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Abstract—This paper introduces a novel adversarial attack
targeting Graph Neural Network (GNN)-based radio resource
management in point-to-point networks. Our proposed attack,
executed during the test phase, manipulates the system’s input
by exploiting specific constraints. Formulated as an optimization
problem, the attack aims to maximize resource stealing, thereby
degrading the quality of communication. We assess the attack’s
efficacy with respect to the number of users, signal-to-noise ratio,
and the adversary’s power budget. The results demonstrate that
our proposed attack approaches the performance of an estab-
lished upper-bound adversarial benchmark while maintaining
lower complexity, highlighting its effectiveness and potential for
real-world applicability.

Index Terms—graph neural network, adversarial attack, P2P
wireless networks

I. INTRODUCTION

In the realm of wireless communications, Machine Learning

(ML) and its subset, deep learning (DL), have been trans-

formative, addressing complex tasks like radio resource man-

agement [1], [2], beam prediction [3], and channel estimation

[4]. Despite their advancements, DL algorithms struggle with

generalization and scalability, necessitating substantial data

and diminishing in effectiveness with larger problem sizes. To

mitigate these issues, Graph Neural Networks (GNNs) have

been introduced, combining graph theory with DL, and have

shown success in diverse fields such as Computer Vision [5],

[6] and Natural Language Processing [7], [8].

GNNs have recently been applied to wireless communica-

tions [1], [2], [9]–[15], but they share a common vulnerability

with other ML algorithms to adversarial attacks during training

or testing [16], [17]. Unlike jamming or spoofing attacks,

adversarial attacks subtly manipulate DL inputs to induce

errors, presenting a significant risk to P2P wireless communi-

cation systems like device-to-device, machine-to-machine, and

vehicle-to-vehicle communications [18].

These systems, integral to modern wireless networks and

crucial in various sectors, including IoT [19] and 5G mobile

communications [20], are vulnerable to such attacks. Adver-

sarial attacks can lead to degraded performance and increased

risks in IoT networks [21], affect communication quality in

vehicular ad hoc networks [22].

Despite the significance of these threats, research on adver-

sarial attacks against GNN-based P2P wireless communica-

tions remains limited. This paper aims to address this gap by

exploring practical adversarial attack strategies on GNN-based

P2P systems. Specifically, we introduce a novel adversarial

attack targeting the vertices of a trained GNN model during

the testing phase. The design of this attack adheres to two

constraints: 1) Channel-Bounded Constraint: This limits the

adversary to a certain number of simultaneous perturbations.

2) Min-Detectable Constraint: The adversary aims to perturb

information in a way that minimizes detection likelihood by

the system.

Considering these constraints, we propose a new opti-

mization problem where the adversary targets the channel

information of a subset of active pairs in the network. The

objective of this approach is to minimize the total Quality

of Communication (QoC) within the network, defined as a

weighted sum rate, by maximizing the QoC of the targeted

subset of users. Moreover, we introduce a heuristic algorithm

to solve this optimization problem. The results demonstrate

the effectiveness of the proposed adversarial attack, which

succeeds to steal almost all resources by perturbing merely

half of the available channels.

RELATED WORKS

I) Graphs and GNNs in Wireless Communications

Graphs and GNNs play a crucial role in wireless com-

munications due to their ability to efficiently utilize domain

knowledge, specifically the graph structure. Previous research

[1], [2], [9], [10], [12] extensively employs GNNs for wireless

communication problem-solving. For instance, Transmitter-

Receiver (TX-RX) channels and channel correlations are

modeled as vertices and edges, respectively, in [1], [2] to
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Fig. 1: System model illustration: (left) Training phase, (right) Testing phase

optimize antenna allocations. Additionally, GNNs are utilized

in [9], [10] for centralized modeling of P2P communications,

representing transceiver pairs and inter-user interference as

vertices and edges, respectively. Another application is seen in

[12], where GNNs are employed for power control in cellular

systems, determining an optimal power allocation strategy

based on estimated channel matrices.

