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FOURIER OPTIMIZATION AND MONTGOMERY’S PAIR
CORRELATION CONJECTURE

EMANUEL CARNEIRO, MICAH B. MILINOVICH, AND ANTONIO PEDRO RAMOS

ABSTRACT. Assuming the Riemann hypothesis, we improve the current upper
and lower bounds for the average value of Montgomery’s function F(a,T') over
long intervals by means of a Fourier optimization framework. The function
F(o,T) is often used to study the pair correlation of the non-trivial zeros of
the Riemann zeta-function. Two ideas play a central role in our approach: (i)
the introduction of new averaging mechanisms in our conceptual framework
and (ii) the full use of the class of test functions introduced by Cohn and Elkies
for the sphere packing bounds, going beyond the usual class of bandlimited
functions. We conclude that such an average value, that is conjectured to
be 1, lies between 0.9303 and 1.3208. Our Fourier optimization framework
also yields an improvement on the current bounds for the analogous problem
concerning the non-trivial zeros in the family of Dirichlet L-functions.

1. INTRODUCTION

1.1. Montgomery’s pair correlation conjecture. Let ((s) denote the Riemann
zeta-function. We assume the truth of the Riemann hypothesis (RH) throughout
this article. Montgomery’s well-known pair correlation conjecture [19] is a state-
ment about the vertical distribution of the non-trivial zeros p = % +iyof {(s). Tt
states that, for any fixed 8 > 0, we have

(1.1) N(B,T):= o1~ N(T)J

0<v,Y'<T 0

273
0<y—'<poa7

B ; 2
{1 - (s1n7ru) } du, asT — oo.
e

The double sum above runs over the ordinates 7,~’ of two sets of non-trivial zeros
of ¢(s), counted with multiplicity. The function N(7T') denotes the number of non-
trivial zeros of ((s) with ordinates in the interval (0,7], and it is known that
N(T) ~TlogT/(2w), as T — co. Hence, the function N(8,T) counts the number
of pairs of zeros within £ times the average spacing between zeros.
For a function R € L'(R), define its Fourier transform by
Q0
R(a) := J e ?meT R(z) du.

—00
In order to understand a sum involving the differences (v —+’), as in (1.1), Mont-
gomery’s idea was to consider more general versions of it, with a suitable weight
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410 E. CARNEIRO, M. B. MILINOVICH, AND A. P. RAMOS

to help with the decay and localize to nearby pairs of zeros. Indeed, setting
w(u) = 4/(4 + u?), for any function R € L'(R) such that R € L'(R), Fourier

inversion leads to the formula
loe]

(OIS R(m—v')logT)ww—w’)=N<T> [ @ rm

2T
0<v,y'<T —®

where Montgomery’s function F(a,T), for « € R and T > 15, is defined by

1 . ’

F(a,T) i= —— Ty — ).

(@T) = 5 > w(y —7')

0<y,y'sT

From the definition, it follows that F'(a,T) is real-valued and that F(«,T) =
F(—a,T). Moreover, since

2

0
Tm('y_'Y/) ’LU(’Y . ’Y/> _ 2ﬂ_f e—47r|u| du,

Z TiafyeQTri'yu

0<~y<T

0<v,y'<T

it follows that F(a,T) > 0. In order to understand the sums in the left-hand
sides of (1.1) and (1.2), one is led to study the asymptotic behavior of F(«,T), as
T — 0. Assuming RH, it is known that

loglog T
= (72l | 08708 1 =
(1.3)  F(a,T) (T logT + |a|) (1 +0 ( log T >> , as T — oo,

uniformly for 0 < |a| < 1. This was proved by Goldston and Montgomery [17,
Lemma 8], refining the original work of Montgomery [19]. The error term here can
be improved slightly; see [1, Theorem 1]. The asymptotic formula in (1.3) allows
one to estimate the sum on the left-hand side of (1.2) for R € L!(R) with supp(R) <
[—1,1]. Montgomery conjectured that F(c,T) ~ 1 for || > 1, uniformly for « in
bounded intervals. This is sometimes called Montgomery’s strong pair correlation
conjecture. This assumption, via approximating the characteristic function of an
interval by bandlimited functions, led Montgomery to his pair correlation conjecture
in (1.1).

