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Abstract—A fundamental problem in software security, detect-
ing software vulnerabilities (i.e. vulnerabilities), has achieved
tremendous progress by leveraging machine learning (ML)
techniques. These ML-based approaches provide an efficient
solution for identifying vulnerabilities and have demonstrated
high detection accuracy in recent studies. However, it remains
unclear to what extent ML-based vulnerability detection is
vulnerable to widespread adversarial attacks. In this paper, we
propose a framework that performs Adversarial Attack against
ML-based Vulnerability Detection (AdVul) to investigate the
vulnerability of the ML-based vulnerability detection. Our ex-
periments on three representative ML models for vulnerability
detection demonstrate that the proposed AdVul attack can fool
victim models with a high success rate while maintaining the
functionality and performance of original programs. Further-
more, we discuss two potential defense methods, enhanced data
preprocessing and adversarial training. Our evaluation demon-
strates that both methods can to a meaningful extent mitigate
the proposed AdVul adversarial attacks. More broadly, our
work intends to prompt the security community to seriously
consider the potential risks associated with the extensive use
of ML techniques in the security domain.
Index Terms—adversarial examples, software vulnerability de-
tection, machine learning

1. Introduction
With the ubiquitous usage of software in modern life,

software vulnerabilities have become a critical concern.
Software vulnerabilities are defined as “specific flaws or
oversights in a piece of software that allow attackers to
do something malicious: expose or alter sensitive infor-
mation, disrupt or destroy a system, or take control of a
computer system or program” [1]. Given the potential severe
consequences, significant efforts have been made over the
past few decades to mitigate the risks posed by software
vulnerabilities. Among these efforts, machine learning (ML)
techniques have shown remarkable success in detecting vul-
nerabilities [2], [3].

However, recent studies have demonstrated that ML
models are vulnerable to adversarial attacks [4]–[6]. Specif-
ically, an adversary could force a well-trained ML model to

make incorrect predictions by intentionally crafting adver-
sarial examples. This involves introducing small perturba-
tions to the original examples to generate adversarial exam-
ples that will be misclassified by the model while preserving
the original semantics. For instance, in image classification,
imperceptible noise can be added to an image to change the
model’s prediction [7], [8]. Similarly, in sentiment analysis,
a word can be replaced with its synonym in a sentence to
change the model’s prediction [9], [10]. Studying adversarial
example generation not only reveals the vulnerability of
existing models but also helps researchers explore better
defense solutions to enhance the robustness of models. For
example, adversarial training has been proven to be one of
the most effective defense schemes [11], [12].

Generating adversarial examples in programs differs
from generating adversarial images in computer vision, as
it involves handling discrete data, much like in natural lan-
guage processing (NLP). However, adversarial example gen-
eration in program is even more challenging than in NLP for
two main reasons. First, adversarial programs must adhere
to strict syntactic constraints to remain both compilable and
executable. Programming languages have rigorous syntax
rules to ensure the unambiguous interpretation of code,
whereas natural languages have more flexible syntax. For
example, character-level perturbations, such as introducing
typos, are commonly used to generate adversarial examples
in NLP tasks [13], [14]. However, similar perturbations in
code, such as typos or mismatched variable names, result
in compilation errors and bugs, rendering the program non-
executable. Therefore, approaches effective in NLP are not
directly transferable to the domain of programs. Second,
even minor executable perturbations in code can easily
alter the program’s original functionality. As a result, the
space of feasible perturbations for generating adversarial
examples in programs is significantly smaller than that in
NLP, making adversarial examples generation in programs
far more challenging.

While existing research primarily focus on investigating
the feasibility of using ML models to detect vulnerabil-
ities [2], [3], [15], few attention has been given to the
vulnerabilities introduced by the ML models themselves. To
fill this gap, we investigate the vulnerability of ML-based
vulnerability detection to adversarial attacks by measuring



the extent to which attackers can evade detection by gen-
erating adversarial examples and the extent to which non-
vulnerable programs could be misclassified as vulnerable.
To this end, we propose a framework named AdVul, which
adopts a greedy based approach for perturbation selection to
perform adversarial attacks against ML-based vulnerability
detection. To facilitate the generation of adversarial exam-
ples in programs, we introduce a set of functionality pre-
serving transformations. We then evaluate the effectiveness
of our framework by conducting experiments on popular and
important ML models for vulnerability detection. Our exper-
imental results show that AdVul achieves success rates of
42.00%, 44.50%, and 67.50% on the LineVul model [3], the
Vuldeepecker model [2], and the GNN-ReGVD Model [15],
respectively. We make our code publicly available in [16].

In this paper, we make five main contributions:

• We introduce a set of functionality-preserving trans-
formations and assess the robustness of state-of-the-
art ML models against each type of transformation.

• We propose a framework, AdVul, with two stages,
important code snippet selection and greedy based
perturbation, to generate adversarial examples in
programs against ML-based vulnerability detection.

• We demonstrate the effectiveness of AdVul by con-
ducting experiments on three representative ML
models for vulnerability detection.

• We explore and evaluate two potential defense meth-
ods, enhanced data preprocessing and adversarial
training. Results demonstrate that both methods can
to a meaningful extent mitigate adversarial attacks.

• More broadly, our work intends to prompt the se-
curity community to seriously consider the potential
risks posed by the widespread use of machine learn-
ing techniques in the security domain.