II) Adversarial Attacks in ML/DL-based Wireless Communi-

cations

The realm of adversarial attacks on Machine Learning

(ML)/Deep Learning (DL)-based wireless communications is

explored in literature [16], [23]. These attacks facilitate signal

mis-classification, as demonstrated in [23], where a small

perturbation is added to test data during the testing phase,

resulting in mis-classification at the receiver. In [16], different

adversarial attacks against an autoencoder communication

system are investigated, showing the destructive potential even

when the adversary lacks perfect knowledge of the DL model

or synchronization with the transmitter. Further, adversarial

attacks against power allocation scenarios are considered in

[17], where a Deep Neural Network (DNN) allocates transmit

power to orthogonal subcarriers. The adversary perturbs input

data to the DNN, affecting user sum rates by perturbing pilot

signals or transmitting perturbed channel estimations to the

base station.

A. Organization and Notation

The remainder of the paper is organized as follows: Section

II presents the system model and problem definition. The

proposed adversarial attacks are introduced in Section III.

The proposed approaches are evaluated in Section IV. Finally,

Section V concludes the paper.

Notation: In this paper, vectors are denoted by small bold-

italic face letters a, and capital bold-italic face letters A

represent matrices. A is a set, and a is a scalar. The ith

element and the number of elements of set A or the cardinality

of this set are denoted by A[i] and |A|, respectively. |a|
and #a represent the magnitude and phase of the complex

number a. Two new element-wise operators for vectors are

defined as follows: |ȧ| ≜ [|a0|, |a1|, . . . , |aN−1|]
T and #̇a ≜

[#a0,#a1, . . . ,#aN−1]
T, where ai, ∀ i = 0, . . . , N − 1, are

the elements of the vector a. The transpose and Hermitian

(conjugate transpose) of a matrix/vector are denoted by (.)T

and (.) , respectively. ∥ · ∥2 denotes the l2-norm of a vector.

Dl×l and Cm×n represent a diagonal matrix of dimension

l × l and a complex matrix of dimension m × n. The nth

diagonal element of a diagonal matrix D is denoted by Dn.

R denotes the set of all real numbers. IN denotes the N ×N
identity matrix. 0N and 1N are the N -dimensional all-zeros

and all-ones vectors, respectively. We use CN (µ, σ2) to denote

a circularly symmetric complex Gaussian random vector with

mean µ and variance σ2. Finally, P (·), (·)∗, and E(·) denote

probability, optimum value, and expectation, respectively.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This study examines a multi-user multi-input single-output

(MISO) wireless network consisting of N active transceiver

pairs, denoted by N = {1, 2, . . . , N}. Each transmitter (TX)

is equipped with Nt antenna elements, while receivers (RX)

have a single antenna (see Fig. 1 left).

Consider {sn}
N
n=1 as the unit-norm signals transmitted from

the nth TX to the nth RX. Define the precoding matrix Q =
[q1,q2, . . . ,qN ]T ∈ CN×Nt , where {qn}

N
n=1 represents the

precoder for the nth transmitter. The estimated signal received

at the nth RX is given by

yn = h 
n,nqnsn +

N∑

i=1
i ̸=n

h
 
i,nqisi + nn, (1)

where hi,n ∈ CNt denotes the channel vector from the ith TX

to the nth RX, and nn ∼ CN (0, σ2
n) is the Additive White

Gaussian Noise (AWGN) at the nth RX.

Furthermore, the channel characteristics are encapsulated

within a channel tensor H ∈ C|V|×|V|×Nt . The tensor elements

Hi,n,: = hi,n ∈ CNt , for {i, n} ∈ N , distinguish between

desired and interference channels of transceiver pairs through

diagonal and off-diagonal elements, respectively. This channel

tensor is accessible to both the central processing unit (CPU)

and potential adversaries. The CPU is tasked with constructing

and continually updating the Deep Learning (DL) model.

A. Graph Modeling of P2P Wireless Communications

As depicted in Fig. 1, we model the P2P wireless network

under consideration as a directed graph. In this graph, each
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transceiver pair is represented by a vertex, specifically the

nth transceiver pair corresponding to the nth vertex. The

features of these vertices encapsulate the characteristics of

the transceivers. A directed edge from vertex i to vertex j
signifies interference from TX i to RX j, with the edge feature

encompassing the properties of the respective interference

channel. Significantly, interference only occurs if the distance

between TX i and RX j falls below a predefined threshold Td.

