
Indeed, gene trees often differ wildly from one another and
from the overall species tree as a result of incomplete lineage sort-
ing (ILS; Maddison 1997; Nichols 2001; Degnan and Rosenberg
2009; Hobolth et al. 2011), introgression (Yu et al. 2011; Leaché
et al. 2014; Solis-Lemus et al. 2016; Tian and Kubatko 2016;
Long and Kubatko 2018), ancestral structure (Slatkin and
Pollack 2008; DeGiorgio and Rosenberg 2016; Koch and
DeGiorgio 2020), and natural selection (Adams et al. 2018;
Borges et al. 2020; He et al. 2020; Wascher and Kubatko
2023). Of these processes, ILS is arguably the most infamous
(Maddison 1997; Kubatko and Degnan 2007; Edwards 2009;
Liu et al. 2015). One particularly concerning consequence of
ILS is hemiplasy (Avise and Robinson 2008), which results
from forcing trait data to the wrong tree, which can generate false
patterns of homoplasy-like evolution (Avise and Robinson 2008)
and mislead PCMs (Hahn and Nakhleh 2016; Mendes and Hahn
2016; Guerrero and Hahn 2018; Mendes et al. 2016, 2018,2019;
Hibbins et al. 2019). Specifically, hemiplasy may artifactually in-
crease the number of independent branches where two different
traits match each other rather than the true evolutionary history.

In the presence of phylogenetic conflict, how do we choose a
tree or trees for phylogenetic regression? Growing evidence sug-
gests that this decision matters, but it can be difficult to know a
priori whether to assume the overall species tree, a particular
gene tree, a specific set of gene trees, or even every possible
gene tree. To model trait evolution, studies may assume a species
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tree that has been estimated using coalescent-based (Dofia and
Johnson 2023) or traditional concatenation (Hensen et al.
2023) approaches, or perhaps a specific gene tree (Al-Kahtani
et al. 2004; Ross et al. 2004; Kamilar and Cooper 2013; Gu
2016; Dunn et al. 2018; Chen et al. 2023; Adams et al. 2016).
However, making such assumptions may (Dimayacyac et al.
2023) or may not (Hahn and Nakhleh 2016) be the best strat-
egy. Modeling evolution as a function of a particular gene tree
may prove beneficial for traits predicted to exhibit a one-to-one
correspondence with a single tree, such as the expression of a
gene largely regulated by cis elements near its encoded locus
(Chen et al. 2019 Bastide et al. 2023; Bertram et al. 2023;
Dimayacyac et al. 2023). Perhaps such scenarios represent a
best case in which we might at least hope to match tree with
trait. PCMs have also garnered great interest for modeling func-
tional genomic evolution across cells, tissues, and species (Rohlfs
and Nielsen 2015; Chen et al. 2019; Bastide et al. 2023; Bertram
et al. 2023; Dimayacyac et al. 2023; Adams et al. 2024).
Somewhat surprisingly, a recent study found that modeling
gene expression as a function of the overall species tree rather
than local gene trees improved model fit (Dimayacyac et al.
2023). Some traits, however, may be subject to more complex
architectures encoded by multiple genetic loci, each with their
own genealogical history. Taking this idea further, several mod-
els assume that all gene trees contribute to a given trait (Mendes
etal. 2018; Hibbins et al. 2023). Importantly, a choice of trees is
made each and every time a PCM is applied.

Therein lies a conundrum: we must choose a tree, but how can
we be certain of which tree to choose? Rarely do we appreciate or
even understand the ripple effects of this choice that is profoundly
central to comparative biology. This study seeks to gauge our level
of concern about tree mismatch that is not only possible but prob-
able. Specifically, we explore the behavior of phylogenetic regres-
sion for testing trait associations when the true and assumed trees
are mismatched due to the well-known and wide-spread phenom-
enon of gene tree—species tree conflict (Figs. 1 and 2). We employ a
large-scale battery of evolutionary simulations with varying de-
grees of model mismatch for traits of both simple and complex ar-
chitectures, and with both known and estimated trees. Given our
findings, we then investigate a best-case scenario for matching tree
with trait by using an extensive cross-species gene expression da-
taset sampled from mammals. Through this work, we seek to ad-
vance our understanding of the consequences of tree choice for
comparative studies, while arguing for the promise of more robust
and thoughtful evolutionary modeling.

Methods

Simulations with Known Trees and Simple
Architectures

We explored the performance of phylogenetic regression when
using matched versus mismatched trees for testing associations
between two continuous traits x and y. We generated trait data
using a linear model with phylogenetic signal in both the input
predictor trait x and the response trait y, following the approach
of similar studies (Pennell et al. 2014; Mazel et al 2016; Revell
2010; Fig. 1). The familiar linear regression equation for these
traits can be written as

y =X +¢,

where y is an #-dimensional vector containing measurements of
the response trait in each of # species, x is an 7-dimensional vector
containing measurements of the input predictor trait in each of #
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Fig. 1. lllustrating the phylogenetic conundrum. Examples showing species tree and gene tree pairs (a and b) and their associated data generating models
(center) for scenarios in which both traits are generated according to the species tree S (top row) or the gene tree G (bottom row). Thus, the true
generating tree is shown on the left in (a) and (b). Branch colors (a and b) illustrate values of the response trait y when mapped to the respective tree using
the contMap function from phytools. Two examples (random replicates) of matched phylogenetic regression are shown for SS (c) and GG (d), in which the
same tree was used for both generating the trait data and computing PICs, and two examples (random replicates) of mismatched regression are shown
for SG (e) and GS (f), in which different trees were used for generating the trait data and computing PICs.

species, f3 is the regression coefficient that measures the relation-
ship between x and y, and € is an n#-dimensional vector of resid-
uals. Under the null hypothesis (no association between x and
y), B =0, whereas the alternative hypothesis states that g # 0.
Ordinary least squares assumes that the residuals € are independ-
entand identically distributed as normal with mean zero and some
standard deviation; this assumption is inherently violated with
comparative data, in which traits tend to covary among species.
Phylogenetic regression relaxes this assumption by considering
the variance—covariance structure across a set of 7 species that is
defined by their evolutionary relationships. Phylogenetic inde-
pendent contrast (PIC) computes a set of 7 —1 contrasts that are
statistically independent (at which point the null hypothesis of =
0 can be tested), whereas phylogenetic generalized least squares
(PGLS) incorporates the phylogenetic variance—covariance struc-
ture directly into the model. Both methods provide equivalent es-
timates of significance levels (Blomberg et al. 2012).

