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Abstract The rapidly expanding fleet of low-altitude CubeSats equipped with energetic particle detectors
brings new opportunities for monitoring the dynamics of the radiation belt and near-Earth plasma sheet. Despite
their small sizes, CubeSats can carry state-of-the-art instruments that provide electron flux measurements with
finer energy resolution and broader energy coverage, compared to conventional missions such as POES
satellites. The recently launched CIRBE CubeSat measures 250-6,000 keV electrons with extremely high
energy resolution, however, CIRBE typically only measures locally-trapped electrons and cannot directly
measure the precipitating electrons. This work aims to develop a technique for identifying indications of
nightside precipitation using the locally-trapped electron measurements by the CIRBE CubeSat. This study
focuses on two main types of drivers for nightside precipitation: electron scattering by the curvature of magnetic
field lines in the magnetotail current sheet and electron scattering by resonance with electromagnetic ion
cyclotron (EMIC) waves. Using energy and pitch-angle resolved electron fluxes from the low-altitude ELFIN
CubeSat, we reveal the features that distinguish between these two precipitation mechanisms based solely on
locally-trapped flux measurements. Then we present measurements from four CIRBE orbits and demonstrate
the applicability of the proposed technique to the investigation of nightside precipitation using CIRBE
observations, enabling separation between precipitation induced by curvature scattering and EMIC waves in
nearby regions. Our study underscores the feasibility of employing high-energy-resolution CIRBE
measurements for detecting nightside precipitation of relativistic electrons. Additionally, we briefly discuss
outstanding scientific questions about these precipitation patterns that could be addressed with CIRBE
measurements.

1. Introduction

Precipitation into the Earth's ionosphere is an important loss mechanism of the magnetospheric electrons. There
are two main mechanisms that can effectively scatter energetic electrons into the loss cone and cause enhanced
precipitation: wave-particle resonant interactions (R. Millan & Thorne, 2007; Shprits et al., 2008) and electron
scattering by magnetic field line curvature (Yahnin et al., 2016, 2017). Field line curvature scattering happens
predominantly around midnight, where the highly curved magnetic field associated with the magnetotail current
sheet can approach the geostationary orbit and induce long-term precipitation of energetic electrons within the
transition region between the outer radiation belt and plasma sheet (Murase et al., 2022; Newell et al., 1998;
Sergeev et al., 2012; Sivadas et al., 2019). As a result, the ratio of the precipitating electron fluxes to the trapped
fluxes is often observed to be close to unity at low altitudes in this transition region, and the equatorward boundary
of the precipitation region is known as the isotropy boundary (IB), the location of which is strongly dependent on
energy (Imhofetal., 1977; Sergeev et al., 1983). The net electron loss associated with IB accounts for a significant
fraction of the nightside (and total) electron loss of the outer radiation belt (Wilkins et al., 2023). Unlike wave-
particle interactions that only take effect in a limited energy range, electron precipitation caused by curvature
scattering at the IB can cover a wide energy range from ~ 100 keV to multi-MeV (Imhof et al., 1979). Conse-
quently, curvature scattering or IB competes with electron scattering caused by electromagnetic whistler-mode
waves at sub-relativistic energies (Artemyev, Neishtadt, & Angelopoulos, 2022; Gao et al., 2023; Tsai
et al., 2022) and electromagnetic ion cyclotron (EMIC) waves at relativistic energies (Artemyev et al., 2023;
Capannolo, Li, Millan, et al., 2022; H. Chen et al., 2023; Miyoshi et al., 2008; Nakamura et al., 2022; Shekhar
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et al., 2017; Yahnin et al., 2016) for the loss of magnetospheric electrons. Numerous efforts have been made to
simulate wave-particle interactions and their contribution to the radiation belt dynamics (see reviews by Li &
Hudson, 2019; Thorne et al., 2021, and references therein); however, there are still gaps in our understanding of
the characterization and quantification of the electron precipitation loss associated with IB.

Establishing reliable methods for estimating the field line curvature from near-equatorial spacecraft measure-
ments is the major challenge in the investigation of electron curvature scattering. The primary approaches here
include estimating the magnetic field gradients using multi-spacecraft measurements (Artemyev et al., 2016;
Sergeev etal., 2011; Tan et al., 2023; Vallat et al., 2005) and reconstructing the magnetic field configuration using
event-oriented empirical models (Kubyshkina et al., 2009, 2011; Sergeev et al., 2023) or machine learning al-
gorithms (Stephens et al., 2016, 2019). However, these two methods are not yet generalized for the statistical
investigation of IB locations and the efficiency of curvature scattering in energetic electron precipitation.
Currently, the most promising and widely used approach is through the detection of IB regions at low altitudes
(Dubyagin et al., 2002; Sergeev et al., 1993, 2015). Measurements from the Polar Operational Environmental
Satellites (POES) have been extensively studied for the determination of IBs (e.g., Capannolo, Li, Millan,
et al., 2022; Yahnin et al., 2016, etc.), but their limited number of energy channels and energy coverage (Evans &
Greer, 2004) make POES satellites nonideal for resolving the energy-dispersive IB characteristics in the radiation
belt. This gap can be filled by recent low-altitude CubeSat missions such as the Electron Losses and Fields
Investigation (ELFIN; see Angelopoulos et al., 2020), the Colorado Inner Radiation Belt Experiment (CIRBE; see
Li et al., 2022, 2024), and the future Realistic Electron Atmospheric Loss (REAL; see R. Millan et al., 2021,
2022). These new CubeSats are equipped with new-generation energetic particle detectors and can provide
electron measurements with fine energy resolution. Indeed, 3 years of ELFIN measurements have generated a
comprehensive data set of electron IBs, revealing detailed characteristics such as the occurrence rate, spatial
dependence and geomagnetic activity dependence (Wilkins et al., 2023). With the end of ELFIN era, CIRBE and
REAL may continue to measure the nightside electron precipitation driven by curvature scattering.