1.2. The average value of F(a,T). Assuming RH, from the work of Goldston
[14, Theorem 1], it is known that the following asymptotic average is equivalent to
the validity of Montgomery’s pair correlation conjecture in (1.1):

b+¢
(1.4) %J F(a,T)da~1, asT — oo, for any fixed b > 1 and ¢ > 0.
b

In [3], Carneiro, Chandee, Chirre, and Milinovich developed a systematic way to
provide effective upper and lower bounds for the integrals appearing in (1.4), for
any b > 1 and £ > 0, by connecting them to suitable Fourier optimization problems.
In this paper, we are particularly interested in the long average regime, for which
the following result was established in [3, Corollary 2]. Assuming RH, for b > 1
and large ¢ (uniformly on b for the upper bound !, and with ¢ > £, (b) for the lower
bound), one has

b+e

(1.5) 0.9278 + o(1) < ZJ F(a,T) da < 1.3302 + o(1),
b

I This follows from [3, Theorem 7] and the proof of [3, Corollary 2].
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FOURIER OPTIMIZATION 411

as T — oo. This sharpened previous results obtained by Goldston [13, Lemma
A] and Goldston and Gonek [15, Lemma], that had estimates with 1/3 in place of
0.9278 in the lower bound and 2 in place of 1.3302 in the upper bound.

The main purpose of this paper is to provide an improvement of the asymptotic
bounds in (1.5). Although the proposed gain might seem modest at a first glance, it
is conceptually interesting for it arises from different Fourier optimization problems.
Two ideas play a central role in this paper: (i) the introduction of new averaging
mechanisms in our conceptual Fourier optimization framework and (ii) the full use
of the class of test functions introduced by Cohn and Elkies [11] for the sphere
packing bounds, going beyond the usual class of bandlimited functions. This larger
class of test functions has already proved useful to sharpen some bounds in the
theory of the Riemann zeta-function in the work of Chirre, Gongalves, and de Laat
[9] and of Bui, Goldston, Milinovich, and Montgomery [2].

The following universal constant appears in our main results and plays a key
role in our approach:

sinx

(1.6) Co := min = —0.217233....

zeR
Theorem 1. Assume RH, let b > 1, and let € > 0 be arbitrary. Then, for large ¢,
one has

1 b+4
1+CO(Cl—1)—8+O(1)<ZJ F(a,T)da < Cy+e+0(1),
b

as T — oo, with £ = ly(e) for the upper bound and £ = Ly (b, €) for the lower bound,
where the constant Cy is defined in (2.3).

It follows from Lemma 14 and Proposition 15 that C; < 1.3208. Using (1.6)
and this upper bound for C; in Theorem 1, one is led to the following numerical
improvements of the estimates in (1.5).

Corollary 2. Assume RH and let b > 1. Then, for large £ one has

b+4

09303 +0(1) < 5 | FlonT) dav < 1.3208 + o(1),
b

as T — o, uniformly on b for the upper bound and with £ = £y(b) for the lower
bound.

1.3. Working under GRH. Under the generalized Riemann hypothesis (GRH)
for Dirichlet L-functions, more can be said about Montgomery’s function F'(a, T).
This additional piece of information comes from the work of Goldston, Gonek,
Ozliik, and Snyder [16, Theorem], who showed that, for any € > 0, one has

(1.7) F(a,T) = g —la| —¢

uniformly for 1 < |a| < 2 — 2¢ and all T > Tp(e). Incorporating the lower bound
(1.7) in our Fourier optimization framework, we obtain the following refinement of
Theorem 1.

Theorem 3. Assume GRH for Dirichlet L-functions, let b > 1, and let € > 0 be
arbitrary. Then, for large £, one has

1 b+4
1+CO(C>{_1)_E+O(1)<ZJ F(a,T) da < Cy +¢+0(1),
b
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412 E. CARNEIRO, M. B. MILINOVICH, AND A. P. RAMOS

as T — oo, with £ = ly(e) for the upper bound and £ = ly(b,€) for the lower bound,
where the constant C¥ is defined in (3.2).

