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Abstract We investigate the dynamics of relativistic electrons in the Earth's outer radiation belt by
analyzing the interplay of several key physical processes: electron losses due to pitch angle scattering from
electromagnetic ion cyclotron (EMIC) waves and chorus waves, and electron flux increases from chorus wave‐
driven acceleration of ∼100–300 keV seed electrons injected from the plasma sheet. We examine a weak
geomagnetic storm on 17 April 2021, using observations from various spacecraft, including GOES, Van Allen
Probes, ERG/ARASE, MMS, ELFIN, and POES. Despite strong EMIC‐ and chorus wave‐driven electron
precipitation in the outer radiation belt, trapped 0.1–1.5 MeV electron fluxes actually increased. We use
theoretical estimates of electron quasi‐linear diffusion rates by chorus and EMIC waves, based on statistics of
their wave power distribution, to examine the role of those waves in the observed relativistic electron flux
variations. We find that a significant supply of 100–300 keV electrons by plasma sheet injections together with
chorus wave‐driven acceleration can overcome the rate of chorus and EMIC wave‐driven electron losses
through pitch angle scattering toward the loss cone, explaining the observed net increase in electron fluxes. Our
study emphasizes the importance of simultaneously taking into account resonant wave‐particle interactions and
modeled local energy gradients of electron phase space density following injections, to accurately forecast the
dynamical evolution of trapped electron fluxes.

1. Introduction
There are six important physical processes that affect the dynamics of relativistic (>0.3 MeV) electrons trapped in
the Earth's outer radiation belt: (a) electron losses due to pitch angle scattering toward the loss cone via resonant
interactions with electromagnetic ion cyclotron (EMIC) waves (Angelopoulos et al., 2023; Millan &
Thorne, 2007; Miyoshi et al., 2008; Miyoshi et al., 2008, 2008; Ross et al., 2021; Shprits et al., 2008; Summers &
Thorne, 2003; Thorne & Kennel, 1971), (b) electron losses due to pitch angle scattering toward the loss cone via
resonant interactions with whistler‐mode waves (Horne et al., 2005; Mourenas, Artemyev, Agapitov, & Kras-
noselskikh, 2014), (c) electron flux increases due to chorus wave‐driven acceleration of ≈100−300 keV ”seed”
electrons (Allison & Shprits, 2020; Jaynes et al., 2015; Li et al., 2014; Miyoshi et al., 2003; Mourenas, Artemyev,
Agapitov, Krasnoselskikh, & Li, 2014; Thorne et al., 2013) provided by recurrent strong injections (Hua
et al., 2022; Mourenas et al., 2023), (d) electron losses due to magnetopause shadowing and outward radial
diffusion (Boynton et al., 2016, 2017; Olifer et al., 2018; Shprits, Thorne, Friedel, et al., 2006), (e) electron flux
increase due to inward radial diffusion by ULF waves (Ozeke et al., 2014, 2020), and (f) electron flux increase due
to direct injections of ∼0.5−1.5 MeV electrons in the outer belt (H.‐J. Kim et al., 2021; Tang et al., 2022).

EMIC wave‐driven electron precipitation is considered a key contributor to electron losses at energies exceeding
the minimum energy for cyclotron resonance with such waves, Emin ∼ 0.5−1 MeV (Kurita et al., 2018;
Nakamura et al., 2022; Summers et al., 2007a; Summers & Thorne, 2003; Usanova et al., 2014), because EMIC
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wave‐driven electron pitch angle scattering rates near the loss cone at such energies are much larger than chorus
wave‐driven ones (e.g., Glauert & Horne, 2005; Ni et al., 2015; Summers et al., 2007b). And indeed, numerical
simulations of the dynamics of the outer radiation belt (Drozdov et al., 2017; Ma et al., 2015; Shprits et al., 2016)
and data‐model comparisons (Shprits et al., 2017; H. Kim et al., 2021; Drozdov et al., 2022; Adair et al., 2022;
Angelopoulos et al., 2023) have demonstrated that EMIC waves can efficiently scatter relativistic electrons and
rapidly deplete their fluxes in the outer radiation belt.

But for energies below ultra‐relativistic energies (below several MeV) and for typical plasma characteristics,
EMIC wave‐driven electron scattering mostly affects low pitch angle electrons (equatorial αeq < 30°, see Ni
et al., 2015; Kersten et al., 2014). It has been suggested that additional high pitch angle(αeq > 30°) electron
scattering by whistler‐mode waves can assist EMIC waves in the precipitation of the near‐equatorial (trapped)
electron population (Mourenas et al., 2016; X.‐J. Zhang et al., 2017; Drozdov et al., 2020). Indeed, it has been
shown that a combination of electron scattering by EMIC and whistler‐mode waves at the same L‐shell (even if at
different longitudes) can result in a very effective electron flux depletion (Mourenas et al., 2016; H. Kim
et al., 2021; Drozdov et al., 2022).

In addition, there is a competition between electron acceleration by chorus waves (produced by anisotropic
electrons that are directly adiabatically heated during injections, see, e.g. Sorathia et al., 2018) and electron
precipitation by EMIC and chorus waves, and this dynamic competition ultimately results in the observed ra-
diation belt electron flux time‐series, and also its energy spectrum, in response to multiple injections. In particular,
recent work has shown that in the presence of sustained injections and both energy diffusion by chorus waves and
pitch angle diffusion by chorus and/or EMIC waves, the normalized electron flux energy spectrum J(E) at
∼0.1−2 MeV should dynamically tend toward a steady‐state normalized energy spectrum JUL(E), which rep-
resents an attractor for the system dynamics and corresponds to a balance, at each energy, between electron flux
increase and electron flux loss, fine‐tuned by the electron phase space density (PSD) energy gradient (Hua
et al., 2022; Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023; Summers & Stone, 2022). This suggests
that a net flux decrease (increase) should occur when J(E) decreases with energy less (more) rapidly than the
steady‐state attractor energy spectrum JUL(E), corresponding to a sufficiently mild (steep) PSD decrease with
energy (Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023).

Although injections of anisotropic ∼1−100 keV ”source” ions and electrons from the plasma sheet can simul-
taneously drive EMIC (Jun et al., 2019, 2021) and chorus waves (Miyoshi et al., 2013; Jaynes et al., 2015; Tao
et al., 2011; Fu et al., 2014; X. Zhang et al., 2018), these particle injections do not fully determine the associated
wave power (which also depends on Landau damping and cold plasma density as well as the spatio‐temporal
extent and intensity of injections), nor do they directly control the impact of these waves on electrons (since
this impact also depends on cold plasma density, wave power, and Landau damping during wave propagation,
with/without wave ducting). Accordingly, EMIC and chorus wave‐driven electron scattering can be examined
separately from injections, traditionally on the basis of event‐based or statistical wave measurements.

However, one cannot prove that more injections preferentially cause a flux increase at relativistic energies
(through an increase of ∼100−300 keV seed electron flux accompanied by chorus wave‐driven electron ac-
celeration to higher energies) as opposed to a flux decrease (through more precipitation by EMIC and/or whistler‐
mode waves generated by injections). In this paper, we will show qualitatively that there is an association of
higher injection rate with higher rate of chorus wave‐driven electron energy diffusion and flux increase that helps
overcome the rate of EMIC wave‐driven pitch angle scattering and flux decrease. This event is illustrative, and
more cases like that (or a statistical analysis) may help prove or refute this conjecture in the future.

In this study, we investigate a fortuitous conjunction between equatorial and low‐altitude satellites, which enables
direct observations of electron loss due to scattering by EMIC and whistler‐mode waves, electron acceleration by
whistler‐mode waves, and plasma sheet injections. This allows us to examine the first three mechanisms listed
above near L ∼ 5 in the outer radiation belt. During the investigated period, direct injections of 0.5−1.5 MeV
electrons at L ∼ 5−5.5 are assumed to be absent based on the rarity of >600 keV injections at L ≤ 5.5 in statistical
observations from the Van Allen probes (Tang et al., 2022), and no significant dropout should have occurred due
to weakly negative IMF Bz and low solar wind dynamic pressure Pdyn (see details below). Combining spacecraft
observations during this event with theoretical estimates of electron scattering rates, we show that even long‐
lasting (∼4 hours) electron losses driven by EMIC waves cannot deplete ∼0.1−1.5 MeV electron fluxes in
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the outer radiation belt if plasma sheet electron injections are sufficiently strong. Resupply of relativistic electron
fluxes can occur due to chorus wave‐driven acceleration of freshly injected ∼100−300 keV seed electrons.

The structure of this paper includes Section 2 with the general description of spacecraft instruments and the event
overview, Section 3 describing near‐equatorial observations of plasma sheet injections during the event, Section 4
describing low‐altitude observations of EMIC wave‐driven electron precipitation, Section 5 assessing the relative
importance of chorus waves in compensating for the EMIC wave‐driven electron precipitation losses, and
Section 6 summarizing the obtained results.