Energetic electrons within IBs have isotropic pitch angle distributions, because curvature scattering by the
magnetotail current sheet is always operating at strong diffusion limit (Sergeev et al., 2012, 2015). Specifically,
the scattering rate depends exponentially on electron energy (Birmingham, 1984; Biichner & Zelenyi, 1989),
leading to a sharp transition between strong diffusion and no precipitation (see Artemyev, Orlova, et al., 2013;
Young et al., 2008, for variations in curvature scattering diffusion rate with electron energy). In other words,
curvature scattering is unlikely to cause weak precipitation. Hence, monitoring electron precipitation within IBs
does not require measurements of the full pitch angle distribution. Alternatively, locally-trapped electrons that are
outside the bounce loss cone can also reflect the properties of IBs, provided that such IB regions can be identified
and distinguished from other precipitation patterns. This feature enables the utilization of the high-energy-
resolution CIRBE (Li et al., 2024) measurements for investigating electron IBs, in addition to the primary
mission goal of studying the inner belt electrons which leads to the design focus of CIRBE on measuring the
locally-trapped electrons with energies above 250 keV (Li et al., 2022). However, before utilizing CIRBE
measurements for in-depth analysis of electron IBs, it is necessary to establish a robust method for identifying
electron IBs using locally-trapped fluxes.

Since CIRBE/REPTile-2 measures electrons with energies above 250 keV, two issues must be addressed before
utilizing the CIRBE data set for routine investigations of electron IBs: (a) identifying distinguishing character-
istics for the high-energy part of IBs in the absence of measurements for typical plasma sheet electrons (<200keV,
see Artemyev, Angelopoulos, et al., 2022); (b) discerning between electron precipitations within IBs and rela-
tivistic electron precipitation induced by EMIC waves (see examples of such nightside precipitation patterns in
Artemyev et al., 2023; Capannolo et al., 2019; Capannolo, Li, Millan, et al., 2022). The second issue is especially
important for periods of substorm injections that transport plasma sheet ions into the inner magnetosphere and
drive EMIC waves in the premidnight sector (H. Chen et al., 2020; Jun et al., 2019, 2021). Such EMIC waves can
effectively scatter the relativistic electrons right equatorward of the electron IB and cause relativistic electron
precipitations (e.g., Artemyev et al., 2023; Capannolo et al., 2023), making the identification of IBs complicated.
Statistical analysis of POES measured relativistic electron precipitations in the nightside sector has found multiple
overlaps of EMIC-driven and curvature scattering precipitation patterns (see discussion in Capannolo, Li, Millan,
et al., 2022; Yahnin et al., 2017). Moreover, some EMIC-driven precipitation events even exhibit energy-latitude
dispersion (Grach et al., 2024), which is usually associated with curvature scattering (see Wilkins et al., 2023, and
references therein), adding more difficulty in the separation between 1Bs and EMIC-driven precipitations.
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This study aims to tackle two aforementioned challenges in IB identification using CIRBE measurements. Firstly,
we utilize ELFIN electron measurements of both precipitating and locally-trapped fluxes to delineate the IB
features expected in CIRBE measurements. Secondly, we combine CIRBE and POES measurements to elucidate
the similarity and differences in electron precipitations due to IBs and EMIC waves. We present a detailed
analysis of electron measurements from four nightside crossings of the CIRBE CubeSat during a substorm event
on 22 Jun 2023. Finally, we discuss possible mechanisms that are responsible for the observed electron pre-
cipitation on the nightside, including whistler-mode waves, curvature scattering and EMIC waves. Our cross-
analysis of the CIRBE, POES, and ELFIN data sets confirms that the high-energy-resolution CIRBE data can
be utilized for investigating the dynamics of energetic electrons in the near-Earth magnetotail and plasma sheet
region. In particular, our findings demonstrate that CIRBE measurements can reveal the fine energy dispersion in
electron IBs with locally-trapped flux only, indicating that the effect of electron curvature scattering, the primary
mechanism of electron loss in the transition region between magnetotail and radiation belt, can be identified by
the locally-trapped electron measurements at low altitudes. This result suggests that curvature scattering effec-
tively changes the anisotropy in electron flux within this region, and that it is necessary to include this effect in the
modeling of radiation belt dynamics.

2. Data Set Description

CIRBE is a 3U CubeSat recently launched into a sun-synchronous orbit with 97.4° inclination and 509 km altitude
(Li et al., 2022, 2024). The sole scientific instrument onboard is the Relativistic Electron and Proton Telescope
integrated little experiment-2 (REPTile-2) (Khoo et al., 2022). REPTile-2 inherited the design of REPTile on
CSSWE (Lietal., 2012, 2013, 2017; Li, 2024, Schiller et al., 2014; K. Zhang et al., 2017), with an improved time
resolution of 1 s and finer energy resolution. REPTile-2 measures 0.25-6 MeV electrons with 60 channels and
6.5-100 MeV protons with 60 channels. Khoo et al. (2022) provides a comprehensive description of the simulated
response of REPTile-2's energy channels to incident particles with different energies. In this paper, we are using
the incident energy based on the bowtie analysis as the particle's energy in each channel and thus the lowest
energy channel of electron is considered as 300 keV (see Khoo et al., 2022, for details). REPTile-2 has a field-of-
view of 51° and a look direction of nearly perpendicular to the background magnetic field, therefore, REPTile-2
measures perpendicular/90° fluxes, which are generally locally-trapped fluxes except in some particular regions
such as the northern conjugate of the South Atlantic Anomaly (SAA) region (K. Zhang et al., 2020).

Electron Losses and Fields Investigation (ELFIN) consists of two identical CubeSats and were launched into a
polar orbit with 93° inclination and 450 km altitude in 2018 (Angelopoulos et al., 2020). The Energetic Particle
Detector (EPD) onboard ELFIN provides electron measurements from 50 keV to 7 MeV with 16 channels and
resolves the pitch angle in 16 sectors. Therefore, ELFIN can measure the locally-trapped fluxes and precipitating
fluxes separately (e.g., X.-J. Zhang et al., 2022).