From Lemma 14 and Proposition 15 one observes that C§ < 1.3155. Using (1.6)
and this upper bound for C¥ in Theorem 3, one arrives at the following refinement
of Corollary 2.

Corollary 4. Assume GRH for Dirichlet L-functions and let b = 1. Then, for
large £, one has
1 b+¢
0.9314 + o(1) < f Fa,T) da < 1.3155 + o(1),
b
as T — o, uniformly on b for the upper bound and with £ = £y(b) for the lower
bound.

1.4. Analogues for families of Dirichlet L-functions. Montgomery [19] also
suggested the investigation of the pair correlation of zeros of the family of Dirichlet
L-functions in g-aspect. The works [8,21] consider such a problem, studying the
distribution of non-trivial zeros of L(s, x) with two averages: the classical one over
characters x (mod ¢), and another one over the modulus ¢ in a certain range. With
this additional average over the modulus ¢, the authors in [8,21] were able to arrive
at an asymptotic description as in (1.3), now in the larger range |a| < 2, and used
this information to obtain lower bounds for the proportion of simple zeros of a
family of Dirichlet L-functions; see also the works [4,9,23].

Let us briefly describe the setup of Chandee, Lee, Liu, and Radziwill [8] for this
problem. Assume GRH for Dirichlet L-functions. Let ® be a function which is real
and compactly supported in (a,b) with 0 < a < b. Define its Mellin transform i by
B(s) = §o ®(z)2°~! dz. Suppose that ®(z) = ®(z~?) for all z € R\{0}, d(it) = 0
for all t € R, and that ®(it) « [¢|~2 as |t| — o0. For example, one may choose

so that ®(it) = (sint/t)? > 0, and

2

%f}llog‘r, for 1 <z <e?,
O(x) = % + ilogm, for e ™2 < x <1,
0, otherwise.

Let W be a smooth and non-negative function, with compact support in (1,2). We
define the g-analogue of the quantity N(7T') by

L W(Q/Q) * = i 2
N@(Q) T ; (p(q) X(gdq)g ‘(I)( ’YX)| .

Here the superscript * indicates that the sum is restricted to primitive characters
x (mod ¢), and the last sum is over all non-trivial zeros 3 + iy, of L(s, x), counted
with multiplicity. Define the g-analogue of Montgomery’s function F(«,T) by

_ 1 W(q/Q) *
(1.8) Fp(a, Q) == N@(Q)g ¢(q) X(Edq)

2

3 & (i) Qo

Tx
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FOURIER OPTIMIZATION 413

Chandee, Lee, Liu, and Radziwilt [8] proved an asymptotic formula for Fg(a, Q)
similar to (1.3) for a € (—2,2), showing in particular that Fg(a, Q) ~ 1 when
1 < |a] < 2 (see the precise statement in Lemma 11). They conjectured, in
analogy with Montgomery’s original conjecture for F'(«,T), that one should have
Fs(a,Q) ~ 1 for all @ > 1. Adapting the Fourier optimization framework of [3],
E. Quesada-Herrera [22] established effective upper and lower bounds for the inte-
grals % SZH Fy(a,Q) da for all b > 1 and ¢ > 0. In particular, in the long average
regime, she established the following inequalities. Assuming GRH, for b > 1 and
large ¢ (uniformly on b for the upper bound, and ¢ = £y(b) for the lower bound),
one has
b+-4

(1.9) 0.9821 + o(1) < % J Fp(o, Q) da < 1.0776 + o(1),
b

as Q — o0. Here we prove the following conceptual result.

Theorem 5. Assume GRH for Dirichlet L-functions, let b = 1, and let € > 0 be
arbitrary. Then, for large £, one has

b+¢
(1.10) 1+c(Ce—1)—ec+0(1) < 7 Fy(a,Q) da < Ca + ¢ + o(1),

b
as Q — o0, with £ = Ly(g) for the upper bound and £ = Ly(b, €) for the lower bound,
where the constant Cq is defined in (3.4).