The graph G(V, E) is formally defined, where V and E
represent the sets of vertices and edges, respectively. The

vertex feature matrix Z ∈ C|V|×(Nt+2) is described by

Zn,: = [hn,n, wn, σ
2
n]

T, where |V| is the size of set V , and

wn denotes the weight of the nth vertex or pair. The term

Nt + 2 arises from Nt being the length of hn,n and wn and

σ2
n being scalar values.

The adjacency feature tensor A ∈ C|V|×|V|×Nt is defined

as follows:

Ai,n,: =

{
0Nt

, if {i, n} /∈ E ,

hi,n, otherwise,
(2)

where hi,n ∈ CNt for {i, n} ∈ N represents the channel

vector from TX i to RX n. Utilizing the variables Z and A,

we redefine the received signal at the nth RX as:

yn = Z
 
n,1:Nt

qnsn︸ ︷︷ ︸
Desired Signal

+
N∑

i=0
i ̸=n

A
 
i,n,:qisi

︸ ︷︷ ︸
Interference

+ nn︸︷︷︸
Noise

, (3)

Consequently, the signal-to-interference-plus-noise ratio

(SINR) for the nth, n ∈ N , RX of the corresponding vertex

(transceiver pair) is:

SINRn =
|Z 

n,1:Nt
qn|

2

∑N

i=1,i ̸=n |A
 
i,n,:qi|2 + Zn,Nt+2

, (4)

where Zn,Nt+2, as per the definition of Z, denotes the noise

power.

To train the graph-based wireless communication system,

we employ the GNN model proposed in [9], comprising three

layers. The channel states {Z 
n,1:Nt

}Nn=1 and users’ weights

{wn}
N
n=1 serve as inputs to the GNN. The CPU leverages

information from the transceivers to train a centralized GNN

model of the system (refer to Fig. 1 right). The GNN outputs

the beamforming vectors for users, aiming to minimize the

loss function lΘ at the final layer, as shown:

lΘ = −E

(
N∑

n=1

Zn,Nt+1 log2(1 + SINRn(Θ))

)
, (5)

where Zn,Nt+1 indicates the user weights per definition of Z,

and SINRn(Θ) is defined by:

SINRn(Θ) =
|Z 

n,1:Nt
qn(Θ)|2

∑N
i=1
i ̸=n
|A 

i,n,:qi(Θ)|2 + Zn,Nt+2

, (6)

as previously defined after Equation (4).

III. ADVERSARIAL ATTACK

In this section, we delineate the assumptions about the

adversary relevant to this study.

Remark III.1. (Adversary’s Assumptions):

1) The adversary operates as a white box, having access

only to channel information.

2) It executes Evasion attacks.

3) Equipped with multiple antenna elements, the adversary

can simultaneously target multiple channels, unlike with

a single antenna which restricts it to one channel at a

time.

4) It moderates perturbation power to diminish the proba-

bility of detection by the CPU and legitimate users.

5) All transceiver pairs fall within the adversary’s trans-

mission range [24], [25].

6) The adversary can eavesdrop and learn information

from transceiver pairs.

7) It has the flexibility to select different channels and

frequencies to disrupt at any given time.

8) As a reactive adversary, it engages in physical carrier

sensing (as part of standards like 802.11) to discern if

a channel is idle or busy.

9) It can transmit malicious messages using address spoof-

ing techniques [24], [25].

■

During the testing phase, the adversary aims to maximize

the weighted sum-rate of a subset of transceiver pairs which

are under its attack. This in turn degrades the network’s

performance QoC. The adversary perturbs the channel infor-

mation hi,n transmitted by each pair included in the subset

to the CPU. From this point, we use the terms ’channel’

and ’channel information’ interchangeably to refer to the

information relayed from the transceiver pairs to the CPU.

To acquire this data, the adversary might:

1) Impersonate a fake CPU temporarily, tricking users into

sending data and injecting malicious packets to extract

necessary information [26].

2) Persistently monitor the data to learn about the

transceiver pairs and their channel information.