2. Spacecraft and Data Set
In this study we use low altitude measurements of ELFIN A and B CubeSats (Angelopoulos, Tsai, et al., 2020)
that provide energy (16 channels within [50, 6,000] keV) and pitch angle (8 channels within [0,180°]) resolved
electron flux measurements. We mainly use electron fluxes averaged within the local loss cone (precipitating
fluxes, jprec) and outside the local loss cone (trapped fluxes, jtrap), and the precipitating‐to‐trapped flux ratio,
jprec/ jtrap. ELFIN measurements are used to reveal the energy range and L‐shell (determined from magnetic field
models) localization of EMIC wave‐driven electron precipitation, distinguished by a typical peak of jprec/ jtrap at
relativistic energies (see examples of such EMIC wave‐driven precipitation events in Grach et al., 2022b; X. An
et al., 2022; Angelopoulos et al., 2023). To confirm our interpretation that electron precipitation bursts are
associated with EMIC waves, we use POES/NOAA measurements of energetic proton precipitation (Evans &
Greer, 2004) within the same MLT sector. Such proton precipitation bursts are generally a good indication of the
equatorial EMIC wave source region (see discussion in A. Yahnin & Yahnina, 2007; A. G. Yahnin et al., 2017;
Capannolo et al., 2023).

The equatorial measurements of energetic electron and ion fluxes are obtained from the fleet of spacecraft:
GOES‐16 and 17 provide [70,1000] keV ion and electron fluxes (Boudouridis et al., 2020; Dichter et al., 2015),
Magnetospheric Multiscale (MMS) mission (Burch et al., 2016) provide [50, 500] keV ion and electron fluxes
(Blake et al., 2016; Mauk et al., 2016), Exploration of energization and Radiation in Geospace (ERG/Arase)
spacecraft (Miyoshi, Shinohara, Takashima, et al., 2018) provide [20, 120] keV ion fluxes (Yokota et al., 2017)
and [10, 2,000] keV electron fluxes (S. Kasahara, Yokota, Mitani, et al., 2018; Mitani, Takashima, et al., 2018).
We also use ERG wave instrument (Y. Kasahara, Kasaba, et al., 2018; Matsuda et al., 2018) providing magnetic
field spectrum in the whistler mode frequency range, and GOES(Singer et al., 1996), MMS(Russell et al., 2016),
and ERG (Matsuoka, Teramoto, Nomura, et al., 2018) magnetometers for DC magnetic field measurements.

Figure 1 shows the orbits of all spacecraft that provided the data analyzed in this study. The event on 17 April
2021 was selected due to the presence of a series of strong injections and significant whistler‐mode and EMIC
wave activity, at a time when various spacecraft measurements were simultaneously available, providing a
comprehensive view of the processes affecting relativistic electron fluxes. In addition, this event occurred during
the main and early recovery phase of a moderate storm, when Dst varied weakly, suggesting a weak adiabatic Dst
effect on electron fluxes at L ≃ 5.5 (H.‐J. Kim & Chan, 1997). The IMF Bz and the dynamic pressure of the solar
wind Pdyn indicate that the magnetopause remained at L > 9, suggesting an absence of the magnetopause
shadowing loss of electrons at L < 6 during that period (ALbert et al., 2018; Shue et al., 1997), while the electron
radial diffusion by ULF waves (Ozeke et al., 2014) should remain relatively moderate for an average Kp ∼ 4 at
1−11 UT (a more detailed discussion of these two physical processes is provided in Section 5.3). Accordingly, the
selected period on the morning of 17 April 2021 looks favorable for analyzing the interplay between EMIC wave‐
driven electron loss, chorus wave‐driven electron loss, and chorus wave‐driven electron acceleration in the heart
of the outer radiation belt.

The sequence of events on 17 April 2017 is as follows.

• At ∼ 01:15 UT: ERG observed strong electron injections that were probably responsible for whistler‐mode
wave generation (the onset of chorus waves coincides with this injection).

• At 01:30–02:30 UT: GOES‐16&17 observed strong ion injections that arrived at ELFIN's MLT (∼16.5)
around 02:30‐03:00 UT (based on ion azimuthal drift estimates) and should have driven EMIC wave
generation.
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• At 02:40–06:00 UT: ELFIN observed continuous precipitation of relativistic electrons at MLT ∼16; NOAA/
POES observations of ion isotropic boundary at the same latitudes as ELFIN observations suggest relativistic
electron precipitation are located right at the inner edge of the ion plasma sheet. To support such precipitation
by EMIC waves, whistler‐mode waves recorded by ERG (at MLT ∼ 20) should continuously scatter rela-
tivistic electrons from higher equatorial pitch angles into the pitch angle range resonating with EMIC waves.

• At 07:10–07:30 UT: ERG and GOES‐16&17 observed a strong electron injection: dispersionless on ERG
(MLT ∼ 20) and dispersive on GOES‐17 (MLT ∼ 4). This injection appears to restore electron fluxes and
largely compensate for losses from EMIC wave‐driven scattering, at least at E ≤ 1.5 MeV.

Figure 1. (top) An overview of the mission orbits recorded on 17 April 2021, from 00:00 to 12:00 UTC. The orbits of the
various missions are projected onto the MLT and L‐shell plane, using Tsyganenko 2001 model (Tsyganenko, 2002a, 2002b)
for active conditions. Distinct colors differentiate between missions, with stars marking the commencement of orbits, squares
indicating their termination points, and temporal annotations highlighting the periods of interest. ELFIN‐B's trajectory is
displayed during three time intervals: 02:42–02:46, 04:14–04:18, and 05:47–05:51 UT. NOAA‐19's trajectory is plotted for
01:47–01:52 and 03:30–03:36 UT, while NOAA‐15's is displayed at 01:15–01:20 and 02:58–03:03 UT. The trajectories of
GOES, MMS, and Arase span the entire 12‐hr interval from 00:00 to 12:00 UT (bottom) Sym‐H and SME indices during this
event.
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• Between ∼07:00–10:00 UT: ERG observed significant increases of >0.5 MeV fluxes at L ∼ 5.7. Our study is
specifically focused on the mechanisms potentially explaining this local acceleration preceded by EMIC‐
driven losses and plasma sheet injections.

Some elements of this scenario are also observed by the MMS spacecraft.

3. Plasma Sheet Injections
In this section, we describe plasma sheet injections observed by near‐equatorial GOES‐16&17, MMS, and ERG
spacecraft.

Figure 2 shows GOES‐16&17 ion and electron fluxes for the first 12 hours of 17 April 2021: GOES spacecraft
started at pre‐midnight local time (MLT ∼19) and traveled along geostationary orbit until it reached MLT ∼ 7 at
12:00 UT. At 1:30 UT, both GOES spacecraft detected strong ion injections (almost dispersionless at GOES‐16
around MLT ∼ 20, and quite dispersive at GOES‐17 around MLT ∼16). Between 01:30 and 07:00 UT, the GOES
spacecraft detected a series of ion and electron injections. Finally, at 07:10‐07:30 UT GOES spacecraft detected a
very strong substorm injection: a dipolarization of the magnetic field, with Bx, By magnitude decrease and Bz

increase (both spacecraft are at the night side, MLT ∼ 22−3, and detect typical plasma sheet substorm dynamics)
and the increase of electron and ion fluxes, by more than one order of magnitude. The electron flux increase is
almost dispersionless at GOES‐16 and slightly dispersive at GOES‐17 (located more dawnward). Ion injections
are quite dispersive on both GOES spacecraft, as ions have to drift around the Earth from dusk to dawn.

Figure 3 shows the ERG observations of the ≤100 keV ion and electron flux. The first two panels show an increase
in electron and proton fluxes at approximately 01:00 UT and 07:10 UT. The first strong injection observed at
∼01:00 UT, around midnight (MLT ∼ 0) was associated with an onset of whistler‐mode wave activity (discussed
below). Then ERG moved to the post‐midnight sector and observed a series of electron injections (between 01:30
and 03:00 UT), also detected by GOES‐16&17 (see Figure 2). Moving past its perigee, ERG reached the pre‐
midnight sector (MLT ∼ 21) after 06:00 UT, and then detected a very strong substorm injection at 07:10 UT
(also recorded by GOES‐16&17). At 07:00 UT ERG was at middle latitudes (MLAT ∼ 25°) and, thus, ERG
observed a very clear electron flux depletion during the substorm growth phase (when the spacecraft effectively
moves away from the equator due to magnetic field line stretching; see Artemyev et al. (2016); Angelopoulos,
Artemyev, et al. (2020)). A similar, but less evident, electron flux depletion is seen at the equatorial GOES‐16 (see
Figure 2). The substorm onset is associated with electron flux increase and magnetic field dipolarization (Bz in-
crease), which is weaker at middle latitudes covered by the ERG than at the equatorial GOES‐16 data.