To simulate trait evolution, we included phylogenetic signal
into the linear model by simulating x and € according to a
multivariate normal (MVN) distribution with mean zero and
an n X n phylogenetic variance—covariance matrix C, which
is defined according to a specific species tree or gene tree
(Grafen 1989; Martins and Garland 1991; Martins 1996).
When denoting the data generating process, we use the sub-
script S for traits with signals matching a species tree S and
the subscript G for traits with signals matching a gene tree
G. Therefore, to generate trait data with phylogenetic signal
according to a tree Te{S, G}, we used

yr=Xxpf+e€r

xt ~ MVN(0,Cr)

er ~ MVN(0,Cr)

where both x1 and €7 are distributed as MVN with mean
n-dimensional vector 0 containing all zero elements and phylo-
genetic variance—covariance Ct defined according to tree T.
Note that when = 0, the response trait is simply distributed
as yr ~ MVN(0, Cr), representing independent Brownian
motion evolution for both y; and x on the same tree. After gen-
erating trait data with these two data generating models (one ac-
cording to T = S and another according to T = G), phylogenetic
regression was conducted by computing PICs using either the
species tree S or the gene tree G, allowing us to explore scenarios
of tree mismatch in which the data generating process and the
assumed phylogeny for PICs are different (details provided be-
low). To assess false positive rates under different scenarios,
we set the true regression coefficient g = 0, whereas a nonzero
B # 0 was used to evaluate statistical power.

To investigate impacts of tree choice for phylogenetic re-
gression, we compared “matched” regression (Fig. 1c and
d), for which the same tree is used to generate and compute
PICs, and “mismatched” regression, for which different trees
are assumed to generate and compute PICs (Fig. le and f).
We conducted a multifactorial simulation study to investigate
a range of scenarios with increasing probabilities of tree mis-
match due to ILS. Our overall simulation protocol can be de-
scribed in four steps: (1) a species tree S is generated using a
diversification process (Yule 1925), (2) a gene tree G is simu-
lated according to the multispecies coalescent with the species
tree S obtained from Step 1, (3) traits are simulated using the
phylogenetic variance—covariance matrix Cg from the species
tree obtained from Step 1 to obtain yg and xg, or using Cg
from the gene tree from Step 2 to obtain to obtain y and
x¢, and (4) phylogenetic regression is applied to the simulated
trait data (Fig. 1) with either matched or mismatched trees.
That is, the opportunity for mismatch occurs in Steps 3 and
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Fig. 2. Tree mismatch exacerbates evidence of false trait associations with phylogenetic regression. Estimates of the false positive rate (a to c), P-value
distributions for GS (d to f), P-value distributions for SG (g to i), means and standard deviations of Robinson—Foulds (j to I), and Hellinger (m to o) between
gene trees and species trees from simulations including 10 species (top row), 100 species (middle row), and 1,000 species (bottom row) for birth-death
simulations with birth rate 1, death rate 1/2, and root age of 10 coalescent units. The two traits were statistically independent (8 = 0) for all simulations.
Dashed horizontal lines mark the commonly used false positive rate « = 0.05 in (a) to (c), median P-values taken from matched GG scenarios in (d) to (f),
and median P-values from matched SS scenarios in (g) to (i). The y-axis ranges from 0 to 1 in all panels.

4 when computing PICs using an incorrect tree that is unre-
lated to the data generating process of the studied traits.
When the same tree is used in Steps 3 and 4, the scenario rep-
resents matched regression because the same tree used to simu-
late the traits is also used to compute PICs. Conversely, when
different trees are used for Steps 3 and 4, the scenario repre-
sents mismatched regression, as the assumed tree is not the
tree that generated the data (e.g. a species tree is assumed for
traits simulated on a gene tree).

Our simulation approach examined four distinct scenarios:
matched gene tree—gene tree (GG), matched species tree-species
tree (SS), mismatched gene tree-species tree (GS), and mis-
matched species tree—gene tree (SG), where the first tree in
each pair indicates the tree used to simulate traits, and the se-
cond tree is assumed for phylogenetic regression (Fig. 1). For ex-
ample, GG represents the matched scenario for which the same
gene tree G is used to both generate traits and compute their
PICs using y.; and xg, whereas GS is mismatched because a
gene tree G is used to generate y; and x¢, but the species tree
§ is incorrectly assumed for their PICs. Likewise, both yg and
xs traits and their PICs are generated with the same species
tree for SS scenarios, whereas SG represents tree mismatch be-
cause the traits yg and xs are both generated via the species
tree, but a gene tree is incorrectly assumed. Thus, we evaluated
phylogenetic regression with two forms of correctly specified
models (GG and SS) and with two forms of incorrectly specified
models (GS and SG; Fig. 1).