2. Related Work

2.1. ML-based Vulnerability Detection

In recent years, there has been extensive research on
ML-based vulnerability detection. The methods mainly fall
into three categories based on the granularity of detection:
file/function/method level, code gadget level, and line level.
For example, Nguyen at al. proposed GNN-ReGVD model,
which treats source code as a flat sequence of tokens and
utilizes a Graph Neural Network (GNN) to learn inherent
structure of source code for detecting vulnerabilities at the
function level [15]. To address the need for finer-grained
detection, Li et al. introduced the concept of “code gadgets,”
which refers to a set of (not necessarily consecutive) seman-
tically related lines of code. They proposed the Vuldeep-
ecker model, using Bidirectional Long Short-Term Memory
(BLSTM) neural network to detect vulnerabilities at the
code badget level [2]. Similarly, Li et al. [17] developed
the IVDetect model, which leverages a Feature-attention
Graph Convolution Network (FA-GCN) approach to predict
function-level vulnerabilities and uses the GNNExplainer

to locate the fine-grained location of vulnerabilities. For
even finer granularity, Fu and Tantithamthavorn proposed
the LineVul model, a Transformer-based approach designed
for line-level vulnerability detection [3]. Their experimental
results showed that LineVul outperformed other models, in-
cluding IVDetect approach, in detecting vulnerabilities with
higher accuracy. All these studies have demonstrated the
impressive effectiveness of using ML techniques to detect
vulnerabilities. However, little is known about the robustness
of existing models against adversarial attacks. Our work
aim to investigate the feasibility of adversarial attacks on
ML-based vulnerability detection. We evaluate our proposed
attack framework on three representative models at different
levels of detection granularity.

2.2. Adversarial Attacks in Program Analysis

ML models have shown astonishing results in many
domains but have been found to be vulnerable to adversarial
attacks, which create adversarial examples to intentionally
force a trained ML model to make incorrect predictions.
Some research studies have investigated the adversarial at-
tacks in program analysis. For example, Zhou et al. pro-
posed ACCENT, an identifier substitution approach to craft
adversarial code snippets in the code comment generation
task [18]. Yefet et al. proposed Discrete Adversarial Manip-
ulation of Programs (DAMP), which applies two semantic-
preserving transformations, variable renaming and dead-
code insertion, to generate adversarial examples [19]. They
conducted evaluation on the code summarization task [20]
and the variable misuse detection task [21]. Chen et al.
proposed a set of program transformations involving iden-
tifier renaming and structural transformations and perform
adversarial attacks [22]. These studies mainly performed
adversarial attacks in a white-box setting, where adversaries
have full access to either the model under attack or to a
similar model. In contrast, we focus on attacking ML-based
vulnerability detection in a black-box setting, which is more
practical and realistic. In this setting, attacks are performed
without any knowledge about the ML models. The only
information provided by the model is whether the input
source code is vulnerable, along with a confidence score.

3. Problem Formulation and Threat Model

3.1. Problem Formulation

In ML-based vulnerability detection, the inputs are typi-
cally the source code programs. We use x to represent a pro-
gram input that consists of a sequence of lines of code, de-
noted by x = (l1, ..., ln). A trained model can be represented
as F : X ! Y , which maps the program space X to two
classes, Y = {0, 1}, where 0 represents non-vulnerable and
1 represents vulnerable. For an original program xorig 2 X
with label yorig = F (xorig), our attack aim to generate
an adversarial example xadv such that the predicted label
yadv = F (xadv) differs from yorig. An adversarial example



is typically generated by introducing perturbations �x to
the original example: xadv = xorig + �x. The generation
of xadv needs to satisfy three criteria: (1) xadv should be
compliable and executable, (2) xadv preserves the same
functionality as that in xorig, and (3) the trained victim
model F predicts different labels for xorig and xadv . The
goal of the adversarial attack can be deviating the label
to incorrect one (i.e., yadv 6= yorig) which is known as
untargeted attack, or specified one (yadv = ytarget) which
is known as targeted attack. In the context of vulnerability
detection, which is a binary classification task, untargeted
attacks and target attacks are effectively equivalent. Thus,
we set ytarget = ⇠ yorig.

3.2. Threat Model

In general, adversarial attacks can be performed in three
settings: black-box, white-box, and grey-box. The adversar-
ial attacks we formulated can be performed in all these
settings, but for this work, we focus specifically on per-
forming and evaluating adversarial attacks in the black-box
setting. More specifically, the adversary does not have access
to training data, learning algorithms, model architectures,
parameters, or model gradients. It can only query a target
or victim model with input programs and get at most the
prediction results along with confidence scores. We focus on
the black-box setting for two major reasons. First, the black-
box setting provides the adversary with the most limited
capabilities, thus it is often considered as the most practical
setting for attackers. It is most popularly considered in the
computer vision, NLP, and computer security domains [23]–
[26]. Second, due to the limited capabilities granted to
the adversary, it is more challenging to perform successful
adversarial attacks in the black-box setting compared to
white-box or grey-box settings. While our focus is on black-
box adversarial attacks, extending our approach to white-box
and grey-box settings can be straightforward.