Figure 4 shows the MMS observations of the <500 keV ion and electron fluxes. The spacecraft were in the
magnetosheath at the beginning of the time interval, and crossed the magnetopause, entering the magnetosphere,
around 02:30 UT. Around 04:45 UT MMS were within the region where ELFIN observed EMIC wave‐driven
precipitation (see below), and there MMS detected a spatially localized decrease of >300 keV electron fluxes.
This decrease may be interpreted as the result of energetic electron loss driven by EMIC waves (Angelopoulos
et al., 2023; Denton et al., 2019; Drozdov et al., 2020; Hendry et al., 2019). Around 07:30‐08:00 UT MMS observed
dipolarization (Bz variations) and electron and ion flux increases in the near‐Earth plasma sheet (at L > 9). This is
likely the same substorm injection that ERG and GOES detected at ∼07:30 UT (see Figures 2 and 3).

Overall GOES, ERG, and MMS observations (Figures 2–4) show two series of strong injections. The first series
took place within 01:00‐02:00 UT; it transported energetic electrons and ions that drove whistler‐mode wave and
EMIC wave generation: ERG recorded an appearance of intense whistler‐mode waves at ∼01:00 UT, and intense
EMIC waves have been indirectly detected through ELFIN observations of strong relativistic electron precipi-
tation (see Section 4 and Figure 5 below). The second series of injections occurred at 07:00‐08:00 UT, bringing in
energetic electrons that filled back the depleted radiation belt population.

4. EMIC Wave Driven Precipitation
Figure 5 shows the precipitating‐to‐trapped flux ratio jprec/ jtrap during four ELFIN orbits, with the clear signatures
of EMIC wave‐driven precipitation (a full information about ELFIN measurements for the entire interval, 00:00‐
12:00 UT, can be found in Supporting Information S1). Within L ∈ [5, 6] there is a peak of precipitating‐to‐
trapped flux ratio above 300 keV. This peak moves from L ∼ 6 around 02:45 UT to L ∼ 5 at 05:15 UT.
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Only EMIC wave‐driven precipitation may have a low energy cut‐off point of scattering fluxes around ∼500 keV,
which is a typical minimum resonance energy for EMIC waves (see the identification of other EMIC wave‐driven
precipitation events with similar precipitating‐to‐trapped ratios in X. An et al., 2022; Grach et al., 2022b;
Capannolo et al., 2023; Angelopoulos et al., 2023).

Note that the efficient precipitation (large jprec/ jtrap) observed at L > 6.5 is likely due to a combination of whistler‐
mode wave‐driven precipitation (see, e.g., X. Shi et al., 2022; Tsai et al., 2022) and precipitation due to the
curvature scattering (e.g., Wilkins et al., 2023), while precipitation of <300keV electrons at L < 5 is driven by
whistler‐mode wave scattering (see similar examples of quasi‐periodical precipitation on the dusk flank in
Artemyev et al., 2021; X.‐J. Zhang et al., 2023).

Figure 2. GOES‐R electron and proton flux observations (70 keV to ∼1 MeV) from two geostationary operational satellites. Ion injections are seen from 2 UT (right
when ELFIN starts observing EMIC wave‐driven precipitation) to 8 UT. A series of strong electron injections are observed around 07:10–07:30 UT at MLT ∼2 − 3 after
drifting from midnight.

Journal of Geophysical Research: Space Physics 10.1029/2024JA033174

ZHANG ET AL. 6 of 26

 21699402, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JA

033174 by U
niversity O

f C
alifornia, Los, W

iley O
nline Library on [29/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Therefore, Figure 5 demonstrates that during at least 3 hours, ELFIN observed continuous EMIC wave‐driven
losses of relativistic electrons. Note that this period may be ∼1.5 hour longer, as the nearest ELFIN orbits
without signature of EMIC wave‐driven precipitation are at 08:50UT (see the Supporting Information S1). As
jprec/ jtrap for ∼0.3–1 MeV electrons reaches one, the strong diffusion regime (see Kennel, 1969), one may expect
a significant depletion of equatorial electron flux in this energy range, at least at low pitch angles (e.g., Drozdov
et al., 2020; Usanova et al., 2014).

Although ELFIN energetic particle detectors can measure >50 keV ions (Angelopoulos, Tsai, et al., 2020), these
measurements were not available during our event. Thus, we use POES/NOAA ion measurements around the
same MLT and UT to confirm the presence of EMIC waves (<100 keV ion precipitation is often used as an
indication of the presence of EMIC waves, see, e.g., Carson et al., 2013; Miyoshi et al., 2008; H. Kim et al., 2021;
A. G. Yahnin et al., 2016). Figure 6 shows four POES/NOAA orbits with ion precipitating and trapped fluxes for
two energy ranges. The L‐shell range >5 is characterised by isotropic precipitation (jprec/ jtrap ∼ 1) , and such
precipitation should be attributed to magnetic field curvature ion scattering (e.g., Dubyagin et al., 2002; Sergeev
et al., 2011). Therefore, the inner edge of the ion plasma sheet reached L ∼ 5.5 during this event. Earthward from
the isotropic precipitation, between L ∼ 4.5 and 5.5, POES/NOAA shows bursty precipitating ion fluxes with a
magnitude lower than trapped fluxes. Such precipitation bursts are likely due to ion scattering by EMIC waves.
Therefore, POES/NOAA observations confirm the presence of EMIC waves within the same MLT sector as

Figure 3. ERG (Arase) electron and proton flux observations (∼10 keV to ∼120 keV). Strong electron injections are visible at the beginning of EMIC wave‐driven
electron precipitation and at the end of the time interval.

Journal of Geophysical Research: Space Physics 10.1029/2024JA033174

ZHANG ET AL. 7 of 26

 21699402, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JA

033174 by U
niversity O

f C
alifornia, Los, W

iley O
nline Library on [29/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ELFIN observations and additionally suggest that the inner edge of the ion plasma sheet (actually the region of
penetration of plasma sheet injections) reached L ∼ 5.5.

5. Wave‐Driven Electron Diffusion and Flux Variations
In the absence of dropouts related to magnetopause shadowing (Boynton et al., 2016; Matsumura et al., 2011;
Shprits, Thorne, Horne, & Summers, 2006; Turner, Shprits, et al., 2012), five main processes can modify the flux
of trapped electrons at L = 5 − 7: EMIC wave‐driven electron precipitation into the atmosphere (Thorne &
Kennel, 1971; Albert, 2003; Summers & Thorne, 2003; Sandanger et al., 2007; Miyoshi et al., 2008; Usanova
et al., 2014; Blum et al., 2015; Gao et al., 2015; X. J. Zhang et al., 2021), chorus wave‐driven electron precip-
itation and/or acceleration (Horne et al., 2005; Ma et al., 2020; Thorne et al., 2013), and injections from the
plasma sheet and/or ULF wave‐driven electron radial diffusion (Gabrielse et al., 2014; Ozeke et al., 2014; Runov
et al., 2015; Turner, Shprits, et al., 2012). We examine in the following the effects of these different processes,
alone or in combination, on the trapped electron flux.

Figure 7 provides a schematic diagram of these different physical processes and of their possible consequences on
trapped electron fluxes, indicating the direct effects of injections from the plasma sheet in generating EMIC and
chorus waves in different spatial regions (top), and the two possible final outcomes, for trapped electron fluxes
J(E, t), of the interplay between injections and wave‐driven electron diffusion by EMIC and chorus waves

Figure 4. MMS electron and proton flux observations (∼50 keV to ∼500 keV). A localized decrease of electron fluxes is notable around the time of ELFIN observations
of EMIC wave‐driven electron precipitation (around 04:30 UT, at MLT ∼16).
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(bottom), that is, either a flux decrease (bottom left) or a flux increase (bottom right), depending on the initial
energy gradient of J(E, t0)/J(E0, t0) = Jin (E, t0)/ Jin (E0, t0) (or of the electron phase space density) compared
with the energy gradient of the steady‐state attractor, Jul(E) which depends on the ratio of total electron pitch‐
angle diffusion rates and energy diffusion rates (Hua et al., 2022; Mourenas, Artemyev, et al., 2022b; Mour-
enas et al., 2023). Below, the different physical mechanisms related to wave‐driven electron scattering will first be
discussed separately, before examining their combined effects on trapped electron fluxes.