Throughout our simulations, we varied both the total
number of taxa n € {10, 100, 1, 000} and speciation rate 1 €

{107*,1073, ..., 10} used to simulate the species trees. This
strategy allowed us to effectively incorporate variability in the
expected amount of phylogenetic conflict due to ILS, as 1 is in-
versely proportional to the expected branch lengths in the spe-
cies tree. Slow rates (A=10"%) yield long internal branch
lengths and lower ILS, whereas fast rates (A= 102) generate
short internal branch lengths, exacerbating ILS. We generated
species trees under a birth-death model in which the death
rate was set to half the speciation rate; we also investigated a
simple pure-birth model of diversification (Yule 1925) with
zero death rates. We employed the R package TreeSim
(Stadler 2011) using the sim.bd.taxa.age function with a most
recent common ancestor age of either 1, 10, or 100 to generate
species trees of varying depths. Therefore, both the number of
species and the total tree height were held constant within
each set of simulation conditions. The sim.coaltree.phylo func-
tion in Phybase (Liu and Yu 2010) was used to simulate gene
trees from species trees. Trait data were then simulated accord-
ing to either S or G using the linear models described above for a
total of 10° replicates for each value of 2 and for each of the four
scenarios GG, GS, SS, and SG. For each replicate, phylogenetic
regression was conducted using PICs computed according to the
four scenarios (Fig. 1) using the pic function provided in the soft-
ware package APE (Paradis and Schliep 2019). We evaluated the
false positive rates for each scenario by setting the true regres-
sion coefficient # =0 and quantifying the number of replicates
with P-value <0.05 that incorrectly reject the null hypothesis,
whereas four values of nonzero g € {0.25, 0.50, 0.75, 1.0}
were used to investigate statistical power for correctly rejecting
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the null hypothesis when g # 0. To provide context on the de-
gree of tree discordance, we computed Robinson—Foulds distan-
ces (Robinson and Foulds 1981) and probabilistic Hellinger
distances (Pardo 2005; Adams et al. 2021) between the gene
tree and species tree for each replicate. The Robinson-Foulds
metric considers only the topological distance between two
trees, whereas Hellinger measures the distance between two
MVN distributions based on models of trait evolution.

Simulations with Known Trees and Complex
Architectures

Our first array of simulations described above applied simple ar-
chitectures in which traits were generated according to a single
species tree or alternative, a single gene tree (Fig. 1). We also con-
ducted a case study that explored more complex architectures in
which trait data were generated according to multiple gene trees,
which is expected for some continuous traits. For these simula-
tions, we followed the same general protocol as above with the
addition of the seastaR approach (Hibbins et al. 2023), by com-
puting a phylogenetic variance-covariance matrix C; as a
weighted mean of the individual gene tree variance—covariance
matrices taken from a set 7 of ¢ different gene trees. The primary
change is that we used C7- instead of Cg (a single species tree S)
or Cg (a single gene tree G) to generate the traits. More specif-
ically, the traits were encoded by # gene trees, each with equal
contribution. We conducted four case study simulations in
which the number of gene trees ¢ € {2, 5, 10, 100} varied
to represent traits with architectures encoded by 2, 5, 10, or
100 genomic loci and their associated gene trees.

Here, we explored matched scenarios in which the same
generating C7T- was used to both simulate traits and conduct
phylogenetic regression. We also investigated two additional
scenarios of mismatched regression: (i) one C}- was used to
simulate the traits, and a different C7 was generated from a
separate set 7' of ¢ different gene trees that was incorrectly as-
sumed for phylogenetic regression, and (ii) one C7- was used to
simulate the traits, and the species tree Cg was incorrectly as-
sumed for regression. We refer to these three scenarios as
matched gene trees (i.e. same C}- used for both simulation
and inference), mismatched gene trees (i.e. different sets of
gene trees C}- and C- for simulation and inference), and mis-
matched species tree (i.e. Cg used for inference instead of the
true C%), respectively. We conducted phylogenetic regression
using PGLS (Grafen 1989; Martins and Garland 1991;
Martins 1996) using the gls function in the R package nlme
(Pinheiro et al. 2017) because the pic function requires strictly
bifurcating trees. Importantly, the regression slope estimates
and levels of significance are equivalent with PGLS and PIC
under Brownian motion (Blomberg et al. 2012). For these ana-
lyses, the same birth—death process was used to simulate spe-
cies tree with a depth of 10 coalescent units and either 10 or
100 species, and we focused on assessing false positive rates
when =0 with 10° replicates for each value of the birth
rate 1 € {107*,1073, ..., 10%}.

Simulation Case Study: How Does Phylogenetic
Estimation Error Influence Mismatch?

Results obtained when using true trees may not hold when in-
stead using estimated trees, which is important for empirical
studies. Thus, in addition to simulations that utilized known
phylogenies (i.e. those without estimation error), we also con-
ducted a simulation case study that incorporated phylogenetic

estimation error. We followed the above simulation protocol
but included additional steps for estimating gene trees and spe-
cies trees. Though a multitude of parameters are likely to influ-
ence tree estimation and error, we chose several factors
predicted to be important while ensuring computational feasi-
bility. The first three steps of our simulation protocol for this
case study are analogous to those of the simulations described
above for known trees: (i) simulate a species tree with varying
speciation rate 4, (ii) simulate 10 gene trees for each species
tree from Step i, and (iii) simulate continuous traits using ei-
ther the known species tree from Step i (SS and SG scenarios)
or a known gene tree from Step ii (GG and GS scenarios).
Next, we added components for estimating gene trees and spe-
cies trees: (iv) simulate 2.5 kb alignments for each of the 10
gene trees using an HKY model with a molecular clock and
per-base population-scaled mutation rate §=0.01, transi-
tion/transversion ratio of 4.6, and base equilibrium frequen-
cies of fa=03, fc=02, fc=02, and fr=0.3 for
nucleotides A, C, G, and T, respectively, (v) estimate gene trees
using IQ-TREE2 (Minh et al. 2020), (vi) infer a species tree
with the gene tree estimates from Step v using STELLS2 (Pei
and Wu 2017), and (vii) conduct phylogenetic regression using
either the estimated species tree from the Step vi or the esti-
mated gene tree from Step v for computing PICs. Because
our simulations were conducted using a molecular clock, esti-
mated gene trees were midpoint rooted. Therefore, this simu-
lation protocol matches our above simulations with the
addition of gene tree estimation (Step v) and species tree infer-
ence (Step vi), with phylogenetic regression conducted using
these estimated trees instead of the known trees. For this
case study, we focused on the impacts of phylogenetic estima-
tion error on false positive rates of phylogenetic regression by
simulating two statistically independent traits with g=0.
Because STELLS2 requires at least two samples per species
to estimate external branch lengths, the known gene trees si-
mulated in Step ii and estimated in Step v include two samples
per species for STELLS2. However, for both simulating trait
data and fitting regression models, we pruned these trees to in-
clude only one lineage sampled per species to allow direct com-
parisons of regression models on gene trees versus species trees
with the same numbers of lineages. Because of the computa-
tional requirements needed to simulate this multistep experi-
ment (species tree to gene trees to sequence alignments to
inferences of each), we generated 10> replicates with =10
species for each A € {107*, 1073, ..., 10%).