From Lemma 14 and Proposition 15 one observes that C2 < 1.0650. Using (1.6)
and this upper bound for C5 in Theorem 5, one arrives at the following refinement
of (1.9).

Corollary 6. Assume GRH for Dirichlet L-functions, and let b = 1. Then, for
large £, one has

b+2

0.9858 + o(1) < 7 J Fy(a,Q) da < 1.0650 + o(1),
b

as Q — oo, uniformly on b for the upper bound and with £ = £y(b) for the lower

bound.

Note how close the upper and lower bounds in Corollary 6 are to the conjectured
value of 1. The conceptual gain comes from the fact that, in Theorem 5, we apply
a new Fourier optimization framework (when compared to [3,22]) tailored to this
situation, with a new averaging mechanism and the full use of the Cohn-Elkies
class of test functions.

Remark. Analogues of Montgomery’s function F(a,T) have also been studied for
other families of L-functions. Recently, the work of Chandee, Klinger-Logan, and
Li [7, Theorem 1.1] established an analogue of (1.3) for an average over a family
of I'y(¢) L-functions, in the same larger range |a| < 2, under GRH (for both this
family of automorphic L-functions and for Dirichlet L-functions). We remark that
the same Fourier optimization framework of our Theorem 5 works in this case, and
we arrive at the same conclusion for the average value (over a long range) of the
analogue of F'(«,T') for this family; see [22, §2.3] for details.

1.5. Notation. For a Lebesgue measurable set A we denote by x 4 its characteristic
function and by |A] its Lebesgue measure. We set x; := max{x, 0}.
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414 E. CARNEIRO, M. B. MILINOVICH, AND A. P. RAMOS

2. FOURIER OPTIMIZATION FRAMEWORK

In this section, we work under RH and set up the Fourier optimization framework
in order to prove Theorem 1. The available number theoretic information here is
given by (1.3). We are somewhat inspired by the framework of Carneiro, Chandee,
Chirre, and Milinovich [3] to produce upper and lower bounds for the integral of
F(a,T) over bounded intervals, but there are a few important conceptual changes
here (also certain notation changes to better suit our outline).

Throughout this paper, let A; be the class of continuous, even, and non-negative
functions g € L'(R) such that g(a) < 0 for |a] = 1. One can check, via an
approximation of the identity, that if g € A;, then g € L*(R). Define the functional
p1, acting on functions g € A1, by

(2.1) pr(g) = §(0) + j 3(a) lo] da.

This quantity is always non-negative since |g(a)| < g(0) for all @ € R. In fact, (2.1)
is strictly positive if g # 0. If g € Ay, from (1.2), the fact that F' is non-negative,
and (1.3), we observe that

(2.2)
1 N logT N o
N Oq;gg ((7 ) ) w(y —7) = LD §(a) F(o, T) da

1
< | de) P 1)da = pr(a) + o).

as T — oo. We shall see that our whole strategy is built from inequality (2.2).
Let us introduce our first extremal problem.

Extremal Problem 1 (EP1). Find the infimum

Cl = inf 1 (g)

0#ge Ay g(O) '
g(0)>0

(2.3)

Remark. Let ABL < A; be the subclass of bandlimited functions in A;, i.e. the
functions g € A; such that g has compact support. We note that the search for
the infimum in (EP1) can be restricted to the subclass APL. In fact, given § > 0,

let g € Ay, with g(0) > 0, be such that pl((og)) Cy1 + 9. Let ¢ be an even

Schwartz function such that ¢ > 0, > 0, { ¢(x)dz = 1 and supp(p) < [—1,1].
Let py(x) == 7! ()\ 1 ) be the usual approximation of the identity and set

2)
0)

gx i= g * @) € APL. Then, one can verify that pl(( — p1((0)) as A — 0, and hence,
for A\ small, one gets 2 lf(g*)) C; + 26, as desired.