5.1. Role of EMIC Waves Alone

During disturbed periods, intense EMIC waves are often present in the 10–18 MLT noon‐dusk sector in a
plasmaspheric high‐density region (often at the edge of the plasmasphere or inside a plasmaspheric plume),
corresponding to a high plasma frequency to gyrofrequency ratio fpe/ fce > 15 (Kersten et al., 2014; Meredith
et al., 2014; Ross et al., 2021). Such left‐hand polarized, quasi‐parallel EMIC waves are generated by substorm
ion injections in the dusk sector (Cornwall et al., 1970; Horne & Thorne, 1993; Kozyra et al., 1997; L. Chen
et al., 2010; H. Chen et al., 2020) and by solar wind pressure enhancements around noon (Olson & Lee, 1983;
Usanova et al., 2010; H. Chen et al., 2020; Ross et al., 2021).

When EMIC waves in the H‐band have a sufficiently high frequency f ≥ 0.4 fcH , with fcH the proton gyrofre-
quency, they can reach cyclotron resonance with high energy electrons above ∼1−2 MeV near the loss cone and
lead to their fast precipitation into the atmosphere via quasi‐linear diffusion (Albert, 2003; Meredith et al., 2003;
Summers & Thorne, 2003) or through non‐linear interactions (Albert & Bortnik, 2009; Grach et al., 2022a;
Kubota et al., 2015; Kubota & Omura, 2017). Even in the case of intense EMIC wave‐packets, when such packets
remain relatively short and are separated by random frequency and phase jumps as in various observations

Figure 5. Two ELFIN CubeSats observations of EMIC wave‐driven electron precipitation, where the precipitating flux
reaches the trapped flux in high‐energy channels, over an interval exceeding 3 hours, from 02:42 to 05:53 UT. The locations
are projected to the equatorial L‐Shell and MLT, using the Tsyganenko (1989) magnetic field model. Panels (a), (b), and
(d) show data from ELFIN‐B, while panel (c) features observations from ELFIN‐A.
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(Usanova et al., 2010; X. An et al., 2022), electron transport should still be amenable to a quasi‐linear diffusive
treatment (X. J. Zhang, Agapitov, et al., 2020; Artemyev et al., 2022). However, the most intense H‐band EMIC
waves usually reach not‐too‐high frequencies and, therefore, cannot reach cyclotron resonance with electrons of
energy E < 3 MeV up to high equatorial pitch angles α > 60° (Kersten et al., 2014; Ross et al., 2021; Summers &
Thorne, 2003), preventing them from leading, alone, to a significant decrease of the omnidirection trapped
electron flux mainly present at α > 60° (Mourenas et al., 2016).

The maximum equatorial pitch angle αmax(EMIC) of electrons of energy E (in MeV) reaching cyclotron reso-
nance with H‐band EMIC waves is given by (Mourenas et al., 2016; Summers & Thorne, 2003):

Figure 6. POES observations of proton precipitating (blue) and trapped (orange) fluxes. Four orbits are shown (for each orbit two energy ranges).
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cosαmax(EMIC) ≃
Ω2

ce
2ωEMICΩpe

×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − ωEMIC/Ωcp) (me/mp)

(E2 + E)

√

(1)

for a quasi‐parallel H‐band EMIC wave frequency to proton gyrofrequency ratio ωEMIC/Ωcp at the equator in a
plasma usually composed of protons with only a small fraction (<5%) of helium ions during observations of such
waves (Kersten et al., 2014). Figure 8 shows αmax(EMIC) as a function of energy and ωEMIC/Ωcp at L = 5, based
on an empirical model of plasma density inside the plasmasphere (Sheeley et al., 2001). Low energy (<1 MeV)
electron precipitation by H‐band EMIC waves can be obtained only for ωEMIC/Ωcp > 0.65−0.7.

An analytical estimate (validated by comparisons with numerical simulations) of the bounce‐averaged pitch angle
diffusion rate Dαα of relativistic (>1 MeV) electrons by H‐band EMIC waves near the loss cone has been provided
in Equation 1 from (Mourenas et al., 2016). Multiplying this estimate of Dαα by a factor

(1 + 2E)/ (4E2 + 4E)
1/ 2 (and multiplying its inner variable G0 by the square of the same factor) allows us to

extend the validity of this expression of Dαα to lower energy electrons (Angelopoulos et al., 2023; Su et al., 2012).

Based on quasi‐linear theory in the limit of near‐equilibrium of the electron distribution near the loss cone (Kennel
& Petschek, 1966; Li et al., 2013), the average precipitating electron flux measured within the loss cone by ELFIN
CubeSats (Angelopoulos, Tsai, et al., 2020) at low altitude, jprec, can be expressed as a function of the trapped flux
measured at an equatorial pitch angle 5% above the loss cone angle αLC, denoted jtrap (Mourenas et al., 2023;
Mourenas, Zhang, et al., 2022). In the ELFIN data products, jprec is averaged over the loss cone weighted by solid

Figure 7. Schematic diagram of the different physical processes and of their possible consequences on trapped electron fluxes
(top) Direct effects of (ion and electron) injections from the plasma sheet in generating EMIC and chorus waves in different
spatial regions (bottom) The two possible effects of the interplay between injections and wave‐driven electron diffusion by
EMIC and chorus waves on trapped electron fluxes J(E): a flux decrease from t0 to t1 when low‐energy injections are too
weak to provide a sufficiently steep initial (at t0) negative energy gradient of electron phase space density, such that
∂(Jin (E, t0)/ Jin (E0, t0))/∂E > ∂(Jul (E, t0)/ Jul (E0, t0))/∂E (where Jul(E) denotes the steady‐state attractor flux shape, see Hua
et al. (2022); Mourenas et al. (2023)), leading to a prevalence of EMIC (and chorus) wave driven electron losses over chorus‐
driven electron energization (bottom left), or a flux increase from t0 to t1 when strong low‐energy electron injections provide a
steep initial negative energy gradient of electron phase space density, such that
∂(Jin (E, t0)/ Jin (E0, t0))/∂E < ∂(Jul (E, t0)/ Jul (E0, t0))/∂E, leading to a prevalence of chorus‐driven electron energization over
EMIC and chorus wave driven losses (bottom right).
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angle, giving jprec/ jtrap ≈ 1.3/ (z0 + z2
0/ 200) with z0 = 2αLC/(τBDαα)

1/ 2 and τB the electron bounce period,
valid for jprec/ jtrap ∈ [0.001, 0.85] (Mourenas et al., 2023). Accordingly, Dαα at α0 = αLC can be inferred from
the measured ratio jprec/ jtrap at ELFIN, giving

Dαα ≈
α2

LC
2500 τB

(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 +
jtrap

38.5 jprec

√

−1)

−2

, (2)

where the above Equation 2 applies for any wave mode in the quasi‐linear diffusion regime.

The diffusion rates Dαα inferred, using Equation 2, from time‐averaged ELFIN measurements of precipitating and
trapped electron fluxes (averaged over 10–20 spacecraft spins and taking into account periods without precipi-
tation) are displayed in Figure 9a for different electron energies and different L. We use jprec approximately
corrected for atmospheric backscatter in the conjugate region, which is done by subtracting from the measured
precipitating flux the upward flux recorded by ELFIN (Mourenas et al., 2021). Note that Dαα inferred from ELFIN
measurements of jprec/ jtrap is valid only near 16 MLT, at the location and time of the measurements. Since EMIC
waves are likely to be present mainly only at noon‐dusk with varying levels of wave power (Meredith et al., 2014;
Ross et al., 2021) and less than half of the time, the MLT‐averaged and time‐averaged diffusion rates should be
smaller to much smaller than ∼1/8 of the diffusion rates inferred from the ELFIN measurements in Figure 9a.

For a typical ratio fpe/ fce ≈ 20 in a noon‐dusk plasmaspheric plume at L ≈ 5−6 (Sheeley et al., 2001; X.‐J.
Zhang et al., 2016; Ross et al., 2021), one finds that cyclotron resonance is impossible between 0.5 − 2 MeV
electrons and EMIC waves at the typical frequency ωEMIC/Ωcp = 0.4 of peak wave power (Meredith
et al., 2014; Kersten et al., 2014; X.‐J. Zhang et al., 2016; Ross et al., 2021). However, various works have
reported significant low‐energy (∼0.3 − 1 MeV) electron precipitation by EMIC waves in the noon‐dusk sector
simultaneously with a much more efficient >1.5 MeV precipitation, similar to ELFIN results displayed in
Figure 9 (Angelopoulos et al., 2023; Capannolo et al., 2019; Hendry et al., 2017, 2019). This less efficient low‐
energy electron precipitation can be explained by quasi‐linear electron scattering through cyclotron resonance
with a finite tail of high‐frequency high‐wave‐number H‐band EMIC waves, of much lower amplitudes than at
the peak power frequency ωEMIC/Ωcp ∼ 0.4 (Angelopoulos et al., 2023), present in Van Allen Probes statistics
in the 12–22 MLT sector when fpe/ fce > 15 (X.‐J. Zhang et al., 2016). This high‐frequency wave power tail in
the noon‐dusk sector, shown in Figure 19a from Angelopoulos et al. (2023), can be approximately fitted
as B2

w (ωEMIC/Ωcp) ≈ (0.4 Ωcp/ωEMIC)
7 B2

w (ωEMIC/Ωcp = 0.4) .