Leveraging this acquired knowledge and considering net-

work power constraints, the adversary seeks optimal ĥi,n

values to maximize the sum-rate of the selected subset of

transceiver pairs. The corresponding optimization problem is

formulated as:

max
Ĥ

∑

i∈A

Zi,Nt+1 log2(1 + ŜINRi), (7a)

s.t. ∥qn∥
2
2 f Pmax, ∀ n ∈ N , (7b)

here, ŜINRi indicates the distorted SINR, with the perturbed

channel information ĥi,n substituted in (4). The constraint

expresses the power budget limitation at transmitters.

Remark III.2. (Channel-bounded (Bc) Constraint): This

constraint limits the number of channels an adversary can
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max
Ĥ

∑

i∈A

Zi,Nt+1 log2(1 + ŜINRi) =
∑

i∈A

Zi,Nt+1 log2(1 +
|Ĥ 

i,i,:qi|
2

∑N
k=1
k ̸=i

|H 
k,i,:qk|2 + Zi,Nt+2

) (8a)

s.t. C1 : A ¦ N and |A| g 1 (8b)

C2 : ∥qn∥
2
2 f Pmax, ∀ n ∈ N (8c)

C3 : |
˙

ĥi,i| f hdiag,max1Nt
, ∀ {ĥi,i ≜ [ĥi,i,1, ĥi,i,2, ..., ĥi,i,Nt

]}Na

i=1 ∈ {Ĥn,n,:}
N
n=1 (8d)

C4 : Na f min(L,N) (8e)

attack simultaneously. This limitation is considered when

designing Bc perturbations in Subsection III-A.

Remark III.3. (Adversarial Attacks in Graphs): Adversaries

can target vertices and/or edges in the graph, altering their

respective features. This paper focuses on attacks on the set

of vertices V of the graph G, specifically changing the desired

channels between TXs and RXs.

Subsequently, we introduce a novel attack on graph vertices,

considering the Bc Constraint. Here, the adversary transmits

a low-power perturbation signal sp, devised based on channel

information. Consequently, the CPU receives xadv = x + sp,

where x represents the original data from transceivers, and

xadv is the perturbed information at the CPU. The adversary’s

objective is to craft sp such that it misleads the DL model at

the CPU during the testing phase, yet remains undetectable.

A. Design

In this study, we analyze a scenario where an adver-

sary strategically alters the channel information of certain

transceiver pairs or graph vertices (G). The objective is to

enhance the overall SINR for a subset of transceiver pairs,

denoted as A = {1, 2, . . . , |A|} ¦ N . The channel-bounded

constraint in this context refers to the number of vertices

the adversary targets for channel information perturbation,

providing a measure of the intended network impact.

To address these factors, we have developed the optimiza-

tion problem in (8), where, the adversary seeks to maximize

the sum rate for the vertices in A. It has been shown in [9]

that the QoC maximization is non-convex and thus difficult to

solve. The situation is exacerbated in (8) by adding constraints

(8b), (8d) and (8e). To tackle the resulting non-convexity, we

propose a heuristic algorithm to achieve a suboptimal but

reasonably good solution.

Considering the channel tensor H and a parameter 0 f lc f
1 representing the proportion of users the adversary intends

to impact, the adversary initially ranks the diagonal elements

Hdiag = {Hn,n,:}
N
n=1 of H in ascending order. It then selects

the last Na = +N × lc, elements from Hdiag for inclusion

in A, resulting in Na = |A|. This method targets users with

the poorest channel quality, as perturbing these channels can

maximally disrupt the network.

The perturbation strategy involves a signal similar to that

used for Bc edge perturbation, defined as sp,i ← ĥi,i +

hdiag,mine
j#̇hi,i , where ĥi,i ≜ [ĥi,i,1, ĥi,i,2, ..., ĥi,i,Nt

], for all

i = {1, ..., Na}. It is critical to note that this perturbation

Algorithm 1 Proposed Vertex Perturbation Algorithm

Input: H, lc
1: Determine Hdiag := {Hn,n,:}

N
n=1, and hdiag,max =

maxHdiag,

2: Set Na = +N × lc,,
3: Sort Hdiag in ascending order,

4: Select the last Na elements of Hdiag into A
5: for i = 1, 2, ..., Na do

6: Choose element i of A as hi,i = | ˙hi,i|e
j#̇hi,i

7: Update ĥi,i ← | ˙hi,i|e
j(#̇hi,i+Π)

8: Define sp,i ← ĥi,i + hdiag,maxe
j#̇hi,i

9: Update hi,i ← hi,i + sp,i
10: end for

11: Revise H with modified Hdiag

Output: Ĥ

signal’s application differs from the Bc edge perturbation. In

transceiver pair perturbation, the signal modifies their channel

information, while in Bc edge perturbation, it alters the

interference channel information. Upon obtaining the signal,

the adversary proceeds to perturb the channel information of

all selected vertices, as detailed in Algorithm 1.