4. Generating Adversarial Examples for ML-
based Vulnerability Detection

Figure 1 illustrates our proposed AdVul framework for
performing adversarial attacks against ML-based vulner-
ability detection. The framework consists of two stages:
(1) important code snippet selection and (2) greedy-based
perturbation. In the first stage, we segment the program into
multiple snippets using a sliding window and measure the
importance of each snippet in relation to the model’s predic-
tion. In the second stage, we generate a set of functionality-
preserving perturbations for the most important snippets.
These candidate perturbations are then applied using a
greedy approach to maximize the attack’s success while
minimize the number of perturbations introduced.

4.1. Important Code Snippet Selection

To minimize the number of modifications and maintain
the similarity between the original and the perturbed code

as much as possible, we propose to apply perturbations
to important parts of the code that significantly influence
the model prediction. This region of interest ranking and
selection mechanism has been successfully used in prior
adversarial examples generation studies in computer vi-
sion [27] and NLP [14], [28]. However, unlike NLP tasks,
where perturbations can be applied at the token level (e.g.,
through word replacement), token level perturbations in a
program, such as identifier or operator replacement, can lead
to unanticipated changes in the functionality or even render
the program non-executable. While one may suggest parsing
the program at the function level, it is often too coarse-
grained, as in most cases, only a few specific lines of code
within a function contribute to the vulnerability. Therefore,
we propose to parse the program at the snippet level, where
each snippet consists of multiple lines of code, and select
the important snippets for perturbation.

Step 1: Parse the source program. We first segment
the program into individual lines. The lines are separated by
either a newline marker or a statement terminator, such as a
semicolon (;) in languages like C/C++. We denote the input
program x = (l1, l2, ..., ln), where li represents the ith line
of the program. Then, given a window of size w, we refer a
code snippet si consisting of w consecutive lines of code as
si = (li, li+1, ..., li+w�1). A program with n lines of code
will generate (n� w + 1) code snippets in total.

Step 2: Calculate the importance of the snippets.
To measure the influence of a code snippet si towards
the model’s prediction score Fy(x) for the label y, we
calculate the difference between the prediction scores be-
fore and after removing the snippet. We use x�i =
(l1, ..., li�1, li+w, ..., ln) to represent the input program with
the snippet si removed. Previous research on black-box
adversarial attacks in NLP has focused on finding impor-
tant words/sentences whose removal reduces the prediction
scores using Fy(x) � Fy(x�i) as the importance score,
such as the Eq.3 in [14] and Eq.2 in [28]. Different from
their approaches, we propose to consider not only snippets
that decrease the prediction confidence but also those that
increase it. This is achieved by measuring the absolute
value of the difference in model predictions before and after
removing the snippet, capturing both positive and negative
influence on the model’s decision. We apply the following
scoring function to determine the importance of the i-th
snippet in a program x:

Ci =

8
<

:

|Fy(x)� Fy(x�i)|, if F (x) = F (x�i) = y
|Fy(x)� Fy(x�i)|+ |Fȳ(x)� Fȳ(x�i)|,

if F (x) = y, F (x�i) = ȳ, and y 6= ȳ
(1)

where F (·) is the predicted label, and Fy(·) denotes the
prediction score for the label y. Similar to other scoring
functions in the literature [14], [28], our proposed scoring
function reflects the importance of snippets based on their
influence on the prediction. This method is suitable for
black-box attacks since it does not require access to the
model’s parameters, loss function, or structure. We will
compare the effectiveness of our scoring function with the
one proposed in [28] in Section 5.3
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Figure 1: Our AdVul framework for generating adversarial examples.

Step 3: Sort and select candidate snippets. Once the
importance score for each snippet is calculated using Eq. 1,
we sort the snippets in descending order based on their
scores. The top k snippets are then selected to form the
candidate snippet set Scandidate, which will be used for
perturbation.

4.2. Greedy-based Perturbation

After identifying the important snippets in the first stage,
the second stage begin by applying functionality-preserving
transformations to each snippet to generate candidate pertur-
bations (Section 4.2.1). A greedy search is then performed
to select the most effective perturbation (Section 4.2.2).

4.2.1. Functionality Preserving Transformation. For a
given snippet si with a high importance score, as obtained
via Eq. 1, perturbations must follow the syntax rules of the
programming language and preserve the original program’s
functionality. To achieve this, we propose a set of function-
ally equivalent transformations, which can be classified into
four categories: (1) format transformation, (2) dead code
insertion, (3) structural transformation, and (4) parenthesis
insertion. Since most existing ML-based vulnerability detec-
tion datasets are based on C/C++ programming languages,
the transformations are detailed based on C/C++ syntax.

Format transformation. In C/C++ programs, whites-
pace such as spaces, tabs, and newlines are used for format-
ting purposes. Adding or removing these whitespace will not
incur any syntax errors or change the functionality of the
code. We implement four types of format transformations
in this work: 1) adding an empty line, which inserts a blank
line between existing lines of code; 2) removing an empty
line, which identifies and deletes a randomly selected blank
line from the program; 3) adding a tab, which inserts a tab
between lines or at the beginning of a line; and 4) removing
a tab, which detects and randomly removes a tab from an
indented line.

