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Objectives. Physical computing systems are increasingly being integrated into secondary school science
and STEM instruction, yet little is known about how teachers, especially those with little background and
experience in computing, help students during the inevitable debugging moments that arise. In this article,
we describe a framework, comprising two dimensions, for characterizing how teachers support students as
they debug a physical computing system called the Data Sensor Hub (DASH). The DASH enables students to
program sensors to measure, analyze, and visualize data as they engage in science inquiry activities.

Participants. Five secondary school teachers implemented an inquiry-oriented instructional unit designed
to introduce students to working with the DASH as a tool for scientific inquiry.

Study Method. Findings drew on video analysis of the teachers’ classroom implementations of the unit. A
review of the data corpus led to the selection of 23 moments where the teachers supported an individual or
small groups of students engaged in debugging. These moments were analyzed using a grounded perspective
based on Interaction Analysis to characterize the teachers’ varied interactional approaches.

Findings. Our analysis revealed how teachers’ moves during debugging moments fell along two dimensions.
The first dimension characterizes teachers’ positioning during the debugging interactions, ranging from a
positioning for teacher understanding to a positioning for student understanding of the bug. The second
dimension characterizes the inquiry orientation of the teachers’ questions and guidance, ranging from focusing
on the debugging process to focusing on the product—or fixing the bug. Further, teachers’ moves often fell
along different points on these dimensions given nuances in the instructional context.

Conclusions. The framework offers a first step toward characterizing teachers’ debugging pedagogy as
they support students during debugging moments. It also calls attention to how teachers do not necessarily
need to be programming experts to effectively help students learn independent and generalizable debugging
strategies. Further, it illustrates the variety of expertise that teachers can bring to debugging moments to
support students learning to debug. Finally, the framework provides implications for the design of professional
learning and supports for teachers as they increasingly are asked to support students in computing—and
debugging—activities across a range of disciplines.
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1 Introduction

While the range of education technologies to support K-12 students in learning computing has
grown rapidly (e.g., [37, 52]), the study of teaching and learning how to debug in the context of
these tools has remained mostly focused on the experiences of the learner. For example, McCauley
et al. [43] examined the depth and breadth of early debugging literature with four major questions:
“Why do bugs occur, what types of bugs occur, what is the debugging process, and how can we
improve the learning and teaching of debugging?” (p. 68). In response, a growing body of research
has continued to examine the practices of learning to debug from a variety of approaches including:
(1) developing a bug taxonomy [1], (2) conceptualizing debugging as an activity of productive
failure [30, 33], (3) exploring the conceptual change required to become a better debugger [48],
(4) articulating the knowledge required to learn debugging [38], (5) explicitly teaching debugging
strategies [35], and (6) examining the emotional process of debugging [8].

Recently, a line of research has expanded debugging research beyond pure software programming
to analyze how students approach debugging while using physical computing systems (PCS),
for example, Arduino-based systems [13] and electronic-textiles [16, 27]. This article builds on this
line of work through integrating computational practices into middle school science (or STEM)
classes using a specific sensor-based PCSs and accompanying inquiry-oriented curriculum. This
sensor-based PCS consists of a programmable microcontroller which receives data from sensors as
inputs, processes the inputted data, and then takes action through connected actuators (e.g., moving
servos, lighting up LEDs, vibrating buzzers). These “hybrid projects” can provide opportunities for
deeper learning [27] as students explore the interconnected areas of hardware and software [13, 28,
31, 39].

When embedded into science inquiry activities, sensor-based PCSs can be tools for developing
students’ epistemic agency [46] where they take ownership of the knowledge-building process in
scientific inquiry, both individually and collectively [2]. Therefore, physical computing with sensors
offers an opportunity to integrate computing into secondary school science and STEM classrooms
and presents a unique challenge for teachers to support students debugging and troubleshooting as
they program and build their own technologies for conducting science inquiry.

Whether teachers are new to programming or not, integrating PCSs into secondary school science
or STEM curriculum can create important moments of uncertainty for the teacher where they may
be unsure of how to support students. When students ask for help with their PCS that is not working,
the teacher may not be able to diagnose the underlying problem quickly or know exactly how to
support the student in finding and fixing the problem themselves or both. In these moments, the
teacher must make rapid decisions to help the student become “unstuck” How teachers approach
these moments of uncertainty can be influenced by a variety of factors—from class length and size
to the physical structures of the classroom—as well as their own prior experiences with computing.

ACM Transactions on Computing Education, Vol. 24, No. 4, Article 48. Publication date: December 2024.

"$207 °g [Hdy U0 AreIqrT [enSiq WOV oUl Wo popeo[umo


https://doi.org/10.1145/3677612

Characterizing Teacher Support of Debugging with Physical Computing 48:3

Prior scholarship has researched teachers learning to debug PCSs (e.g., [34]), how teachers support
students during classroom discussions around debugging (e.g., [6, 13, 24]), and how teachers’
personal reflections can shed light on how they support their students’ debugging [56]; little
research currently attends to the varied moves teachers make in-the-moment to support their
students in becoming “unstuck” when working with PCS. Taking up DeLiema and colleagues [10]
charge to “more inclusively and responsibly frame debugging as an open-ended process” (p. 8), this
article thus adds to the growing field of research attending to the interactions between students
and teachers during moments of debugging (e.g., [12, 18]), by examining teachers’ embodied moves
as they support students’ debugging of a sensor-based PCS [19]. We analyze instances where
teachers interact with small groups of students working on making their individual PCS work.
The approaches teachers take to these interactions, or debugging moments as we call them, has
implications for the debugging-specific pedagogies, or what we are calling debugging pedagogies.

Our study is guided by the following research question: What moves do teachers make to help
support students in developing debugging practices? Using a sociocultural theoretical frame, we
analyze debugging moments that occurred during five secondary teachers’ classroom implementa-
tions of an inquiry-oriented instructional unit designed to introduce students to working with a
sensor-based PCS called the Data Sensor Hub (or DASH) [20] as a tool for scientific inquiry. Our
grounded analysis led to a characterization of teachers’ moves along two dimensions as a first step
toward developing a theory of teachers’ debugging pedagogy. These two dimensions describe how
teachers’ moves are oriented (1) to the debugging process (process/product dimension) and (2) to
their own or their students’ understanding (understanding dimension).

2 Prior Work on Learning to Debug

Debugging and learning to debug is central for students learning computational practices in
STEM classrooms. Papert [48] explained that “[e]rrors benefit us because they lead us to study
what happened, to understand what went wrong, and, through understanding, to fix it” (p. 114).
Newcomers to programming often struggle with learning to debug their systems [16] because, as
scholars have pointed out, debugging skills differ from the skills of programming (e.g., [1]). When
students are “stuck” after encountering a bug [22], they often stop and wait for the instructor to
locate the bug [50], get support from a peer, or both [27].

To understand why students struggle with debugging their projects, research from the 1980s
focused on categorizing the kinds of bugs students experience and the strategies they employ for
debugging [43]. Many concluded that students often do not form a “big picture,” which Vessey [60]
refers to as a “system view,” of the system they are debugging. Students who lack a clear picture
of how the subsystems work together to form the entire system demonstrated a less systematic
debugging process. Perkins et al. [50] referred to students who had a tendency for sporadic changes
(that can create more bugs) as “Tinkerers” Unlike “Movers,” who take a more methodical debugging
approach and appear to work toward narrowing down the potential cause of a system’s buggy
behavior, Tinkerers will keep making changes, jumping from one failed hypothesis to the next.
While Tinkerers can, and often do, fix the bug they may not fully understand how they fixed
the bug, limiting their skill development for recognizing and rectifying future bugs. In contrast,
“Stoppers” hit a proverbial wall and stop testing bug hypotheses, waiting for someone else to come
and fix the bug for (or with) them. In other words, these students become “stuck” [22]. Recognizing
where students are during the debugging process—whether they are a Mover or a Stopper—may
help teachers assess how to best help students in the moment. As another example, Pea et al. [49]
suggest employing research-like techniques such as clinical interviews to understand students’
perspectives on certain repetitive bugs. Further, DeLiema et al. [10] have recently articulated a
conceptualization of debugging situations in educational settings where teachers and students
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negotiate different “debugging pathways” which offer possible solutions to making the program
work. In other words, moments of debugging are heterogenous opportunities for learning and
development [11].