2.1. Proof of the upper bound in Theorem 1. We first discuss upper bounds
for the integral of F'(«,T) over long intervals. Here we present a sharper strategy
when compared to its counterpart for upper bounds in [3, Problem (EP4)]. As we
shall see in the proof below, the introduction of a continuous averaging mechanism,
rather than a discrete one, is the new insight that ultimately yields the gain (see
the remark after the proof of Lemma 7 for more details). We recast our target
result as Lemma 7.
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FOURIER OPTIMIZATION 415
Lemma 7. Assume RH, let be R, and let € > 0. Then, for £ = {y(e), we have

1 b+£
(2.4) lim sup — ‘[ F(o,T) da < Cq +e.
T—0 ‘e b

Proof. Given € > 0, from the remark after (EP1), let g € APL (with ¢(0) > 0),
normalized so that g(0) = 1, be such that

€
(2.5) pi(e) < Crt o
Assume that supp(g) < [-M, M]. We structure the rest of the proof in four steps.

Step 1 (The shadow construction). In this first step, we introduce a function that
imitates the characteristic function of an interval, in a suitable sense for our pur-
poses. For L > M, define the function

Grla) == (§+ x_p.u)(@) = f

—L

L a+L

fla—y)dy = f a(t) dt.

a—L
Observe that:
e For « € [-L + M,L — M], we have [-M,M] < [« — L, + L]. Hence
G(a) = §p 3(t) dt = g(0) = 1.
e For o€ (—o0, —L—M]U[L+M, ), we have | [-M, M]n[a—L,a+L]| = 0.
Hence G (a) = 0.
e Forae Iy :=[-L—M,—L+M]U[L—M,L+M], we have |G ()| < ||g]1-

Step 2 (The almost majorant). In the construction in Step 1, let L = % + M. Then
observe that

Gr(a) = X2, 021() = [9]1 - X1, ().
With a translation by b+ g, we get

(2.6) Gr(a—=b—15)=xp,pra(@) =311 - Xpr £, (@).
Step 3 (The key computation). Recall that the inverse Fourier transform of x[_,
is given by
- sin(2Lnx)

2.7 _ =
(2.7) X[-L,L] (r) -
which is bounded in absolute value by 2L. Then, from (1.2), (2.2), and (2.6), we
have
(2.8)

b+£

f Fla,T) da — nglf Fla,T) da
b b+E+1L

0
<J F(a,T)GL(a—b— %) da
—o0

1 (bt L) (") [~ logT
= WRG Z T (b+2)(v ) (X[—L,L] : g) ((’y - Py/) o ) w(Py _’yl)
0<v,y'<T
2L N logT ,
< - —_ - —
NT) > g ((7 V)% ) w(y —7)
0<v,y'<T

<2L- pi(g) + o(L).
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FIGURE 1. Here is an illustration of why this strategy is sharper
than the one in [3]. Take g € APl with g(0) = 1 and, say,
supp(9) < [—2,2]. In this particular example we consider the
Fourier transform pairs f(z) = (2 + 1 — 5-) e=™" and f(t) =
(1—12) et Ko (z) = 2(sin(27rx) /27x)? and I/(\Q(t) =(1-1t/2|)+,
and set g = ¢ (f*Ks) and g = cfAI/(\g, where c is a constant so that
g(0) = 1. The graph in orange on the left represents the discrete
strategy of [3], considering the sum Gy(t) = ZZ:O gt — I + k).
The graph in gray on the right represents the continuous strategy
of this paper, considering G4(t) := Si4 9(t—y) dy. Note that (N¥4(t)
roughly approximates x[_z21(f) but, due to its fluctuations, it is
indeed only a majorant of A x[_29)(t) for some A < 1, whereas
G4(t) is exactly equal to x[_2,9](t) for —2 <t < 2.