Dead code insertion. A dead code refers to a code that
do not affect the program’s functionality, such as comments
or unused variables. This makes dead code insertion an
ideal functionality-preserving transformation for adversarial
perturbation, as the dead code is imperceptible from the
perspective of program execution. In this work, we insert the
single variable initialization as the dead code. Specifically,
we create a new (unused) variable, assign it a random integer
value, and insert this dead code at random locations between
statements in the important snippet. For example, a new vari-
able “int newVar = 66;” could be added without affecting
the program’s logic. While detecting and removing unused
variables before feeding the program to ML models could
theoretically make this type of perturbation invalid, such
preprocessing is rarely enforced by existing vulnerability
detection models. Even if applied, adversaries could easily
circumvent it by considering more complex forms of dead
code, such as “bool dummy = true; if (dummy){ . . . }”, which
are harder for automated tools to detect.

Structural transformation. Structural transformations
involve modifying the structure of the code while pre-
serving its original functionality. We focus on three types
of structural transformations. The first one is comparison
operator exchange, which involves extracting and swapping
the operands of the comparison operations and adjusting the
operator accordingly. For example, the expression “a > b”
is functionally equivalent to “b < a”, and “a == b” is
equivalent to “b == a”. The second one is increment
and decrement operator exchange. Pre-increment and post-
increment are equivalent in cases where increment and
decrement operators are used in a single expression. For
example, “i + +;” is equivalent to “+ + i;” when used
in isolation, as both modify the variables by 1 and yield
the same result. The third one is compound assignment
operator exchange. In C/C++ programs, compound assign-
ment operators such as “+ =” are shortcuts that perform
a math operation and assignment in a single step. These
can be expanded back to basic assignment expressions. For



example, “a+ = b” can be converted to “a = a+b” without
changing the original functionality. All these transformations
alter the structure of the code without changing the logic or
behavior of the program.

Parentheses insertion. We also consider parentheses
insertion, which are commonly used to control the order
of expression evaluation in C/C++ programs. Instead of
altering the operator precedence in the original programs, we
propose to insert parentheses to group expressions without
change their logic or behaviors. For example, the expression
“a = b+ c;” can be transformed into “a = (b+ c);”.

We utilize the four types of functionality-preserving
transformations described above to perform perturbations
on the selected snippets. While it is impractical to ex-
haustively enumerate all possible functionality-preserving
transformations, we focus on representative use cases for
each type of transformation. For example, in the case of
dead code insertion, we apply single variable initialization
as a representative example in this work.

4.2.2. Greedy Search for Perturbation. With a set of
candidate transformations, we apply greedy search approach
to select the most effective perturbation. It takes as input the
current program xcur, which could either be the original
program xorig or a perturbed program. To choose the best
transformation, we follow these steps:

• Step 1: We obtain all possible transformations
for the top k important code snippets and gen-
erate candidate programs by applying each pos-
sible transformation to the current program xcur:
xcur +�x0, xcur +�x1, ..., xcur +�xn

• Step 2: We calculate the prediction scores of all
perturbed programs and pick the transformation that
has the maximum prediction score of the target label
ytarget.

• Step 3: The selected transformation is applied to
the current program xcur = xcur + �xbest. If the
victim model predicts the label for this perturbed
program different from that for the original pro-
gram F (xorig) 6= F (xcur), the current program is
returned as a successful adversarial example. Other-
wise, we repeat steps 1 to 3 until we either find a
successful perturbation or reach a predefined maxi-
mum number of attempts Tmax.

By applying this greedy selection strategy, we can gen-
erate adversarial examples with minimal perturbations.

4.3. High-level Algorithm

Algorithm 1 outlines the entire procedure of our pro-
posed adversarial attack against ML-based vulnerability de-
tection. It takes as input the original program xorig , the vic-
tim model F , and a hyper-parameter Tmax, representing the
maximum number of perturbation iterations. The output is
either a successful adversarial program xadv or “None” if the
attack is unsuccessful. The algorithm begins by identifying
important code snippets (from line 1 to line 7). Following

this, a greedy-based approach is used to iteratively apply
perturbations to the program (from line 8 to line 19). In
each iteration, functionality-preserving transformations are
applied to the important snippets, and the transformation that
results in the greatest deviation from the original program’s
prediction is selected for perturbation. By limiting changes
to the best transformation �xtop, the program’s function-
ality is preserved, while the modifications remain subtle
and largely imperceptible by users. Regarding the hyper-
parameter Tmax, our experiments show that most of the
generated programs do not change after about 10 iterations,
indicating that increasing this value beyond 10 does not
significantly improve the attack’s success rate. Therefore,
we set Tmax = 10.

Algorithm 1 Adversarial Attack against ML-based Vulner-
ability Detection

Inputs: an original program xorig, a victim model F ,
window size w, number of snippets k, and the maximum
iterations Tmax

Output: an adversarial program xadv or None.

Important snippets selection
1: xorig = (l1, l2, ..., ln)
2: for i = 1, 2, ..., n� w do
3: si  (li, li+1, ..., li+w)
4: ci  compute the importance score using Eq. 1.
5: S.append(si), C.append(ci)
6: end for
7: sort(S, key=C)

Greedy-based perturbation
8: xcur  xorig, i 0
9: while i++ < Tmax do

10: for s in S do
11: xpert  xcur +�(s, TRANSFORM(s))
12: if F (xpert) 6= F (xorig) then return xpert

13: else
14: Xpert.append(xpert)
15: end if
16: end for
17: sort(Xpert)
18: xcur  Xpert[0]
19: end while
20: return None

5. Evaluation

In this section, we evaluate our proposed AdVul adver-
sarial attack on three ML models for vulnerability detection.

