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Abstract—This paper introduces a novel adversarial attack
targeting Graph Neural Network (GNN)-based radio resource
management in point-to-point networks. Our proposed attack,
executed during the test phase, manipulates the system’s input
by exploiting specific constraints. Formulated as an optimization
problem, the attack aims to maximize resource stealing, thereby
degrading the quality of communication. We assess the attack’s
efficacy with respect to the number of users, signal-to-noise ratio,
and the adversary’s power budget. The results demonstrate that
our proposed attack approaches the performance of an estab-
lished upper-bound adversarial benchmark while maintaining
lower complexity, highlighting its effectiveness and potential for
real-world applicability.

Index Terms—graph neural network, adversarial attack, P2P
wireless networks

I. INTRODUCTION

In the realm of wireless communications, Machine Learning
(ML) and its subset, deep learning (DL), have been trans-
formative, addressing complex tasks like radio resource man-
agement [1], [2], beam prediction [3], and channel estimation
[4]. Despite their advancements, DL algorithms struggle with
generalization and scalability, necessitating substantial data
and diminishing in effectiveness with larger problem sizes. To
mitigate these issues, Graph Neural Networks (GNNs) have
been introduced, combining graph theory with DL, and have
shown success in diverse fields such as Computer Vision [5],
[6] and Natural Language Processing [7], [8].

GNNs have recently been applied to wireless communica-
tions [1], [2], [9]-[15], but they share a common vulnerability
with other ML algorithms to adversarial attacks during training
or testing [16], [17]. Unlike jamming or spoofing attacks,
adversarial attacks subtly manipulate DL inputs to induce
errors, presenting a significant risk to P2P wireless communi-
cation systems like device-to-device, machine-to-machine, and
vehicle-to-vehicle communications [18].

These systems, integral to modern wireless networks and
crucial in various sectors, including IoT [19] and 5G mobile

Majid Moradikia
Department of Data Science
Worcester Polytechnic Institute (WPI)
Worcester, MA, USA
mmoradikia@wpi.edu

Seyed (Reza) Zekavat
Department of Data Science
Worcester Polytechnic Institute (WPI)
Worcester, MA, USA
rezaz@wpi.edu

communications [20], are vulnerable to such attacks. Adver-
sarial attacks can lead to degraded performance and increased
risks in IoT networks [21], affect communication quality in
vehicular ad hoc networks [22].

Despite the significance of these threats, research on adver-
sarial attacks against GNN-based P2P wireless communica-
tions remains limited. This paper aims to address this gap by
exploring practical adversarial attack strategies on GNN-based
P2P systems. Specifically, we introduce a novel adversarial
attack targeting the vertices of a trained GNN model during
the testing phase. The design of this attack adheres to two
constraints: 1) Channel-Bounded Constraint: This limits the
adversary to a certain number of simultaneous perturbations.
2) Min-Detectable Constraint: The adversary aims to perturb
information in a way that minimizes detection likelihood by
the system.

Considering these constraints, we propose a new opti-
mization problem where the adversary targets the channel
information of a subset of active pairs in the network. The
objective of this approach is to minimize the total Quality
of Communication (QoC) within the network, defined as a
weighted sum rate, by maximizing the QoC of the targeted
subset of users. Moreover, we introduce a heuristic algorithm
to solve this optimization problem. The results demonstrate
the effectiveness of the proposed adversarial attack, which
succeeds to steal almost all resources by perturbing merely
half of the available channels.

RELATED WORKS
I) Graphs and GNNs in Wireless Communications

Graphs and GNNs play a crucial role in wireless com-
munications due to their ability to efficiently utilize domain
knowledge, specifically the graph structure. Previous research
[11, [2], [9], [10], [12] extensively employs GNNs for wireless
communication problem-solving. For instance, Transmitter-
Receiver (TX-RX) channels and channel correlations are
modeled as vertices and edges, respectively, in [1], [2] to
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Fig. 1: System model illustration: (left) Training phase, (right) Testing phase

optimize antenna allocations. Additionally, GNNs are utilized
in [9], [10] for centralized modeling of P2P communications,
representing transceiver pairs and inter-user interference as
vertices and edges, respectively. Another application is seen in
[12], where GNNs are employed for power control in cellular
systems, determining an optimal power allocation strategy
based on estimated channel matrices.