Debugging exposes students’ emerging learning needs, creating important moments for support
and helping teachers focus on targeted areas of struggle [22, 49]. Teachers play an important role
in these moments and can help students develop the cognitive, social, and emotional capacities
necessary to work through complex problems [40]. For example, DeLiema et al. [11] offer debugging
activities as an important context for students and teachers to engage in communication about
critical thinking. They suggest that learning to debug should include reflection and storytelling
which promote communication about the learning process itself.

PCSs further complicate the debugging process [5] because they include connected hardware
and software that have exclusive or connected issues [13] making the “systems view” [60] even
harder for students to grasp as they navigate tendencies to Tinker, Move, and Stop. From another
perspective, physical computing components create more possibilities for debugging pathways,
as evidenced in our previous case study of one teacher’s work [24]. Using the context of high
schoolers working with electronic-textiles, Jayathirtha et al. [26] articulate this as the “difficulty of
coordinating between various components of physical computing systems ... the physical artifact,
representations on paper, and the onscreen programming environment” (p. 1053). To support
students in locating bugs in both hardware and software, Fields et al. [15] provided learners buggy
e-textile systems where they had to find and fix planted bugs (e.g., a short circuit (hardware) or
compiler error (software)). They found that the physicality of the projects made thinking about
and prioritizing the order of problem solving to be an important part of debugging. The PCS, like
the one students used in this article, included sensors to collect information about the system’s
surrounding environment, adding an additional component to coordinate.

3 Conceptual Framework: A Sociocultural Approach to Understanding Debugging
Pedagogies in Practice

3.1 Debugging as Recognition and Reconciliation of Inconsistencies

Ko and Myers [36] describe the debugging process beginning at the identification of an issue, or
failure, in the system. Thus, there is a pedagogical element to helping students notice an issue
[10], in addition to supporting them to fix issues when they are “stuck” Using a sensor-based PCS,
students encounter emergent material resistance [42] that requires tinkering with components and
programs that measure and process the data streams when outputs do not match expectations (e.g.,
a classroom temperature reading is 200°F). This entails recognizing what data and models mean in
relation to their lived experiences that inform their expectations for outputs [4]. We start from the
assumption that bugs in computational systems come to existence when they are interactionally
identified [12] through recognition of inconsistencies between the system’s actual output and
the expectation of what the system’s output should be. Debugging, therefore, is an open-ended
process of developing, evaluating, and negotiating possible “debugging pathways” [10]. Building
on Suchman [59], Flood et al. [18] identify the process of debugging as a situated inquiry where
debuggers fix issues caused by bugs by constantly asking questions about the system and remaking
their paths of inquiry. Such a situated inquiry cannot be explicitly taught but must be learned
through developing skills.

Conceptualizing debugging as situated inquiry informs our theoretical approach to analysis
grounded in sociocultural theories of learning and development [61]. This approach helps us
explain how developing debugging skills and practices is a social and cultural process of developing
relations. The environments, activities, and communities where learners are learning to debug
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shape the contours and possibilities of how they can learn. From this perspective, each debugging
interaction is different; learners are learning approaches and skills of inquiry rather than a particular
repeatable practice.

This theoretical base supports our conceptualization of teachers’ interactional offerings—or what
we’re calling teacher moves—as resources for students learning to debug as part of joint meaning
making of possible solution pathways. Further, it supports our conceptualization of teachers’
approaches as indicative of their debugging pedagogies, or perspectives and practices informed by
views of how students learn to debug.

3.2 The Teacher’s Role in Supporting Students during Debugging

How learners learn to debug has been studied from an array of learning theories [32]. Yet, as
DeLiema et al. (Dave Toce) point out, existing research on debugging teaching and learning has
mostly focused on the actions of students while debugging, and often assumes a singular problem
and solution pathway. As we have pointed out in previous work [24, 47], theorizing, analyzing, and
understanding the role of the teacher in supporting students to debug their systems is understudied.
Often this translates to the assumption that teachers must learn to be expert debuggers before they
can support students and misses the nuances of teachers’ in-the-moment facilitation in supporting
others learning to debug [24].

Recent research highlights the variety of frictions teachers experience while supporting students’
debugging. These include helping students understand the relevance of debugging, helping them
draw connections between their goals and the processes they take, navigating the various ways to
structure debugging, and negotiating the various way to scaffold debugging [10]. Understanding
how to best support students’ debugging is further complicated as most debugging skills are taught
on demand [44], often requiring teachers to make in the moment decisions that require structured
improvisation [57]. Further, there is an emerging scholarship developing on what kinds of practices
and knowledges it takes to make culturally responsive debugging.

3.3 Debugging Pedagogies

Scholars who have focused on teachers’ activities in supporting students learning to debug in various
informal learning environments have argued for a need to explore such practices at interactional
scales [10]. Flood et al. [18], for example, demonstrate the ways that instructors can effectively
support a learner’s development of debugging skills through key guidance on strategies that are
authentic to the debugging experience, similar to guidance needed in learning more physical
activities using a power tool. As described above, there is emerging scholarship (e.g., [7, 11, 21])
that describes the value of explicit reflection on critical thinking and emotions while learning to
debug. Therefore, facilitating authentic guidance during learners’ debugging practice and associated
reflective practice is grounded in what we call debugging pedagogy.

Debugging pedagogy is the undergirding perspectives and motivations that shape how teachers—
and other facilitators—make decisions about how to approach supporting students during the
debugging process. These perspectives can help develop what Papert [48] calls a “debugging
philosophy” where “errors benefit us..” because they lead to developing an understanding of the
system. In some instances, a teacher sharing something with the whole class about how to debug
a PCS is shaped by perspectives about how students can learn to debug. Similarly, a perspective
informs how a teacher celebrates students’ persistence in trying to get their PCS to work [62] or
encourages students to see the systems’ failures as learning opportunities [30].
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3.4 Teacher Moves as the Unit of Analysis

In this study, we apply a sociocultural theory [61] to understand the teachers’ role as relational
supports who adapt to the learner’s trajectory, social positioning, and developing relationship to the
materials. We look to learn from teachers’ practices undergirded by their debugging pedagogies. To
this end, we use “teacher moves” as the unit of analysis, which are the actions teachers make in-the-
moment when interacting with students who are debugging. These moves include a coordination
of talk, gestures, and physical movements around the student and their system. The analysis starts
from the assumption that a significant portion of teachers’ actions to support students learning
the skills of debugging are embodied [18], like pointing at the computer screen or tracing the flow
of information through the wires with their finger, and in connection to their language [19].This
focus on teacher moves builds on the view that teaching is inherently improvisational “because the
flow of the class is unpredictable and emerges from the actions of all participants, both teachers
and students” [57] (p. 2).

4 Methods
4.1 Study Overview

To study how teachers support individual and small groups of students during debugging moments,
we focused our analysis on the complex interactional work they engaged in during various stages of
students’ debugging process. We analyzed audio and video recordings from five teachers’ classrooms
in two different participating districts who taught the same curricular unit and physical computing
technology with their secondary students. Performing Interaction Analysis [29] we used debugging
moments—or sets of interactions starting when the teacher approached the student(s) and ending
when they leave the group completely whether the bug was fixed or not—as analytic segments
to characterize teachers’ orientations and approaches to supporting the debugging process and
the recurring interactional moves that produced them. Focusing on these moments offers a new
perspective on the improvisational nature of teachers’ work [51] in supporting debugging as a
situated inquiry [18, 59]. It also allows us to characterize the wide variety of teachers’ approaches
and orientations to bugs and the processes of debugging.

4.2 Study Context

This study is part of a project that, since 2017, has been collaborating with a large urban school
district as part of a Research-Practice Partnership (RPP) [6] to develop instructional units that
integrate computing in secondary school science and STEM classes [3, 63]. The initial school district
involved in the RPP (School District A) is a large urban district located in the Western U.S. During
the 2021-2022 school year, the RPP expanded to include an additional site in a small rural and
small-town school district in an adjacent Western state (School District B).

4.3 Researcher Relationships to Participants

All six authors are researchers who worked on the SchoolWide Labs research team at two different
universities. Each author has worked with teachers in School District A over the course of this study
in some capacity during professional learning (PL) sessions. Alexandra (author 3) and Jeffrey
(author 4) have supported District A teachers in their classrooms as they implemented the project’s
unit. While in classrooms, Alexandra and Jeffrey also collected data including audio/video recording,
survey data, and observation notes. Colin (author 1), Jessie (author 2), and Mimi (author 6) have led
the professional development with teachers in School District B. Jessie has supported teachers as
they implemented the project’s unit in their classrooms while also leading data collection.
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Fig. 1. A student’s DASH, showing DASH components with a sound sensor connected and a smiley face
produced on the micro:bit LED array.