5.1. Targeted Models and Datasets

The victim models we use in this paper are the LineVul
model [3], the VulDeePecker model [2], and the GNN-
ReGVD model [15]. Among these, LineVul is considered



the state-of-the-art in vulnerability detection, having demon-
strated outperformance compared to other models. We eval-
uate those models on datasets that used in prior research
studies. Specifically, we evaluate the LineVul model on
the Fan dataset [29]. This dataset is collected from 348
open-source Github projects, covering 91 different Common
Weakness Enumerations (CWEs) from 2002 to 2019. It
includes 188,636 C/C++ functions with 5.7% labeled as
vulnerable. We evaluate the VulDeePecker model on the
CWE-399 dataset, which is derived from National Vulner-
ability Database (NVD) and contains 7,285 code gadgets
correspond to resource management error vulnerabilities.
We evaluate the GNN-ReGVD model on the CodeXGLUE
dataset, which is a benchmark constructed by Microsoft and
aggregates 14 datasets from previous studies.

5.2. Effectiveness of Transformations

We begin by assessing each type of functionality-
preserving transformation introduced in Section 4.2.1. Since
each type of transformation can be implemented in multiple
ways (e.g., there are multiple possible locations for insert-
ing an empty line within the program), we conduct two
experiments to evaluate their effectiveness. These experi-
ments represent two extreme scenarios: (1) applying a single
perturbation, where we apply just one perturbation from
a given transformation type, representing the lower bound
of potential modifications; and (2) applying all possible
perturbations, where we apply every possible perturbation
from a single transformation type, providing an upper bound
of potential modification.

5.2.1. Effectiveness of Applying A Single Perturbation.
For each type of transformation, we identified all possible
perturbations and then applied one randomly selected per-
turbation. The overall results of applying a single pertur-
bation from different types of transformations are listed in
Table 1. The results show that even a single perturbation
can decreases the accuracy of the victim models to some
extent, though the impact varies by transformation type.
For the LineVul model, dead code insertion has the most
significant impact with 8.92% decrease to the accuracy,
while single perturbations from other transformation types
cause only slight accuracy drops, generally less than 1.00%.
Similarly, for the Vuldeepecker model, adding one single
line of dead code results in the largest accuracy decreases,
at 6.34%. However, the GNN-ReGVD model is more robust
against single perturbations, with the maximum accuracy
drop being less than 0.3%. These results indicate that dif-
ferent models exhibit varying levels of robustness against
individual perturbations from our proposed functionality-
preserving transformations.

5.2.2. Effectiveness of Applying All Perturbations from
A Single Type of Transformation. For each type of trans-
formation, we identified and applied all possible pertur-
bations. The overall results are listed in Table 2. We can
see that in some cases, applying all possible perturbations

can further decrease the accuracy of the victim models
compared to a single perturbation (Table 1). For example,
removing a single tab decreases the accuracy of the LineVul
model to 98.63%, while removing all tabs decreases the
accuracy to 8.67%. This drastic decrease underscores the
cumulative effect of multiple perturbations. Similarly, for
the Vuldeepecker model, adding a single line of dead code
decreases the accuracy to 84.49%, while adding multiple
lines of dead code further decreases the accuracy to 66.51%.
This implies that the introduction of more dead code gen-
erate more noises, which further distracts the victim model
from correctly identify vulnerabilities. These results indicate
varying impacts of different perturbations and suggest the
cumulative effects of multiple perturbations when perform-
ing adversarial attacks.

The results from Table 1 and Table 2 demonstrate that
our proposed functionality-preserving transformations can
to some extent decrease the accuracy of the ML-based
vulnerability detection, implying the feasibility of apply-
ing those transformations as perturbations for adversarial
attacks. However, we also observed that different models
exhibit varying levels of robustness against different types of
transformations. It highlights the challenges of conducting
successful adversarial attacks across different ML models.

5.3. Effectiveness of Greedy-based AdVul

Instead of limiting perturbations to a single transforma-
tion type, our proposed AdVul framework considers per-
turbations from various transformation types to conduct
more effective adversarial attacks. It identifies all possible
perturbations across all transformation types for the top k
most important snippets, then uses a greedy-based approach
to select the most effective perturbation. This strategy re-
sults in an optimal combination of perturbations, aiming to
mislead the victim model while minimizing the number of
perturbations applied.

To evaluate the effectiveness of our framework, we first
identify valid examples that are correctly predicted by the
victim models. From these, we sample 100 valid positive
examples (i.e., vulnerable programs) and 100 valid negative
examples (i.e. non-vulnerable programs) as the original pro-
grams to perform our proposed AdVul attack. We evaluate
our framework by examining the quality of generated ex-
amples in terms of success rate, which is the percentage
of adversarial examples that successfully mislead the victim
model into making incorrect predictions. Additionally, to
assess how well we preserve the content of the original
program, we measure the average number of perturbations
added to original examples.