In this study, ELFIN measurements will be used to reveal the morphology of electron IB and EMIC-driven
precipitation as appeared in locally-trapped fluxes. Then we will present the nightside electron measurements
from 300 keV to 2 MeV by CIRBE during a substorm event in 22 Jun 2023. Figure 1a shows the profile of AE
index determined using THEMIS ground stations during this event. The vertical dashed lines mark the time of the
four CIRBE passes that will be discussed in this study. The orbit of CIRBE is mapped to the magnetic equator and
displayed in Figure 1b as the gray solid curves. The radial distance represents L value and the polar angle rep-
resents magnetic local time (MLT), both calculated under the IGRF model (Thébault et al., 2015). The four passes
used in this study is highlighted with color as noted in the figure. In addition, several other satellites are used as
supportive observations, including NOAA/POES satellites (Yando et al., 2011), GOES-18 (Boudouridis
et al., 2020) and KOMPSAT (Constantinescu et al., 2020; Magnes et al., 2020). The locations of these satellites
are also marked in Figure 1b.

3. Observations

3.1. ELFIN: Electron Isotropy Boundary and EMIC-Driven Precipitations

Figure 2 shows three examples of ELFIN crossings in the nightside, measuring the low-altitude projection of the
inner magnetosphere and plasma sheet. The first two examples of ELFIN observations are displayed in Panels (a-h),
presenting two electron IB events identified using the combination of locally-trapped and precipitating electron
fluxes. The main characteristics of IB appeared in locally-trapped electron flux will be inspected and used for
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Figure 1. (a) The time profile of AE index in the substorm in 22 Jun 2023. Vertical dashed lines mark the time of four
nightside crossings of CIRBE. (b) Orbits of CIRBE (gray), KOMPSAT (cyan) and GOES-18 (green) during the substorm
event, mapped to the equatorial plane. The magenta crosses mark the location of the isotropy boundaries observed by POES
satellites (see appendix for the event list). The four CIRBE crossings used in this study is color-coded with time as noted in
the figure. The radial distance represents L and the polar angle represents MLT with noon to the left.
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identifying IBs in CIRBE measurements. Panels (a and b) show the profiles of both locally-trapped and precipitating
electron fluxes of a quiet-time plasma sheet crossing, with an observed IB region that is relatively wide in latitude
and expands from 65° to ~66° in the energy range of [50,1000] keV. The black horizontal line marks the lower
energy limit of the CIRBE/REPTile-2 detector (250 keV), thus only the part above this line would be measured by
CIRBE, which covers ~0.5°in latitude. Panel (c) shows the trapped fluxes normalized to the average trapped flux
level for each energy channel, and these normalized fluxes highlight the IB region as a local enhancement. The local
enhancement in trapped fluxes caused by IB can also been seen in Panel (a), however, itis significantly more obvious
in the normalized trapped fluxes. Such enhancements of locally-trapped electron fluxes at low altitudes are typical
for IB regions (e.g., Sergeev et al., 2012), because these electrons have small equatorial pitch angles despite being
outside the bounce loss cone and can be enhanced by electron scattering in the near-equatorial region. This
enhancement has a clear dispersive structure with the flux increase of higher energy electrons occurring at lower
latitudes, which is a primary property of the curvature scattering mechanism in the magnetotail (see Sergeev
etal., 1983).

Panel (d) displays the detailed energy spectrum evolution of the trapped flux enhancement to zoom in on the
energy-latitude dispersion. The gray region is bounded by the flux levels at the latitude corresponding to the outer
edge of the radiation belt, identified by >100/cm?/s/st/MeV electron fluxes at ~1MeV (Mourenas et al., 2021),
and the latitude corresponding to the plasma sheet, identified by the absence of >100/cm?/s/st/MeV fluxes at
above ~300keV (Artemyev, Angelopoulos, et al., 2022), marking the expected variation of electron energy
spectrum between the plasma sheet and outer radiation belt. In other words, in absence of any IB-related en-
hancements, all spectra in this transition region should fall inside the gray region. Three colored curves show
locally-trapped spectra measured in the transition region, with blue, red and green curves moving from the plasma
sheet to the outer radiation belt. The blue line shows a large increase of <200keV fluxes relative to the plasma
sheet flux level, then red curve shows <350keV fluxes exceeding both plasma sheet and outer radiation belt
levels, and finally green curve shows <600keV fluxes exceeding plasma sheet and outer radiation belt levels.
These dispersive and strong flux enhancements are more evident in panel (d2), where the same spectra are shown
with the normalization to the outer radiation belt spectrum, that is, the upper boundary of the gray region from
panel (d1). Such normalized fluxes reveal consecutive flux enhancements within IB, which can be used to identify
the IB structures in the measurements of locally-trapped fluxes.

The main properties of the quiet-time IB from Figures 2a—2d are repeated in panels (e-h) which present an IB
event observed by ELFIN during the substorm growth phase, when the reconfiguration of the magnetotail
magnetic field lines results in the shrinking of the low-altitude projection of the near-Earth plasma sheet to a few
degrees (Artemyev, Angelopoulos, et al., 2022). The transition region between the plasma sheet and outer ra-
diation belt in this event is observed to be less than 0.5° in magnetic latitude, with a sharp increase of electron
isotropic flux from the plasma sheet energies ~ 100 keV to the radiation belt energies ~3 MeV (see panel (f);
[63.7°,64°] latitudinal range). Thus, the normalized trapped fluxes exhibit strong energy-dispersionless boundary
between plasma sheet and the outer radiation belt, that is, IB (see panel g). Comparison of panels (d1 and h1)
shows similarity in the transition of trapped electron spectrum within the IB region: flux enhancements extend to
higher energies moving equatorward and may exceed the radiation belt flux level. Although this energy-latitude
dispersion is less evident for the sharp IB in panel (h1), the normalized spectra in panel (h2) clearly exhibit this
dispersion: the normalized flux peaks at higher energy as magnetic latitude decreases (the blue and red curves
representing energy spectra at higher latitude peak at ~250 keV while the green curve showing energy spectrum at
lower latitude peaks at ~ MeV). Note that panel (g) shows several energy-dispersionless peaks equatorward from
the IB. These peaks are not only associated with the trapped flux increase, but also to the increase of precipitating-
to-trapped flux ratio (see panel f). Such peaks are likely due to equatorial electron scattering by intense whistler-

