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Abstract 
Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for 
decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly 
estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in 
modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here, we investigate the 
consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree–species tree conflict. Our simulation 
experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, 
and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that 
evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, 
cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with 
trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to 
some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, 
highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling.
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Introduction
It is a tale nearly as old as time: you measure a set of traits 
across a sample of organisms, and you seek to gain new in
sights by testing for statistical relationships between two or 
more of your studied traits. Both scientists and philosophers 
alike have strived to understand biology for centuries by em
ploying this strategy. The diversity of traits that can be studied 
span any variable that can be reliability measured, from those 
at the molecular (e.g. cell size, cell morphology, and gene ex
pression; Gu 2016; Dunn et al. 2018; Chen et al. 2023) up 
to the organismal (e.g. body size, head morphology, and 
behavior; Al-Kahtani et al. 2004; Ross et al. 2004; Kamilar 
and Cooper 2013) level; we are typically only limited by our 
own curiosity, time, and funding perhaps. For this study, we 
focus on quantitative traits of varying architectures. For ex
ample, does body size predict brain size? Does the expression 
of one gene predict the expression of another? Does propagule 
size predict invasiveness? The possibilities seem endless, and 
many classical approaches to linear regression appear 
well-suited to these questions. Because we are living in the 
21st century, we also know that phylogeny must be addressed 
if we seek reasonable and rigorous answers (Felsenstein 1985; 
Grafen 1989; Martins and Hansen 1997; Pagel 1997, 1999; 

Rohlf 2001). What remains less clear, however, is which tree 
should be considered.

With the advent of phylogenetic comparative methods 
(PCMs), biologists are now painfully aware of the need to ad
dress phylogeny because related species and their traits covary 
according to shared ancestry—that is, they are not statistically 
independent (Felsenstein 1985; Grafen 1989; Martins and 
Hansen 1997; Pagel 1997, 1999; Rohlf 2001). If ignored, then 
among-species covariance can lead us astray (Felsenstein 
1985; Maddison and FitzJohn 2015; Uyeda et al. 2018; 
Gardner and Organ 2021). By accounting for the effect of 
shared ancestry, phylogenetic regression has become an icon 
of modern comparative biology, inspiring a wave of ecological 
and evolutionary progress in its wake. In the years since, its prin
ciples have been debated, refined, supplemented, and expanded 
to target diverse questions, hypotheses, and data types (Harvey 
and Pagel 1991; Hansen 1997; Sanford et al. 2002; Blomberg 
et al. 2003; Felenstein 2004; O’Meara et al. 2006; Revell et al. 
2008; Beaulieu et al. 2012; Adams 2013; Pennell and Harmon 
2013; Pennell et al. 2014; Maddison and FitzJohn 2015; 
Uyeda et al. 2018). Few studies in evolutionary biology are 
now published without at least a reference to PCMs and their 
foundations in phylogenetic regression.
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Of course, a fundamental assumption of phylogenetic re
gression and PCMs generally is that the required input tree, 
and therefore the among-species covariance structure, is 
known (e.g. Felsenstein 1985; Martins and Garland 1991; 
Gittleman and Luh 1992; Miles and Dunham 1993; 
Boettiger et al. 2012; Cressler et al. 2015; Harmon 2019; 
Brahmantio et al. (2022); Schraiber et al. 2024). In practice, 
this assumption is often difficult if not impossible to confirm 
(Schluter 1995). Rarely does one expect that their assumed 
tree is indeed the true tree, or even the best tree possible for a 
given trait. Estimation error in the assumed phylogeny is likely 
to be an issue; errors tend to beget errors, such that errors in the 
assumed topology and branch lengths may propagate errors in 
downstream evolutionary inferences that assume error-free 
trees (Diaz-Uriarte and Garland 1996, 1998; Symonds 2002; 
Stone (2001); Mendes et al. 2018). Thus, if an assumed phyl
ogeny is unreliable, then inferences of trait evolution may 
also be suspect (Harvey and Pagel 1991; Symonds 2002). 
Bayesian PCMs that fit models to posterior probability distri
butions of trees or coestimate phylogenetic character-evolution 
parameters hold promise for incorporating estimation uncer
tainty into the process (e.g. Villemereuil et al. 2012; Fuentes- 
G et al. 2020; Bastide et al. 2021; Zhang et al. 2021).

Yet, mismatch between an assumed and true phylogeny can oc
cur for reasons besides just estimation error. Perhaps we are sim
ply looking at the wrong tree. That is, we impose a tree for 
phylogenetic regression that is completely unrelated to our stud
ied trait, its architecture, or its evolutionary past. Put plainly: 
how confident are we in our ability to accurately (or at least ad
equately) match our trait to its true phylogenetic history? We 
know that variation in phylogenetic history is ubiquitous, arising 
naturally from speciation, diversification, and evolution 
(Maddison 1997; Nichols 2001; Degnan and Rosenberg 2009; 
Kutschera et al. 2014). It is also well understood that traits vary 
considerably in their architectures with respect to the precise 
numbers, complexities, and genomic identities of encoding loci, 
each of which may reflect their own genealogical history. 
Indeed, gene trees often differ wildly from one another and 
from the overall species tree as a result of incomplete lineage sort
ing (ILS; Maddison 1997; Nichols 2001; Degnan and Rosenberg 
2009; Hobolth et al. 2011), introgression (Yu et al. 2011; Leaché 
et al. 2014; Solís-Lemus et al. 2016; Tian and Kubatko 2016; 
Long and Kubatko 2018), ancestral structure (Slatkin and 
Pollack 2008; DeGiorgio and Rosenberg 2016; Koch and 
DeGiorgio 2020), and natural selection (Adams et al. 2018; 
Borges et al. 2020; He et al. 2020; Wascher and Kubatko 
2023). Of these processes, ILS is arguably the most infamous 
(Maddison 1997; Kubatko and Degnan 2007; Edwards 2009; 
Liu et al. 2015). One particularly concerning consequence of 
ILS is hemiplasy (Avise and Robinson 2008), which results 
from forcing trait data to the wrong tree, which can generate false 
patterns of homoplasy-like evolution (Avise and Robinson 2008) 
and mislead PCMs (Hahn and Nakhleh 2016; Mendes and Hahn 
2016; Guerrero and Hahn 2018; Mendes et al. 2016, 2018, 2019; 
Hibbins et al. 2019). Specifically, hemiplasy may artifactually in
crease the number of independent branches where two different 
traits match each other rather than the true evolutionary history.