II) Adversarial Attacks in ML/DL-based Wireless Communi-
cations

The realm of adversarial attacks on Machine Learning
(ML)/Deep Learning (DL)-based wireless communications is
explored in literature [16], [23]. These attacks facilitate signal
mis-classification, as demonstrated in [23], where a small
perturbation is added to test data during the testing phase,
resulting in mis-classification at the receiver. In [16], different
adversarial attacks against an autoencoder communication
system are investigated, showing the destructive potential even
when the adversary lacks perfect knowledge of the DL model
or synchronization with the transmitter. Further, adversarial
attacks against power allocation scenarios are considered in
[17], where a Deep Neural Network (DNN) allocates transmit
power to orthogonal subcarriers. The adversary perturbs input
data to the DNN, affecting user sum rates by perturbing pilot
signals or transmitting perturbed channel estimations to the
base station.

A. Organization and Notation

The remainder of the paper is organized as follows: Section
IT presents the system model and problem definition. The
proposed adversarial attacks are introduced in Section III.
The proposed approaches are evaluated in Section IV. Finally,
Section V concludes the paper.

Notation: In this paper, vectors are denoted by small bold-
italic face letters a, and capital bold-italic face letters A
represent matrices. 4 is a set, and @ is a scalar. The gt
element and the number of elements of set A or the cardinality
of this set are denoted by A[i] and |A|, respectively. |al
and £a represent the magnitude and phase of the complex
number a. Two new element-wise operators for vectors are
defined as follows: |a| £ [|ag|,|a1l, ..., an—1|]" and <La £
[Lag, £Lay,...,Lan_1]T, where a;,V i = 0,...,N — 1, are
the elements of the vector a. The transpose and Hermitian

(conjugate transpose) of a matrix/vector are denoted by (.)T
and (.)T, respectively. || - ||, denotes the lo-norm of a vector.
D!*! and C™*™ represent a diagonal matrix of dimension
I x 1 and a complex matrix of dimension m x n. The n"
diagonal element of a diagonal matrix D is denoted by D,.
R denotes the set of all real numbers. I denotes the N x N
identity matrix. Oy and 1y are the N-dimensional all-zeros
and all-ones vectors, respectively. We use CN (11, 02) to denote
a circularly symmetric complex Gaussian random vector with
mean y and variance 0. Finally, P(-), (-)*, and E(-) denote
probability, optimum value, and expectation, respectively.

II. SYSTEM MODEL AND PROBLEM DEFINITION

This study examines a multi-user multi-input single-output
(MISO) wireless network consisting of NV active transceiver
pairs, denoted by N = {1,2,..., N}. Each transmitter (TX)
is equipped with V; antenna elements, while receivers (RX)
have a single antenna (see Fig. 1 left).

Consider {s,, }N_, as the unit-norm signals transmitted from
the n™ TX to the n'" RX. Define the precoding matrix Q =
[a1,q2,--.,qn]|T € CV*Ne | where {q, })_, represents the
precoder for the n'" transmitter. The estimated signal received
at the n™ RX is given by

N

= hjL,nanTl =+ Z hg,nqisi + N,
e

Yn )

where h; , € CN* denotes the channel vector from the i TX
to the n™ RX, and n,, ~ CN(0,02) is the Additive White
Gaussian Noise (AWGN) at the n'" RX.

Furthermore, the channel characteristics are encapsulated
within a channel tensor H € C/VI*[VI*N:_ The tensor elements
H,,. = h;, € CY, for {i,n} € N, distinguish between
desired and interference channels of transceiver pairs through
diagonal and off-diagonal elements, respectively. This channel
tensor is accessible to both the central processing unit (CPU)
and potential adversaries. The CPU is tasked with constructing
and continually updating the Deep Learning (DL) model.