4.4 Sensor Data Computing System

The DASH is a PCS composed of a micro:bit [68] augmented with a gator:bit. The gator:bit provides
additional programmable pins on the micro:bit, which can be clipped by alligator clip connectors
and a variety of alligator clippable sensors (Figure 1). Using the DASH in classrooms offers an
opportunity for secondary school students to engineer their own PCS to control the entire lifecycle
of environmental data, from collection, storage, manipulation, to display [20]. The DASH has up to
five alligator clippable sensors, including (1) an environmental sensor that measures temperature,
humidity, barometric pressure, carbon dioxide, and total volatile organic compounds; (2) a soil
moisture sensor; (3) a sound sensor; (4) a UV sensor; and (5) a particle sensor (see Figure 1). The
gator:bit also has a speaker and five programmable neopixel LEDs that students can use to create
displays with lights and sound. The micro:bit can be programmed using the block or text-based
MakeCode environment and each of the sensors has their own MakeCode blocks to control the
data collection process.

4.5 Sensor Immersion Unit

As part of the RPP, researchers and educators co-designed several instructional units [3] to introduce
secondary school students to the DASH [20] as a tool to support sensor-driven inquiry in science
and STEM classes. Data for this article were generated while teachers implemented one of these
units, the Sensor Immersion unit, which was designed to introduce students to the DASH. The
five-lesson unit uses an inquiry approach (building on [55]), where each lesson sequence involves
students generating questions and investigating phenomena in the world around them (e.g., sound
or light levels) using data collected by the DASH. In the unit, students explore how the DASH
displays data collected from sensors reading classroom sound levels, local environmental conditions,
and soil moisture levels in classroom plants. As a part of the inquiry process, students generate
questions about the DASH that the teacher organizes into categories corresponding to the unit’s
lessons. Thus, each lesson is built around answering authentic student questions about the DASH
as a phenomenon. As part of answering these questions, students learn how to wire and program
sensors, and how to display data that they collect. This article analyzes moments during the Sensor
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Table 1. Focal Teacher’s Prior Programming Experience

Name School  Approximate Grade Level Level of Preparedness Computer Science or Programming
District ~ Number of Supporting Students in Experience
Students Programming
Dave A 25 7th and 8th Not adequately prepared No prior experience
Gabrielle A 20 6th Not adequately prepared No prior experience
Karla B 22 9th Somewhat prepared Prior experience completing

projects using programming and
programming with students

Natalie B 8 9th Not adequately prepared Prior experience completing
projects using programming and
programming with students

Uma A 23 7th and 8th Very well prepared Computer science background and
prior experience programming with
students

Levels of preparedness and computer science and programming experience are based on self-reported survey data prior to
each teacher’s first year in the SchoolWide Labs project.

Immersion unit where teachers supported students encountering various bugs as they wired and
programmed the DASH in three lessons in the unit (lessons 2, 3, and 4).

4.6 Participants

This study focuses on five secondary school science and STEM teachers (grades 6 through 9)
who participated in a PL program between the 2019 and 2022 school years. We used maximum
variation sampling [45] to select 5 teachers out of a total of 21 teacher participants. Our goal was to
select teacher participants who had a breadth of programming experience, years of teaching, years
teaching the Sensor Immersion curriculum, and debugging moments that represented an array of
approaches. Although part of this study took place during the COVID-19 pandemic, we did not
include any data that took place during online learning. Table 1 lists each teacher, their district,
their self-reported level of preparedness for supporting students during programming, and their
programming experience prior to participating in this study, as reported on a pre-survey.

Over the course of the school year, the teachers participated in several PL workshops to learn
to integrate the instructional materials and the DASH into their classes [3]. Activities included
collaboratively designing instructional units, modeling these activities for participating teachers,
reflecting on classroom implementation, and revising curricular resources—all with the goal of
supporting teacher learning, developing a teacher community, and iteratively improving instruction.
In addition, four out of the five teachers took part in one PL activity focused on debugging practices
where they were given buggy DASH systems, worked collaboratively to debug the system, and
reflected on the process [57].

In his first year working with the project, Dave taught 7th and 8th grade science in District A.
Dave worked with middle school students with a diverse set of needs and experiences. Author 4
recorded and observed (including observation notes) Dave’s classroom while working closely to
support him as he implemented the Sensor Immersion unit.

Gabrielle taught 6th grade science in District A. This was her second year working with the
project, but her first year teaching in this school. She implemented the unit during her extra
period outside of regular instruction to spend as much time on the unit as possible. All students
attended this extra period at some point during the school year. Gabrielle often described her
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Table 2. Video Data Sources

Teacher Total Video for Lessons 2, 3, 4 Total Debugging Moments
Dave 180 minutes (four 45-minute class periods) 11.08 minutes

Gabrielle 180 minutes (four 45-minute periods) 8.7 minutes

Karla 150 minutes (three 50-minute class periods) 9.3 minutes

Natalie 135 minutes (three 45-minute class periods) 14.77 minutes

Uma 180 minutes (three 60-minute periods) 6.08 minutes

Total time 825 minutes (13.75 hours) 49.96 minutes

Bold indicates total.

own struggles and lack of experience with programming and physical computing to her students.
Alexandra (author 3) worked closely with Gabrielle as she implemented the unit in her classroom
and throughout her 2 years working on the project.

Karla taught 9th to 11th grade Physics in District B. Karla stated that she enjoyed integrating
new technologies into her classroom and had previously introduced her students to electronic
textiles. She worked with author 2 as she implemented the unit.

Natalie taught 9th grade Earth Science at STEM at an alternative high school. Her class sizes were
small, ranging from six to eight students, and she had the freedom to spend more time implementing
the Sensor Immersion unit. Natalie worked with author 2 as she implemented the unit.

Uma was a 7th and 8th grade STEM teacher at a school in District A. As Table 1 indicates, she
reported the most confidence in her programming skills. She regularly cited her engineering degree
as a source of confidence. Uma interacted with Alexandra (author 3) and Mimi (author 6) regularly
during professional development sessions.

4.7 Data Sources

The primary data source for this study is approximately 14 hours of video recordings of the five
classroom teachers and their students during classroom implementations of lessons 2, 3, and 4 of
the Sensor Immersion unit when students engaged in programming and wiring the DASH (see
Table 2).

During classroom implementations, researchers positioned one video camera at the back of the
room to provide a wide view of the classroom and a second handheld camera followed the teachers
around the room as they worked with students to debug their system. The handheld cameras framed
the teacher, the students’ faces and hands when possible, and their computer screen to record
students’ programs. Teachers wore a wireless lapel microphone to maximize audio capabilities
in the classroom. In addition, the handheld camera meant that not all debugging moments could
be fully captured by the researchers because the video was not close enough to see what was
happening on the screen. Debugging moments with audio or video complications were removed
from the data corpus. From the remaining handheld video recordings, we located a total of 49.96
minutes of debugging moments from all the teachers (see Table 2 and Appendix A).

4.8 Data Analysis Methods: Distilling the Framework Dimensions

To understand how teachers interacted and supported students during the debugging, we used
a grounded approach to data analysis [7]. We started by co-viewing numerous instances of de-
bugging from three different teachers (Dave, Karla, and Natalie) who participated in our program
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during the 2021-2022 school year. These teachers were selected because their classroom video and
audio recordings captured well-sustained interactions with groups of students as they debugged.
Recordings from two more teachers (Gabrielle and Uma) who participated during the 2019-2020
school year, their first year implementing the Sensor Immersion unit, were added for maximum
variation sampling.

4.8.1 Moment Selection. We consider a debugging moment to involve the moment the teacher
approaches the student(s) until the teacher walks away. During the initial data review, we chose to
classify a few instances where the teacher walks away and quickly returns to also be one single
debugging moment because the student and teacher continued working on the same issue in
short succession. We chose to focus on debugging moments that lasted more than 35 seconds,
eliminating moments where teachers checked in with numerous students in quick succession
and where little debugging occurred. The 23 selected debugging moments ranged in time from 39
seconds to over just 5 minutes and occurred at different moments throughout the Sensor Immersion
unit. Appendix A lists all 23 debugging moments, and their length, date, type, and bugs.