In Figure 9, we check the reliability of this statistical power spectrum fit and of the corresponding analytical
estimates of diffusion rates Dαα, through comparisons with ELFIN observations during the selected event, using a

Figure 8. (a) αmax(EMIC) as a function of energy and ωEMIC/Ωcp at L = 5 and L = 6 using the empirical model of plasma
density inside the plasmasphere from Sheeley et al. (2001).
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typical ratio fpe/ fce ∼ 20, and adopting the (minimum) frequency ωEMIC/Ωcp ∼ 0.45 corresponding to cyclotron
resonance with ∼2 MeV electrons near the loss cone (the resonant energy is denoted by a red vertical line) in
Figure 9(a), and the (minimum) frequency ωEMIC/Ωcp ∼ 0.7 corresponding to cyclotron resonance with ∼0.75
MeV electrons near the loss cone (the resonant energy is denoted by a red vertical line) in Figure 9b. Figures 9a
and 9b show analytical estimates (Angelopoulos et al., 2023; Mourenas et al., 2016) of EMIC wave‐driven quasi‐
linear diffusion rates Dαα of electrons near the loss cone (dashed lines) calculated with these parameters, using a
peak EMIC wave amplitude of Bw ≈ 0.5 nT at ωEMIC/Ωcp ∼ 0.4 that allows to roughly recover diffusion rates
Dαα inferred from ELFIN measurements (solid lines), both at L = 5 near 2 MeV in Figure 9a and at L = 5−6
near 0.75 MeV in Figure 9b. The stronger statistical EMIC wave power at lower frequency in the adopted sta-
tistical wave power spectrum fit explains the stronger diffusion at higher energy (∼2 MeV) than at low energy
(0.75 MeV) in Figure 9 (note that analytical estimates actually become invalid slightly below the resonant energy
indicated by a red vertical line). These results suggest the presence of duskside EMIC wave bursts with peak
amplitudes Bw ≈ 0.5 nT and a low‐amplitude tail at high frequencies (Angelopoulos et al., 2023). Taking into
account the likely presence of significant temporal and spatial variations of EMIC wave power and frequency
spectrum during the selected event, the rough agreement at these two energies between the analytical Dαα model
(based on statistics of EMIC waves) and ELFIN observations suggests that this simplified model is reliable and
can be used for approximately modelling the electron flux evolution during this event.

5.2. Role of Chorus Waves Alone

Energetic electrons of ∼10−300 keV injected from the plasma sheet at L ∼ 5−6 around midnight drift
azimuthally toward noon and generate there intense lower‐band chorus waves outside the plasmasphere (Li

Figure 9. (a) Diffusion rates Dαα of electrons near the loss cone inferred, using Equation 2, from ELFIN measurements of
precipitating and trapped electron fluxes in the dusk sector near 16 MLT, at L = 5 (solid red) and L = 6 (solid black) as a
function of electron energy E. Diffusion rates Dαα near the loss cone evaluated based on analytical estimates for H‐band EMIC
waves with typical wave and plasma parameters at L = 5 (red) and L = 6 (black) in a noon‐dusk plasmaspheric plume, as a
function of energy E are shown (dashed lines) for a typical ratio fpe/ fce = 20, a peak wave amplitude of Bw = 0.5 nT at
ωEMIC/Ωcp ∼ 0.4, adopting the (minimum) frequency ωEMIC/Ωcp ∼ 0.45 corresponding to cyclotron resonance with ∼2 MeV
electrons near the loss cone (the resonant energy is denoted by a red vertical line). (b) Same as (a) with analytical estimates of
Dαα shown for H‐band EMIC waves with a peak wave amplitude of Bw = 0.5 nT at ωEMIC/Ωcp ∼ 0.4 and adopting the
(minimum) frequency ωEMIC/Ωcp ∼ 0.7 corresponding to cyclotron resonance with ∼0.75 MeV electrons near the loss cone
(the resonant energy is denoted by a red vertical line).
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et al., 2010; Meredith et al., 2001; Omura et al., 2008; Tsurutani & Smith, 1974). In turn, such chorus waves can
efficiently precipitate low equatorial pitch angle electrons into the atmosphere and energize high equatorial pitch
angle electrons up to several MeVs (Horne et al., 2005; Kubota & Omura, 2017; Ma et al., 2016; Omura
et al., 2007; Thorne et al., 2013). Although chorus waves mainly consist of wave packets of relatively high
amplitudes (SantolíK et al., 2003; Santolík et al., 2014) that can reach the threshold for nonlinear interaction (X. J.
Zhang et al., 2019), most chorus packets are relatively short and separated by strong and random wave frequency
and phase jumps (X. J. Zhang, Mourenas, et al., 2020; X. J. Zhang, Agapitov, et al., 2020), allowing an
approximate quasilinear diffusive treatment (Artemyev et al., 2022; Gan et al., 2022; Z. An et al., 2022).

A simplified analytical expression (validated vs. numerical calculations) for the pitch angle diffusion rate Dαα of
relativistic electrons (∼0.1−1 MeV) near the loss cone by quasi‐parallel lower‐band chorus waves is (Agapitov
et al., 2019; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014):

Dαα [s−1] ≈
B2

w Ω4/3
ce

1400 Ω14/9
pe ω7/9

ch (2E + 1)(E2 + E)
7/9 cos2α0

, (3)

with E in MeV, α0 the equatorial pitch angle, B2
w in pT2 and ωch/Ωce ∼ 0.15 the MLT‐averaged wave power and

normalized chorus frequency at magnetic latitudes λ ∈ [10 ° , 35°] of cyclotron resonance with ∼0.1−2 MeV
electrons near the loss cone (Agapitov et al., 2018; Mourenas et al., 2021). The corresponding electron lifetime is
approximately given by τL ≈ 1/ (2Dαα) above 100 keV as Dαα tanα0 has a minimum at low equatorial pitch
angles α0 (Albert & Shprits, 2009; Aryan et al., 2020; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014).
The bounce‐ and MLT‐averaged energy diffusion rate of relativistic electrons at α > 60° can be similarly written
as (Agapitov et al., 2019; Mourenas, Artemyev, Agapitov, & Krasnoselskikh, 2014; Mourenas et al., 2012):

DEE

E2 [s−1] ≈
B2

w Ω3/2
ce ω1/2

ch (E + 1)
1/2 Ξ(E)

190 Ω3
pe (1 + 2E) E3/2 , (4)

with B2
w in pT2, E in MeV, Ξ(E) ≈ (min(E, 1))

1/ 2 a factor allowing to approximately recover full numerical
calculations of DEE for E ∈ [0.1, 2] MeV (Agapitov et al., 2018, 2019), and ωch/Ωce ∼ 0.3 the MLT‐averaged
parallel chorus wave power and frequency at latitudes λ < 10° (Agapitov et al., 2018; Li et al., 2016).

Figure 10 shows typical whistler‐mode wave spectra measured during the investigated event by the ERG
spacecraft (Miyoshi, Shinohara, Takashima, et al., 2018; Y. Kasahara, Kasaba, et al., 2018) at latitudes ∼0° −3°
and L ∼ 5−6. Strong lower‐band chorus waves are seen from 2 UT on 17 April 2021, to 2021 UT on April 17.
The MLT‐ and time‐averaged diffusion rates Dαα and DEE of electrons by chorus waves have been estimated
based on ERG measurements of chorus wave power and frequency, using Equations 3 and 4, and also adopting the
typical mean frequency of chorus waves at low latitudes for DEE, and at middle latitudes for Dαα (Agapitov
et al., 2018), corresponding to cyclotron resonance with high and low equatorial pitch‐angle electrons, respec-
tively (Mourenas et al., 2023). They are displayed in Figure 11.

5.3. Combined Roles of EMIC and Chorus Waves in Different MLT Sectors

First, it is worth noting that in a simplified modelling of a slow diffusive electron transport in phase space, the
effects on electron flux of diffusive electron precipitation loss and energization can be averaged over an event
duration, and both assumed to occur during this whole event, because these diffusive processes can be simply
averaged over such long time scales—and therefore also over MLT, which corresponds to an average over the
azimuthal drift period of electrons—without loss of long‐term accuracy concerning the effects on trapped fluxes
(e.g., see Ross et al., 2019; Shprits et al., 2009). These diffusive processes do not need to be continuously or
simultaneously present at all times during the actual event for such a simplified modelling to be relevant: for
instance, they may occur at different locations, and they may each occur during short successive periods, provided
that the time intervals between these separate periods of activity be shorter than the typical time scales of electron
diffusive energization and loss during this event.