A. Graph Modeling of P2P Wireless Communications

As depicted in Fig. 1, we model the P2P wireless network
under consideration as a directed graph. In this graph, each
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transceiver pair is represented by a vertex, specifically the
n® transceiver pair corresponding to the n™ vertex. The
features of these vertices encapsulate the characteristics of
the transceivers. A directed edge from vertex 7 to vertex j
signifies interference from TX ¢ to RX 7, with the edge feature
encompassing the properties of the respective interference
channel. Significantly, interference only occurs if the distance
between TX ¢ and RX j falls below a predefined threshold 7.

The graph G(V, &) is formally defined, where V and &
represent the sets of vertices and edges, respectively. The
vertex feature matrix Z € CIVI*x(Vet+2) jg described by
Z,,. = [hyn,wy,o2]", where |V is the size of set V, and
w,, denotes the weight of the n™ vertex or pair. The term
N, + 2 arises from NN; being the length of h,, , and w,, and
o2 being scalar values.

The adjacency feature tensor A € CIVI*XIVIXNe jg defined

as follows:
Ai n,: — {ON”
o hi,na

where h;,, € CNt for {i,n} € N represents the channel
vector from TX ¢ to RX n. Utilizing the variables Z and A,
we redefine the received signal at the n'™ RX as:

if {i,n} ¢ €&,

otherwise,

2

N
Yn = ij,l:Nt QAnSn + Z Az,n,:qisi + N, (3)
——— -0 ~
Desired Signal i#n oise

Interference

Consequently, the signal-to-interference-plus-noise ratio
(SINR) for the n™, n € A, RX of the corresponding vertex
(transceiver pair) is:

2] 1 v, anl?
N

SINR,, = T 5 ;
Zi:l,i;én |Ai,n,zqi| + Zn Ny 42

“4)

where Z,, n,+2, as per the definition of Z, denotes the noise
power.

To train the graph-based wireless communication system,
we employ the GNN model proposed in [9], comprising three
layers. The channel states {ZIL’L ~, A1 and users” weights
{w, }_, serve as inputs to the GNN. The CPU leverages
information from the transceivers to train a centralized GNN
model of the system (refer to Fig. 1 right). The GNN outputs
the beamforming vectors for users, aiming to minimize the
loss function lg at the final layer, as shown:

N
lo = —E (Z Zn,NH—l 10g2(1 + SINR"L(G))) ’ )

n=1

where Z,, n,+1 indicates the user weights per definition of Z,
and SINR,,(©) is defined by:

12! 1y, an(©)

SINR,,(0) = —x—— :
21 [ A, Qi (O) + Zn vy

(6)

as previously defined after Equation (4).

III. ADVERSARIAL ATTACK

In this section, we delineate the assumptions about the
adversary relevant to this study.

Remark IIL.1. (Adversary’s Assumptions):

1) The adversary operates as a white box, having access
only to channel information.

2) It executes Evasion attacks.

3) Equipped with multiple antenna elements, the adversary
can simultaneously target multiple channels, unlike with
a single antenna which restricts it to one channel at a
time.

4) It moderates perturbation power to diminish the proba-
bility of detection by the CPU and legitimate users.

5) All transceiver pairs fall within the adversary’s trans-
mission range [24], [25].

6) The adversary can eavesdrop and learn information
from transceiver pairs.

7) It has the flexibility to select different channels and
frequencies to disrupt at any given time.

8) As a reactive adversary, it engages in physical carrier
sensing (as part of standards like 802.11) to discern if
a channel is idle or busy.

9) It can transmit malicious messages using address spoof-
ing techniques [24], [25].

|

During the testing phase, the adversary aims to maximize
the weighted sum-rate of a subset of transceiver pairs which
are under its attack. This in turn degrades the network’s
performance QoC. The adversary perturbs the channel infor-
mation h,; ,, transmitted by each pair included in the subset
to the CPU. From this point, we use the terms ’channel’
and ’channel information’ interchangeably to refer to the
information relayed from the transceiver pairs to the CPU.
To acquire this data, the adversary might:

1) Impersonate a fake CPU temporarily, tricking users into
sending data and injecting malicious packets to extract
necessary information [26].