4.8.2  Analysis of Moments: Dimension Development. From an initial review of a sample of
debugging moments, we recognized that teachers displayed an array of approaches that didn’t fit
neatly into instructional categories as they often moved back and forth between different approaches
in a given moment. From initial grounded analyses of these moments, we distilled dimensions
to characterize these different approaches. This grounded approach, based on the foundations of
Interaction Analysis [29], allowed us to craft dimensions based on the naturally occurring activities
taking place in the classroom.

The debugging moments placed on the dimensions are not intended as a representative sample of
all debugging interactions. Further, we did not conceptualize these dimensions as value judgments
of teachers’ debugging pedagogies. Rather, the dimensions were distilled from analyses of teachers’
practice as a way to characterize the various forms of supportive interactions teachers took with
students in the process of debugging the DASH. Further, the two dimensions are not the only
dimensions of debugging pedagogy but ones that emerged during the debugging moments we
analyzed.

To distill these dimensions, we used Interaction Analysis [29] to analyze the 23 debugging
moments from 5 teachers, paying close attention to the gestures, facial expressions, and physical
movements that align with each teachers’ utterances and how they were subsequently taken
by students in the moment. Interaction Analysis allowed us to examine the social and material
ecologies surrounding the debugging moments recognizing that both knowledge and action are
socially situated [23, 29]. As bugs are interactionally identified [12], we valued a socially situated
analytical approach to categorizing teachers’ debugging moves. Further, Interaction Analysis
provides methods to examine video data in a micro-genetic way through repeated viewings—both
as a research team and individually—that sketch how members of an interaction create relevancies
and consequentiality. Hall and Stevens [23] describe how analysts “move through the transcripts
(and video) turn by turn seeking to see what one turn set up for subsequent turns and what those
subsequent turns do with prior turns” (p. 79). For our study of teachers interacting with students,
this means repeatedly viewing the videos and transcripts to characterize interactional moves (i.e.,
teacher moves) and how they are subsequently taken up in the interaction (i.e., student uptake of
teacher moves). Our analysis focuses on characterizing teachers’ approaches to interaction. Such
analysis is implicitly shaped by how students respond because we characterize teachers approach to
the whole moment (between 40 seconds and 348 seconds) that encompasses teachers’ interactional
contributions, students’ responses to them, teachers’ subsequent responses, and so on.
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Table 3. Analysis Process: From Distilling Framework Dimensions to Clustering Debugging Moments

Steps Data Analysis Data Sources

Step 1 Authors 1 and 2 reviewed classroom data and debugging Video recordings of debugging moments that had in-
moments teresting or innovative teacher moves from the Sensor
Immersion unit for lessons 2, 3, and 4

Step 2 Research team (all authors) collaboratively viewed de-
bugging moments to categorize and iterate on the dimen-
sions

Step 3 Larger research project (including non-authors) collabo-
ratively viewed debugging moments to categorize and
iterate on the dimensions

Step 4 Authors 1 and 2 individually categorized 23 debugging 23 debugging moments taken from video recordings of
moments on the two dimensions and compared. Mo- 5 classroom implementations of the Sensor Immersion
ments not in alignment were reviewed together to come unit for lessons 2, 3, and 4
to a consensus.

Step 5 Research team reviewed 5 of the 23 moments for further
categorization and consensus. Dimensions were refined
and moments were clustered.

Each video recording was transcribed using methods in line with Interaction Analysis [23, 29].
We then engaged in multiple processes of co-viewing the debugging moments as a research team
seeking to understand what teacher moves were being made and how they were being taken up,
individually placing these moments along our developing dimensions, iterating on their transcripts,
and repeatedly discussing our interpretations as a group until we came to consistent agreements
as a team. The details of our process, from defining the dimensions to selecting and clustering 23
debugging moments, are described in Table 3. We analyzed debugging moments for patterns and
themes, but also for contrasts and irregularities [9]. We recognize that our analytic process with
these qualitative data privileges the perspectives of researchers and not the teachers whose moves
we were analyzing.

5 Findings
5.1 Teachers’ Views of Debugging during PL Activities

Our prior work on debugging-focused PL activities surfaced that teachers often felt uncertain
about how to best assist students in debugging PCSs [47]. Teachers expressed uncertainty about
what to do if they ran into a situation where students encountered a bug they could not find or
fix. For example, one teacher vocalized her uncertainty around debugging by saying: “do I have to
know what I'm doing to be the teacher?” This instance reflects the tension many teachers face as
they consider their role in working with students toward debugging PCSs: They often want to feel
confident debugging themselves before supporting students debugging yet they rarely have the
time to become experts, nor will they ever know all of the potential issues that could arise. Further,
numerous contextual factors (including time in class period, number of students, and additional
responsibilities) often make teachers unable to spend large amounts of time with all students to
fully investigate the issue. Therefore, teachers make many in-the-moment decisions that develop
dynamic approaches to supporting students’ debugging in the limited time and space available.
To better characterize the varied approaches teachers took to support students, we set out
to categorize teachers’ moves exhibited while they supported students during debugging mo-
ments. As described next, our analysis distilled teacher debugging moves across two dimensions:
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Teacher debugging moves position for
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* highlighted in findings section

Fig. 2. Categorization of the 23 debugging moments for each teacher on the understanding dimension.

(1) a dimension that characterizes teachers’ positioning during debugging and (2) the process-
product dimension that characterizes if interaction was primarily organized to teach the process of
debugging or prioritize the product of a debugged system. Within these nuanced dimensions, we
created two clustered ordinal scales. Clustering allows the scale to be used for analyzing moments
from each individual teacher.

5.2 Dimension 1: Debugging Moves Positioned between Teacher and Student
Understanding

Our analyses revealed that when working with students engaged in debugging, teachers’ interac-
tions ranged from moments positioned for teacher understanding—where teachers prioritized their
own understanding—to positioning for student understanding—where teachers prioritized helping
the student understand the issues and underlying causes. Figure 2 shows, for each teacher, where
each of their debugging moments fell on this dimension. Individual teachers used varied approaches,
which often depended on the complexity of the bug and previous experience with similar bugs.
Debugging moments placed on the left of the continuum in Figure 2 reflect moments where teachers
worked to understand the bug for themselves. Moments positioned in the middle of the continuum
reflect sets of interactions where teacher moves supported both teacher understanding and student
understanding. These balanced moments often involved teachers first working to understand the
bug for themselves then shifting to guide the student toward debugging for themselves. Moments at
the far right of Figure 2 reflect instances where teachers exclusively centered student understanding
of the bug, the process of debugging, or both. Moments starred in Figure 2 are analyzed as examples
here in the Findings section (Section 5.2).

In our sampling of the 23 debugging moments from 5 teachers, a large majority were placed
toward the student understanding side of the continuum. While this is not a representative sampling
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Position A Position B

Fig. 3. Uma’s movements during U.1.

from the whole data corpus, it shows that teachers in our selected moments more often prioritized
moves that supported student understanding in some way.

5.2.1 Positioning for Teacher Understanding. Teacher moves that were characterized as moments
positioned for teacher understanding often involved short and direct closed questions at the start
of the interaction. Pryor and Crossouard [53] defined closed questions as ones “where there was a
clear idea (at least for the teacher) of a correct response” (p. 4). In our analysis of teacher moves, we
denoted closed questions as questions with a limited set of expected responses, usually formed as
yes/no responses to questions or confirmation questions that have a clear intended set of possible
responses (e.g., “what sensor are you programming for” (D.1, D.2)). Teachers regularly asked things
like “did you download the code [onto the micro:bit]?” (D.2), which offered an opportunity to learn
more about the DASH’s current state from the student.

Teacher moves that characterized positioning for teacher understanding did interactional work
to get the teacher up to speed on the student’s view of the situation. These included physically
positioning themselves in direct relation to the computer in order to see the program or the DASH.
For example, in some approaches, the teachers either shifted the computer to read the code, took
control of the mouse to search through the code, or picked up the DASH to examine the hardware
wiring.

Often, teachers appeared to use these interactions to develop their own expectation of what the
DASH should be doing in order to compare to its actual output, thereby interactionally producing
the presence of a bug [11] in coordination with the students and the system. Throughout the 23
moments we analyzed, there were very few instances where the teacher’s moves were wholly
oriented for their own understanding; many were paired with interactions where the teacher was
positioned for student understanding in the same moment.