Figure 2. Three examples of ELFIN observations of the nightside relativistic electron precipitation. Panels (a, e, i) show locally-trapped electron spectra. Panels (b, f, j)
show precipitating-to-trapped flux ratio. Panels (c, g, k) show locally-trapped electron spectra normalized to the averaged flux of each energy channel. The black lines in
these panels mark the lower energy limit of CIRBE measurements. Panels (d1, h1, 11) show line plots of the trapped electron spectra measured during the precipitation
events. Panels (d2, h2, 12) show curves from panels (d1, h1, 11) normalized to the upper boundary of the gray region (outer radiation belt flux level for d1 and h1 and
upper flux limit of the non-precipitating region for 11). In panels (d1, 2 and h1, 2), the gray regions represent the flux range between the plasma sheet and outer radiation
belt for IB observations, whereas blue, red, and green curves show three spectra within the IB region. In panels (11, 2) the gray region represent the typical energy spectra
before and after EMIC-driven precipitation event, whereas red curves show electron spectra within EMIC-driven precipitation (with red color becoming darker as

latitude decreases).
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mode waves (see examples of such relativistic precipitations driven by whistler-mode waves around IB in
Artemyev et al., 2024). In this event, the flux peak at ~63.75° overlaps with the IB, suggesting that whistler-
driven electron scattering may also contribute to flux enhancement within IB.

Figures 2i-2l illustrates the ELFIN observations of EMIC-driven electron precipitation. There is a clear low-
energy cut-off of the precipitating flux burst at around ~64.5° in magnetic latitude as shown in panel (j): the
precipitating-to-trapped flux ratio has a maximum around 1 MeV and almost drops to zero as the energy decreases
to 300 keV. Such cut-off is associated with the minimum energy of electrons resonating with EMIC waves
(Summers & Thorne, 2003), and has been reported in multiple EMIC events observed by ELFIN (see Angelo-
poulos et al., 2023). Higher equatorial pitch angles require higher resonant energy, thus the energy cut-off is not
observed in locally-trapped electron fluxes (Figure 2i). Note that the enhancement in locally-trapped electrons is
driven by the same mechanism of resonant electron scattering by EMIC waves from larger pitch angles toward the
loss cone (R. Shi et al., 2016), as electron flux typically peaks at 90° pitch angle. The normalized trapped fluxes
exhibit latitudinal localized flux enhancement at ~64.5° in magnetic latitude (Figure 2k), which may be mixed
with the similar enhancement at the sharp IB such as in panel (g). The major distinction of the EMIC-driven
precipitation events from the sharp IB events is the absence of the energy-latitude dispersion in trapped fluxes.
Comparison of panels (d1, 2 hl, 2 and 11, 2) demonstrates that EMIC-driven precipitations are characterized by
electron flux enhancements without the transition from low energy enhancement at higher latitudes to the high
energy enhancement at lower latitudes, which is typical for IB events. Note that EMIC waves could cause electron
precipitations with energy-latitude dispersion as reported by ELFIN measurements (see Artemyev et al., 2023;
Grach et al., 2024); however, these dispersive precipitations are observed at much lower magnetic latitudes
compared to the IB locations in these events. To conclude, Figure 2 provides a simple receipt for the separation of
these two types of nightside relativistic electron precipitation events, namely IB and EMIC-driven precipitation,
with locally-trapped fluxes: inspection of the energy-latitude dispersion provides sufficient evidence for the
identification of IB and EMIC-driven electron precipitations.

3.2. CIRBE: Electron Isotropy Boundary and EMIC-Driven Precipitations

With the characteristics of IB and EMIC-driven precipitations derived by the ELFIN measurements, we examine
the time profile of the locally-trapped electrons observed by CIRBE during the 22 Jun 2023 substorm. CIRBE
traverses the nightside magnetosphere twice before the substorm onset, roughly at 12:03—12:07 and 12:33-12:37,
respectively. Electron measurements by CIRBE are shown in Figure 3 for the first pass and in Figure 4 for the
second pass. CIRBE was located at around 22.5 in MLT in the first pass, and the original measured electron
intensity is presented in Figure 3b. Due to its energy range, the high energy radiation belt electrons are the
dominant population observed in the CIRBE passes. As magnetic latitude increases, the intensity of the core outer
belt population, measured by CIRBE, rapidly decreases, along with the fading of >1 MeV electrons (fluxes fall
below 1,000/cm?/s/sr/MeV), marking the transition of the spacecraft location from the outer radiation belt to the
plasma sheet. CIRBE observes an increase in the locally-trapped electron flux near the outer boundary of the outer
belt, at about 61.8° in magnetic latitude. By comparing with the IB characteristics obtained by ELFIN in
Figure 2a, such local flux increase in that particular region suggests that an IB is likely detected. In Figure 3c
which presents the normalized trapped flux in the same style as (Figures 2c, 2g, and 2k), the IB feature can be seen
more clearly. Furthermore, we inspect the locally-trapped and precipitating flux measured by the nearby MetOp-1
(one of the POES satellites) and show that precipitating electron fluxes (black dashed line) increase to match the
trapped electron flux (black solid line) at around 61.5° (Figure 3a), validating that the observed flux enhancement
in CIRBE is indeed electron IB. Note that Metop-1 also observes the proton IB, shown by the matching fluxes of
the trapped protons (solid blue line) and precipitating protons (dashed blue line), right below (at a lower magnetic
latitude of) the electron IB, and this is an expected feature of the electron and proton IBs. Similar features of
electron IB are observed by CIRBE again in the second pass as shown in (Figures 4b and 4c), only at a slightly
different magnetic latitude of —62.8°. The different magnetic latitude of the observed IB compared to the first
pass is likely due to the different spatial locations of the measurements, such as the different hemisphere and
MLT, rather than a real drastic change in the IB locations. The measurements of IBs by nearby NOAA-18 satellite
is also shown in Figure 4a.