IV. PERFORMANCE ANALYSIS

This section evaluates the performance of the proposed

adversarial attacks on the total QoC of the system and the

distribution of H’s eigenvalues.

To simulate the system, we use the same GNN architecture

as [9] which is a 3-layer graph neural network. As mentioned

in Section II, the input and output of this network are the

channel states {Z 
n,1:Nt

}Nn=1 and users’ weights {wn}
N
n=1, and

beamforming vectors of users, respectively. The loss function

at the last layer of GNN is defined in (5). In addition, Adam

[27] with the learning rate of 0.001 is used as the GNN

optimizer. The number of transceiver pairs N and SNR are

the same for both training and testing phases.

Two metrics are used for the evaluation of the attack: the

first one is the percentage decrease in total QoC. The second

metric, denoted as Qp, is a new metric that represents the

percentage of total QoC exploited by the perturbed channel

information. This metric is used to assess the attack’s effec-

tiveness in stealing available resources.

In addition, we introduce two heuristic perturbations for

comparative analysis with the proposed adversarial pertur-
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TABLE I: The total QoC after Applying Adversarial Attacks for Different N

N = 20 N = 30 N = 40 N = 50

lc =⇒ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Normalized QoC 0.936 0.794 0.625 0.407 0.163 0.938 0.825 0.658 0.447 0.181 0.924 0.801 0.675 0.455 0.180 0.924 0.818 0.681 0.476 0.194

Qp 0.223 0.619 0.992 0.998 0.999 0.245 0.641 0.995 0.999 0.999 0.243 0.683 0.997 0.999 0.999 0.240 0.713 0.997 0.999 0.999

Upper Bound 0.902 0.712 0.522 0.295 0.119 0.897 0.686 0.450 0.222 0.103 0.884 0.683 0.497 0.288 0.049 0.868 0.675 0.480 0.286 0.100

Single —— 0.999 —— —— 0.992 —— —— 0.978 —— —— 0.974 ——

TABLE II: The total QoC after Applying Adversarial Attacks for Different TX-RX distance

N = 20

dmin = 30, dmax = 30 dmin = 10, dmax = 50 dmin = 2, dmax = 65

lc =⇒ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Normalized QoC 0.895 0.679 0.499 0.295 0.094 0.936 0.794 0.625 0.407 0.163 0.957 0.833 0.689 0.470 0.217

Qp 0.228 0.683 0.990 0.997 0.999 0.223 0.619 0.992 0.998 0.999 0.238 0.648 0.994 0.999 0.999

TABLE III: The total QoC after Applying Adversarial Attacks for Different SNR

N = 20

SNR (dB) =⇒ -5 0 5 10

lc =⇒ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

Normalized QoC 0.938 0.797 0.629 0.426 0.166 0.949 0.821 0.624 0.407 0.159 0.948 0.808 0.645 0.432 0.154 0.936 0.794 0.625 0.407 0.163

Qp 0.222 0.623 0.991 0.998 0.999 0.219 0.641 0.993 0.998 0.999 0.221 0.623 0.994 0.998 0.999 0.223 0.619 0.992 0.998 0.999

bation: I) Upper Bound Perturbation: Here, the adversary

prioritizes the L1 and targets the most powerful channel within

the selected set, setting its value to zero. This heuristic serves

as an upper performance benchmark. II) Single Perturba-

tion: This approach entails the adversary attacking a single,

randomly selected channel, complying with the L1 constraint

where |L1| = 1. The attack effectively nullifies the data of the

chosen channel, regardless of the power required.

Based on the results presented in Table I, which details the

total QoC for different values for N and lc at SNR = 10 dB,

we can extrapolate several insights. The metrics reported in

the table reflect the total QoC post-attack, normalized against

the baseline QoC prior to any adversarial intervention.