In one example moment (U.1) placed far to the left at the teacher-understanding end of the
dimension, a student asked for Uma’s help saying “my micro:bit isn’t showing up on my computer.”
With little verbal communication, Uma walked to the opposite side of the student (Figure 3, position
A), moved an obstacle out of the way, positioned herself in front of the computer (Figure 3, position
B), and took over the mousepad to find the issue. The student followed along with his gaze as Uma
took an alternative path to download the program onto the computer.

The two of them did not talk about what caused the problem or why Uma had to take a different
approach to downloading the program, leaving the student with only knowledge of what he saw if
he ran into the same issue in the future. Here, Uma’s embodied teacher moves (e.g., positioning
herself and the computer for her own view, taking control of the computer) and her lack of moves
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Fig. 4. Natalie’s movements during N.5.

like verbalizing what she was doing meant we characterized this moment as positioning for teacher
understanding. Her choice to focus on developing her understanding of the bug could have been
due to the type of bug, a failure of the micro:bit’s communication with the computer.

5.2.2  Positioning for both Student and Teacher Understating. We placed moments toward the
middle of the dimension when teachers seemed positioned both for their own understanding and
their students’ understanding. These moments arose from two distinct approaches. Teachers either
(1) worked through co-discovery of bugs with each interactional move positioned simultaneously
for teacher and student understanding or (2) moved back and forth between positioning for teacher
and student understanding. In our analysis, teachers who deployed the latter approach often started
positioning inquiry for teacher understanding and then shifted to position inquiry for student
understanding, possibly once they had a vision of what the bug might be.

The following example from Natalie (N.5) exemplifies the co-discovery approach with one student
working on one DASH. Natalie (N.5) spent 5 minutes and 18 seconds with one student. The student
tried to program the sensor to display both humidity and pressure but got stuck trying to use the
logic blocks to display two variables. Natalie told the student that she wasn’t sure how to do this
as she had never done this herself. Sitting side by side with her student, Natalie positioned the
computer equally so they each could look at the program together, taking turns driving the mouse,
pointing to lines in the code, and sifting through the available blocks they could add to the program
(see Figure 4).

Natalie also modeled her own thinking, questioning, and debugging practices such as reading
the code aloud, having the student pull up the tutorial as a guide, moving back and forth between
what the tutorial explained and the student’s code. Natalie’s language also displayed a sense of
co-discovery as she regularly used “we” to describe the actions and movements in the interaction
(e.g., “I think we want to put something in there” (pointing to code) and “pretty sure we make a
dummy variable named switch which shows if we are showing humidity or pressure”).

In sum, Natalie’s approach worked simultaneously to clearly help her understand the bug and to
support the student to debug similar issues in the future by having strategies and skills to deploy.
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Therefore, we characterized this moment as in the middle of positioning for student understanding
and teacher understanding.

5.2.3 Positioning for Student Understanding. Moments characterized as positioning inquiry for
student understanding were marked by three types of teacher moves: (1) scaffolded questions and
directives that encouraged students to take an active role in locating and fixing bugs, (2) verbal
guidance that supported students in noticing issues and possible fixes themselves, and (3) clear
embodied gestures connected to the computer and the DASH, allowable because of the teachers’
proximity to both the DASH and the computer without getting in the view of the students.

Teacher questions and directives encouraged students to take an active role in locating bugs,
talking through their thinking, reading the code aloud, and making sense of their expectations
of what the code should be doing. For example, Karla repeatedly asked students: “what are you
telling it [the micro:bit] to do?” (K.1, K.2, K.3) and “what instructions did you give it?” (K.2, K.5).
Through answering her questions, Karla could uncover the places where students were confused,
find gaps in their understanding, and scaffold approaches to help students understand the bug.
Simultaneously, through talking through their code students had to make sense of what the code
was supposed to be doing, learn more about programming, and develop a more robust expectation
of what the DASH should do.

In these moments, teachers often worked as guides, helping students through asking open-ended
or exploratory questions or proposing directives to promote student understanding. Sometimes
this occurred after the teacher first determined what the bug was for themselves and then shifted
into student-centered understanding. Other teachers entered each encounter with students from a
student-oriented approach sometimes having no idea of what the bug was. As one teacher, Natalie,
explained in a post-implementation interview: “I have no idea what I'm doing, so I just ask a lot of
questions.”

Being a guide also meant pointing students to additional supports such as tutorials or example
code so students might learn about the variety of resources they could use when stuck in the
future. In one moment (G.3, Figure 5), when Gabrielle went to help a student, she recognized a
potential bug right away; she looked at the screen and saw that there was an empty space in the
“or else” block (line 6). Gabrielle’s quick identification of a potential problem helped her target
the learning moment toward student understanding. Gabrielle encouraged her student to pull up
example code (line 9) and compare his code with the example code to locate the issue (line 13).
Gabrielle offered the example code as a visual tool while also reading the code aloud (lines 14-15,
20-21), asking questions (lines 11, 18-19), and directly pointing to lines in the code to direct her
student to the issue (line 6). We thus categorized Gabrielle’s interactions on the far right of the
dimension’s continuum because the entire interaction was meant to help the student notice the
bug rather than pointing it out to him.

Noticeably, teachers like Gabrielle also embodied student-understanding centered approaches
differently, using their bodies and gestures to orient students toward debugging. Gabrielle, for
example, pointed to each line in the code as she read aloud both the example code and the student’s
code as the student followed along. She also simultaneously pointed at an issue in the code and
said “Uh oh” to direct the student to notice the error (line 20), a regular move we identified in other
work [24].

Karla’s actions in K.5 demonstrated a clear shift in body posture and orientation when she
moved from positioning for teacher understanding toward student understanding. She originally
leaned toward the computer and pulled the laptop toward her so she could see if the students had
downloaded the correct program (positioning inquiry for teacher understanding). She then quickly
shifted her approach, moving the laptop back toward the students, and directing students toward
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1 Gabrielle:
2 Nate(s):
3

4 Gabrielle:
5 Nate(s):
6 Gabrielle:
7

8 Gabrielle:
9

10 Nate(s):
11  Gabrielle:
12 Nate(s):
13  Gabrielle:
14

15

16  Nate(s):
17  Gabrielle:
18

19

20

21

22

23

24

25

26

27 Nate(s):
28

29 Gabrielle:
30

31 Nate(s):
32 Gabrielle:
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K what's up.

((points to the screen)) Um ok. | already coded this one ((grabs the micro:bit still plugged into the computer)).
[1 just... ((inaudible))

[OK did] you ((touches Nate's shoulder with index finger)) download your code.

Yeah. | downloaded it=

=0K now you got a big fat space there. You see that space there ((points to the computer screen)). When
you're writing code, you can't leave stuff like that. ((Nate looks up to Gabrielle and then to camera)).

K so let's ((moves to the other side of Nate and turns the computer to orient viewing for both of them)). Did
you look at the um at the sample code?

Ok. ((pulls up sample code on Makecode tutorial)) Like that.

Mmmk. So this says -- ut oh this is number 6. Did you already download up to number 5?

Yeah.

0:::K so you're gonna go for it. Huh. | like it. OK. So then this is what the code is supposed to look like. K so
what we've got it says on button B, so when button B is pressed, if the sound intensity is less than four
hundred -- that's good, you changed that huh.

MMhmm.

K. Um then you're gonna start melody repeating once. K and then it say:::s. What does that say, shoestring
music. OK. Let's go look at your code. ((Nate switches window back to just his code)). MMk. Ut what does it
say? Can we move it down so we can look at the whole thing?

((Nate scrolls up a bit)). Ut oh ((Nate switches the button press block)). There you go you found one thing. K
then show number sound intensity. If the sound intensity. K. Start melody ((Nate clicks on the block to change
the melody)). It could -- it's OK. It doesn't matter which one you use. You could use any one. ((Nate clicks off
the box)). K repeating once. or else WHAT.

(5s) Go back and look at your sample code. ((Nate clicks hint button in tutorial)). K uh what do we got here.
Oh, we don't need an "or else." We don't need an "or else." So go and change that one. We don't need an ["or
else."

((points to logic block on the screen)) [would]
it be that one.

There you go we don't need an "or else." ((Nate begins changing code to put new IF statement in)). Look how
smart you are.

| take this ((pointer is on the play melody block)) right.

That's OK. Yup take those out. Great. Keep going.