Based on Van Allen Probes statistics, H‐band EMIC waves excited in the noon‐dusk sector often reach a wave
power similar to or higher than chorus waves excited in low plasma density regions in the night/dawn sector (X.‐J.
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Zhang et al., 2016; Agapitov et al., 2018, 2019; Ross et al., 2021). These two types of waves can frequently be
observed contemporaneously on the same L‐shells in these two MLT sectors (X.‐J. Zhang et al., 2017), because
injections from the plasma sheet provide anisotropic electron and ion populations, respectively, generating chorus
and EMIC waves (e.g., Birn et al., 1996; Birn et al., 2014; Gabrielse et al., 2014; Tao et al., 2011; Ukhorskiy
et al., 2022).

Figure 10. Whistler‐mode wave spectra measured by ERG spacecraft during the investigated event. White curves show (from bottom to top) 0.1fce, 0.5fce, fce.

Figure 11. Chorus wave‐driven electron quasi‐linear pitch angle and energy diffusion rates Dαα(CH) and DEE(CH)/ E2 as a
function of energy at L = 5 and 6, MLT‐averaged based on ERG chorus wave data during this event (assuming a typical
MLT distribution of chorus power, see (Agapitov et al., 2018), adopting an empirical plasma density model outside the
plasmasphere. Here, chorus wave power is assumed constant at latitudes ∼0 ° − 30° to first order.
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The combined effects of EMIC and chorus waves can lead to stronger and faster losses (in less than ∼0.5−1 day)
of trapped electron flux at >1.5−2 MeV than when considering either wave mode alone (Li et al., 2007; Mourenas
et al., 2016, 2021; Boynton et al., 2017; X.‐J. Zhang et al., 2017; Drozdov et al., 2020). However, this requires an
initial electron flux that decreases more slowly as a function of energy than its asymptotic steady‐state energy
spectrum for given EMIC and chorus wave power and frequency distributions (Mourenas, Artemyev,
et al., 2022a; Mourenas et al., 2023). In such a situation, the main effect of EMIC waves is to quickly precipitate
low equatorial pitch angle electrons into the atmosphere, an effect equivalent to a widening of the effective loss
cone for subsequent chorus‐driven electron pitch angle diffusion, leading to a strong reduction of electron life-
times above ∼1.5 MeV compared to lifetimes in the absence of EMIC waves (Mourenas et al., 2016; Mourenas
et al., 2021; X.‐J. Zhang et al., 2017).

Such fast electron losses typically require H‐band EMIC waves with a time‐ and MLT‐averaged power 〈B2
w,EMIC〉

near the equator larger than the average chorus power 〈B2
w,chorus〉 at middle latitudes (where chorus wave cyclotron

resonance with electrons near the loss cone occurs), a sufficiently high ωEMIC/Ωcp > 0.45, and a sufficiently high
ratio fpe/ fce > 15 in the dusk region where EMIC waves are present (Mourenas et al., 2016; X.‐J. Zhang
et al., 2017). To prevent an initial, or subsequent, increase of electron flux due to chorus wave‐driven electron
energization (Agapitov et al., 2019; Horne et al., 2005; Mourenas et al., 2012; Summers et al., 1998), the MLT‐
averaged chorus wave power at low latitudes must not be too large compared to the MLT‐averaged EMIC wave
power, and fpe/ fce must not be too low (typically >4−5) in the 23‐10 MLT sector where low‐latitude chorus waves
are most intense (Mourenas, Artemyev, et al., 2022a).

The time‐averaged and MLT‐averaged H‐band EMIC wave power at the frequency of peak power is expected to be
roughly B2

w (ωEMIC/Ωcp = 0.4) ∼ 0.001 nT2 at L ∼ 5−6 based on Van Allen Probes statistics when Pdyn ≃ 3nPa
as during the present event (Ross et al., 2021), and the local plasma density in the duskside high‐density plas-
maspheric plume region is given by an empirical model (Sheeley et al., 2001). The low intensity H‐band EMIC
waves present at ωEMIC/Ωcp > 0.4 when fpe/ fce > 15 in the dusk sector in Van Allen Probes statistics (X.‐J. Zhang
et al., 2016; Angelopoulos et al., 2023) are taken into account by using the EMIC wave‐driven pitch angle diffusion
rate near the loss cone Dαα(EMIC) inferred from ELFIN measurements in Figure 9 during this event at 16 MLT,
multiplied by a factor ∼0.001/0.52 = 1/ 250 to agree with the statistical MLT‐averaged and time‐averaged EMIC
wave power. The time‐averaged lower‐band chorus wave power is taken as B2

w ∼ 0.003 nT2 at the equator and
L ∼ 5−6 based on spacecraft statistics (Agapitov et al., 2018) in agreement with ERG (Arase) measurements
during this event, and the local plasma density in the dawn sector is given by an empirical trough density model
(Sheeley et al., 2001). The decrease in MLT‐ and time‐averaged chorus wave power from the equator to higher
latitudes in statistical observations (Agapitov et al., 2018) is taken into account in Dαα(chorus) via an approximate

factor ξ(E) = B2
w(λ)/ B2

w(λ < 10°) ≈ max(0.08,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

0.06/ (E + 6E5)

√

) as a function of the energy E ∈ [0.06, 2]

MeV of electrons near the loss cone in cyclotron resonance with such chorus waves (Mourenas et al., 2023). This
allows us to refine the electron lifetime formulas provided by Mourenas et al. (2016) and X.‐J. Zhang et al. (2017) in
the presence of contemporaneous EMIC and chorus waves in the high‐density dusk sector and in the low‐density
dawn sector, respectively.

Using electron pitch angle diffusion rates for chorus waves from Equation 3 and for H‐band EMIC waves from
Equation 1 in (Mourenas et al., 2016) corrected at low energy as detailed above, and taking into account the H‐
band EMIC wave power tail at high frequency (X.‐J. Zhang et al., 2016; Angelopoulos et al., 2023), the total
diffusion rate at each pitch angle is 〈Dαα〉 ≈ Dαα(chorus) + Dαα(EMIC). The corresponding electron lifetime τL
can be estimated as (Albert & Shprits, 2009; Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2016):

τL(E) ≈ ∫

α0,max

α0,LC

dα0

4 〈Dαα (α0)〉 tanα0
, (5)

with α0,LC the equatorial loss cone angle and α0,max ∼ 80° −85° the typical maximum pitch angle of cyclotron
resonance with lower‐band chorus waves of high frequencies (Agapitov et al., 2018; Mourenas et al., 2016). Here,
the main contribution to the integral in Equation 5 at E ∼ 0.1−2 MeV usually comes from low to moderate
equatorial pitch angles, allowing us to use the approximation τL(E) ≈ 0.5/〈Dαα (α0,LC)〉 (Albert & Shprits, 2009).
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In the presence of sustained energetic electron injections at 0.05 MeV ≤ E ≤ 0.15 MeV and significant energy
diffusion by chorus waves and pitch angle diffusion by chorus and EMIC waves, it has been shown both
numerically and analytically (Hua et al., 2022; Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023) that the
normalized electron flux energy spectrum should rapidly tend toward a steady‐state attractor JUL(E). Physically,
this evolution of J(E, t) toward the energy spectrum shape of the steady‐state attractor JUL(E) can be explained as
follows (Mourenas et al., 2023): since a steeper negative gradient ∂PSD(E)/∂E of the electron phase space density
(PSD) leads to a faster electron transport through chorus wave‐driven diffusive energization toward the region of
initially lower PSD at higher E (Schulz & Lanzerotti, 1974), the gradient ∂PSD(E, t)/∂E will progressively adjust
itself to tune the net incoming electron flow at each energy E (due to chorus wave‐driven energization of lower‐
energy electrons), until it exactly compensates electron loss at this same energy E (due to chorus and EMIC wave‐
driven pitch‐angle diffusion toward the loss cone and also chorus wave‐driven electron acceleration toward higher
E). Therefore, the initial gradient, ∂J(E, t0)/∂E, determined by the strength of injections at low energy, will
control the evolution of J(E, t) during the following hours (see schematic view in Figure 7). If the initial flux
decreases toward high E slower than the steady‐state attractor JUL(E), chorus wave‐driven energization will be
inefficient due to the weakly negative PSD gradient ∂PSD(E, t)/∂E, and since it will not be able to transport a
sufficient quantity of electrons to high E for replacing all such electrons lost through precipitation, J(E, t) will
drop at high E (see Figure 7, bottom left) to assume this attractor shape (Mourenas et al., 2016, 2023). But if the
initial flux decreases faster than JUL(E), chorus wave‐driven energization will be stronger due to the steep
negative PSD gradient, and since it will transport a larger number of electrons to high E than the number of such
high E electrons lost via precipitation, J(E, t) will increase at high E (see Figure 7, bottom right) to assume the
attractor shape (Mourenas et al., 2023).