2) Persistently monitor the data to learn about the
transceiver pairs and their channel information.

Leveraging this acquired knowledge and considering net-
work power constraints, the adversary seeks optimal h; ,
values to maximize the sum-rate of the selected subset of
transceiver pairs. The corresponding optimization problem is
formulated as:

max Y Zi,+1logy(1 + SINR;), (7a)
€A
st |lqnll? < Prax, V1 €N, (7b)

here, SINR; indicatesA the distorted SINR, with the perturbed
channel information h; , substituted in (4). The constraint
expresses the power budget limitation at transmitters.

Remark IIL.2. (Channel-bounded (B.) Constraint): This
constraint limits the number of channels an adversary can
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HI, qi|?

max ;Zi7Nt+l log, (1 + SINR;) = ;‘zi,m“ logy (1 + Zgﬁ s ZLNW) (8a)
s.t. C;: ACNand |4 >1 (8b)
Co: ||anll? < Puax, VR EN (8c)

Cs: |ﬂ”\ < Ndiag,max 1N, ¥ {ﬂ” = [/h\i,i,h}\?fi,i,% -~-a/}\li,i,Nt]}£\21 € {ﬁn,n,:}le (8d)

Cy: Ny <min(L,N) (8e)

attack simultaneously. This limitation is considered when
designing B. perturbations in Subsection III-A.

Remark II1.3. (Adversarial Attacks in Graphs): Adversaries
can target vertices and/or edges in the graph, altering their
respective features. This paper focuses on attacks on the set
of vertices V of the graph G, specifically changing the desired
channels between TXs and RXs.

Subsequently, we introduce a novel attack on graph vertices,
considering the B, Constraint. Here, the adversary transmits
a low-power perturbation signal s,,, devised based on channel
information. Consequently, the CPU receives Tagy = T + Sp,
where x represents the original data from transceivers, and
T4y 18 the perturbed information at the CPU. The adversary’s
objective is to craft s, such that it misleads the DL model at
the CPU during the testing phase, yet remains undetectable.

A. Design

In this study, we analyze a scenario where an adver-
sary strategically alters the channel information of certain
transceiver pairs or graph vertices (G). The objective is to
enhance the overall SINR for a subset of transceiver pairs,
denoted as A = {1,2,...,]|A|} € N. The channel-bounded
constraint in this context refers to the number of vertices
the adversary targets for channel information perturbation,
providing a measure of the intended network impact.

To address these factors, we have developed the optimiza-
tion problem in (8), where, the adversary seeks to maximize
the sum rate for the vertices in A. It has been shown in [9]
that the QoC maximization is non-convex and thus difficult to
solve. The situation is exacerbated in (8) by adding constraints
(8b), (8d) and (8e). To tackle the resulting non-convexity, we
propose a heuristic algorithm to achieve a suboptimal but
reasonably good solution.

Considering the channel tensor H and a parameter 0 < [, <
1 representing the proportion of users the adversary intends
to impact, the adversary initially ranks the diagonal elements
Haiag = {Hn n .}, of H in ascending order. It then selects
the last N, = |N x .| elements from Hgi,e for inclusion
in A, resulting in N, = |A|. This method targets users with
the poorest channel quality, as perturbing these channels can
maximally disrupt the network.

The perturbation strategy involves a signal similar to that
used for .BC edge pertAurbatiorl, deﬁlled as Sp; < h;; +
hdia&minejihi’i, where hi,i £ [hi,i,lahi,i,% -~-7hi7i,Nt]v for all
i = {1,...,N,}. It is critical to note that this perturbation

Algorithm 1 Proposed Vertex Perturbation Algorithm
Input: H, [,
1: Determine Hgiag
max Hiag.
Set N, = | N x .|,
Sort Hgiae in ascending order,
Select the last N, elements of Hgi, into A
for:=1,2,..., N, do )
Choose element i of A as h; ; = \h;_yi|ej‘{hi’i
Update fliﬂ' < ‘h;,i|6j(‘{hi’i+n).
Define Sp,i — flz,z + hdiag,maxejihi’i’
Update hlﬂ < h?,z =+ Sp,i
end for
: Revise H with modified Hgiag
Output: H

R N _
- {Hn,n,:}nzla and hdiag,max -

R A A Al

—_
—_ o

signal’s application differs from the B. edge perturbation. In
transceiver pair perturbation, the signal modifies their channel
information, while in B, edge perturbation, it alters the
interference channel information. Upon obtaining the signal,
the adversary proceeds to perturb the channel information of
all selected vertices, as detailed in Algorithm 1.