In general, the nightside electron precipitation observed in the form of IBs in the first two passes of CIRBE
displays consistent patterns, as these two passes are both in the quiet time or the early growth phase of the
substorm (Figure 1a). The panels d of both Figures 3 and 4 confirm dispersive pattern from Figures 2d2 and 2h2:
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Figure 3. Electron observations in the first pass of CIRBE at 12:03-12:07. (a) >130 keV electron (black) and 30-80 keV
proton (blue) fluxes measured by the nearby MetOp-1 satellite. Precipitating flux is plotted in dashed lines and locally-
trapped flux is plotted in solid lines. (b) Energy-resolved locally-trapped electron fluxes measured by CIRBE as a function of
magnetic latitude. (c) Locally-trapped electron fluxes normalized to the average flux in each channel as measured by CIRBE,
similar to how ELFIN data is portrayed in Figures 2c, 2g, and 2k. (d) Energy spectra of the locally-trapped electrons at
different magnetic latitudes normalized to the spectrum of the outer radiation belt electrons right equatorward of the observed
IB (at the latitude of the dashed line). The blue, red and green lines represent locations from the plasma sheet to the outer
radiation belt, while the black solid line shows the flux of the plasma sheet, similar to Figures 2d2 and 2h2.
the electron energy spectra become harder (relatively more increase in flux for high energy electrons) as CIRBE
moves from high magnetic latitude to low magnetic latitude with a significant enhancement at >800 keV in the
green line or the lowest magnetic latitude, exceeding the outer radiation belt flux level. In Figure 4d, it is also
evident that, for <500 keV electrons, the fluxes increase as the CubeSat moves poleward, largely exceeding the
plasma sheet flux level with those at middle and high latitude exceeding the outer radiation belt level. The clearly
observed energy dispersion is resolved for the first time by the high energy resolution of REPTile-2 on CIRBE
and emphasizes that the measured electrons in this region are dominated by curvature scattering within the current
sheet, confirming the detection of IBs.
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Figure 4. Electron observations in the second pass of CIRBE at 12:33-12:37, together with measurements by the nearly
NOAA-18 satellite, in the same format as Figure 3.
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Figure 5. Electron observations in the third pass of CIRBE at 13:37-13:41, together with measurements by the nearly NOAA-
18 satellite, in the same format as Figures 3 and 4.

One interesting feature observed by CIRBE is that there is a local flux minimum between the outer belt and IB for
<0.6 MeV electrons in both Figures 3b and 4b, which is also present in ELFIN measurements in Figure 2a for ~0.3—
0.6 MeV electrons. This feature can be commonly seen in previous ELFIN observations (e.g., Artemyev, Ange-
lopoulos, et al., 2022; Wilkins et al., 2023). Such latitudinally localized flux minimum can be explained by the
interplay of two trends of equatorial flux: (a) the flux increase with decreasing L-shell and (b) the increase of flux
anisotropy with decreasing L-shell (due to the decrease in efficiency of curvature scattering in stronger magnetic
field). The first trend should cause the flux to increase as the magnetic latitude decreases at low Earth orbit,
assuming a constant flux anisotropy. The second trend should cause the flux to decrease as the magnetic latitude
decreases, assuming a constant equatorial flux. For relativistic electrons (~1 MeV), the first trend is dominant due to
the more isotropic fluxes and the very strong radial gradient across different L-shells in equatorial flux (no rela-
tivistic electron fluxes in the plasma sheet). However, for sub-relativistic electrons, the second trend may be strong
enough to provide a local flux minimum at low altitudes, between the outer radiation belt and the IB region. By
comparing the low-altitude and equatorial fluxes, Artemyev, Angelopoulos et al. (2022) shows that 50-500 keV
electrons are indeed isotropic in the plasma sheet, whereas electrons at the same energies are highly anisotropic in
the inner magnetosphere (e.g., R. Shi et al., 2016; Zhao et al., 2018). These observational results support that the
second trend is expected to have a strong influence on the overall flux profile of sub-relativistic electrons measured
at low altitudes.

Figure 5 shows the same analysis for the third pass of CIRBE, which is after the substorm onsite (Figure 1a). As
CIRBE moves poleward, it first observes an enhancement primarily at high energy (>800 keV) and then en-
counters a sharp increase at low energy (<700 keV) (Figure 5b). Figure 5c further highlights the two enhance-
ments centered at upper energy limit and the lower energy limit of this plot, respectively. On one hand, the
enhancement at low energy exhibit similar patterns as the September 4 2020 event observed by ELFIN (Figures 2f
and 2g): the increase is sharp and extends to higher energy than quiet time, suggesting the presence of an IB
during/after substorm growth phase. The nearby NOAA-18 satellite also confirms the existence of the electron IB
at a similar magnetic latitude (Figure 5a). On the other hand, the enhancement at high energy is likely the result of
the combination of two scattering mechanisms. This enhancement is more concentrated above ~1 MeV, sug-
gesting increased precipitation of relativistic electrons that is usually associated with EMIC wave activities.
However, in Figure 5d, the detailed normalized energy spectra of this enhancement show a pattern that is
consistent with the curvature scattering mechanism. In particular, 1 MeV electrons have highest fluxes at higher
magnetic latitude (blue line, 59.26° in magnetic latitude) and with increasing energy, highest fluxes are observed
in the red line at 59.2° latitude and then in the green line at 59.13° latitude. Therefore, the dispersed energy spectra
at different magnetic latitudes indicate that curvature scattering plays an important role in causing the enhanced
MeV electron fluxes at low altitudes that suggests enhanced precipitation in the third CIRBE pass. It is worth
noting that the energy dispersion is much less obvious compared to the clear IB events in the first two passes,
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Figure 6. Electron observations in the fourth pass of CIRBE at 14:08-14:11, together with measurements by the nearby
NOAA-15 satellite. Panels (a—c) are in the same format as in Figures 3-5. (d) Electron energy spectra in the precipitation
region (red) normalized to the outer radiation belt flux level outside of the precipitation region at the latitude indicated by the
black dashed line (with red color becoming darker as latitude decreases). Black solid line and black dashed line represent
electron energy spectra right out of the region with local flux enhancement seen in panel (c).