An Empirical Best-Case Study: Does Tree Choice
Impact Gene Expression Phylogenetic Regression?

Our simulations revealed evidence of profound bias with mis-
matched models for traits with both simple and complex ar-
chitectures, and when using known and estimated trees (see
Results). Given these findings, we sought to explore the empir-
ical impacts of tree choice for a best-case scenario in which one
might be able to better match tree with trait. PCMs have
gained recent promise for providing exciting insights into the
origins and evolution of functional genomic traits (e.g.
Rohlfs and Nielsen 2015; Chen et al. 2019; Bastide et al.
2023; Bertram et al. 2023; Dimayacyac et al. 2023; Adams
et al. 2024). We sought to use gene expression evolution as
an example of a best-case scenario because one might predict
that it should, at least in theory, be easier to match the expres-
sion trait of a given gene to one specific tree—either the species
tree or respective gene tree.
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We explored the effects of phylogenetic tree specification on
tests of trait association using an empirical gene expression da-
taset from 11 female and male tissues in eight mammals and
chicken (Brawand et al. 2011). In particular, we obtained nor-
malized gene expression abundance measurements computed
in reads per kilobase of exon model per million mapped reads
(RPKM; Mortazavi et al. 2008) from female and male brain
(whole brain without cerebellum), female and male cerebel-
lum, female and male heart, female and male kidney, female
and male liver, and testis in human (Homo sapiens), chimpan-
zee (Pan trogodytes), gorilla (Gorilla gorilla), orangutan
(Pongo pygmaeus abelii), macaque (Macaca mulatta), mouse
(Mus musculus), opossum (Monodelphis domestica), platypus
(Ornithorbynchus anatinus), and chicken (Gallus gallus;
Brawand et al. 2011). We focused our comparisons by restrict-
ing analyses to the most conservative 5,321 orthologous
genes, or those with constitutive exons that aligned across
all nine species in the original dataset (Brawand et al. 2011),
and computed the median expression level for tissues contain-
ing multiple replicates.

To understand the impacts of tree specification on phylo-
genetic regression, we obtained the estimated species tree
from Brawand et al. (2014) and estimated gene trees from nu-
cleotide and amino acid alignments downloaded from the
UCSC Genome Browser (Navarro Gonzalez et al. 2021) at
http:/www.genome.ucsc.edu. Specifically, the UCSC align-
ments included all protein-coding exons in human
(GRCh38/hg38) and 99 vertebrates (Blanchette et al. 2004;
Dreszer et al. 2012), from which we extracted those pertaining
to 5,267 genes in the nine species considered here. We con-
catenated the nucleotide and exon alignments for each gene
and constructed gene trees by applying PhyML (Guindon et
al. 2010) with default parameters to these alignments. The
species tree and all gene trees were scaled to unit depth. We in-
vestigated the statistical performance of phylogenetic regres-
sion in three experimental settings: expression in female
brain-male brain, female heart-male heart, and female kid-
ney—male kidney. For each experiment, we conducted PIC re-
gression based on log-transformed RPKM values across the
nine species and assessed relationships between tissues via evi-
dence of statistical significance (P-values).

Specifically, we evaluated impacts of tree choice when
modeling female and male expression evolution across spe-
cies. For each gene, we conducted phylogenetic regression to
test associations between male and female expression in
three separate analyses based on phylogenetic regression
fit to: (i) the species tree, (ii) the gene tree inferred from nu-
cleotide sequences, and (iii) the gene tree inferred from ami-
no acid sequences. To explore genome-wide patterns and
identify interesting case studies, we also computed three dis-
tance statistics: ds, dn, and da representing analyses that as-
sumed the species tree (ST), the nucleotide gene tree (NT),
and the amino acid gene tree (AT), respectively. These sta-
tistics have the forms

D(ST,NT) + D(ST, AT) — D(NT, AT)

ds = 5
D(NT, ST) + D(NT, AT) — D(ST, AT)
dy =
2
. _ D(AT,ST) + D(AT, NT) - D(ST, NT)
A =

2

Adams et al. - https://doi.org/10.1093/molbev/msaf032

where D(Tree 1, Tree 2) = [log;o(Prree 1) — 1081 (PTree 2)| rep-
resents the magnitude of the difference between the log-
transformed P-values of a pair of trees. Thus, each distance
statistic will evaluate whether the P-value for a given analysis
tree is substantially different from the P-values of the other
two trees. These measures are akin to those that have been
used for identifying population branches with extreme differ-
ences using allele frequency (Shriver et al. 2004; Yi et al.
2010) or expression (Assis 2019; Jiang and Assis 2020) data.
We applied these measurements here to identify genes that ap-
pear particularly sensitive to tree choice. For example, a large
d value might reflect scenarios in which regression is strongly
significant (P-value < 107°) based on the amino acid tree, but
not significant in the nucleotide or species tree-based regression
(P-value > 0.05).