IV. PERFORMANCE ANALYSIS

This section evaluates the performance of the proposed
adversarial attacks on the total QoC of the system and the
distribution of H’s eigenvalues.

To simulate the system, we use the same GNN architecture
as [9] which is a 3-layer graph neural network. As mentioned
in Section II, the input and output of this network are the
channel states {ZILJ: ~, Yoy and users’ weights {w,, }}_,, and
beamforming vectors of users, respectively. The loss function
at the last layer of GNN is defined in (5). In addition, Adam
[27] with the learning rate of 0.001 is used as the GNN
optimizer. The number of transceiver pairs /N and SNR are
the same for both training and testing phases.

Two metrics are used for the evaluation of the attack: the
first one is the percentage decrease in total QoC. The second
metric, denoted as ()p, is a new metric that represents the
percentage of total QoC exploited by the perturbed channel
information. This metric is used to assess the attack’s effec-
tiveness in stealing available resources.

In addition, we introduce two heuristic perturbations for
comparative analysis with the proposed adversarial pertur-
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TABLE I: The total QoC after Applying Adversarial Attacks for Different N

N =20 | N =30 | N =40 | N =50
lo = of 03 05 07 09 0l 03 05 07 09 01 03 05 07 09 01 03 05 07 09
Normalized Qo€ 0.936 0794 0625 0407 0.163 0938 0825 0658 0447 0181 0924 0801 0675 0455 0.80 0924 0818 0681 0476 0.194
Q» 0223 0619 0992 0998 0999 0245 0.641 0995 0999 0999 0243 0.683 0997 0999 0999 0240 0713 0997 0999 0.999
Upper Bound 0902 0712 0522 0295 0.119 0897 0.68 0450 0.222 0.103 0.884 0.683 0497 0.288 0.049 0.868 0.675 0480 0.286 0.100
Single —0.999 — —0.992 — — 0978 — — 0974 —
TABLE II: The total QoC after Applying Adversarial Attacks for Different TX-RX distance
N =20
dimin = 30, dmax = 30 \ dmin = 10, dmax = 50 \ dmin = 2, dmax = 65
le = 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Normalized QoC  0.895 0.679 0499 0295 0.094 0936 0.794 0.625 0407 0.163 0957 0.833 0.689 0470 0.217
Qp 0228 0.683 0990 0.997 0999 0223 0.619 0992 0998 0999 0238 0.648 0.994 0.999 0.999
TABLE III: The total QoC after Applying Adversarial Attacks for Different SNR
N =20
SNR (dB) = 5 \ 0 5 \ 10
le = 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Normalized QoC  0.938 0797 0629 0426 0166 0949 0821 0624 0407 0159 0948 0808 0645 0432 0154 0936 0794 0625 0407 0.163
Qp 0222 0.623 0991 0998 0999 0219 0.641 0993 0998 0999 0221 0.623 0.994 0998 0999 0223 0.619 0.992 0.998 0.999

bation: I) Upper Bound Perturbation: Here, the adversary
prioritizes the L1 and targets the most powerful channel within
the selected set, setting its value to zero. This heuristic serves
as an upper performance benchmark. II) Single Perturba-
tion: This approach entails the adversary attacking a single,
randomly selected channel, complying with the L1 constraint
where |[L1| = 1. The attack effectively nullifies the data of the
chosen channel, regardless of the power required.

Based on the results presented in Table I, which details the
total QoC for different values for NV and [. at SNR = 10 dB,
we can extrapolate several insights. The metrics reported in
the table reflect the total QoC post-attack, normalized against
the baseline QoC prior to any adversarial intervention.