Fig. 5. A snippet of the transcript for G.3.

o,
Position A Position B Position C

N

the next steps saying “okay, will you click this one and drag it over here to where it says micro:bit”

Fig. 6. Karla’s positioning for K.5.

After the download was complete Karla realized the issue and her body position, questioning, and
approach shifted. She started asking questions like “okay, it’s waiting for you. What is it waiting
for you to do?” and “what instructions did you give it?” While previously Karla’s gaze was focused
on the screen itself so she could see the program (Figure 6, position A), here her eye focus was on
the students rather than the computer (Figure 6, position B). Karla’s physical posture changed also
as she stood up from her position where she could no longer see the screen but rather focused
on the students again asking “so what are you thinking? What should we do?” (Figure 6, position
Q). If everything after the shift in Karla’s approach were its own debugging moment, we would
have characterized it as purely positioning for student understanding and placed it on the far right
cluster of Figure 2. Instead, we positioned it one cluster to the left of the full student understanding

cluster.
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Teacher debugging moves orient towards
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Fig. 7. Categorization of the 23 debugging moments for each teacher on the process/product dimension.

5.3 Dimension 2: Inquiry Orientations between Process and Product of Debugging

Our analysis uncovered how, in supporting students who were stuck, teachers oriented their
inquiry toward finding and fixing bugs in different ways as they interpreted students’ developing
relationships to the DASH. Starting from the data, we distilled a dimension ranging from the
teachers’ inquiry as fully process oriented—supporting students to see and develop a process for
finding and fixing bugs—to fully product oriented—supporting students to make the DASH work
as intended (see Figure 7). Much like the characterization of the different kinds of debugging
learners by Perkins et al. [50], this dimension captures the different approaches teachers take to
support debuggers, which may (to some degree) rely on their implicit read of the student’s current
role as Tinkerer, Mover, or Stopper. Each extreme of the dimension indicates if almost all (if not
all) of the inquiry was oriented toward either the product or the process of debugging. Points in
the middle indicate that either there was a shift in the kinds of inquiry interactions (questions
and directives) teachers initiated across the moment or the teacher’s inquiry interactions were,
themselves, characterized as both process and product oriented.

5.3.1  Process Oriented. Teacher debugging moves that helped to characterize a moment as
process oriented typically positioned the teacher as an investigator with the student through open-
ended questions, explicit inquiry strategies, and/or directives. For example, some teachers narrated
what they were looking at and what they were looking for, as they engaged with the DASH that
the student identified as buggy. Other examples included teachers asking open-ended questions
that could lead students to engaging directly with the DASH without the teacher. Alternatively,
teachers sometimes directed students to perform an open-ended task (e.g., “program it to show the
temperature”). These moves develop opportunities for students to notice and develop a process for
debugging or the underlying explanation of a bug, rather than just noticing the bug and/or the
steps to rectify it.
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One example (K.5) depicts the kinds of moves that helped characterize a moment as process
oriented. This moment was also analyzed in Section 5.2.3. In this moment, coded solely as process
oriented, Karla spent a total of 3 minutes 45 seconds with two students. She provided plenty of
time for the two students to talk through their thinking and look through the program, focusing
on the importance of debugging time as useful, productive problem solving by repeatedly asking
open-ended questions. On multiple occasions Karla asked students “What instructions did you give
it?” (K.5) which prompted them to re-examine the code and explain what they thought was going
on. She continued to ask similar questions throughout her engagement with these two students
especially when there were disagreements between the students or when students’ answers or
questions demonstrated a lack of understanding or awareness of what to do next. Karla focused on
the process even after the students figured out the solution to the bug. One student read the code
adding “oh, so we shake it, the thing moves?” (K.5). Karla responded by helping them think through
the next step “so how do we send that information to here?” and “then what?” (K.5) thereby pushing
them to notice and understand the process involved in ensuring the correct code was displayed
on the micro:bit. In other words, even though the bug was already fixed to a degree, Karla further
pressing the issue highlights the importance of downloading the program onto the physical system,
possibly pushing for it to become regular check in their future debugging process. Karla’s move to
extend the facilitation to account for possible other bugs underscored that the moment should be
far to the left of the dimension’s continuum on Figure 7. Overall, Karla’s discourse moves (asking
open-ended questions, reviewing what to do even after they solved the bug) demonstrated a clear
focus on the process of debugging with these two students.

5.3.2  What Does It Mean to Be Process and Product Oriented? In a few instances, we characterized
teachers’ orientation as balanced between product and process when they helped students debug
the DASH. In each of these moments, the teacher produced interactional moves that oriented the
student to some sort of process for finding the bug but, eventually, focused on just getting the
DASH working.

For instance, we coded multiple moments from Dave’s class (D.1 and D.2) where his students ran
into the same DASH symptoms one period apart: the micro:bit displayed a zero when it was not
supposed to display a number at all but display a symbol according to the conditional logic they
programmed. We coded D.1, the first time Dave encountered this specific bug, as directly in the
middle between process and product oriented. In this moment, Dave (1) tested the system with the
student, (2) offered possible sources of the issue (e.g., “it’s either a wiring issue... it could also be a
power issue”), (3) checked the wiring with the wiring diagram by narrating what he was looking
at, and finally (4) offered a possible solution. Dave described this possible solution as “Let’s dump
an old code in just to—like—delete what you're trying to write and see if we can use it [after]”
Although this offered solution did not help students understand the root cause of the issue, it did
fix the DASH which led to Dave to use the solution each time it showed up again (e.g., D.2). Similar
to the advice often given when someone’s computer isn’t working correctly—turn it off and turn it
back on—this directive helped students get unstuck and continue investigations, but it did not offer
much opportunity for them to learn how to debug the system. This finding aligns with Fitzgerald
et al. [17], who describe a common strategy for novice debuggers to fix bugs by removing pieces of
code instead of investigating the code. It is also an example of a teacher’s strategy when they are
unsure of what to do next to help students find success in getting the system to work.

We categorized this moment (D.1) in the middle of the dimension because Dave shifted between
an earlier more process orientation of inquiry (testing the system and then posing “its either a
wiring issue... it could also be a power issue”) toward a product orientation (offering a fix by
“dumping old code..””). We identified this shift when his actions moved from seeking to help the
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student notice a possible issue in the wiring or power to suggesting they reset the DASH and test
to see if this fixed the problem. At first, Dave was clearly oriented toward helping the student
develop a process of noticing bugs and fixing them by describing what the issue could be (a future
strategy) and then using the wiring diagram in a demonstrable way to support the student using it
in the future (he narrated the color of the wires he was looking at on the diagram and then on the
hardware). However, he then stepped away to support another student for about 40 seconds. When
he came back, he said “so this is a power issue,” before directing the student to disconnect power
and reconnect to the laptop for power before testing again. By being more direct but still offering
reasoning, he started to shift his orientation toward just getting the DASH to work. When this did
not work, he offered a possible fix without helping the student notice what the bug might be.
Other teachers had similar shifts when time in class was running short (as it was here) or, maybe,
they wanted students to feel successful in getting the DASH to work. Dave’s moments with this
particular bug really pushed our analysis to characterize a balance between both orientations
because the initiative to develop a process was there but the situation did not allow for it.

5.3.3  Product Oriented. During some moments when students seemed to be stuck, teacher
moves oriented the inquiry more toward getting the problem fixed than helping the student develop
a debugging process. Moves that exemplified this orientation included asking closed questions
specifically about the DASH setup, giving very specific directions about what to do next, and taking
actions like that described in the previous section—resetting the DASH that might fix the issue
before knowing the source of the bug.

When Dave encountered the same issue his students had run into in the previous class period
(D.1) a second time, he pursued a product-oriented inquiry. In the moment we call D.2 (transcribed
in Figure 8), Dave’s questions and directions were closed, meaning they limited the range of possible
responses (e.g., a yes/no answer or a direction to do a very specific task). For example, the question
Dave posed (“we feel good about programming,” line 2) is clearly a yes or no question positioned
to give Dave an opportunity to see whether the group had considered an issue in the code that
could be explored further. This led to Dave giving the students a directive on how to solve the issue
(line 13) which he experienced in the previous class. His directive in line 13, “dump an old code on.
See if we get rid of that zero. And then we can try your code again,” accompanied by “see if it gets
rid of that zero” (line 26) confirms the clear focus on fixing the issue rather than demonstrating or
engaging in a replicable inquiry to find a bug and fix it. Essentially by trying to reset the DASH,
Dave’s directive pointed the students toward finding an old program that worked, running it on
the system, and then re-running the code that was not currently working. The specific question
about the DASH and clear directives position Dave’s inquiry as product oriented, attempting to
first figure out if this was the same issue as before and offer a fix, without even knowing the source
of the issue.