suggesting that contributions from other mechanisms such as the EMIC waves may be equally important during
this CIRBE pass. Indeed, overlaps between IB and EMIC-driven precipitation are commonly observed in the
nightside magnetosphere (see Artemyev et al., 2023; Capannolo, Li, Millan, et al., 2022). With its high energy
resolution, CIRBE may be able to detect the fine structures in the electron energy spectrum and help distinguish
between the dispersive (presumably due to IB) and the dispersionless (presumably due to EMIC) precipitation
patterns, however, distinguishing between these two types of events may still be difficult in specific cases.

The fourth pass of CIRBE is further away from the midnight and thus has likely moved out of the zone where IBs
can be observed (Figure 1). Instead, CIRBE observes a very typical EMIC-driven electron precipitation, featuring
a lower energy limit in the precipitating fluxes (Figure 6). In contrast with the third pass, CIRBE only observes
clear enhancement in electrons with energies greater than 600 keV, and no substantial enhancement is seen at
lower energies. Figure 6d shows the detailed normalized energy spectra of the electrons in the precipitation region
(red lines) in comparison with the flux level outside the precipitation region (black dashed line). It is evident that
electrons in the precipitation region have relatively lower fluxes at energies below 600 keV and much higher
fluxes in the MeV range compared to the normal level indicated by the black dashed line. This low-energy cut-off
feature resembles the measurement of ELFIN shown in Figures 2i-21, and is a clear indicator of the EMIC wave
driver, due to the minimum resonate energy in electrons that can be scattered by the EMIC waves. Note that this
event is observed near the isotropy boundary of 30-80 keV protons (see Figure 6a), so we cannot use proton
precipitation measurements to confirm the equatorial EMIC source region. However, for EMIC-driven electron
precipitations at lower L-shell, analysis of concurrent proton precipitations by low-altitude satellites such as
POES can help confirm the EMIC wave activities (e.g., Carson et al., 2013; Miyoshi et al., 2008).

Even though there is no direct evidence of EMIC wave activity found during this time, measurements from
GOES-18 and KOMPSAT confirm that injection has happened prior to the observed enhanced electron pre-
cipitation. Figure 7 shows that GOES-18 detects the electron injection at around 14:00 in the post-midnight sector
and KOMPSAT observes low frequency waves in magnetic field measurements that also indicate injection
starting at around 13:40 in pre-midnight sector near CIRBE. The injected plasma sheet protons can serve as an
energy source for the generation of EMIC waves, which typically drive the enhanced precipitation of high energy
(>600 keV) electrons. However, due to the localized nature of EMIC waves, their presence and connection to the
observed electron precipitation cannot be confirmed through in situ wave measurements in this event. The nearby
NOAA-15 satellite shows that the magnetic latitude of the electron precipitation region is right below the proton
IB (Figure 6a), ruling out the possibility of curvature scattering as the cause for the enhanced electron precipi-
tation, because the electron IB is supposed to be more poleward than the proton IB. Since the observed electron
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Figure 7. (a) Magnetic field components measured by GOES-18 in GSM coordinate. (b) Electron fluxes measured by GOES-
18 satellites at 70, 130, 180 and 270 keV. (c) Magnetic field measured by KOMPSAT in GSM coordinate. (d) Power
spectrogram in the frequency range of 0-0.4 Hz measured by KOMPSAT. Yellow lines mark the gyrofrequencies of Het and
O™, black box shows the interval with wave activity.

precipitation by CIRBE is unlikely to be associated with electron IB, EMIC wave is the most likely driver
considering that the energy of the precipitating electrons extends to well above MeV.

4. Discussion of Potential Nightside Electron Precipitation Mechanisms: Isotropy
Boundary, EMIC-Driven, and Whistler-Driven Precipitations

In this paper, we utilize the nightside relativistic electron precipitations measured by ELFIN to investigate the
different patterns of isotropy boundary and EMIC-driven precipitations, in order to establish a reliable method for
discerning these two types of precipitations with locally-trapped fluxes only. We found that the key to differentiate
IBs and EMIC-driven precipitations is the energy-latitude dispersion of the enhanced electron fluxes. However,
this method requires that no other possible precipitation mechanisms are present during the specific event. Near-
Earth plasma sheet electrons rarely exhibit a significant relativistic population (>0.5MeV), except in cases of the
most intense acceleration events (e.g., Artemyev, Hoshino, et al., 2013; Cohen et al., 2021; Eriksson et al., 2020;
Turner et al., 2021). The enhancements of these relativistic fluxes at low altitudes often signal the transition region
between the outer radiation belt and the plasma sheet (Artemyev, Angelopoulos, et al., 2022). Therefore, the
precipitation of relativistic electrons can be attributed either to curvature scattering within such transition regions
(Wilkins et al., 2023) or to wave-particle resonant interactions within the outer radiation belt. Two primary wave
modes are potentially capable of driving relativistic electron precipitation: whistler-mode waves and EMIC waves
(Thorne et al., 2021). We will first eliminate whistler-mode waves as potential drivers of observed precipitation
patterns and subsequently explore the roles of EMIC waves and curvature scattering.