In the presence of phylogenetic conflict, how do we choose a 
tree or trees for phylogenetic regression? Growing evidence sug
gests that this decision matters, but it can be difficult to know a 
priori whether to assume the overall species tree, a particular 
gene tree, a specific set of gene trees, or even every possible 
gene tree. To model trait evolution, studies may assume a species 

tree that has been estimated using coalescent-based (Doña and 
Johnson 2023) or traditional concatenation (Hensen et al. 
2023) approaches, or perhaps a specific gene tree (Al-Kahtani 
et al. 2004; Ross et al. 2004; Kamilar and Cooper 2013; Gu 
2016; Dunn et al. 2018; Chen et al. 2023; Adams et al. 2016). 
However, making such assumptions may (Dimayacyac et al. 
2023) or may not (Hahn and Nakhleh 2016) be the best strat
egy. Modeling evolution as a function of a particular gene tree 
may prove beneficial for traits predicted to exhibit a one-to-one 
correspondence with a single tree, such as the expression of a 
gene largely regulated by cis elements near its encoded locus 
(Chen et al. 2019 Bastide et al. 2023; Bertram et al. 2023; 
Dimayacyac et al. 2023). Perhaps such scenarios represent a 
best case in which we might at least hope to match tree with 
trait. PCMs have also garnered great interest for modeling func
tional genomic evolution across cells, tissues, and species (Rohlfs 
and Nielsen 2015; Chen et al. 2019; Bastide et al. 2023; Bertram 
et al. 2023; Dimayacyac et al. 2023; Adams et al. 2024). 
Somewhat surprisingly, a recent study found that modeling 
gene expression as a function of the overall species tree rather 
than local gene trees improved model fit (Dimayacyac et al. 
2023). Some traits, however, may be subject to more complex 
architectures encoded by multiple genetic loci, each with their 
own genealogical history. Taking this idea further, several mod
els assume that all gene trees contribute to a given trait (Mendes 
et al. 2018; Hibbins et al. 2023). Importantly, a choice of trees is 
made each and every time a PCM is applied.

Therein lies a conundrum: we must choose a tree, but how can 
we be certain of which tree to choose? Rarely do we appreciate or 
even understand the ripple effects of this choice that is profoundly 
central to comparative biology. This study seeks to gauge our level 
of concern about tree mismatch that is not only possible but prob
able. Specifically, we explore the behavior of phylogenetic regres
sion for testing trait associations when the true and assumed trees 
are mismatched due to the well-known and wide-spread phenom
enon of gene tree–species tree conflict (Figs. 1and 2). We employ a 
large-scale battery of evolutionary simulations with varying de
grees of model mismatch for traits of both simple and complex ar
chitectures, and with both known and estimated trees. Given our 
findings, we then investigate a best-case scenario for matching tree 
with trait by using an extensive cross-species gene expression da
taset sampled from mammals. Through this work, we seek to ad
vance our understanding of the consequences of tree choice for 
comparative studies, while arguing for the promise of more robust 
and thoughtful evolutionary modeling.

Methods
Simulations with Known Trees and Simple 
Architectures
We explored the performance of phylogenetic regression when 
using matched versus mismatched trees for testing associations 
between two continuous traits x and y. We generated trait data 
using a linear model with phylogenetic signal in both the input 
predictor trait x and the response trait y, following the approach 
of similar studies (Pennell et al. 2014; Mazel et al 2016; Revell 
2010; Fig. 1). The familiar linear regression equation for these 
traits can be written as

y = xβ + ϵ,

where y is an n-dimensional vector containing measurements of 
the response trait in each of n species, x is an n-dimensional vector 
containing measurements of the input predictor trait in each of n 
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species, β is the regression coefficient that measures the relation
ship between x and y, and ϵ is an n-dimensional vector of resid
uals. Under the null hypothesis (no association between x and 
y), β = 0, whereas the alternative hypothesis states that β ≠ 0. 
Ordinary least squares assumes that the residuals ϵ are independ
ent and identically distributed as normal with mean zero and some 
standard deviation; this assumption is inherently violated with 
comparative data, in which traits tend to covary among species. 
Phylogenetic regression relaxes this assumption by considering 
the variance–covariance structure across a set of n species that is 
defined by their evolutionary relationships. Phylogenetic inde
pendent contrast (PIC) computes a set of n –1 contrasts that are 
statistically independent (at which point the null hypothesis of β = 
0 can be tested), whereas phylogenetic generalized least squares 
(PGLS) incorporates the phylogenetic variance–covariance struc
ture directly into the model. Both methods provide equivalent es
timates of significance levels (Blomberg et al. 2012).

To simulate trait evolution, we included phylogenetic signal 
into the linear model by simulating x and ϵ according to a 
multivariate normal (MVN) distribution with mean zero and 
an n × n phylogenetic variance–covariance matrix C, which 
is defined according to a specific species tree or gene tree 
(Grafen 1989; Martins and Garland 1991; Martins 1996). 
When denoting the data generating process, we use the sub
script S for traits with signals matching a species tree S and 
the subscript G for traits with signals matching a gene tree 
G. Therefore, to generate trait data with phylogenetic signal 
according to a tree Tɛ{S, G}, we used

yT = xTβ + ϵT 

xT ∼ MVN(0, CT) 

ϵT ∼ MVN(0, CT) 

where both xT and ϵT are distributed as MVN with mean 
n-dimensional vector 0 containing all zero elements and phylo
genetic variance–covariance CT defined according to tree T. 
Note that when β = 0, the response trait is simply distributed 
as yT ∼ MVN(0, CT), representing independent Brownian 
motion evolution for both yT and xT on the same tree. After gen
erating trait data with these two data generating models (one ac
cording to T = S and another according to T = G), phylogenetic 
regression was conducted by computing PICs using either the 
species tree S or the gene tree G, allowing us to explore scenarios 
of tree mismatch in which the data generating process and the 
assumed phylogeny for PICs are different (details provided be
low). To assess false positive rates under different scenarios, 
we set the true regression coefficient β = 0, whereas a nonzero 
β ≠ 0 was used to evaluate statistical power.

To investigate impacts of tree choice for phylogenetic re
gression, we compared “matched” regression (Fig. 1c and 
d), for which the same tree is used to generate and compute 
PICs, and “mismatched” regression, for which different trees 
are assumed to generate and compute PICs (Fig. 1e and f). 
We conducted a multifactorial simulation study to investigate 
a range of scenarios with increasing probabilities of tree mis
match due to ILS. Our overall simulation protocol can be de
scribed in four steps: (1) a species tree S is generated using a 
diversification process (Yule 1925), (2) a gene tree G is simu
lated according to the multispecies coalescent with the species 
tree S obtained from Step 1, (3) traits are simulated using the 
phylogenetic variance–covariance matrix CS from the species 
tree obtained from Step 1 to obtain yS and xS, or using CG 

from the gene tree from Step 2 to obtain to obtain yG and 
xG, and (4) phylogenetic regression is applied to the simulated 
trait data (Fig. 1) with either matched or mismatched trees. 
That is, the opportunity for mismatch occurs in Steps 3 and 

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 1. Illustrating the phylogenetic conundrum. Examples showing species tree and gene tree pairs (a and b) and their associated data generating models 
(center) for scenarios in which both traits are generated according to the species tree S (top row) or the gene tree G (bottom row). Thus, the true 
generating tree is shown on the left in (a) and (b). Branch colors (a and b) illustrate values of the response trait y when mapped to the respective tree using 
the contMap function from phytools. Two examples (random replicates) of matched phylogenetic regression are shown for SS (c) and GG (d), in which the 
same tree was used for both generating the trait data and computing PICs, and two examples (random replicates) of mismatched regression are shown 
for SG (e) and GS (f), in which different trees were used for generating the trait data and computing PICs.
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4 when computing PICs using an incorrect tree that is unre
lated to the data generating process of the studied traits. 
When the same tree is used in Steps 3 and 4, the scenario rep
resents matched regression because the same tree used to simu
late the traits is also used to compute PICs. Conversely, when 
different trees are used for Steps 3 and 4, the scenario repre
sents mismatched regression, as the assumed tree is not the 
tree that generated the data (e.g. a species tree is assumed for 
traits simulated on a gene tree).