Key takeaways from the table include:

- There’s a clear trend that the attack’s impact is augmented
as [, increases. This is in line with expectations since a higher
l. means more channels are perturbed, leading to a more
pronounced disruption in the network.

- The attack’s potency does not appear to correlate with
the network size, denoted by N. This suggests that the attack
strategy is robust across various scales of network operations.

- The data for @, illustrates the attack’s efficiency in
resource exploitation. Notably, with only half the channels
(Ic = 0.5) being targeted, the attack nearly monopolizes the
resources, achieving over 99% of the total possible disrup-
tion. This indicates that the proposed attack can effectively
commandeer almost all resources by perturbing merely half
of the available channels.

Further dissection of the heuristic perturbation strategies
reveals:

- While the Upper Bound Perturbation is notably effective,
often outperforming the proposed vertex perturbation across
various network sizes and perturbation intensities, the table
demonstrates the efficacy of our proposed adversarial attack.
Its performance closely aligns with that of the Upper Bound

Perturbation, indicating that our attack rivals the maximum
disruption achievable by the Upper Bound model. This attests
to the strength and strategic effectiveness of our adversarial
approach.

- On the other end of the spectrum, the Single Perturba-
tion showcases a minimal impact on the total QoC. This is
reflective of its targeted approach, which neutralizes a single
channel, hence its effects are localized and less disruptive on
a systemic level.

Table II presents the results for different TX-RX distance
ranges, denoted as [dmin, dmax]- The table reveals that the
adversarial attacks exhibit their most substantial impact within
the homogeneous network settings, particularly within the
range Of [dmin, dmax] = [30,30]. As the TX-RX distance
range broadens, the attacks sustain their effectiveness. For
instance, within the [dmin,dmax] = [10,50] parameters, the
Normalized QoC declines below 0.5 at [, = 0.5, signifying a
substantial impact on the channel quality. The impact is even
more pronounced in the [din, dmax] = [2, 65] scenario, where
the Normalized QoC at [, = 0.7 is only 0.470, underlining the
attack’s increased potency over greater distances.

The consistently low @), values across the table further show
the high success rate of the attack as [, increases, underscoring
the attack’s capability to severely disrupt network operations.
These observations are in line with the outcomes in Table I.

Next, Table III presents the evaluation results for the
proposed attack across a range of SNR values, with the
network configured at NV = 20 and the distance range set to
[dmin; dmax] = [10,50]. The analysis of the table reveals that
the attack’s effectiveness is consistent across both high and low
SNR regimes. This consistency suggests that the efficacy of the
proposed attack is largely independent of SNR, demonstrating
its robustness in various noise environments.

Given the effectiveness of the proposed attack, it is essential
to develop a method for its detection or cancellation. A method
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for attack detection, based on channel eigenvalue distribution,
has been previously proposed [28] to address the attacks
identified in that work, focusing on channels with perfect
Channel State Information (CSI). Furthermore, the eigenvalue
distribution for channels with imperfect CSI is discussed in
[29]. For future work, it would be valuable to propose and
evaluate a similar detection approach for the attack described
in this paper, applicable to both perfect and imperfect CSI
scenarios.

V. CONCLUSION

This work addresses adversarial attacks in a centralized
GNN-enabled P2P communication framework. We introduce a
novel adversarial attack and assess its impact on the system’s
overall QoC. Empirical analysis validates the efficacy of the
proposed attack across a range of user counts and SNR levels.
The proposed attack can effectively commandeer almost all
resources by perturbing merely half of the available channels.
More importantly, its performance closely aligns with that
of the Upper Bound Perturbation, indicating that our attack
rivals the maximum disruption achievable by the Upper Bound
model. Additionally, the attack’s potency is amplified with an
increase in the number of users (/N), and it inflicts further
detriment to the total QoC in scenarios where receivers are
unevenly spaced from their transmitters. Furthermore, the
attack’s success appears to be SNR-independent, underscoring
the imperative for defensive measures against such adversarial
tactics. This study accentuates the urgent need for research
into the security and resilience of deep learning-driven wireless
systems.
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