Investigating a Potential Robust Path Forward

We recently found promise in the application of robust esti-
mators for improving the resistance of phylogenetic regres-
sion to evolutionary outliers (Adams et al. 2024). Given
these findings, we sought to assess whether a robust estimator
may yield comparatively better performance than standard
L2-based phylogenetic regression, which minimizes the
mean squared error of predictions and is thus sensitive to out-
liers. To address this question, we employed the robust L1 es-
timator, which instead minimizes the mean absolute error
(Rousseeuw and Yohai 1984), helping to alleviate false posi-
tive rates associated with strong outliers by de-emphasizing
large residuals. We applied L1-based regression to the same
simulation conditions as before with = € {10, 100, 1, 000}
species and varying levels of tree mismatch for known (simu-
lated) trees, our case study that included gene tree estimation
in addition to tree mismatch with 7 =10 species, and finally,
our empirical case study.

Results

[llustrating the Phylogenetic Conundrum

We chose two simulation replicates to illustrate this phylogen-
etic conundrum (Fig. 1). For these examples, we simulated a
species tree S and an associated gene tree G given the multispe-
cies coalescent process on S. We then simulated two statistic-
ally independent (#=0) traits x and y using the species
tree S (Fig. 1; top row), and separately using the gene tree G
(Fig. 1; bottom row). Here, we show two examples of matched
models in which the same tree was used to both generate and
analyze the trait data (Fig. 1c and d). Likewise, we provide two
examples of mismatched regression models in which the traits
were generated according to the species tree, but the gene tree
was incorrectly assumed for PICs (Fig. 1e), and the alternative
scenario in which the traits were generated according to the
gene tree, but the species tree was incorrectly assumed
(Fig. 1f). P-values from matched phylogenetic regression SS
(Fig. 1c) and GG (Fig. 1d) were not statistically significant,
consistent with the null hypothesis of independence (8= 0).
However, both examples of mismatched phylogenetic regres-
sion based on SG (Fig. 1e) and GS (Fig. 1f) were statistically
significant, yielding a false positive result due to the wrong
tree choice. In these examples, the degree of false significance
was higher for GS than for SG, as demonstrated by their
P-values. Comparing the trait mappings provides some intu-
ition, with evidence of hemiplasy when a trait is mapped to
the incorrect tree (Fig. 1a and b).
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Fig. 3. Tree mismatch misleads phylogenetic regression for traits with more complex architectures. Estimates of the false positive rates from simulations
including 10 species (top row), 100 species (middle row), and 1,000 species (bottom row) for birth-death simulations with birth rate 4, death rate 1/2, and
root age of 10 coalescent units for mismatched species tree regression (red lines), mismatched gene tree regression (pink links), and matched gene tree
sets (black lines). Results shown for traits encoded by two loci (a to c), five loci (d to ), 10 loci (g to i), and 100 loci (j to ). The two traits were statistically
independent (8 = 0) for all simulations. Horizontal dashed lines mark the commonly used false positive rate of a = 0.05.

Impacts of Tree Mismatch on False Positive Rates of
Phylogenetic Regression with Simple Architectures

Across our simulations, we found evidence of strong biases
with incorrectly mismatched phylogenetic regression (GS
and SG) compared to correctly matched regression (GG and
SS; Fig. 2, supplementary figs. S1 and S2, Supplementary
Material online). Specifically, false positive rates for GS and
SG (red and orange) were higher than those for matched GG
and SS (black), which yielded acceptable false positive rates
of ~5% across all simulations (Fig. 2a to c). Thus, assuming
the incorrect tree tended to mislead phylogenetic regression
to reject the null hypothesis when the two traits were statistic-
ally independent (8=0). The impact of phylogenetic mis-
match was exacerbated with more species (Fig. 2a to c; top
to bottom), shorter tree depths (Fig. 2, supplementary figs.
S1 and S2, Supplementary Material online), and as the ex-
pected amount of ILS increased: false positive rate increased
with speciation rate for both GS and SG (Fig. 2a to c; left to
right in each panel). Specifically comparing the two mis-
matched scenarios (GS vs. SG) revealed evidence of higher
false positive rates for GS (red) than for SG (orange) across
our simulations (Fig. 2, supplementary figs. S1 and S2,
Supplementary Material online). That is, performance was

worse when incorrectly assuming the species tree for traits
generated from a gene tree (GS) than the reverse situation in
which an incorrect gene tree was assumed for traits generated
from a species tree (SG). The severity of false positive rate in-
flation was influenced by the overall depth of the species tree,
with shorter tree depths exacerbating false positive rates com-
paratively (supplementary fig. S1, Supplementary Material
online vs. Fig. 2 vs. supplementary fig. S2, Supplementary
Material online). Our results were similar when simulations
under pure-birth and birth-death models (comparing Fig. 2
and supplementary fig. S3, Supplementary Material online).
These findings were consistent with the overall distributions
of P-values (Fig. 2d to i), and these impacts reflected topologic-
al (Fig. 2j to 1) and probabilistic (Fig. 2m to o) distances be-
tween gene trees and species trees.

Complex Architectures and Mismatched
Phylogenetic Regression

Our simulation study with more complex architectures for traits
encoded by 2, 5, 10, or 100 loci continued to mirror these results
(Fig. 3). We found unacceptably high false positive rates for mis-
matched models across all tree sizes (10, 100, or 1,000 species;
rows in Fig. 3) and architectures (2, 5, 10, or 100 loci; columns
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in Fig. 3) that were amplified with higher amounts of ILS (left to
right on x-axes in Fig. 3). As with single tree regression (Fig. 2), in-
creasing the sample size (i.e. increasing the number of species) only
made the situation worse. Moreover, both scenarios of tree
mismatch (i.e. red and pink lines in Fig. 3) tended to produce
high false positive rates compared to the appropriate false
positive rate for correctly matched gene tree sets (black lines;
Fig. 3). However, incorrectly assuming a species tree tended to
generate higher false positive rates than assuming an incorrect
gene tree set (red vs. pink; Fig. 3). Increasing the architecture
complexity (i.e. the number of loci encoding a trait; left to
right columns in Fig. 3) yielded slight improvements, though
false positive rates remained substantially higher than the typ-
ical @ = 0.05 cutoff for many scenarios. With large trees (100
or 1,000 tips), even the smallest birth rates still exhibited re-
markably high false positive rates. For example, false positive
rates were estimated at ~50% for 1,000-tip trees with a birth
rate of 1 =1073 (Fig. 3¢c).