5.4 Contextual Factors Influencing Debugging Moves

As we reviewed the video data, it became increasingly clear that the moves teachers took were
contingent on several contextual factors including (1) time left in the class period, (2) the specific
bug, (3) the teacher’s ability to initially identify the bug, and (4) the number of students looking
for help in the class. For example, toward the end of the class period, one teacher may decide to
shift from orienting to the debugging process to just finding and fixing the bug so the student feels
successful. Even teachers’ access to materials and the number of classes taught had a clear impact
on their pedagogical choices and in-the-moment moves: For example, needing to have the same 20
DASH setups for the next class period often meant that students could not come back to a buggy
setup the next day.
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1 Sam(s): I don't know what we did.

2 Dave: Alright. We feel good about programming.

3 Sam(s): Uh [tha

4 Dave: [That zero] tells us we’ve got some kind of error. Let's
5 go take a look. See if we can figure it out. ((they both

6 walk back to Sam's seat)).

7 Dave: So. We feel good about the programming. And we feel good

8 about the wiring.

9 Sam(s): Yeah

10 Dave: But we're getting a zero.

1 Simon(s): Wait are you supposed to do an all of -- like aren't you

12 supposed to do like all like three bits of like program.

13 Dave: Uh huh. What I-- what I suggested we tried with my last

14 class. Take an old code. Dump an old code on, a really basic
15 code. See if we get rid of that zero. And then we'll try

16 your code again. So um=

17 Sam(s): =I know we tried doing that and then we:: do
18 that or like=

19 Dave: =you can go back to:: the homepage for the

20 micro:bit. And it's stored all of your old codes that you've
21 written. Pick one.

22 Sam(s): Pick no.

23 Sam(s): Um. This one.

24 Dave: Did that one work.

25 Sam(s): Yeah.

26 Dave: So, connect download. See if it gets rid of that zero. That
27 was -- that was how my group troubleshooted last period and
28 and it ended up working.

Fig. 8. A snippet of the transcript of Dave (D.2) working with two students, denoted by (s).

The number of students in a class was an important contextual factor influencing the debugging
moments (see Table 1 for additional contextual factors). The class size differences between Dave’s
and Natalie’s classroom contexts exemplify how teachers must make different choices that affect
how the debugging moments unfold along the dimensions we identify above. Dave taught a class
of 25 middle school students who were constantly looking for support from him. None of his
debugging moments with students that we observed lasted more than 130 seconds without being
interrupted (both D.1 and D.2 were two-part moments because he quickly came back to the same
students). Natalie, however, taught a smaller class (ranging from six to eight students daily) with
more time dedicated to the unit. Therefore, she was able to have more time to devote to debugging
moments, affecting how she decided to interact with students and the DASHs.

We aim to not place value judgment on any of the situations our teachers were in, nor the
choices teachers made in these moments. Instead, we highlight that the two debugging pedagogy
dimensions capture the breadth of possible choices and experiences teachers can have in supporting
students to debug, while also supporting them to learn debugging processes and skills.

6 Discussion

This study examined teachers’ interactions as they orchestrated secondary school classrooms
during small group work time when students encountered bugs as part of an introductory physical
computing unit in a range of grades (6-9). To understand teachers’ approaches to supporting their
secondary school students, we asked: What moves do teachers make to help support students in
developing debugging practices? We then distilled two dimensions of debugging pedagogies that
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characterize teachers’ interactions with students: their positioning for understanding and their
orientation for inquiry.

As computer science education is increasingly integrated into K-12 classrooms and often facili-
tated by teachers with limited content knowledge and computing background, our two dimensions—
developed from analyses of the practices of secondary teachers—serve as a foundation of a frame-
work to help novice teachers learn to support students to successfully engage with PCSs. As the
work of Dave and Karla—and our other partner teachers—exemplifies, teachers do not necessarily
have to be programming experts to support students in debugging their PCS. Debugging skills and
programming knowledge, while important in helping students learn to debug to some degree [30],
are alone insufficient resources [41]. Teachers encounter a variety of demands in the classroom that
they must attend to during debugging moments [24], which require knowledge of and experience
with debugging pedagogical moves. As our analysis indicates, these moves include a variety of
verbal and embodied inputs to support students in the two-pronged goal of (1) getting their systems
working and (2) developing skills as debuggers themselves.

Secondary teachers who are new to computing and debugging need resources that attend to
the demands, contextual factors, and complex environment of the secondary classroom. However,
much of the extant research on debugging has either focused primarily on students’ debugging
practices (e.g., [13, 44]) or debugging in college-level CS courses. Debugging support for classrooms
must be designed for teachers who may have little programming experience while also being
sensitive to the contextual factors that impact teachers’ pedagogical decisions in the classroom.
Because bugs are interactionally produced [16], debugging moments are also highly unique and
contextual. The teachers in this study—independent of their programming expertise—entered
moments of uncertainty when students were stuck by using strategies such as asking open-ended
questions, pointing students to resources, or working with students as a guide or through co-
discovery. In this way, the teachers used the experiential resources they had—both about debugging
and about supporting student inquiry—to support student learning to debug. PL for integrating
computer science into secondary classrooms must engage teachers in calling on and developing
their interactional toolkits for making appropriate decisions in-the-moment with students and the
material tools at hand. We articulate the implications of this in the next section.

7 Conclusion and Implications

This study offers several contributions to the field related to how teacher uncertainty, differences,
and context influenced resulting interactions. The teachers’ practices depicted in this article hold
implications across the STEM disciplinary spectrum informing innovative practices and pedago-
gies supportive of student inquiry [41] and epistemic agency [46] as they deal with failures and
roadblocks. In particular, the framework described in this article further defines what debugging
pedagogy, from a sociocultural perspective, looks like in practice. It also illustrates how teachers
negotiated moments of uncertainty and provides insights into embodied interactional moves that
assist teachers in supporting students’ developing their own way forward when something is not
working. Finally, the work provides a grounding for further developing teachers’ and researchers’
studies of debugging pedagogies. Each contribution is discussed next.

7.1 Sociocultural Debugging Pedagogies

Longer periods of open-ended inquiry for students to assemble, wire, and program their DASHs
offered more opportunities for inconsistencies to arise between student expectations and DASH
operation, requiring teachers to work with students at different stages in the debugging process in
close proximity. This kind of teaching is inherently improvisational [47]. Our five focal teachers had
to make decisions about how to proceed in the moment to support students through the evolution
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of their debugging skills, much in the same way that the authors of [46] urge science teachers to
support students in the inquiry processes inherent in being “doers of science” rather than “receivers
of facts”

We started from the assumption that debugging is a situated inquiry [59], where the debugger
recognizes and fixes an inconsistency between their expectation of the system and the system
itself. The debugging moments from these five teachers help to articulate how learning this kind
of situated inquiry requires, from a sociocultural perspective, the teacher role to be emergent,
relational, and explicitly dependent on where students are in relation to the materials they are
working with [41]. In analyzing these moments, we had to focus not only on the teachers’ moves
(i.e., what the teacher said and did) but also on how they were taken up by the students, where the
inquiry of the group went, and subsequent teachers’ moves were produced.

Our analysis provides evocative examples of the different kinds of choices teachers make in
these moments that are informed by their expectation of how students can learn to be debuggers
themselves. Implicit in this are two sometimes competing goals of getting the PCS working and
supporting students in developing a “debugging philosophy” [46] where they are open to learning
from being stuck. Debugging pedagogies, or the perspectives on supporting students learning
to become debuggers, relies on these two tensions in the interactional moments of practice. For
example, the whole of Dave’s interactions in D.2 (characterized as more product oriented) displays
a pedagogical choice to support the students by getting the system working, which implies that,
for him at that time, the error being presented was not worth students’ time to invest in figuring
out how to fix. Similarly, Natalie’s positioning of the interaction as co-discovery (N.5) displays a
pedagogical choice to take the time to work with students while implying that learning to find
and fix this kind of bug is important. As we articulate above, we assume that pedagogical choices
were informed not only by a debugging pedagogy but also by the contextual factors at play in a
particular interactional space and time.