Our simulation approach examined four distinct scenarios: 
matched gene tree–gene tree (GG), matched species tree–species 
tree (SS), mismatched gene tree–species tree (GS), and mis
matched species tree–gene tree (SG), where the first tree in 
each pair indicates the tree used to simulate traits, and the se
cond tree is assumed for phylogenetic regression (Fig. 1). For ex
ample, GG represents the matched scenario for which the same 
gene tree G is used to both generate traits and compute their 
PICs using yG and xG, whereas GS is mismatched because a 
gene tree G is used to generate yG and xG, but the species tree 
S is incorrectly assumed for their PICs. Likewise, both yS and 
xS traits and their PICs are generated with the same species 
tree for SS scenarios, whereas SG represents tree mismatch be
cause the traits yS and xS are both generated via the species 
tree, but a gene tree is incorrectly assumed. Thus, we evaluated 
phylogenetic regression with two forms of correctly specified 
models (GG and SS) and with two forms of incorrectly specified 
models (GS and SG; Fig. 1).

Throughout our simulations, we varied both the total 
number of taxa n ∈ {10, 100, 1, 000} and speciation rate λ ∈ 

{10−4, 10−3, . . . , 102} used to simulate the species trees. This 
strategy allowed us to effectively incorporate variability in the 
expected amount of phylogenetic conflict due to ILS, as λ is in
versely proportional to the expected branch lengths in the spe
cies tree. Slow rates (λ = 10−4) yield long internal branch 
lengths and lower ILS, whereas fast rates (λ = 102) generate 
short internal branch lengths, exacerbating ILS. We generated 
species trees under a birth–death model in which the death 
rate was set to half the speciation rate; we also investigated a 
simple pure-birth model of diversification (Yule 1925) with 
zero death rates. We employed the R package TreeSim 
(Stadler 2011) using the sim.bd.taxa.age function with a most 
recent common ancestor age of either 1, 10, or 100 to generate 
species trees of varying depths. Therefore, both the number of 
species and the total tree height were held constant within 
each set of simulation conditions. The sim.coaltree.phylo func
tion in Phybase (Liu and Yu 2010) was used to simulate gene 
trees from species trees. Trait data were then simulated accord
ing to either S or G using the linear models described above for a 
total of 103 replicates for each value of λ and for each of the four 
scenarios GG, GS, SS, and SG. For each replicate, phylogenetic 
regression was conducted using PICs computed according to the 
four scenarios (Fig. 1) using the pic function provided in the soft
ware package APE (Paradis and Schliep 2019). We evaluated the 
false positive rates for each scenario by setting the true regres
sion coefficient β = 0 and quantifying the number of replicates 
with P-value < 0.05 that incorrectly reject the null hypothesis, 
whereas four values of nonzero β ∈ {0.25, 0.50, 0.75, 1.0} 
were used to investigate statistical power for correctly rejecting 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Fig. 2. Tree mismatch exacerbates evidence of false trait associations with phylogenetic regression. Estimates of the false positive rate (a to c), P-value 
distributions for GS (d to f), P-value distributions for SG (g to i), means and standard deviations of Robinson–Foulds (j to l), and Hellinger (m to o) between 
gene trees and species trees from simulations including 10 species (top row), 100 species (middle row), and 1,000 species (bottom row) for birth–death 
simulations with birth rate λ, death rate λ/2, and root age of 10 coalescent units. The two traits were statistically independent (β = 0) for all simulations. 
Dashed horizontal lines mark the commonly used false positive rate α = 0.05 in (a) to (c), median P-values taken from matched GG scenarios in (d) to (f), 
and median P-values from matched SS scenarios in (g) to (i). The y-axis ranges from 0 to 1 in all panels.
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the null hypothesis when β ≠ 0. To provide context on the de
gree of tree discordance, we computed Robinson–Foulds distan
ces (Robinson and Foulds 1981) and probabilistic Hellinger 
distances (Pardo 2005; Adams et al. 2021) between the gene 
tree and species tree for each replicate. The Robinson–Foulds 
metric considers only the topological distance between two 
trees, whereas Hellinger measures the distance between two 
MVN distributions based on models of trait evolution.

Simulations with Known Trees and Complex 
Architectures
Our first array of simulations described above applied simple ar
chitectures in which traits were generated according to a single 
species tree or alternative, a single gene tree (Fig. 1). We also con
ducted a case study that explored more complex architectures in 
which trait data were generated according to multiple gene trees, 
which is expected for some continuous traits. For these simula
tions, we followed the same general protocol as above with the 
addition of the seastaR approach (Hibbins et al. 2023), by com
puting a phylogenetic variance–covariance matrix C∗

T as a 
weighted mean of the individual gene tree variance–covariance 
matrices taken from a set T of t different gene trees. The primary 
change is that we used C∗

T instead of CS (a single species tree S) 
or CG (a single gene tree G) to generate the traits. More specif
ically, the traits were encoded by t gene trees, each with equal 
contribution. We conducted four case study simulations in 
which the number of gene trees t ∈ {2, 5, 10, 100} varied 
to represent traits with architectures encoded by 2, 5, 10, or 
100 genomic loci and their associated gene trees.

Here, we explored matched scenarios in which the same 
generating C∗

T was used to both simulate traits and conduct 
phylogenetic regression. We also investigated two additional 
scenarios of mismatched regression: (i) one C∗

T was used to 
simulate the traits, and a different C∗

T ′ was generated from a 
separate set T ′ of t different gene trees that was incorrectly as
sumed for phylogenetic regression, and (ii) one C∗

T was used to 
simulate the traits, and the species tree CS was incorrectly as
sumed for regression. We refer to these three scenarios as 
matched gene trees (i.e. same C∗

T used for both simulation 
and inference), mismatched gene trees (i.e. different sets of 
gene trees C∗

T and C∗
T ′ for simulation and inference), and mis

matched species tree (i.e. CS used for inference instead of the 
true C∗

T ), respectively. We conducted phylogenetic regression 
using PGLS (Grafen 1989; Martins and Garland 1991; 
Martins 1996) using the gls function in the R package nlme 
(Pinheiro et al. 2017) because the pic function requires strictly 
bifurcating trees. Importantly, the regression slope estimates 
and levels of significance are equivalent with PGLS and PIC 
under Brownian motion (Blomberg et al. 2012). For these ana
lyses, the same birth–death process was used to simulate spe
cies tree with a depth of 10 coalescent units and either 10 or 
100 species, and we focused on assessing false positive rates 
when β = 0 with 103 replicates for each value of the birth 
rate λ ∈ {10−4, 10−3, . . . , 102}.