Nightside precipitation induced by whistler-mode waves is typically limited to sub-relativistic energies due to the
latitudinal localization of whistler intensity (Agapitov et al., 2013). The most intense field-aligned waves
(Agapitov, Mourenas, Artemyev, Mozer, Hospodarsky, et al., 2018; Li et al., 2011) scatter electrons below
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Figure 8. The example of ELFIN observations of the nightside relativistic electron precipitation driven by whistler-mode
waves. Panel (a) shows locally-trapped electron spectra. Panel (b) shows precipitating-to-trapped flux ratio. Panel (c) shows
locally-trapped electron spectra normalized to the averaged flux of each energy channel. The black horizontal lines mark the
lower energy limit of CIRBE measurements.

100 keV at the equator (e.g., Li et al., 2013). The scattering of electrons at 0.5 MeV would require wave prop-
agation along the field line to middle magnetic latitudes, above 30° (Artemyev et al., 2021). Such propagation can
be facilitated by wave ducting (L. Chen et al., 2022; R. Chen et al., 2021; Ke et al., 2021), resulting in relativistic
electron precipitation observed at low altitudes during plasma injections (Tsai et al., 2022, 2023). However, the
source regions of whistler-mode waves are localized across magnetic field lines (Agapitov et al., 2017; Agapitov,
Mourenas, Artemyev, Mozer, Bonnell, et al., 2018), causing bursty precipitations with intense flux enhancements
confined to a latitudinal range of 0.1° to 0.5° (Artemyeyv et al., 2024). Figure 8 presents an example of relativistic
electron precipitation associated with whistler-mode waves measured by ELFIN. The bursty feature of the
precipitations and absence of low-energy cut-off as shown in the original and normalized locally-trapped fluxes in
panels (a and c) suggest that this is a different type of precipitation than the events shown in the previous sections
of this paper. It is worth noting that investigating such bursty precipitations solely with trapped flux measure-
ments would necessitate the development of an identification procedure, which is beyond the scope of this study.
Compared with Figures 2 and 8 suggests that IB and EMIC-driven precipitation events are of a larger scale and
distinguishable from the bursty precipitations caused by whistler-mode waves.

Therefore, this study focuses on the separation between IB and EMIC-driven precipitations with flux measure-
ments of the locally-trapped electrons. Using the dispersive feature of IB related precipitations, we are able to
distinguish between these two types of precipitation patterns, paving the way for the statistical analysis of these
two types of precipitations using the high energy resolution data set from the CIRBE CubeSat. However, under
rare conditions this method may fail to distinguish between IB and EMIC-driven precipitation. The energy-
latitude dispersion of IB events is caused by the electron curvature scattering in the magnetotail current sheet,
where the scattering rate exponentially scales with the electron adiabatic parameter, «exp (— CK'Z) with

k> = R./p,. R, is the curvature radius of the field lines in the current sheet and R, ~ cB,,/4mj,, where ji is the
current density and B,, is the equatorial magnetic field. p, = mecz\/;ﬁ /eB,, is the relativistic (y is the
Lorentz factor) electron (with mass m,, charge —e) gyroradius (see models in Artemyev et al., 2015; Biichner &
Zelenyi, 1989). Therefore, the scattering rate is a function of ng/ \/;/2——1 , leading to the dispersed precipitation
from the near-Earth plasma sheet with strong radial gradient of the equatorial field B,, (Dubyagin et al., 2002;
Sergeev et al., 1983, 2012, 2023). Some EMIC-driven electron precipitations also exhibit energy-latitude
dispersion (e.g., Artemyev et al., 2023; Grach et al., 2024), due to the dependence of the minimum resonant
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energy on plasma density, N,,, and magnetic field: y gy « B,/ \/Z_\TL,; (Summers & Thorne, 2003). For a dipole
magnetic field, B,, « L3, and empirical plasma density model with N,y ox L™ (Sheeley et al., 2001), we obtain
following scalings for moderately relativistic electrons (1-3 MeV, y € [3,7]): 7« ng «L™% and
Vemic % Beg/ \[Neg L™! (for sub-relativistic electrons y5 B‘g‘q o L™12). These dependences can be modified by
the current density j, and EMIC wave frequency variations with L: for example, one can get
YEMIC 0<qu/ \/N_eq o L™ for low frequency EMIC waves (see Grach et al., 2024), whereas earthward gradient of
Jy e 1/L may provide y;p ocng/ Jy L7 (see Jy(L) profile in Sitnov et al., 2019; Stephens et al., 2019; Sergeev
et al., 2023). Therefore, in extreme situations, the energy-latitude dispersion can be similar for IB and EMIC-

driven precipitations. In these rare cases, discerning between these two types of precipitations is difficult even
with electron measurements with fully resolved pitch-angle distributions (Artemyev et al., 2023).

Here we propose several useful approaches to resolve this issue in future statistical studies: (a) selecting events
with both IB and equatorward EMIC-driven precipitation observed simultaneously (see supporting information of
Artemyev et al., 2023), (b) considering EMIC-driven precipitations at lower L shells in the dusk flank, where IBs
are less frequently observed (Wilkins et al., 2023), (c) selecting EMIC-driven precipitations with clear low-
energy cut-off (Angelopoulos et al., 2023), which is not observed in IBs (Wilkins et al., 2023). For example,
Figure 6 shows a typical EMIC-driven precipitation event with weak (almost no) energy-latitude dispersion and
clear low-energy cut-off of in the enhanced fluxes (see panels c and d). In addition, combining CIRBE electron
measurements and POES ion measurements can also help distinguish between IBs and EMIC-driven pre-
cipitations, as only EMIC-driven precipitations are possible equatorward from the ion IB with electron IBs always
being poleward from ion IBs (e.g., Shekhar et al., 2017; Yahnin et al., 2016, 2017).