Simulation Case Study: Phylogenetic Estimation
Error and Tree Mismatch Together

Regardless of whether known (Fig. 4a) or estimated (Fig. 4b)
trees are assumed, mismatched regression amplified false posi-
tive rates. Perhaps expectedly, we found higher false positive
rates when using estimated versus known phylogenies in
many cases. Estimation error tended to increase false positive
rates for matched GG and SS phylogenetic regression (black
lines; Fig. 4). The effects of estimation error on these matched
scenarios were still less pronounced than those on mismatched
GS and SG (red and orange lines; Fig. 4), however. Increasing
the speciation rate tended to exacerbate false positive rates for
all GG, SS, GS, and SG scenarios with estimated trees (Fig. 4b),
whereas known matched regression scenarios (GG and SS)
were unaffected (Fig. 4a). Comparing differences between
log-scaled P-values of known and estimated trees further high-
lighted these findings (Fig. 4c), with the largest differences be-
tween known and estimated analyses observed in the matched
SS, followed by SG, GG, and GS. This result likely reflects the
higher relative false positive rates for SS when using estimated
versus known trees (black lines; Fig. 4b), whereas known
matched analyses demonstrate acceptable false positive rates
of 0.05 (black lines; Fig. 4a). In these scenarios, phylogenetic
regression with GS and SG were strongly influenced by tree

mismatch with known trees and estimated trees (red and or-
ange lines in Fig. 4a and b).

Tree Mismatch and Statistical Power of Phylogenetic
Regression

Next, we evaluated the potential for phylogenetic mismatch to
influence the power of regression to detect trait associations
when # > 0. When compared with false positive rates, the effects
of mismatched trees on power appear to be less dramatic and
fluctuate depending on the value of # and number of species
(Fig. 5). In many cases, however, we found evidence that mis-
matched regression can decrease power. This finding is perhaps
most apparent in our simulations with and 100 species (Fig. Se),
as well as with and 1,000 species (Fig. 5c¢), in which mismatched
GS scenarios demonstrated comparatively lower power (red
lines; Fig. 5). Mismatched SG scenarios also exhibited lower
power than matched regression in some examples (orange vs.
black; Fig. 5). However, impacts were less apparent for species
trees that were smaller (7=10; top row of Fig. 5) and deeper
(Fig. 5 vs. supplementary fig. S4, Supplementary Material online
vs. supplementary fig. S5, Supplementary Material online).

Empirical Case Study: Investigating Phylogenetic
Mismatch and Gene Expression Data

Most apparent in our exploration of phylogenetic regression
using mammalian gene expression data are the differences in
inferred significance depending on tree choice (Fig. 6a to c).
For instance, in heart tissue, we observed the smallest number
of outliers (red points) for the statistic corresponding to ana-
lyses using the species tree (Fig. 6a; 38 genes), followed by
for analyses using the nucleotide gene tree (Fig. 6b; 107 genes),
and finally by for analyses using the amino acid gene tree
(Fig. 6¢c; 643 genes). Thus, using the amino acid gene tree
for phylogenetic regression resulted in the identification of
many more significantly associated genes in female and male
heart tissue than using either the species tree or nucleotide
gene tree.

These genome-level explorations also allowed us to identify
the largest outlier genes based on their values of ds, dy, and da
and (Fig. 6d to f). The largest outlier based on ds was
UQCRI11 (Fig. 6d), which is involved in the mitochondrial
electron transport chain. All three analyses revealed a positive
relationship between female and male expression in this gene,
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though with much weaker significance when using the species
tree than when using either of the two gene trees (Fig. 6d). The
largest outlier based on dy was RAB14 (Fig. 6e), which is in-
volved in intracellular membrane trafficking. For this gene, the
nucleotide tree yielded a highly significant negative relation-
ship between female and male expression, whereas the other
two trees did not produce significant results (Fig. 6e).
Finally, the largest outlier based on dy was TBCC (Fig. 6f),
which is one of four genes involved in the pathway leading
to correctly folded beta-tubulin from folding intermediates.
For this gene, the amino acid tree regression produced a highly
significant positive relationship between female and male ex-
pression, whereas the other two analyses did not yield a signifi-
cant association (Fig. 6f).

Next, we evaluated overlap in statistically significant genes
estimated using the three regression strategies (i.e. assuming
the species tree, nucleotide tree, or amino acid tree) across tis-
sues. We first considered the fraction of significant (P-value <
0.05) analyses from a tissue-level perspective. For each of three
tissues considered (brain, heart, and kidney), we found sub-
stantial overlap in the percentages of genes with estimates of
significant relationships between female and male expression
(Fig. 7). That is, within a given tissue, the fractions of signifi-
cant genes were similar for regression based on the species tree,
amino acid tree, and nucleotide tree. However, consistent with
our previous findings in heart (Fig. 7a to c), phylogenetic

4, death rate /2, and root age of 10 coalescent units. Results are shown

regression based on the amino acid gene tree yielded the largest
percentage of uniquely significant genes for all tissues, with
24%, 23%, and 22% significant for brain, heart, and kidney,
respectively (Fig. 7). Given these results, we then computed
log-likelihoods of the fitted phylogenetic regression model
for the three tissues and the three strategies. All three tissues
agree that model fit was highest on average when assuming
the species tree, followed by the nucleotide tree, and finally
the amino acid tree (Fig. 8). That is, phylogenetic models
tend to fit the species tree best and the amino acid tree worst,
with the nucleotide tree fit representing an intermediate. Thus,
suggesting that excess of uniquely significant genes for phylo-
genetic regression using the amino acid tree may be due to a
poor fit.