Simulation Case Study: How Does Phylogenetic 
Estimation Error Influence Mismatch?
Results obtained when using true trees may not hold when in
stead using estimated trees, which is important for empirical 
studies. Thus, in addition to simulations that utilized known 
phylogenies (i.e. those without estimation error), we also con
ducted a simulation case study that incorporated phylogenetic 

estimation error. We followed the above simulation protocol 
but included additional steps for estimating gene trees and spe
cies trees. Though a multitude of parameters are likely to influ
ence tree estimation and error, we chose several factors 
predicted to be important while ensuring computational feasi
bility. The first three steps of our simulation protocol for this 
case study are analogous to those of the simulations described 
above for known trees: (i) simulate a species tree with varying 
speciation rate λ, (ii) simulate 10 gene trees for each species 
tree from Step i, and (iii) simulate continuous traits using ei
ther the known species tree from Step i (SS and SG scenarios) 
or a known gene tree from Step ii (GG and GS scenarios). 
Next, we added components for estimating gene trees and spe
cies trees: (iv) simulate 2.5 kb alignments for each of the 10 
gene trees using an HKY model with a molecular clock and 
per-base population-scaled mutation rate θ = 0.01, transi
tion/transversion ratio of 4.6, and base equilibrium frequen
cies of fA = 0.3, fC = 0.2, fG = 0.2, and fT = 0.3 for 
nucleotides A, C, G, and T, respectively, (v) estimate gene trees 
using IQ-TREE2 (Minh et al. 2020), (vi) infer a species tree 
with the gene tree estimates from Step v using STELLS2 (Pei 
and Wu 2017), and (vii) conduct phylogenetic regression using 
either the estimated species tree from the Step vi or the esti
mated gene tree from Step v for computing PICs. Because 
our simulations were conducted using a molecular clock, esti
mated gene trees were midpoint rooted. Therefore, this simu
lation protocol matches our above simulations with the 
addition of gene tree estimation (Step v) and species tree infer
ence (Step vi), with phylogenetic regression conducted using 
these estimated trees instead of the known trees. For this 
case study, we focused on the impacts of phylogenetic estima
tion error on false positive rates of phylogenetic regression by 
simulating two statistically independent traits with β = 0. 
Because STELLS2 requires at least two samples per species 
to estimate external branch lengths, the known gene trees si
mulated in Step ii and estimated in Step v include two samples 
per species for STELLS2. However, for both simulating trait 
data and fitting regression models, we pruned these trees to in
clude only one lineage sampled per species to allow direct com
parisons of regression models on gene trees versus species trees 
with the same numbers of lineages. Because of the computa
tional requirements needed to simulate this multistep experi
ment (species tree to gene trees to sequence alignments to 
inferences of each), we generated 102 replicates with n = 10 
species for each λ ∈ {10−4, 10−3, . . . , 102}.

An Empirical Best-Case Study: Does Tree Choice 
Impact Gene Expression Phylogenetic Regression?
Our simulations revealed evidence of profound bias with mis
matched models for traits with both simple and complex ar
chitectures, and when using known and estimated trees (see 
Results). Given these findings, we sought to explore the empir
ical impacts of tree choice for a best-case scenario in which one 
might be able to better match tree with trait. PCMs have 
gained recent promise for providing exciting insights into the 
origins and evolution of functional genomic traits (e.g. 
Rohlfs and Nielsen 2015; Chen et al. 2019; Bastide et al. 
2023; Bertram et al. 2023; Dimayacyac et al. 2023; Adams 
et al. 2024). We sought to use gene expression evolution as 
an example of a best-case scenario because one might predict 
that it should, at least in theory, be easier to match the expres
sion trait of a given gene to one specific tree—either the species 
tree or respective gene tree.
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We explored the effects of phylogenetic tree specification on 
tests of trait association using an empirical gene expression da
taset from 11 female and male tissues in eight mammals and 
chicken (Brawand et al. 2011). In particular, we obtained nor
malized gene expression abundance measurements computed 
in reads per kilobase of exon model per million mapped reads 
(RPKM; Mortazavi et al. 2008) from female and male brain 
(whole brain without cerebellum), female and male cerebel
lum, female and male heart, female and male kidney, female 
and male liver, and testis in human (Homo sapiens), chimpan
zee (Pan trogodytes), gorilla (Gorilla gorilla), orangutan 
(Pongo pygmaeus abelii), macaque (Macaca mulatta), mouse 
(Mus musculus), opossum (Monodelphis domestica), platypus 
(Ornithorhynchus anatinus), and chicken (Gallus gallus; 
Brawand et al. 2011). We focused our comparisons by restrict
ing analyses to the most conservative 5,321 orthologous 
genes, or those with constitutive exons that aligned across 
all nine species in the original dataset (Brawand et al. 2011), 
and computed the median expression level for tissues contain
ing multiple replicates.

To understand the impacts of tree specification on phylo
genetic regression, we obtained the estimated species tree 
from Brawand et al. (2014) and estimated gene trees from nu
cleotide and amino acid alignments downloaded from the 
UCSC Genome Browser (Navarro Gonzalez et al. 2021) at 
http://www.genome.ucsc.edu. Specifically, the UCSC align
ments included all protein-coding exons in human 
(GRCh38/hg38) and 99 vertebrates (Blanchette et al. 2004; 
Dreszer et al. 2012), from which we extracted those pertaining 
to 5,267 genes in the nine species considered here. We con
catenated the nucleotide and exon alignments for each gene 
and constructed gene trees by applying PhyML (Guindon et 
al. 2010) with default parameters to these alignments. The 
species tree and all gene trees were scaled to unit depth. We in
vestigated the statistical performance of phylogenetic regres
sion in three experimental settings: expression in female 
brain–male brain, female heart–male heart, and female kid
ney–male kidney. For each experiment, we conducted PIC re
gression based on log-transformed RPKM values across the 
nine species and assessed relationships between tissues via evi
dence of statistical significance (P-values).