Thus, the nuances of debugging pedagogies cannot be completely represented in the orientation
or process/product dimensions. Yet, these nuances are necessary to understand what debugging
pedagogies are essential for students learning to program and work with PCSs like the DASH.
Further, being good pedagogues is not inherent in being expert programmers. Teachers need a
certain level of understanding of the system and a set of pedagogical skills that adapt to where
students are, offering scaffolds and challenges that orient students toward debugging the current
system for themselves while developing skills to debug in the future.

7.2 Approaching Uncertainty

The co-construction of the debugging moments between teachers and students required both deep
interaction and responsive creativity on the part of the teacher [10, 51]. From a sociocultural
perspective, the emergence of joint meaning-making cannot be reduced to any one teacher’s or
student’s intentions in an individual turn because the teacher “cannot know the meaning of her
own turn until the other actors have responded” [58] (p. 2). Therefore, teacher—student interactions
involved some level of uncertainty for the teacher.

Generally, learning tasks that are unfamiliar [13, 54], novel [25], or complex elicit additional
possibilities of uncertainty for the teacher. In this study, many of the issues that arose were novel
for the teachers since it was their first time implementing the unit (except for Gabrielle who had
implemented a couple of months earlier with another class) or including programming into their
classroom. In addition, the teachers’ initial assumptions about sources of the system’s failure did
not always align with what others might identify as the actual problem (see D.1) because of the
complexity of working with a PCS. Teachers’ approaches to handling this complexity are reflected
in how the moment was positioned within both dimensions.
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One consequence of the uncertainty present in each moment was that there was a significant
amount of variation exhibited both across one teacher’s moments and all the teachers in this study.
We found that no teacher’s moments were represented solely on one side of the continuum for
either dimension. Even within a moment, some teachers moved across the orientation continuum
by debugging with a more product-oriented approach as more information became available about
the cause of the inconsistency or as class time ran short.

During moments of uncertainty when helping students debug, teachers must decide: Do they
simply help students to have a working system free of inconsistencies (such as moments D.1 or
D.2) or do they take a more process-oriented approach by guiding the students through a more
open-ended inquiry process about the system as a whole [60] as illustrated in moment K.5? In
this study, teachers took a variety of approaches from offering specific instructions to change
the system with the goal of resolving the inconsistency (product orientation) or guiding students
through a systematic process (or processes) to help find the source of the inconsistency (process
orientation). The nuances and patterns in these debugging moments were highly influenced by the
context. Some examples included the amount of class time remaining (i.e., Dave), the number of
students in the class (i.e., difference between Dave and Natalie), the number of students currently
claiming to be “stuck” and asking for help, the kind of inconsistency that the DASH was exhibiting,
and the familiarity of the teacher with the bug.

7.3 The Embodied Nature of Debugging Pedagogies in Action

To make sense of inconsistencies, teachers relied not only on words but also embodied moves during
the debugging process using coordination of their bodies, hands, and gestures to orient students
toward debugging processes [19]. For example, both Gabrielle and Karla supported student noticing
by gesturing toward the screen to connect what they were saying to specific parts of the program
on the screen. In U.1, Uma positioned herself in front of the computer while the student was to the
side, illustrating a moment that exhibited an extreme end of positioning for teacher understanding.
Similarly, Karla used her body position to illustrate a shift from teacher understanding toward
student understanding during some of her debugging moments as she moved to decenter herself
from the computer and place the focus on the students. This implies that a focus on talk alone
may provide a less complete view of teachers’ debugging pedagogies. Future research, therefore,
should focus on the embodied nature of teachers’ practices and their relationship to the debugging
pathways they negotiate with students.

7.4 Toward a PL Framework for Debugging Pedagogies

While students need scaffolds to support the development of their physical computing skills,
teachers also need scaffolds to facilitate productive teacher moves during the debugging process.
The two dimensions presented in this article provide a basis on which to design PL experiences for
teachers to help them learn how to navigate moments of struggle when students’ PCS is inconsistent
with their expectations. In other words, the dimensions inform designs of PL opportunities that
develop secondary teachers’ debugging pedagogies.

One strategy for developing debugging pedagogies involves engaging both practicing and preser-
vice teachers in video analysis of debugging moments either of their own classroom (for experienced
teachers) or example classrooms (for preservice teachers). In these video analysis sessions, teachers
analyze the embodied, verbal, and gestural teacher moves and place moments on the understanding
and process/product continuums. This strategy could (1) illustrate for teachers how teachers can
navigate the uncertainty in the moment, (2) illuminate a variety of strategies and debugging path-
ways [10], and (3) support teachers in reflecting on the numerous contextual factors influencing
debugging moves in each video. Such would be particularly beneficial approach for preservice
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teachers to reflect on their comfort level supporting students’ debugging, imagine how they might
support students in their future teaching, and devise a range of strategies they can emulate as
they refine their own debugging pedagogy. Additionally, preservice teachers may collaboratively
view and place debugging moments on the dimensions with a mentor or cooperating teacher as an
artifact to think through pedagogical choices and implications. Acknowledging that our analysis
came solely from the perspectives of the researchers, this strategy could also be the next step in
research debugging pedagogies through “bottom-up knowledge production” like the culturally
situated design tool creation process in [14] or working with cultural experts to develop situated,
culturally responsive, debugging practices for youth [38].

Another PL model to involve both novice and experienced teachers simultaneously in developing
their debugging pedagogy involves a debugging activity where one teacher acts as the teacher and
two other teachers act as students as they debug a PCS [47]. Whereas we previously employed
this strategy concluding with a brief reflective discussion [47], the dimensions themselves could
be employed as a reflective guide for teachers to analyze where their choices fell and consider
why they made those choices in the moment. In general, these kinds of activities could support
teachers to be more cognizant of their own actions and enhance teachers’ understanding of how
they can support their students to become effective programmers of PCSs. They offer teachers
opportunities to reflect on the decisions they may make in-the-moment to support students and
the consequences of those decisions. We see this activity as salient for PL with teachers of various
levels of experience in programming as novice and more veteran secondary teachers may learn
from one another’s moves in the moment. Such discussion around the dimensions can help teachers
prepare for future decisions supporting their students’ development as debuggers, thus developing

teachers’ debugging pedagogies.
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Appendix A
A Summary of Debugging Moments

. Initiated by
Teacher Lal?el n Sc'bool SHengta of teacher (T) or Bug Characterization®
Continuum Year Moment
student (S)
X1 Fall2021 75 seconds S Transferming program from
MakeCode to Micro:bit HW+SW)
K2 Fall2021 57 seconds N Program did not start until initiated
HW=SW)
Rl K3 Fall2021 140 seconds s Cannot determine from data
K4 Fall2021 61 seconds T Blocks not in scope (HW)
XS Fall2021 225 seconds S Transfemnng program from
MakeCode to Micro:bit HW+SW)
D.1 Fall2021 251 seconds S Cannot determine from data
in two parts
(120 +131)
D2 Fall2021 143 seconds S Cannot determine from data
Dave in two parts
68+171)
D3 Fall2021 40 seconds N Assembly errors (HW)
D4 Fall2021 105 seconds T Conditional Logic (SW)
D.5 Fall 2021 126 seconds S Conditional Logic (SW)
N.1 Spr2022 59 seconds S Syntax issue (SW)
N2 Spr2022 106 seconds S Conditional logic (SW)
Natalie N3 Spr2022 238 seconds T Conditional Logic (SW)
N4 Spr2022 135 seconds S Conditional Logic (SW)
N5 Spr2022 348 seconds T Conditional Logic (SW)
Ul Fall2019 77 seconds S Transferring program from
MakeCode to Micro:bit HW+SW)
U2 Fall2019 167 seconds T Assembly errors (HW) &

Uma Conditional Logic (SW)

U3 Fall2019 54 seconds S Transferning program from
MakeCode to Micro:bit HW+SW)
U4 Fall2019 67 seconds T Conditional Logic (SW)
G.1 Fall 2019 169 seconds T Cannot determine from data
Gabrielle® G2 Fall2019 70 seconds S Assembly setup error (HW)
G3 Fall2019 113 seconds S Sensor Values (SW)
G4 Fall 2019 170 seconds S Sensor Values (SW)

Notes

3Bug characterizations based on our previous [24) characterizations of common errors in hardware (HW), software
(SW), and combination of hardware and software (HW+SW).

®Gabrielle was the only participant who had previously implemented the sensor immersion unit
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