We evaluate our proposed AdVul attack against three
victim models, the LineVul model, the Vuldeepecker model,
and the GNN-ReGVD model. Experiments are conducted
using with different parameters, including the maximum
number of iteration Tmax, the window size w for parsing
the program, and the number of selected snippets k. We
also compare three different scoring functions for snippets
selection: (1) randomly selecting k snippets; (2) sorting and



TABLE 1: Accuracy of ML Models for Vulnerability Detection with A Single Perturbation.

Model Dataset Original
Accuracy

Performance after Perturbation
Add

Empty
Line

Remove
Empty
Line

Add
Dead
Code

Add
Parentheses

Comp
Operator
Exchange

Other
Operator
Exchange

Add
Tab

Remove
Tab

LineVul [3] Fan 99.11% 99.09% 99.1% 90.19% 99.13% 98.29% 99.12% 99.03% 98.63 %
Vuldeepecker [2] CWE-399 90.83% 90.83% 90.83% 84.49% 90.80% 86.72% 90.84% 89.29% 90.80 %

GNN-ReGVD [15] CodeXGLUE 59.22% 59.22% 59.22% 59.19% 58.97% 59.11% 59.15% 59.22% 59.22 %

TABLE 2: Accuracy of ML Models for Vulnerability Detection with All Perturbations from A Single Type of Transformation

Model Dataset Original
Accuracy

Performance after Perturbation
Add

Empty
Line

Remove
Empty
Line

Add
Dead
Code

Add
Parentheses

Comp
Operator
Exchange

Other
Operator
Exchange

Add
Tab

Remove
Tab

LineVul [3] Fan 99.09% 99.06% 99.09% 85.85% 99.1% 98.01% 99.08% 98.92% 8.67 %
Vuldeepecker [2] CWE-399 90.83% 90.80% 90.80% 66.51% 90.12% 86.68% 90.84% 85.42% 90.80 %

GNN-ReGVD [15] CodeXGLUE 59.22% 59.22% 59.22% 59.19% 58.16% 59.04% 59.19% 59.22% 59.22 %

selecting top k snippets based on the scoring function pro-
posed by [28]; and (3) sorting and selecting top k snippets
using the scoring function defined in Eq. 1. The detailed
evaluation results of the AdVul attack on three models are
presented in Table 3, Table 4, and Table 5, respectively.

Overall Results and Analysis. Our proposed AdVul at-
tack achieves a success rate of up to 42.00% on the LineVul
model, 44.50% on the Vuldeepecker model, and 67.50%on
the GNN-ReGVD model with fewer than 2 perturbations on
average (as indicated by the “average # perts” in the tables).
These results demonstrate that our framework effectively
preserves most of content and functionality of the original
programs while successfully misleading the models. We will
provide a detailed analysis of how how various settings and
hyper-parameter affects the success rate of the AdVul attack.

Maximum Number of Iteration Tmax. We first inves-
tigate how the maximum number of iterations Tmax affects
the final results. Specifically, we conduct experiments with
Tmax = 10, 15, 20 when attacking the LineVul model.
The results listed in Table 6 indicate that increasing the
maximum number of iterations only boosts up the success
rate by a small margin. Furthermore, when the number
of selected snippets is relatively small (e.g., k = 5 and
k = 10), the success rate remains the same for Tmax = 10,
15, 20. This result implies that the proposed AdVul attack
is efficient and effective, only requiring a few iterations
to perform successful attacks. Consequently, we will set
Tmax = 10 for all subsequent experiments.

Window Size w. When attacking the LineVul model
(Table 3), the AdVul framework achieves the best success
rate of 38.5% when window size w = 3 and 42.00% with
w = 5. Using the same snippet selection mechanism and
the same number of selected snippets, the success rate with
w = 5 is higher than that with w = 3. This result is intuitive,
as a larger window size is more likely to capture important
semantic relations within a snippet, allowing the AdVul
attack to target and disrupt these relationships more effec-
tively. However, using a larger window size also demands
more computational resources and increase the possibility
of destroying the program’s original functionality. Similarly,
when attacking the GNN-ReGVD model (Table 5), the

success rate with w = 5 (67.50%) is higher than that with
w = 3 (63.00%). Interestingly, this pattern did not hold for
the Vuldeepecker model, where the smaller window size of
w = 3 yields a higher success rate (44.50%) compared to
w = 5 (41.50%).

Number of Snippets k. For all three victim models,
increasing the number of selected snippets for perturbation
leads to a higher success rate. This is expected, as selecting
more snippets provides more opportunities for perturbations,
thereby increasing the likelihood of generating successful
adversarial examples. However, this also results in a higher
average number of perturbations, indicating more modifi-
cations are involved. Similar to effect of the window size,
while more perturbations can improve attack success, they
also introduce greater computational overhead and increase
the risk of discrupting the program’s original functionality.

Snippet Selection Mechanism. In comparing differ-
ent mechanisms for snippet selection, we found that our
proposed scoring function is on par with the mechanism
presented in [28] when w = 3, while it outperforms the
existing scoring function when w = 5 for the LineVul
model. Although our proposed scoring function does not
outperform the other two functions, it still achieves compa-
rable results for the Vuldeepecker model. As for the GNN-
ReGVD model, our proposed scoring function achieves the
highest success rate with w = 3, while random snippet
selection yields the best result with w = 5. These results
indicate that it is beneficial to rank and consider snippets that
both reduce prediction confidence and those that enhance it
for adversarial attacks.