Step 4 (Conclusion). From (2.8), we conclude that
(2.9)

b+4 2L 1
lim sup —J F(a,T) da < — p1(g) + = limsup |g]: J F(a,T) da.
T—w b ¢ 1o b+E+1L

Now observe that the total measure of the two intervals in b + é + Iy, is 4M, and
hence it depends only on g but not on b or £. In this case, we already know that

(2.10) lim sup H@Hlf F(a,T) da = 04(1).
T—o0 b+E4+1L
See, for example, [13, Lemma A].
From (2.5), (2.9), and (2.10), we arrive at (2.4), since 2L/¢ approaches 1 for £
large. This completes the proof of the lemma.

O

Remark. A crucial passage in this proof, that is different from the argument in
[3, p. 21], is in the definition of the ‘almost majorant’ G, of x[_g/2,¢/2- In [3, p. 21],
the function that plays an analogous role has the form G(a) = Zévzl g(a—¢&;), for
a certain choice of points {;. Moving from a discrete setting to a continuous one,
i.e. by considering an integral instead of a finite sum, we are able to average out the
potential fluctuations of the function GG, leading to the sharper extremal problem
(EP1) when compared to its counterpart [3, Problem (EP4)] in the previous paper.
See Figure 1 for an illustration of this philosophy.
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FOURIER OPTIMIZATION 417

2.2. Proof of the lower bound in Theorem 1. We now turn our attention
to lower bounds for the integral of F(a,T) over long intervals. We recast our
target result as Lemma 8, that presents a sharper strategy when compared to its
counterpart for lower bounds in [3, Problem (EP5)]. As it was the case of the upper
bounds, the introduction of a continuous averaging mechanism is the insight that
yields the improvement over previous results.

Lemma 8. Assume RH, let b > 1, and let € > 0. Then, for £ = £y(b, &), we have

1 b+-4
(2.11) lim inf 7 Fla,T)da=1+¢(C1—1)—e.

T—o0 b

Proof. We first estimate the centered integral Sfﬁ F(a,T) da for § = b+/{ and then

transition to the integral SzH F(a,T) da. We may assume that 14+c¢o (C1—1)—e >
0, as otherwise the inequality in (2.11) is trivial. Given € > 0, from the remark
after (EP1), let g € APL (with g(0) > 0), normalized so that g(0) = 1, be such that

€
(2.12) pi(g) < C1+ 3

Assume that supp(g) < [—M, M]. We structure the rest of the proof in five steps.

Step 1 (The shadow construction). We use the exact same construction as Step 1
in the proof of Lemma 7.

Step 2 (The almost minorant). In the construction of Step 1, let L = 8+ M. Then
observe that

(2.13) Gr(@) < xg-5.p1(@) + |9l - x1, ().

Step 3 (The key computation). We now proceed with a computation that is inspired
by an argument of Goldston [13, p. 172], see also [3, §2]. Let m., denote the
multiplicity of a zero 3 + i of ((s). We use (1.2), (2.2), (2.7) and the definition of
¢ in (1.6), and (2.13) to get (recall that g(0) = 1)

8
| Famdasih |
-8

I

Fla,T)da = JOO F(a,T)Gr(a) da

—00

(2.14)

1 2Lsin (L(y —+')1ogT) logT ,
) 0<7§<T< T 7)ioeT > g((v—v) o > w(y =)

2L sin (L(v —+') logT
- N(T) Z my + Z ( L(( (’y, /’)71)0 i )>
0<~y<T 0<~,y'<T v v &
y#EY

2L logT
> ! D myt o Y g((v—v’) ) w(y =7
N(T) 0ir oo er 27
v#Y
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=%{ DN D) g<<vv'>1°§f) w(vv’)}

0<y<T 0<v,y'<T

> 2L(1 —co+co pl(g)) +o(1)
> 28(1 —co + copr(g)) + o(1).

Note the use of the trivial bound Z My = Z 1 = N(T') in the second to last
0<y<T 0<y<T
inequality.