The steady‐state attractor shape JUL(E) can be calculated numerically, by solving the corresponding simplified
Fokker‐Planck diffusion equation, using τL(E) from Equation 5 and DEE(E) from Equation 4 (Mourenas, Arte-
myev, et al., 2022a; Mourenas et al., 2023). Alternatively, one can use the approximate analytical solution
(validated by numerical simulations) obtained by Mourenas et al. (2023):

JUL(E) ≈ A ⋅ [(1 + 2E)(E2 + E)]
1/2 ⋅ I1

2
(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ϵ K−R

√

4E + 2
), (6)

with A a normalization constant, Iz the modified Bessel function of the first kind, K = 20 + 13 E2 + 0.06/ E2,
R = 4 + 1/ E3/ 2, ϵ(E) = E5/ 4(E + 1)

5/ 4
/ (DEE(E) τL(E)), where τL(E) is taken to first order as τL(E) ≈

0.5/〈Dαα (α0,LC)〉 using 〈Dαα〉 ≈ Dαα(chorus) + Dαα(EMIC) using ξ(E) to estimate chorus power at the latitude
of resonance based on its average equatorial power B2

w ∼ 0.003 nT2, DEE(E) is given by Equation 4 using the
equatorial average chorus wave power, and E is in MeV. The corresponding ϵ(E) for chorus waves alone has also
been derived in a previous work (Mourenas et al., 2023). Note that JUL(E) provided in Equation 6 is a discon-
tinuous solution, which has to be calculated separately over each E‐bin and renormalized at each E‐bin start, with
constant K, R, ϵ(E) values inside each bin (see details in Mourenas et al., 2023). Chorus waves are present in the
plasma trough in the dawn sector, while EMIC waves are dominant within a plasmaspheric plume with corre-
sponding plasma densities taken from empirical models (Sheeley et al., 2001).

Let us emphasize that the energy gradient ∂JUL(E)/∂E of the steady‐state attractor flux directly depends on the
ϵ(E) factor: a smaller ϵ(E) leads to a weaker gradient (Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023).
A smaller ϵ corresponds to a larger chorus wave‐driven energy diffusion rate DEE and/or a longer electron lifetime
τL, that is, it corresponds to a stronger chorus wave power at low latitudes (where resonant electron energization
by chorus waves occurs) than at high latitudes (where chorus waves resonantly scatter electrons in pitch‐angle
toward the loss cone), and also comparatively less EMIC wave power (since EMIC waves can help reduce the
net electron lifetime compared to a situation with chorus waves alone).

Figure 12 shows electron flux energy spectra measured at different times on 17 April 2021 at L ∼ 5−6 (black to
magenta curves), by ERG near the magnetic equator (panel a) and by ELFIN at low altitude (panel b), and
projected to the equator (i.e., to equatorial pitch angles α0 = 90°) by assuming a typical distribution shape
J(α0 = 90°)/J(α0) ≈ 1/ sinα0 (R. Shi et al., 2016), with sinα0 ≈ (B(λ = 0°)/B(λ))

1/ 2 and B(λ) the geomag-
netic field strength at the latitude λ of flux measurement. ERG latitudes of measurements λ < 30° correspond to a

Journal of Geophysical Research: Space Physics 10.1029/2024JA033174

ZHANG ET AL. 17 of 26

 21699402, 2024, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JA

033174 by U
niversity O

f C
alifornia, Los, W

iley O
nline Library on [29/12/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



measured α0 ≳ 35°. At L > 5, trapped electron fluxes usually vary coherently with fluxes at α0 = 90° (Mourenas
et al., 2021, 2023; Shane et al., 2023). This is confirmed by similarity between trapped equatorial fluxes
J(α0 = 90°) of 100 − 2000 keV electrons at 9 : 55 − 11 : 30 UT and L ≃ 5 − 6 inferred from near‐equatorial ERG
measurements at α0 ≃ 77° in Figure 12a and inferred from high‐latitude ELFIN measurements at α0 ≈ 3° in
Figure 12b (compare the dashed blue curve with solid red and magenta curves in panel (b)). The similarity of
inferred fluxes J(α0 = 90°) at 1 − 2 MeV further indicates that 〈Dαα (α0)〉 tanα0 has a minimum at low α0, and no
deeper minimum at α0 ∼ 45° − 70°. A deeper minimum at α0 ∼ 45° − 70° would indeed have led to a strong
drop of J(α0) from α0 ≃ 77° to α0 ≃ 30° (Mourenas, Artemyev, Agapitov, Krasnoselskikh, & Li, 2014) and a
much smaller J(α0 = 90°) inferred from ELFIN than J(α0 = 90°) inferred from ERG. This is consistent with an
EMIC wave power spectrum with a tail that extends to high frequencies as in statistical observations (X.‐J. Zhang
et al., 2016; Angelopoulos et al., 2023).

On 17 April 2021, Dst varied from −38 nT at 0–2 UT to −24 nT at 11–12 UT, reaching a minimum of ∼− 50 nT at
4–7 UT, indicating a weak Dst‐effect on trapped fluxes at L < 6 (H.‐J. Kim & Chan, 1997), much weaker than the
effect of injections and the ensuing chorus‐driven electron acceleration. In addition, the Last Closed Drift Shell
(LCDS) has been calculated using the LANL∗ neural network (Yu et al., 2012) with the TS04 magnetic field
model (Tsyganenko & Sitnov, 2005). It decreased to L(LCDS) ≃ 6.1−6.2 at 2–5 UT, but increased back to
L(LCDS) ≃ 6.5−7.0 at 5:30‐11:30 UT. This implies that the outward electron loss was likely limited to L > 6.1 at
2–5 UT and to L ≥ 6.5 after 5:30 UT during this event.

The average Kp ∼ 4.2 between 6 UT and 11 UT suggests a possible simultaneous presence of electron radial
diffusion by ULF waves, but with a moderate statistical electric radial diffusion rate, DLL ∼ 1.7 day−1 at L ≃ 6
(Ozeke et al., 2014). The ULF wave‐driven inward radial PSD shift can be written as ΔL ≈ (Δt DLL)∂ ln(PSD)/∂L
(Schulz & Lanzerotti, 1974). Consequently, a very large positive initial outward electron phase space density
(PSD) gradient ∂PSD/∂L at first adiabatic invariant μ ∼ 300−1000 MeV/G would have been needed over
L = 5.5−6.5 (below the LCDS) to produce in Δt ∼ 3 hours the 0.5−1 MeV electron flux increase by a factor of
≈10 observed by ERG and ELFIN between ∼7 UT and 10 UT at L ∼ 5.7. The presence of such a steep positive
PSD gradient seems unlikely, due to the low L(LCDS) ≃ 6.5−7.0 simultaneously driving outward electron losses
at L ≥ 6.5. Although GOES measurements at L ∼ 7.7 show significant injections of ≈ 600−900 keV electrons
after 7 UT (see Figure 2), the LCDS then remained at L(LCDS) ≃ 6.5−7.0. This suggests that these electrons,
azimuthally drifting on open drift shells, should have been more rapidly lost to the outer space than scattered

Figure 12. (a) Trapped electron flux energy spectra J(α0 = 90 ° , E) (black to magenta curves) measured by ERG near the
magnetic equator at different times on 17 April 2021, and projected to the equator by assuming a typical shape
J(α0 = 90°)/J(α0) ≈ 1/ sinα0, with sinα0 ≈ (B(λ = 0°)/B(λ))

1/ 2 and B(λ) the geomagnetic field strength at the latitude of
measurement. The approximate steady‐state spectrum shape JUL(E) expected to be reached asymptotically in time in the
presence of both EMIC and chorus wave‐driven pitch angle and energy diffusion is also shown (blue curve), normalized at the
measured flux level at 100 keV and 10:30 UT. (b) Same as (a) but showing trapped electron flux energy spectra J(α0 = 90 ° , E)

(black to magenta curves) measured by ELFIN at low altitude at different times and projected to the equator. Two curves from
panel (a) are reproduced for the sake comparison: J(α0 = 90° ,E) inferred from ERG data at 10:30 UT (dashed blue) and
JUL(E) normalized to ERG flux at 100 keV and 10:30 UT (solid blue).
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inward to L ∼ 5.8, except if ULF wave power was much larger than in statistical averages for the considered
Kp or in the presence of significant drift orbit bifurcations (Ukhorskiy et al., 2011). Therefore, although one
cannot fully exclude an important effect of inward radial diffusion of such electrons, this effect is not ex-
pected to have been dominant in the observed electron flux enhancement at L ≃ 5.8 during this weak storm.