Exploring the Potential for Robust Phylogenetic
Regression

We found evidence that robust L1-based regression can reduce
false positive rates, at least compared to conventional
L2-based regression for both known (Fig. 9a to c) and esti-
mated trees (Fig. 9d). In particular, L1-based regression
yielded comparatively fewer false positives for GS (solid vs.
dashed red lines; Fig. 9) and SG (solid vs. dashed orange lines;
Fig. 9) under most conditions of mismatched regression. When
considering our analyses of simulations that used estimated
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Fig. 7. Venn diagrams displaying the percentage of overlap in statistically significant genes for brain (a), heart (b), and kidney (c) expression levels in a
mammalian dataset based on phylogenetic regression applied by assuming the species tree (left circles), nucleotide gene tree (top circles), or amino acid
gene tree (right circles). Colors indicate the relative percentage of statistically significant genes across analyses.

rather than known trees, we still found relatively lower false
positive rates when L1 phylogenetic regression (Fig. 9d), albeit
to a lesser degree. Reflecting on our empirical case studies, we
found several interesting differences between robust L1-based
and conventional L2-based regression when assuming

different trees (Fig. 10). In several examples, L1-based regres-
sion yielded comparatively smaller P-values (i.e. higher signifi-
cance), sometimes leading to the inferences of statistically
significant relationships not identified by L.2-based regression
(Fig. 10a to ¢). In others, L1-based regression returned
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nucleotide gene tree, or amino acid gene tree.
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Fig. 9. Can robust estimators help? Results showing estimated false positive rates when using known trees with 10 species (a), 100 species (b), and
1,000 species (c) for robust L1-based regression (dashed lines) alongside standard L2-based regression (solid lines) under birth-death simulations with
birth rate 4, death rate /2, and root age of 10 coalescent units. Estimated false positive rates are also shown for L1- and L2-based regression with

estimated trees for our simulation case study with n=10 species (d). Horizontal solid gray lines mark the typically accepted false positive rate of 0.05.

comparatively larger P-values, such that it did not find evi-
dence of a significant relationship that was, however, inferred
by L2-based regression (Fig. 10d to f).

Discussion

A choice of trees is always required when conducting phylo-
genetic regression. Yet deciding on a particular tree is often
difficult and unlikely to become easier anytime soon.
Collectively, our analyses underscore these challenges and ex-
pand our understanding of potential pitfalls of incorrect
choices. To summarize, assuming the wrong tree may lead
us to overestimate associations between traits that are truly in-
dependent—regardless of whether we are considering shallow
or deep trees, few or many species, simple or complex architec-
tures, or known or estimated trees. That is, tree choice matters.

Our study is the first to present these findings for phylogenetic
regression, and thus we focus on mismatch resulting from gene
tree-species tree discordance—a topic that has held our field cap-
tive for decades. Perhaps Hahn and Nakhleh (2016) stated it best:
“The problems caused by ignoring variation in gene tree topolo-
gies are manifest because these genes underlie variation in the
traits we are studying”. Examining other potential sources of

conflict (e.g. recombination, selection, and introgression) is argu-
ably a worthwhile next step to incorporate other realistic proc-
esses encountered in empirical data. Moreover, future studies
with expanded simulations will help us better understand the
simultaneous effects of tree mismatch and estimation error (i.e.
expanding results shown in Fig. 4), though it is worth emphasiz-
ing the computationally intensive and expensive demands of
multilayered analyses spanning simulations and inferences of
species trees, gene trees, sequence alignments, and trait evolution.

Mirroring similar evolutionary analyses (Hahn and Nakhleh
2016; Mendes and Hahn 2016; Guerrero and Hahn 2018;
Mendesetal.2018,2019; Hibbinsetal. 2020, 2023), tests of trait
associations are sensitive to tree conflict. Speciation rate was an
important factor in determining the degree of severity, with faster
rates (yielding higher false positive rates). Because the expected
length of internal branches (i.e. time between speciation events)
is inversely related to speciation rate, faster rates yield shorter in-
ternal branches, which in turn can amplify phylogenetic conflict
by providing less time for coalescent events in ancestral branches.
This phylogenetic conflict is also reflected in the distance between
the true and assumed tree, such that larger Robinson—Foulds and
Hellinger distances were associated with higher false positive
rates. Increasing the sample size (i.e. increasing the number of
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and amino acid gene trees (bottom row).

species) only made the situation worse, and yet small trees were
certainly not immune. Statistical power to detect true trait asso-
ciations appeared less affected by tree mismatch than false posi-
tive rates, though future studies will be needed to better
understand some of the patterns uncovered here. This phenom-
enon of increasing true positive rate in some scenarios (Fig. 5)
likely reflects the compounding effects of tree-trait mismatch
and, which each contributes to signals of statistical associations
between traits.

Another surprising trend emerged when specifically con-
trasting the two mismatched models: false positive rates tended
to be higher with GS than SG. That is, incorrectly assuming a
species tree for traits simulated under a gene tree tended to be
worse than the opposite. Neither mismatched model per-
formed well, and yet our findings suggest that assuming an in-
correct gene tree may represent a potential lesser of two evils in
our explored scenarios. Dissecting this pattern further by com-
paring PIC magnitudes for tree cherries (i.e. nodes with exactly
two extant descendants) provided evidence of increasingly lar-
ger contrasts for GS than GG regression (supplementary fig. S6,

Supplementary Material online). Our simulations with com-
plexarchitectures continued these results: incorrectly assuming
the species tree nearly always amplified false positive rates, as
did assuming an incorrect set of gene trees that were unrelated
to studied traits. Artificially short branch lengths will inflate the
influence of affected contrasts (Stone 2011), which is relevant
to our findings here because branches in the species tree tend
to be shorter than those of embedded gene trees.