5. Summary and Outlook

In this study, we use the energy and pitch angle resolved energetic electron fluxes from ELFIN to develop the
method for distinguishing between two major nightside patterns of relativistic electron precipitations: curvature
scattering within the isotropy boundary region and electron resonant scattering by EMIC waves. Because these
precipitation mechanisms operate in the strong diffusion limit, the observed locally-trapped flux and precipitating
flux are close to identical, enabling the use of locally-trapped flux measurements in the investigation of electron
precipitations. We examine the energy-latitude dispersion of electron precipitation events to separate electron
curvature scattering from EMIC-driven precipitations solely based on locally-trapped flux measurements. We
demonstrate that this method performs well on the new data set of the CIRBE CubeSat by presenting a substorm
event in which IBs and EMIC-driven precipitations are both observed and successfully identified. In particular,
thanks to the high energy resolution of REPTile-2, CIRBE reveals unprecedentedly clear energy-latitude
dispersion of the electron precipitations caused by electron curvature scattering, serving as a decisive evidence
in distinguishing them from EMIC-driven electron precipitations. The results of this study suggest that CIRBE
measurements are suitable for the nightside statistics of relativistic electron precipitation events.

Finally, there are several outstanding scientific questions that can be addressed with future CIRBE statistics of IB
and EMIC-driven precipitation patterns:

Small-scale structures of IB: Electron precipitations due to scattering by magnetic field line curvature are highly
sensitive to even subtle variations in the equatorial magnetic field (e.g., X. Shi et al., 2024), making IB patterns a
valuable tool for remotely monitoring near-Earth magnetotail dynamics (Dubyagin et al., 2002; Sergeev
etal., 2012, 2018). The high energy resolution of CIRBE/REPTile-2 measurements offers a unique opportunity to
investigate weak variations in electron fluxes attributable to equatorial magnetic field dynamics within the plasma
injection region (Lin et al., 2014; Panov et al., 2019; Panov & Pritchett, 2018; Sorathia et al., 2020).

Low-energy cut-offs in EMIC-driven precipitations: The comparison between model predictions and obser-
vations reveals a systematic discrepancy, with theoretical models expecting a minimum resonant energy of ~ 1
MeV (Summers & Thorne, 2003; Silin et al., 2011; L. Chen et al., 2019; Grach & Demekhov, 2020), whereas
observations show a sub-relativistic cut-off (e.g., An et al., 2022; Capannolo et al., 2019; Hendry et al., 2017;
Nakamura et al., 2022). Although statistics obtained from ELFIN measurements have significantly advanced our
understanding of these sub-relativistic precipitations (An et al., 2024; Angelopoulos et al., 2023), the finer energy
resolution of CIRBE/REPTile-2 can offer more precise measurements of the loss of sub-relativistic electrons in
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EMIC-driven precipitation events. Such information is crucial for comprehending the regimes of wave-particle
resonant interactions (see discussion in Angelopoulos et al., 2023; Hanzelka et al., 2023; Grach &
Demekhov, 2023).

Systematic differentiation of IBs and EMIC-driven precipitations: Nightside energetic electron precipitations
by EMIC waves are often linked with ion injections from the plasma sheet (e.g., H. Chen et al., 2020; Jun
et al., 2019, 2021), located just earthward from the inner magnetotail edge (e.g., Dubyagin et al., 2011; Sergeev
et al., 2014), overlapping with the region where IBs are typically observed (Newell et al., 1998; Sergeev
et al., 2012; Sivadas et al., 2019). Such spatial closeness of these IBs and EMIC-driven precipitations often
complicates the distinction between these two precipitation patterns (see discussion in Artemyev et al., 2023;
Capannolo, Li, & Huang, 2022; Shekhar et al., 2018; Yahnin et al., 2016), especially for the events during
substorm growth phase, when IBs can move into the inner magnetopshere region due to the stretched magnetic
field line (e.g., Murase et al., 2022; Zou et al., 2024). However, the high energy resolution of CIRBE/REPTile-2
measurements may help detect subtle variations in electron energy spectrum to statistically differentiate between
the dispersive IB structures and the less dispersive EMIC-driven precipitation events.

Appendix A: List of IBs Observed by POES Satellites

Table Al lists the locations and times of the observed IBs by POES satellites during the 22 Jun 2023 substorm.
Figure 1 shows that the nightside flux enhancements observed by CIRBE are consistent with the region where IBs
are observed by POES satellites, confirming that CIRBE successfully identifies the IBs with the locally-trapped
electron measurements.

Table A1
IBs Observed by POES Satellites

Satellite mlat (deg) MLT (hrs) Time (UT)

—61.38 23.03
—61.71 0.53
—62.56 22.63

59.07 20.27
—61.71 22.14

11:51
12:10
12:44
12:47
13:34

MetOp-1
POES-18
MetOp-3
POES-18
MetOp-1

Data Availability Statement

ELFIN data are publicly available at ELFIN data archive https://data.elfin.ucla.edu. CIRBE data are publicly
available at https://lasp.colorado.edu/cirbe/data-products/. NOAA/POES and GOES data used in this study are
publicly available at https://cdaweb.gsfc.nasa.gov. GEO-KOMPSAT-2A (SOSMAG) data are made available via
ESA's Space Safety Programme and its provision forms part of the ESA Space Weather Service System at https://
swe.ssa.esa.int. Data access and processing was done using SPEDAS V3.1, see Angelopoulos et al. (2019). The
mapping of the satellite positions to geomagnetic coordinates is conducted using the International Radiation Belt
Environment Modeling (IRBEM) library (v4.4.0), the latest version of which can be found at Boscher
et al. (2022).
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