Key takeaways from the table include:

- There’s a clear trend that the attack’s impact is augmented

as lc increases. This is in line with expectations since a higher

lc means more channels are perturbed, leading to a more

pronounced disruption in the network.

- The attack’s potency does not appear to correlate with

the network size, denoted by N . This suggests that the attack

strategy is robust across various scales of network operations.

- The data for Qp illustrates the attack’s efficiency in

resource exploitation. Notably, with only half the channels

(lc = 0.5) being targeted, the attack nearly monopolizes the

resources, achieving over 99% of the total possible disrup-

tion. This indicates that the proposed attack can effectively

commandeer almost all resources by perturbing merely half

of the available channels.

Further dissection of the heuristic perturbation strategies

reveals:

- While the Upper Bound Perturbation is notably effective,

often outperforming the proposed vertex perturbation across

various network sizes and perturbation intensities, the table

demonstrates the efficacy of our proposed adversarial attack.

Its performance closely aligns with that of the Upper Bound

Perturbation, indicating that our attack rivals the maximum

disruption achievable by the Upper Bound model. This attests

to the strength and strategic effectiveness of our adversarial

approach.

- On the other end of the spectrum, the Single Perturba-

tion showcases a minimal impact on the total QoC. This is

reflective of its targeted approach, which neutralizes a single

channel, hence its effects are localized and less disruptive on

a systemic level.

Table II presents the results for different TX-RX distance

ranges, denoted as [dmin, dmax]. The table reveals that the

adversarial attacks exhibit their most substantial impact within

the homogeneous network settings, particularly within the

range of [dmin, dmax] = [30, 30]. As the TX-RX distance

range broadens, the attacks sustain their effectiveness. For

instance, within the [dmin, dmax] = [10, 50] parameters, the

Normalized QoC declines below 0.5 at lc = 0.5, signifying a

substantial impact on the channel quality. The impact is even

more pronounced in the [dmin, dmax] = [2, 65] scenario, where

the Normalized QoC at lc = 0.7 is only 0.470, underlining the

attack’s increased potency over greater distances.

The consistently low Qp values across the table further show

the high success rate of the attack as lc increases, underscoring

the attack’s capability to severely disrupt network operations.

These observations are in line with the outcomes in Table I.

Next, Table III presents the evaluation results for the

proposed attack across a range of SNR values, with the

network configured at N = 20 and the distance range set to

[dmin, dmax] = [10, 50]. The analysis of the table reveals that

the attack’s effectiveness is consistent across both high and low

SNR regimes. This consistency suggests that the efficacy of the

proposed attack is largely independent of SNR, demonstrating

its robustness in various noise environments.

Given the effectiveness of the proposed attack, it is essential

to develop a method for its detection or cancellation. A method
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for attack detection, based on channel eigenvalue distribution,

has been previously proposed [28] to address the attacks

identified in that work, focusing on channels with perfect

Channel State Information (CSI). Furthermore, the eigenvalue

distribution for channels with imperfect CSI is discussed in

[29]. For future work, it would be valuable to propose and

evaluate a similar detection approach for the attack described

in this paper, applicable to both perfect and imperfect CSI

scenarios.

V. CONCLUSION

This work addresses adversarial attacks in a centralized

GNN-enabled P2P communication framework. We introduce a

novel adversarial attack and assess its impact on the system’s

overall QoC. Empirical analysis validates the efficacy of the

proposed attack across a range of user counts and SNR levels.

The proposed attack can effectively commandeer almost all

resources by perturbing merely half of the available channels.

More importantly, its performance closely aligns with that

of the Upper Bound Perturbation, indicating that our attack

rivals the maximum disruption achievable by the Upper Bound

model. Additionally, the attack’s potency is amplified with an

increase in the number of users (N ), and it inflicts further

detriment to the total QoC in scenarios where receivers are

unevenly spaced from their transmitters. Furthermore, the

attack’s success appears to be SNR-independent, underscoring

the imperative for defensive measures against such adversarial

tactics. This study accentuates the urgent need for research

into the security and resilience of deep learning-driven wireless

systems.
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