Specifically, we evaluated impacts of tree choice when 
modeling female and male expression evolution across spe
cies. For each gene, we conducted phylogenetic regression to 
test associations between male and female expression in 
three separate analyses based on phylogenetic regression 
fit to: (i) the species tree, (ii) the gene tree inferred from nu
cleotide sequences, and (iii) the gene tree inferred from ami
no acid sequences. To explore genome-wide patterns and 
identify interesting case studies, we also computed three dis
tance statistics: dS, dN, and dA representing analyses that as
sumed the species tree (ST), the nucleotide gene tree (NT), 
and the amino acid gene tree (AT), respectively. These sta
tistics have the forms

dS =
D(ST, NT) + D(ST, AT) − D(NT, AT)

2 

dN =
D(NT, ST) + D(NT, AT) − D(ST, AT)

2 

dA =
D(AT, ST) + D(AT, NT) − D(ST, NT)

2 

where D(Tree 1, Tree 2) = |log10(PTree 1) − log10(PTree 2)| rep
resents the magnitude of the difference between the log- 
transformed P-values of a pair of trees. Thus, each distance 
statistic will evaluate whether the P-value for a given analysis 
tree is substantially different from the P-values of the other 
two trees. These measures are akin to those that have been 
used for identifying population branches with extreme differ
ences using allele frequency (Shriver et al. 2004; Yi et al. 
2010) or expression (Assis 2019; Jiang and Assis 2020) data. 
We applied these measurements here to identify genes that ap
pear particularly sensitive to tree choice. For example, a large 
dA value might reflect scenarios in which regression is strongly 
significant (P-value < 10−6) based on the amino acid tree, but 
not significant in the nucleotide or species tree-based regression 
(P-value > 0.05).

Investigating a Potential Robust Path Forward
We recently found promise in the application of robust esti
mators for improving the resistance of phylogenetic regres
sion to evolutionary outliers (Adams et al. 2024). Given 
these findings, we sought to assess whether a robust estimator 
may yield comparatively better performance than standard 
L2-based phylogenetic regression, which minimizes the 
mean squared error of predictions and is thus sensitive to out
liers. To address this question, we employed the robust L1 es
timator, which instead minimizes the mean absolute error 
(Rousseeuw and Yohai 1984), helping to alleviate false posi
tive rates associated with strong outliers by de-emphasizing 
large residuals. We applied L1-based regression to the same 
simulation conditions as before with n ∈ {10, 100, 1, 000} 
species and varying levels of tree mismatch for known (simu
lated) trees, our case study that included gene tree estimation 
in addition to tree mismatch with n = 10 species, and finally, 
our empirical case study.

Results
Illustrating the Phylogenetic Conundrum
We chose two simulation replicates to illustrate this phylogen
etic conundrum (Fig. 1). For these examples, we simulated a 
species tree S and an associated gene tree G given the multispe
cies coalescent process on S. We then simulated two statistic
ally independent (β = 0) traits x and y using the species 
tree S (Fig. 1; top row), and separately using the gene tree G 
(Fig. 1; bottom row). Here, we show two examples of matched 
models in which the same tree was used to both generate and 
analyze the trait data (Fig. 1c and d). Likewise, we provide two 
examples of mismatched regression models in which the traits 
were generated according to the species tree, but the gene tree 
was incorrectly assumed for PICs (Fig. 1e), and the alternative 
scenario in which the traits were generated according to the 
gene tree, but the species tree was incorrectly assumed 
(Fig. 1f). P-values from matched phylogenetic regression SS 
(Fig. 1c) and GG (Fig. 1d) were not statistically significant, 
consistent with the null hypothesis of independence (β = 0). 
However, both examples of mismatched phylogenetic regres
sion based on SG (Fig. 1e) and GS (Fig. 1f) were statistically 
significant, yielding a false positive result due to the wrong 
tree choice. In these examples, the degree of false significance 
was higher for GS than for SG, as demonstrated by their 
P-values. Comparing the trait mappings provides some intu
ition, with evidence of hemiplasy when a trait is mapped to 
the incorrect tree (Fig. 1a and b).
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Impacts of Tree Mismatch on False Positive Rates of 
Phylogenetic Regression with Simple Architectures
Across our simulations, we found evidence of strong biases 
with incorrectly mismatched phylogenetic regression (GS 
and SG) compared to correctly matched regression (GG and 
SS; Fig. 2, supplementary figs. S1 and S2, Supplementary 
Material online). Specifically, false positive rates for GS and 
SG (red and orange) were higher than those for matched GG 
and SS (black), which yielded acceptable false positive rates 
of ∼5% across all simulations (Fig. 2a to c). Thus, assuming 
the incorrect tree tended to mislead phylogenetic regression 
to reject the null hypothesis when the two traits were statistic
ally independent (β = 0). The impact of phylogenetic mis
match was exacerbated with more species (Fig. 2a to c; top 
to bottom), shorter tree depths (Fig. 2, supplementary figs. 
S1 and S2, Supplementary Material online), and as the ex
pected amount of ILS increased: false positive rate increased 
with speciation rate for both GS and SG (Fig. 2a to c; left to 
right in each panel). Specifically comparing the two mis
matched scenarios (GS vs. SG) revealed evidence of higher 
false positive rates for GS (red) than for SG (orange) across 
our simulations (Fig. 2, supplementary figs. S1 and S2, 
Supplementary Material online). That is, performance was 

worse when incorrectly assuming the species tree for traits 
generated from a gene tree (GS) than the reverse situation in 
which an incorrect gene tree was assumed for traits generated 
from a species tree (SG). The severity of false positive rate in
flation was influenced by the overall depth of the species tree, 
with shorter tree depths exacerbating false positive rates com
paratively (supplementary fig. S1, Supplementary Material
online vs. Fig. 2 vs. supplementary fig. S2, Supplementary 
Material online). Our results were similar when simulations 
under pure-birth and birth–death models (comparing Fig. 2
and supplementary fig. S3, Supplementary Material online). 
These findings were consistent with the overall distributions 
of P-values (Fig. 2d to i), and these impacts reflected topologic
al (Fig. 2j to l) and probabilistic (Fig. 2m to o) distances be
tween gene trees and species trees.

Complex Architectures and Mismatched 
Phylogenetic Regression
Our simulation study with more complex architectures for traits 
encoded by 2, 5, 10, or 100 loci continued to mirror these results 
(Fig. 3). We found unacceptably high false positive rates for mis
matched models across all tree sizes (10, 100, or 1,000 species; 
rows in Fig. 3) and architectures (2, 5, 10, or 100 loci; columns 

(a) (d) (g) (j)

(b)

(c)

(e)

(f)

(h)

(i)

(k)

(l)

Fig. 3. Tree mismatch misleads phylogenetic regression for traits with more complex architectures. Estimates of the false positive rates from simulations 
including 10 species (top row), 100 species (middle row), and 1,000 species (bottom row) for birth–death simulations with birth rate λ, death rate λ/2, and 
root age of 10 coalescent units for mismatched species tree regression (red lines), mismatched gene tree regression (pink links), and matched gene tree 
sets (black lines). Results shown for traits encoded by two loci (a to c), five loci (d to f), 10 loci (g to i), and 100 loci (j to l). The two traits were statistically 
independent (β = 0) for all simulations. Horizontal dashed lines mark the commonly used false positive rate of α = 0.05.
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in Fig. 3) that were amplified with higher amounts of ILS (left to 
right on x-axes in Fig. 3). As with single tree regression (Fig. 2), in
creasing the sample size (i.e. increasing the number of species) only 
made the situation worse. Moreover, both scenarios of tree 
mismatch (i.e. red and pink lines in Fig. 3) tended to produce 
high false positive rates compared to the appropriate false 
positive rate for correctly matched gene tree sets (black lines; 
Fig. 3). However, incorrectly assuming a species tree tended to 
generate higher false positive rates than assuming an incorrect 
gene tree set (red vs. pink; Fig. 3). Increasing the architecture 
complexity (i.e. the number of loci encoding a trait; left to 
right columns in Fig. 3) yielded slight improvements, though 
false positive rates remained substantially higher than the typ
ical α = 0.05 cutoff for many scenarios. With large trees (100 
or 1,000 tips), even the smallest birth rates still exhibited re
markably high false positive rates. For example, false positive 
rates were estimated at ∼50% for 1,000-tip trees with a birth 
rate of λ = 10−3 (Fig. 3c).