Distribution of Successful Adversarial Examples. In
addition to the success rate and the average number of
perturbations, Tables 3, 4, and 5 show the distribution of
successful adversarial examples on positive and negative
examples. The column named “p2n” lists the number of
adversarial examples that are generated based on positive
examples (i.e., vulnerable programs) and misclassified as
negative (i.e., non-vulnerable) by the victim model. The
success of these examples indicates that attackers are able
to evade ML-based on vulnerability detection. The column
named “n2p” lists the number of the adversarial exam-



TABLE 3: Evaluation Results on Attacking LineVul model (Tmax = 10).
window size w= 3 window size w= 5

Snippet Selection top k
snippets

success
rate

average
# perts p2n n2p top k

snippets
success

rate
average
# perts p2n n2p

random

5 19.50% 1.33 2 37 5 32.50% 1.54 3 62
10 28.00% 1.52 2 54 10 35.00% 1.67 4 66
15 31.50% 1.7 4 59 15 39.50% 1.78 5 74
20 34.50% 1.77 5 64 20 39.50% 1.67 5 74

Eq. used in [28]

5 21.00% 1.31 4 38 5 31.00% 1.74 5 57
10 31.00% 1.89 7 55 10 37.00% 1.77 7 67
15 37.50% 1.75 8 67 15 37.50% 1.75 8 67
20 38.50% 1.73 8 69 20 38.50% 1.73 8 69

Our proposed
Eq. 1

5 22.50% 1.38 4 41 5 33.50% 1.6 5 62
10 32.50% 1.71 7 58 10 39.50% 1.86 7 72
15 35.50% 1.77 8 63 15 42.00% 1.88 8 76
20 38.00% 1.82 8 68 20 42.00% 1.83 8 76

TABLE 4: Evaluation Results on Attacking Vuldeepecker Model (Tmax = 10).
window size w= 3 window size w= 5

Snippet Selection top k
snippets

success
rate

average
# perts p2n n2p top k

snippets
success

rate
average
# perts p2n n2p

random

5 28.50% 1.32 30 27 5 28.00% 1.32 34 22
10 37.00% 1.32 44 30 10 37.00% 1.44 50 24
15 43.00% 1.43 54 32 15 41.00% 1.44 57 25
20 44.50% 1.42 57 32 20 41.50% 1.40 58 25

Eq. used in [28]

5 27.50% 1.24 27 28 5 26.00% 1.42 30 22
10 35.00% 1.53 40 30 10 29.50% 1.32 35 24
15 39.00% 1.55 48 30 15 39.00% 1.47 56 22
20 44.50% 1.42 57 32 20 41.00% 1.39 57 25

Our proposed
Eq. 1

5 25.50% 1.27 23 28 5 29.50% 1.59 37 22
10 33.50% 1.63 38 29 10 32.00% 1.48 41 23
15 37.50% 1.57 44 31 15 37.50% 1.45 52 23
20 43.50% 1.44 56 31 20 41.00% 1.41 58 24

TABLE 5: Evaluation Results on Attacking GNN-ReGVD Model (Tmax = 10).
window size w= 3 window size w= 5

Snippet Selection top k
snippets

success
rate

average
# perts p2n n2p top k

snippets
success

rate
average
# perts p2n n2p

random

5 54.00% 1.64 16 92 5 58.50% 1.55 24 93
10 56.50% 1.57 20 93 10 61.00% 1.84 29 93
15 62.50% 1.66 31 94 15 62.00% 1.55 29 95
20 62.00% 1.51 29 95 20 67.50% 1.70 41 94

Eq. used in [28]

5 52.50% 1.52 17 88 5 57.50% 1.83 24 91
10 60.00% 1.77 27 93 10 62.50% 1.66 31 94
15 62.50% 1.72 30 95 15 64.50% 1.60 33 96
20 62.00% 1.71 30 94 20 64.50% 1.53 33 96

Our proposed
Eq. 1

5 55.50% 1.64 19 92 5 55.50% 1.58 20 91
10 60.50% 1.84 28 93 10 64.00% 1.64 32 96
15 60.50% 1.53 27 94 15 66.00% 1.98 37 95
20 63.00% 1.52 30 96 20 65.00% 1.54 34 96

ples that are generated based on negative examples (non-
vulnerable programs) and misclassified as positive (i.e.,
vulnerable). The success of these examples is undesirable
for the user experience. We found that it’s more challeng-
ing to generate successful adversarial examples based on
vulnerable programs for the LineVul model than that for
the Vuldeepecker model. While a higher success rate for
generating adversarial examples based on positive examples
(i.e. “p2n”) would always be better from the attacker’s
perspective, it is important to keep in mind that they only
need to succeed once.

Case Study. Figure 2 lists samples of successful ad-
versarial examples generated by our framework with the

LineVul model as the victim model. As for the Figure 2a,
the original vulnerable program is predicted as positive with
0.9999 as prediction score for positive. The first perturbation
is to insert a dead code “int pxna = 0” which slightly
decreases the prediction score for positive. Then the sec-
ond perturbation is to add a tab before the code “return”,
which further decrease the prediction score for positive to
0.9943. The last perturbation adding another tab makes the
prediction score become 0.3372, implying that the program
is classified as negative by the LineVul model (the threshold
is 0.5). Although these three perturbations will not change
the functionality of the original program, these perturbations
were able to change the model prediction. Similarly, Fig-



 
 

1. Positive (score = [5.4424e-05, 9.9995e-01]) 

2. Positive (score = [0.0057, 0.9943]) 

3. Negative (score = [0.6628, 0.3372]) 

(a) Generating adversarial example for vulnerable program.