The above‐discussed theoretical steady‐state attractor JUL(E) from Equation 6 is also shown (solid blue curve) in
Figures 12a and 12b, normalized at 100 keV to the latest equatorial trapped flux inferred from ERG data around
10:30 UT. It represents the hardest trapped electron flux energy spectrum that can theoretically be reached during
sufficiently strong and sustained injections in the presence of both EMIC and chorus wave‐driven electron pitch
angle and energy diffusion (Hua et al., 2022; Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023). The
reduction of the lifetime of low‐energy electrons at 0.3–1 MeV by the high‐frequency wave power tail of H‐band
EMIC waves (Angelopoulos et al., 2023) leads to a slightly faster decrease of JUL(E) over 0.4−1.0 MeV than in
previous calculations where this tail was neglected to the first order (Mourenas, Artemyev, et al., 2022a;
Mourenas et al., 2023).

The equatorial trapped fluxes inferred from ERG and ELFIN measurements near the end of this event, at 10–11
UT (magenta curves), decrease slightly faster toward higher energy than the upper limit spectrum JUL(E) in
Figures 12a and 12b). This implies that the dynamical system did not yet reach this limiting energy‐spectrum
shape, probably due to too weak time‐integrated injections and chorus wave‐driven electron energization. In
such a situation, over time scales larger than ∼5−10 hours, the electron flux is expected to increase above 0.5−1
MeV despite the precipitation loss driven by EMIC waves, due to a strong electron acceleration by chorus waves
in the presence of both a steeply decreasing PSD gradient toward higher energy and a roughly fixed low energy
boundary of the flux energy spectrum maintained by the ∼100−300 keV seed electron injections observed by
GOES (Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023). The initial steep negative PSD gradient
toward higher energy should indeed boost the efficiency of chorus wave‐driven energy diffusion of electrons
toward the domain of lower PSD at higher E (Schulz & Lanzerotti, 1974; Walt, 1994), allowing it to transport
more electrons at high E than the number of such high E electrons lost via EMIC wave‐driven precipitation,
leading to an increase of J(E, t) at high E (see Figure 7, bottom right) as J(E, t) tends toward the upper limit
attractor JUL(E) (Mourenas et al., 2023). But only after a sufficiently long period of sustained injections is it
expected that the trapped flux J(E) reaches a slope similar to that of the asymptotic spectrum JUL(E).

A fast dropout of >1−2 MeV electron flux up to high equatorial pitch angles, due to combined pitch angle
scattering by chorus and EMIC waves, can instead occur (see Figure 7, bottom left, and the work by Mourenas
et al., 2024), but only when the trapped flux J(E) decreases with energy less fast than the steady‐state spectrum
JUL(E) (Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023), in particular over short time scales, <3−5
hours, when chorus wave‐driven energization has not yet efficiently transported low‐energy electrons to such
high energies (Mourenas et al., 2016, 2024).

During the present event, one cannot fully exclude another possible scenario: additional electron loss via outward
radial diffusion to the LCDS (Olifer et al., 2018; Pinto et al., 2020; Shprits, Thorne, Friedel, et al., 2006; Turner,
Angelopoulos, et al., 2012; Turner et al., 2014) could have increased electron loss compared to the sole EMIC and
chorus wave‐driven precipitation loss into the atmosphere, potentially leading to an asymptotic spectrum
decreasing faster with E than the estimate JUL(E) calculated in the absence of such additional losses. However,
fast outward electron loss at L = 4.2−6.6 is statistically much less frequent and weaker below ∼500−800 keV
than above ∼500−800 keV (Boynton et al., 2016, 2017; Turner, Angelopoulos, et al., 2012), whereas Figure 12
shows that the faster decrease of measured fluxes than JUL(E) occurs mainly below 500–800 keV.

After such an event, once substorm activity has subsided and ion and electron injections have become much less
significant, the trapped electron flux J(E, t) should decrease and slowly tend toward a different, quiet‐time
attractor, JUL,quiet(E), which should usually decrease faster toward higher energy than the above‐discussed
active‐time attractor JUL(E). As noted before, the gradient ∂JUL,quiet/∂E of the attractor depends on the factor
ϵ, which varies like ≈1/ (DEEτL). During quiet times, EMIC wave power decreases compared to active times,
increasing the lifetime τL, and the MLT‐averaged chorus wave power at low latitudes decreases compared to
active times, and more strongly than at high latitudes (Agapitov et al., 2018), decreasing more significantly the
chorus wave‐driven DEE than the chorus wave‐driven Dαα, and further increasing ϵ compared to active times. This
leads to a steeper negative gradient ∂JUL,quiet/∂E than during active times, probably explaining the steep negative
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energy gradient of the observed initial flux J(E) in Figure 12a at 0:30 UT (black curve). A sudden dropout of
electron flux through magnetopause shadowing would also decrease more strongly J(E, t) above 500−800 keV
than at lower energy, compared to the final J(E, t) reached during the preceding active times (Boynton et al., 2016;
Turner, Angelopoulos, et al., 2012).

6. Discussion and Conclusions
In this study, we examined a particular event on 17 April 2021 characterized by a series of strong electron and ion
injections, significant electron precipitation driven by EMIC and chorus waves, and electron acceleration mainly
attributable to chorus waves. During this event, GOES, Van Allen Probes, ERG (ARASE) and MMS spacecraft
have measured waves and trapped particle fluxes at high altitude near the magnetic equator, while ELFIN and
POES spacecraft have recorded trapped and precipitating particle fluxes at low altitude, providing sufficient data
to enable a thorough analysis of the involved physical phenomena.

Despite observations by ELFIN and POES indicating effective precipitation of electrons in the ∼0.1 − 1.5 MeV
range in the outer radiation belt due to EMIC and chorus waves, an increase in trapped electron fluxes was
observed across nearly all energy ranges. Combining theoretical estimates of electron quasi‐linear pitch angle and
energy diffusion by chorus and EMIC waves with statistics of wave power distribution, we have shown that long‐
lasting electron losses driven by EMIC waves may not deplete ∼0.1−1.5 MeV electron fluxes in the outer ra-
diation belt over the long run (>8 hours) when a sufficiently negative derivative ∂f /∂E < 0 of the electron PSD
f (E) is present. A sufficiently negative PSD gradient may, in fact, permit the strong transport of lower‐energy
injected electrons to higher energies via chorus wave‐driven acceleration, thus more than compensating for
potential losses of relativistic electrons due to EMIC and chorus wave‐induced precipitation into the atmosphere
(Mourenas, Artemyev, et al., 2022a; Mourenas et al., 2023). Electron injections, measured near L ≈ 7 by GOES,
were sufficiently strong after 7 UT to provide the large amount of ∼60−200 keV seed electrons needed that were
subsequently accelerated by chorus waves to progressively higher energies (Hua et al., 2022; Mourenas
et al., 2023), compensating for electron losses due to wave‐driven electron precipitation below ∼1.5 MeV at
L = 5−6.5. Together with some possible direct injections of relativistic electrons at 0.5−1 MeV and/or inward
radial diffusion by ULF waves (associated with adiabatic electron heating to 0.5−1 MeV), this ultimately led to a
net increase of relativistic electron fluxes.

This case study therefore underlines the fact that strong EMIC and chorus wave‐driven electron losses do not
necessarily correspond to a simultaneous decrease of trapped electron fluxes. Sufficiently strong injections and
chorus wave‐driven electron acceleration in the presence of a sufficiently steep negative electron energy PSD
gradient can balance such wave‐driven losses. As such, all of these factors should be integrated into global
simulation models for an accurate reconstruction of the evolution of trapped electron fluxes.

Data Availability Statement
ELFIN data is available at https://elfin.igpp.ucla.edu. Science data of the ERG (Arase) satellite were obtained
from the ERG Science Center operated by ISAS/JAXA and ISEE/Nagoya University (https://ergsc.isee.nagoya‐u.
ac.jp/index.shtml.en, Miyoshi, Hori, et al. (2018)). The present study analyzed the HEP L2_v03_01 data (Mitani,
Hori, et al., 2018), MEPe L2_v01_02 data (S. Kasahara, Yokota, Hori, et al., 2018), MGF L2_v04_04 data
(Matsuoka, Teramoto, Imajo, et al., 2018), ORB L2_v03 data (Miyoshi, Shinohara, & Jun 2018), PWE OFA L2.
v02_03 data (Y. Kasahara, Kojima, et al., 2018). Data was retrieved and analyzed using PySPEDAS and SPEDAS
(Angelopoulos et al., 2019). Code used for the analysis is available in the GitHub repository https://github.com/
Beforerr/EMIC_multi‐satellites_study.
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