Simulation Case Study: Phylogenetic Estimation 
Error and Tree Mismatch Together
Regardless of whether known (Fig. 4a) or estimated (Fig. 4b) 
trees are assumed, mismatched regression amplified false posi
tive rates. Perhaps expectedly, we found higher false positive 
rates when using estimated versus known phylogenies in 
many cases. Estimation error tended to increase false positive 
rates for matched GG and SS phylogenetic regression (black 
lines; Fig. 4). The effects of estimation error on these matched 
scenarios were still less pronounced than those on mismatched 
GS and SG (red and orange lines; Fig. 4), however. Increasing 
the speciation rate tended to exacerbate false positive rates for 
all GG, SS, GS, and SG scenarios with estimated trees (Fig. 4b), 
whereas known matched regression scenarios (GG and SS) 
were unaffected (Fig. 4a). Comparing differences between 
log-scaled P-values of known and estimated trees further high
lighted these findings (Fig. 4c), with the largest differences be
tween known and estimated analyses observed in the matched 
SS, followed by SG, GG, and GS. This result likely reflects the 
higher relative false positive rates for SS when using estimated 
versus known trees (black lines; Fig. 4b), whereas known 
matched analyses demonstrate acceptable false positive rates 
of 0.05 (black lines; Fig. 4a). In these scenarios, phylogenetic 
regression with GS and SG were strongly influenced by tree 

mismatch with known trees and estimated trees (red and or
ange lines in Fig. 4a and b).

Tree Mismatch and Statistical Power of Phylogenetic 
Regression
Next, we evaluated the potential for phylogenetic mismatch to 
influence the power of regression to detect trait associations 
when β > 0. When compared with false positive rates, the effects 
of mismatched trees on power appear to be less dramatic and 
fluctuate depending on the value of β and number of species 
(Fig. 5). In many cases, however, we found evidence that mis
matched regression can decrease power. This finding is perhaps 
most apparent in our simulations with and 100 species (Fig. 5e), 
as well as with and 1,000 species (Fig. 5c), in which mismatched 
GS scenarios demonstrated comparatively lower power (red 
lines; Fig. 5). Mismatched SG scenarios also exhibited lower 
power than matched regression in some examples (orange vs. 
black; Fig. 5). However, impacts were less apparent for species 
trees that were smaller (n = 10; top row of Fig. 5) and deeper 
(Fig. 5 vs. supplementary fig. S4, Supplementary Material online 
vs. supplementary fig. S5, Supplementary Material online).

Empirical Case Study: Investigating Phylogenetic 
Mismatch and Gene Expression Data
Most apparent in our exploration of phylogenetic regression 
using mammalian gene expression data are the differences in 
inferred significance depending on tree choice (Fig. 6a to c). 
For instance, in heart tissue, we observed the smallest number 
of outliers (red points) for the statistic corresponding to ana
lyses using the species tree (Fig. 6a; 38 genes), followed by 
for analyses using the nucleotide gene tree (Fig. 6b; 107 genes), 
and finally by for analyses using the amino acid gene tree 
(Fig. 6c; 643 genes). Thus, using the amino acid gene tree 
for phylogenetic regression resulted in the identification of 
many more significantly associated genes in female and male 
heart tissue than using either the species tree or nucleotide 
gene tree.

These genome-level explorations also allowed us to identify 
the largest outlier genes based on their values of dS, dN, and dA 

and (Fig. 6d to f). The largest outlier based on dS was 
UQCR11 (Fig. 6d), which is involved in the mitochondrial 
electron transport chain. All three analyses revealed a positive 
relationship between female and male expression in this gene, 

(a) (b) (c)

Fig. 4. Case studying the impacts of both tree mismatch and tree estimation error on phylogenetic regression. Depicted are false positive rates of the two 
mismatched scenarios (GS and SG) and the two matched scenarios (GG and SS) when regression was performed with known trees (a) and estimated 
trees (b) for n = 10 species. Difference between log-scaled P-values obtained with known and estimated trees (c).
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though with much weaker significance when using the species 
tree than when using either of the two gene trees (Fig. 6d). The 
largest outlier based on dN was RAB14 (Fig. 6e), which is in
volved in intracellular membrane trafficking. For this gene, the 
nucleotide tree yielded a highly significant negative relation
ship between female and male expression, whereas the other 
two trees did not produce significant results (Fig. 6e). 
Finally, the largest outlier based on dA was TBCC (Fig. 6f), 
which is one of four genes involved in the pathway leading 
to correctly folded beta-tubulin from folding intermediates. 
For this gene, the amino acid tree regression produced a highly 
significant positive relationship between female and male ex
pression, whereas the other two analyses did not yield a signifi
cant association (Fig. 6f).

Next, we evaluated overlap in statistically significant genes 
estimated using the three regression strategies (i.e. assuming 
the species tree, nucleotide tree, or amino acid tree) across tis
sues. We first considered the fraction of significant (P-value < 
0.05) analyses from a tissue-level perspective. For each of three 
tissues considered (brain, heart, and kidney), we found sub
stantial overlap in the percentages of genes with estimates of 
significant relationships between female and male expression 
(Fig. 7). That is, within a given tissue, the fractions of signifi
cant genes were similar for regression based on the species tree, 
amino acid tree, and nucleotide tree. However, consistent with 
our previous findings in heart (Fig. 7a to c), phylogenetic 

regression based on the amino acid gene tree yielded the largest 
percentage of uniquely significant genes for all tissues, with 
24%, 23%, and 22% significant for brain, heart, and kidney, 
respectively (Fig. 7). Given these results, we then computed 
log-likelihoods of the fitted phylogenetic regression model 
for the three tissues and the three strategies. All three tissues 
agree that model fit was highest on average when assuming 
the species tree, followed by the nucleotide tree, and finally 
the amino acid tree (Fig. 8). That is, phylogenetic models 
tend to fit the species tree best and the amino acid tree worst, 
with the nucleotide tree fit representing an intermediate. Thus, 
suggesting that excess of uniquely significant genes for phylo
genetic regression using the amino acid tree may be due to a 
poor fit.