 

1. Negative (score = [9.9984e-01, 1.5827e-04]) 

2. Negative (score = [0.8314, 0.1686]) 

3. Positive (score = [4.2451e-04, 9.9958e-01]) 

3. Positive (score = [4.2451e-04, 9.9958e-01]) 

(b) Generating adversarial example for non-vulnerable pro-
gram.

Figure 2: Successful adversarial examples generated by AdVul on LineVul model.

TABLE 6: Evaluation Results on Attacking LineVul Model
with Different Tmax (window size w = 5, snippet selection
based on mechanism used in [28]).

Tmax
top k

snippets
success

rate
average
# perts p2n n2p

10

5 31.00% 1.74 5 57
10 37.00% 1.77 7 67
15 37.50% 1.75 8 67
20 38.50% 1.73 8 69

15

5 31.00% 1.74 5 57
10 37.00% 1.77 7 67
15 38.00% 1.92 8 68
20 38.50% 1.73 8 69

20

5 31.00% 1.74 5 57
10 37.00% 1.77 7 67
15 38.50% 2.12 8 69
20 39.00% 1.92 8 70

ure 2a shows the successful adversarial examples generated
based on non-vulnerable program. With similar functionality
preserving perturbations, the model changed its prediction.

6. Discussion

In this section, we discuss potential defenses against our
proposed AdVul attacks and limitations of this work as well
as the potential direction for future research.

Potential Defenses. Recall in Section 5.2.2 that adding
or removing white spaces can significantly affect the per-

formance of the model. One potential defense method is to
incorporate white space removal into data preprocessing. To
measure if this method helps defend against our proposed
AdVul attack, we conducted an experiment on the Line-
Vul model, which is the most vulnerable to perturbations
related to white spaces. After incorporating white space
removal into data preprocessing, we retrained the LineVul
model using the same dataset. The accuracy on the original
testing set is 98.82%, which is comparable to the original
accuracy 99.11% shown in Table 3. We then performed
the AdVul adversarial attacks on the newly trained LineVul
model. As shonw in Table 3, the AdVul attack achieved
the best performance (42.00% success rate with an aver-
age of 1.83 perturbations) with the following parameters:
w = 5, k = 20, and our proposed Eq. 1 for important
snippet ranking. Our experiment shows that, with the same
parameters, the success rate of our AdVul attack decreases to
28.50%, and the average number of perturbations increases
to 2.00 after incorporating white space removal into data
preprocessing. This result indicates that incorporating white
space removal into data preprocessing can to some extent
mitigate the AdVul attacks without impairing the model’s
performance on the original testing set.

Another potential defense method is adversarial train-
ing [30], which arguments training dataset with adversar-
ial perturbations. We conducted preliminary experiments to
evaluate the effectiveness of this method. First, we applied



our proposed functionality preserving transformations to
generate perturbed examples based on 100 randomly se-
lected samples from the training dataset. We then added
these perturbed examples to the original training dataset
for adversarial training. The adversarially trained LineVul
model achieved an accuracy of 99.05% on the original
testing set. Next, we performed our AdVul attack on the ad-
versarially trained LineVul model using the same parameters
as above. The success rate decreased to 24.00%, indicating
that augmenting the training dataset using our proposed
transformations can to a meaningful extent mitigate AdVul
attacks without impairing the model performance on the
original testing set.

Limitations and Future Work. The first limitation is
that we only focused on representative perturbations from
four main types of functionality preserving transformations
for C/C++ programs. We did not further exploit more func-
tionality preserving transformations to improve the existing
adversarial attacks or investigate the effectiveness of our
framework for generating adversarial programs in other
programming languages, such as Python. We acknowledge
that some perturbations may need to be adjusted for different
programming languages. For example, removing tabs would
significantly alter the functionality of Python code. However,
our major contribution is demonstrating the feasibility of
performing adversarial attacks against ML-based vulnerabil-
ity detection and highlighting the vulnerability of existing
ML models in the security domain. Therefore, exploring
more functionality preserving transformations for C/C++
programs, as well as other programming languages, could
be a promising direction for future work.

The second limitation is that the potential defense meth-
ods we discussed can mitigate AdVul adversarial attacks to
some extent but cannot completely defend against them.
Therefore, designing other effective and complementary
defense schemes is desirable and represents an important
future research direction.

7. Conclusion

In this paper, we propose AdVul, a framework that can
perform the adversarial attacks against ML-based vulnerabil-
ity detection, revealing the vulnerabilities of widely adopted
models. We propose a set of functionality-preserving trans-
formations and utilize a greedy-based approach to select
the optimal perturbation. Our experiments on three rep-
resentative vulnerability detection models demonstrate the
effectiveness of AdVul, achieving notable success rates.
Additionally, we explore two potential defense methods,
enhanced data preprocessing and adversarial training, and
demonstrate that both methods can to a meaningful extent
mitigate the proposed AdVul attacks. More broadly, our
work intends to prompt the security community to seriously
consider the potential risks associated with the wide use of
ML techniques in the security domain.
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