Clearly, the reliability of an assumed tree is a major deter-
minant of the reliability of an evolutionary hypothesis test. In
anideal world, one would always match the tree to the trait per-
fectly (i.e. GG and SS), but this is neither always possible nor
probable. When designing this study, we first focused on using
known trees to isolate and understand the behavior of mis-
matched regression. We then realized that we needed to con-
sider an elephant in the room: in practice, phylogenetic
regression is conducted using estimated rather than known
trees. Of course, we seldom (if ever) estimate a phylogeny to
perfection, and our findings argue for increased vigilance
against both tree mismatch and estimation error. Gene tree
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discordance was generally high in our simulation experiments
(supplementary fig. S7, Supplementary Material online), which
also likely influenced the accuracy of estimated species trees
across the range of speciation rates explored here
(supplementary figs. S8 and S9, Supplementary Material
online). Future simulation studies seeking to fully explore the
scope and scale of tree mismatch and estimation error are likely
to be valuable and yet quite demanding. Though focused for
computational feasibility, our simulations nonetheless argue
that mismatch and estimation error are important, and we
found evidence of alarming biases in the presence of both.

Building on our simulation-based investigations, we explored a
functional genomic dataset to investigate impacts of tree choice
when modeling female—-male expression relationships across spe-
cies. Because gene sequence and expression divergence are corre-
lated (Duret and Mouchiroud 2000; Pal et al. 2001; Subramanian
and Kumar 2004; Lemos et al. 2005; Assis and Kondrashov
2014), expression is typically assumed to evolve more or less ac-
cording to an associated local gene tree. Thus, we used our empir-
ical case study as a best-case scenario in which one might have a
fighting chance of matching tree with trait. Perhaps most appar-
ent in these analyses is the potential for stark differences in regres-
sion significance depending on the assumed tree. In this case, the
empirical findings paint a somewhat different picture than what
we observed from our simulations, showing that assuming the
species tree was often most conservative. Though it unfortunately
can be difficult to achieve synchrony between simulated and em-
pirical results, we suspect that a number of factors could be at play
here, including the complexities of regulatory mechanisms con-
tributing to gene expression evolution, as well as the estimation
of both gene and species trees. Clearly, the choice of a tree matters
even in these scenarios. Our comparisons of tree distances may
help explain some of these findings, as the lowest distances
were observed between nucleotide gene trees and the species
tree (supplementary fig. S10, Supplementary Material online).
Likewise, quantile—quantile (QQ) plot comparison of P-value dis-
tributions also suggests differences in inferred significance based
on the tree chosen for phylogenetic regression (supplementary fig.
S11, Supplementary Material online). Given that mutation
and recombination rates are on similar scales in mammals
(McVean et al. 2004; Keightley and Eyre-Walker 2007; Kong
et al. 2010), the propensity for intragenic recombination events
is likely, violating another standard assumption of phylogenetic
inference.

In light of our findings, it is interesting to consider the mecha-
nisms underlying variation in traits and their phylogenetic archi-
tectures. Popular models of continuous trait evolution based on
extensions of Brownian motion are designed to capture phenom-
ena affecting the mean and variance of traits within a lineage
(Felsenstein 1988; Revell and Harmon 2008; Blomberg et al.
2020). Thus, assuming the overall species tree might be justifiable
for traits that adhere to canonical assumptions of quantitative
genetic models. Recently, studies have also argued for more
mechanistic frameworks in which traits are encoded by architec-
tures composed of a single or perhaps multiple gene trees under a
neutral model of evolution (Hibbins et al. 2023; Schraiber et al.
2024). Natural selection, however, acts directly on variation in
traits, and therefore indirectly on the genealogical history and
architecture encoding the traits (Lande 1976). How PCMs be-
have under such conditions remains an open question, and mod-
els that incorporate the ancestral selection graph may prove
helpful here, though it is worth noting the computational difficul-
ties involved (Krone and Neuhauser 1997; Brandt et al. 2024).

Flaws are often much easier to find than solutions; seldom is it
satisfying to simply point out issues without offering at least a
hope of a remedy. We found that to be the case here. While
the primary purpose of this study was to provide a first perspec-
tive on the dangers of tree mismatch, we also explored the prom-
ise of robust phylogenetic regression, which improved inferences
for both known and estimated trees. Additionally, we illustrated
several examples of large differences between P-values obtained
with L1- and L2-based regression, most of which altered conclu-
sions about tested relationships between male and female ex-
pression. Our findings suggest that robust estimators might
provide a potential, albeit imperfect, solution to some issues
raised by tree mismatch. We can say with confidence that robust
phylogenetic regression was never meant to be a panacea for all
ailments that might afflict PCMs. Progress—not perfection—is
the goal, and more studies are needed to explore the possibilities
and space of phylogenetic mismatch and the potential for differ-
ent types of robust estimators with different types of model vio-
lations. Comparisons of log-likelihoods of matched and
mismatched models also may hold clues for comparing phylo-
genetic regression model fit (Fig. 8 and supplementary fig. S12,
Supplementary Material online). Future studies that employ
both robust estimators and other recent advances in phylogenet-
ic modeling (e.g. phylogenomic comparative methods; Hibbins
et al. 2023) may prove helpful in this context. Additionally,
strategies for addressing evolutionary uncertainty (de
Villemereuil et al. 2012; Fuentes-G et al. 2020; Bastide et al.
2021; Zhang et al. 2024) may be promising, though such ap-
proaches are not widely applied for such purposes and may still
be sensitive to hemiplasy (Hahn and Nakhleh 2016; see
Supplementary Case Study section and supplementary fig.
S13, Supplementary Material online). Altogether, our findings
underscore the difficulties of phylogenetic regression with uncer-
tain trees and call for increased vigilance against phylogenetic
mismatch—whether due to ILS, estimation error, or otherwise.
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Supplementary material is available at Molecular Biology and
Evolution online.
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