Exploring the Potential for Robust Phylogenetic 
Regression
We found evidence that robust L1-based regression can reduce 
false positive rates, at least compared to conventional 
L2-based regression for both known (Fig. 9a to c) and esti
mated trees (Fig. 9d). In particular, L1-based regression 
yielded comparatively fewer false positives for GS (solid vs. 
dashed red lines; Fig. 9) and SG (solid vs. dashed orange lines; 
Fig. 9) under most conditions of mismatched regression. When 
considering our analyses of simulations that used estimated 

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

Fig. 5. Tree mismatch influences power to detect true trait associations. Estimates of true positive rates for 10 species (top row), 100 species (middle 
row), and 1,000 species (bottom row) for birth–death simulations with birth rate λ, death rate λ/2, and root age of 10 coalescent units. Results are shown 
for β = 0.25 (a to c), β = 0.50 (d to f), β = 0.75 (g to i), and β = 1.0 (j to l).
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rather than known trees, we still found relatively lower false 
positive rates when L1 phylogenetic regression (Fig. 9d), albeit 
to a lesser degree. Reflecting on our empirical case studies, we 
found several interesting differences between robust L1-based 
and conventional L2-based regression when assuming 

different trees (Fig. 10). In several examples, L1-based regres
sion yielded comparatively smaller P-values (i.e. higher signifi
cance), sometimes leading to the inferences of statistically 
significant relationships not identified by L2-based regression 
(Fig. 10a to c). In others, L1-based regression returned 

(a)

(b)

(c)

(f)

(e)

(d)

Fig. 6. Tree choice matters when testing female–male expression associations across species. Results shown across 22 autosomes for heart tissue 
expression measurements of 4,068 genes with measurable expression across species, with computed distance statistics dS (inner track a), dN(middle 
track b), and dA (outer track c) based on L2-based phylogenetic regression. Empirical case studies comparing phylogenetic regression based on the 
species tree (d), nucleotide gene tree (e), and amino acid gene tree (f) are shown for analyses with anomalously high dS, dN, and dA, respectively. Colors of 
points in circos plot (a to c) indicate relative level of divergent P-values, with blue indicating not significant, black indicating P-value <0.05, and red 
indicating strong outliers with P-value <1.229 × 10−5 after applying Bonferroni correction (Bonferroni 1936). Points depicted as gray stars indicate 
evidence of singular phylogenetic outliers found in specific analyses (d to f).

(a) (b) (c)

Fig. 7. Venn diagrams displaying the percentage of overlap in statistically significant genes for brain (a), heart (b), and kidney (c) expression levels in a 
mammalian dataset based on phylogenetic regression applied by assuming the species tree (left circles), nucleotide gene tree (top circles), or amino acid 
gene tree (right circles). Colors indicate the relative percentage of statistically significant genes across analyses.
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comparatively larger P-values, such that it did not find evi
dence of a significant relationship that was, however, inferred 
by L2-based regression (Fig. 10d to f).

Discussion
A choice of trees is always required when conducting phylo
genetic regression. Yet deciding on a particular tree is often 
difficult and unlikely to become easier anytime soon. 
Collectively, our analyses underscore these challenges and ex
pand our understanding of potential pitfalls of incorrect 
choices. To summarize, assuming the wrong tree may lead 
us to overestimate associations between traits that are truly in
dependent—regardless of whether we are considering shallow 
or deep trees, few or many species, simple or complex architec
tures, or known or estimated trees. That is, tree choice matters.

Our study is the first to present these findings for phylogenetic 
regression, and thus we focus on mismatch resulting from gene 
tree-species tree discordance—a topic that has held our field cap
tive for decades. Perhaps Hahn and Nakhleh (2016) stated it best: 
“The problems caused by ignoring variation in gene tree topolo
gies are manifest because these genes underlie variation in the 
traits we are studying”. Examining other potential sources of 

conflict (e.g. recombination, selection, and introgression) is argu
ably a worthwhile next step to incorporate other realistic proc
esses encountered in empirical data. Moreover, future studies 
with expanded simulations will help us better understand the 
simultaneous effects of tree mismatch and estimation error (i.e. 
expanding results shown in Fig. 4), though it is worth emphasiz
ing the computationally intensive and expensive demands of 
multilayered analyses spanning simulations and inferences of 
species trees, gene trees, sequence alignments, and trait evolution.

Mirroring similar evolutionary analyses (Hahn and Nakhleh 
2016; Mendes and Hahn 2016; Guerrero and Hahn 2018; 
Mendes et al. 2018, 2019; Hibbins et al. 2020, 2023), tests of trait 
associations are sensitive to tree conflict. Speciation rate was an 
important factor in determining the degree of severity, with faster 
rates (yielding higher false positive rates). Because the expected 
length of internal branches (i.e. time between speciation events) 
is inversely related to speciation rate, faster rates yield shorter in
ternal branches, which in turn can amplify phylogenetic conflict 
by providing less time for coalescent events in ancestral branches. 
This phylogenetic conflict is also reflected in the distance between 
the true and assumed tree, such that larger Robinson–Foulds and 
Hellinger distances were associated with higher false positive 
rates. Increasing the sample size (i.e. increasing the number of 

Fig. 8. Violin plots summarizing the distributions of model fit measured by log-likelihood for phylogenetic regression applied to gene expression from a 
mammalian dataset. Results shown across tissues (heart, brain, and kidney) and the three regression strategies that assume either the species tree, 
nucleotide gene tree, or amino acid gene tree.

(a) (b) (c) (d)

Fig. 9. Can robust estimators help? Results showing estimated false positive rates when using known trees with 10 species (a), 100 species (b), and 
1,000 species (c) for robust L1-based regression (dashed lines) alongside standard L2-based regression (solid lines) under birth–death simulations with 
birth rate λ, death rate λ/2, and root age of 10 coalescent units. Estimated false positive rates are also shown for L1- and L2-based regression with 
estimated trees for our simulation case study with n = 10 species (d). Horizontal solid gray lines mark the typically accepted false positive rate of 0.05.
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species) only made the situation worse, and yet small trees were 
certainly not immune. Statistical power to detect true trait asso
ciations appeared less affected by tree mismatch than false posi
tive rates, though future studies will be needed to better 
understand some of the patterns uncovered here. This phenom
enon of increasing true positive rate in some scenarios (Fig. 5) 
likely reflects the compounding effects of tree-trait mismatch 
and, which each contributes to signals of statistical associations 
between traits.

Another surprising trend emerged when specifically con
trasting the two mismatched models: false positive rates tended 
to be higher with GS than SG. That is, incorrectly assuming a 
species tree for traits simulated under a gene tree tended to be 
worse than the opposite. Neither mismatched model per
formed well, and yet our findings suggest that assuming an in
correct gene tree may represent a potential lesser of two evils in 
our explored scenarios. Dissecting this pattern further by com
paring PIC magnitudes for tree cherries (i.e. nodes with exactly 
two extant descendants) provided evidence of increasingly lar
ger contrasts for GS than GG regression (supplementary fig. S6, 

Supplementary Material online). Our simulations with com
plex architectures continued these results: incorrectly assuming 
the species tree nearly always amplified false positive rates, as 
did assuming an incorrect set of gene trees that were unrelated 
to studied traits. Artificially short branch lengths will inflate the 
influence of affected contrasts (Stone 2011), which is relevant 
to our findings here because branches in the species tree tend 
to be shorter than those of embedded gene trees.

Clearly, the reliability of an assumed tree is a major deter
minant of the reliability of an evolutionary hypothesis test. In 
an ideal world, one would always match the tree to the trait per
fectly (i.e. GG and SS), but this is neither always possible nor 
probable. When designing this study, we first focused on using 
known trees to isolate and understand the behavior of mis
matched regression. We then realized that we needed to con
sider an elephant in the room: in practice, phylogenetic 
regression is conducted using estimated rather than known 
trees. Of course, we seldom (if ever) estimate a phylogeny to 
perfection, and our findings argue for increased vigilance 
against both tree mismatch and estimation error. Gene tree 

(a)

(c)

(b)

(d)

(f)

(e)

Fig. 10. Can robust estimators help with tree mismatch? Empirical examples from the mammalian gene expression data contrasting differences between 
standard L2-based (black lines) and robust L1-based (blue dashed lines) regression using the species tree (top row), nucleotide gene trees (middle row), 
and amino acid gene trees (bottom row).
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discordance was generally high in our simulation experiments 
(supplementary fig. S7, Supplementary Material online), which 
also likely influenced the accuracy of estimated species trees 
across the range of speciation rates explored here 
(supplementary figs. S8 and S9, Supplementary Material
online). Future simulation studies seeking to fully explore the 
scope and scale of tree mismatch and estimation error are likely 
to be valuable and yet quite demanding. Though focused for 
computational feasibility, our simulations nonetheless argue 
that mismatch and estimation error are important, and we 
found evidence of alarming biases in the presence of both.

Building on our simulation-based investigations, we explored a 
functional genomic dataset to investigate impacts of tree choice 
when modeling female–male expression relationships across spe
cies. Because gene sequence and expression divergence are corre
lated (Duret and Mouchiroud 2000; Pál et al. 2001; Subramanian 
and Kumar 2004; Lemos et al. 2005; Assis and Kondrashov 
2014), expression is typically assumed to evolve more or less ac
cording to an associated local gene tree. Thus, we used our empir
ical case study as a best-case scenario in which one might have a 
fighting chance of matching tree with trait. Perhaps most appar
ent in these analyses is the potential for stark differences in regres
sion significance depending on the assumed tree. In this case, the 
empirical findings paint a somewhat different picture than what 
we observed from our simulations, showing that assuming the 
species tree was often most conservative. Though it unfortunately 
can be difficult to achieve synchrony between simulated and em
pirical results, we suspect that a number of factors could be at play 
here, including the complexities of regulatory mechanisms con
tributing to gene expression evolution, as well as the estimation 
of both gene and species trees. Clearly, the choice of a tree matters 
even in these scenarios. Our comparisons of tree distances may 
help explain some of these findings, as the lowest distances 
were observed between nucleotide gene trees and the species 
tree (supplementary fig. S10, Supplementary Material online). 
Likewise, quantile–quantile (QQ) plot comparison of P-value dis
tributions also suggests differences in inferred significance based 
on the tree chosen for phylogenetic regression (supplementary fig. 
S11, Supplementary Material online). Given that mutation 
and recombination rates are on similar scales in mammals 
(McVean et al. 2004; Keightley and Eyre-Walker 2007; Kong 
et al. 2010), the propensity for intragenic recombination events 
is likely, violating another standard assumption of phylogenetic 
inference.

In light of our findings, it is interesting to consider the mecha
nisms underlying variation in traits and their phylogenetic archi
tectures. Popular models of continuous trait evolution based on 
extensions of Brownian motion are designed to capture phenom
ena affecting the mean and variance of traits within a lineage 
(Felsenstein 1988; Revell and Harmon 2008; Blomberg et al. 
2020). Thus, assuming the overall species tree might be justifiable 
for traits that adhere to canonical assumptions of quantitative 
genetic models. Recently, studies have also argued for more 
mechanistic frameworks in which traits are encoded by architec
tures composed of a single or perhaps multiple gene trees under a 
neutral model of evolution (Hibbins et al. 2023; Schraiber et al. 
2024). Natural selection, however, acts directly on variation in 
traits, and therefore indirectly on the genealogical history and 
architecture encoding the traits (Lande 1976). How PCMs be
have under such conditions remains an open question, and mod
els that incorporate the ancestral selection graph may prove 
helpful here, though it is worth noting the computational difficul
ties involved (Krone and Neuhauser 1997; Brandt et al. 2024).

Flaws are often much easier to find than solutions; seldom is it 
satisfying to simply point out issues without offering at least a 
hope of a remedy. We found that to be the case here. While 
the primary purpose of this study was to provide a first perspec
tive on the dangers of tree mismatch, we also explored the prom
ise of robust phylogenetic regression, which improved inferences 
for both known and estimated trees. Additionally, we illustrated 
several examples of large differences between P-values obtained 
with L1- and L2-based regression, most of which altered conclu
sions about tested relationships between male and female ex
pression. Our findings suggest that robust estimators might 
provide a potential, albeit imperfect, solution to some issues 
raised by tree mismatch. We can say with confidence that robust 
phylogenetic regression was never meant to be a panacea for all 
ailments that might afflict PCMs. Progress—not perfection—is 
the goal, and more studies are needed to explore the possibilities 
and space of phylogenetic mismatch and the potential for differ
ent types of robust estimators with different types of model vio
lations. Comparisons of log-likelihoods of matched and 
mismatched models also may hold clues for comparing phylo
genetic regression model fit (Fig. 8 and supplementary fig. S12, 
Supplementary Material online). Future studies that employ 
both robust estimators and other recent advances in phylogenet
ic modeling (e.g. phylogenomic comparative methods; Hibbins 
et al. 2023) may prove helpful in this context. Additionally, 
strategies for addressing evolutionary uncertainty (de 
Villemereuil et al. 2012; Fuentes-G et al. 2020; Bastide et al. 
2021; Zhang et al. 2024) may be promising, though such ap
proaches are not widely applied for such purposes and may still 
be sensitive to hemiplasy (Hahn and Nakhleh 2016; see 
Supplementary Case Study section and supplementary fig. 
S13, Supplementary Material online). Altogether, our findings 
underscore the difficulties of phylogenetic regression with uncer
tain trees and call for increased vigilance against phylogenetic 
mismatch—whether due to ILS, estimation error, or otherwise.

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.
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