Step 4 (Lower bound for the centered integral). From (2.14), we conclude that

(2.15)
liminf — Fla,T)da = (1 - P (g)) — — limsup |9 J F(a,T) d
imin o o= co + ¢ imsu a, o

Recall that the total measure of the two symmetric intervals in Iy, is at most 4 M,
and hence it depends only on g but not on 5. In this case we know that

(2.16) lim sup H§H1J- F(a,T) da = 04(1).
T
From (2.12), (2.15), and (2.16), for 5 = By(g), we derive that
(2.17) lim inf —J a=(1—-co)+c¢(Cy+e).
T—00

Step 5 (Conclusion). Finally, we use inequality (2.17) to derive a lower bound for
the average of F'(a,T) over an uncentered interval. Fix b > 1. Letting § = b + ¢
and using the fact that F' is even, we see that

b+4 1

Fla,T)da=—
(e T) 2 Jy<|al<p

28 1 (7 1 (°
=% 25 JﬂF(a,T) da_Q_ﬁf,bF(a’T) da

F(a,T) da

For sufficiently large ¢, the last integral on the right-hand side can be made arbi-
trarily small. Therefore, using the estimate in (2.17), for £ > £y(b, ), we arrive
at
1 b+4
liminfz Fla,T)da=21+¢(C1—1)—e.

T—0 b

This completes the proof of the lemma.
O

With Lemmas 7 and 8, one plainly arrives at Theorem 1. A numerical upper
bound for the constant C; is discussed in Section 4.

3. ANALOGUES UNDER GRH

3.1. Riemann zeta-function: Proof of Theorem 3. We now set up the Fourier
optimization framework in order to prove Theorem 3. Recall that, working under
GRH for Dirichlet L-functions, we have the additional number theoretic information
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in (1.7). This motivates us to define the functional p¥, acting on functions g € Ay,
by

1
p1(0)i=30)+ | d@laldat [ 3(a) (o) do.

1<lal<d

Under GRH, if g € A, we observe that

(3.1)

0<y,v'<T

as T — oo. In fact, the upper bound in (3.1) follows from the fact that, for any
small € > 0, we have

o 3
lim supj 9(a) F(a, T) da < limsup f2 9(a) F(a, T) da

T—o0 —0 T—w _%
1
=g(0) + J (@) |al da + lim supJ g(a) F(a,T) do
—1 T—0 1<‘a‘<%

N
Q)

1
(0) + J g(a) |a)da + lim supj g(a) F(a,T) da
-1 1<|al<3 —2¢

T—o0

1
<90+ [ 3(@lalda+ | 3(0) (2 || — &) da,
-1 1<|al<d —2¢
where we have used (1.3) and (1.7). Sending € — 0 leads to (3.1).

Using the same proofs, we can now develop the complete analogue of the Fourier
optimization framework of Section 2, just replacing (2.2) by (3.1) where applicable.
This leads us to consider the following extremal problem and to establish Lemmas
9 and 10.

Extremal Problem 1* (EP1*). Find the infimum

*
(3.2) Ci:= in pl(g).
0#geA, g(O)
g(0)>0

Lemma 9. Assume GRH, let be R, and let ¢ > 0. Then, for £ = y(e), we have

1 b+
1imsupZJ- F(a,T)da < Cj +e.
b

T—o0
Lemma 10. Assume GRH, let b > 1, and let ¢ > 0. Then, for £ = £y(b,e), we

have

1 b+-4
liminfzf Fla,T)da>1+¢ (C]—1) —e.
b

T—o0
With Lemmas 9 and 10, one plainly arrives at Theorem 3. A numerical upper

bound for the constant C3 is discussed in Section 4.

3.2. Families of Dirichlet L-functions: Proof of Theorem 5. We now set
up the Fourier optimization framework in order to prove Theorem 5. We start by
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observing that, for any function R € L!(R) such that Re L'(R), from definition
(1.8) and Fourier inversion, we have

S D 5 5 e (L) 30 oy

q X (modq) ¥x,7%

— Na(Q) J Fa(0,Q) R(o) da

Chandee, Lee, Liu, and Radziwilt [8] have evaluated Fg(«, Q) when |a| < 2. Their
result reads as follows.

Lemma 11 (cf. [8, Theorem 1.2]). Assume GRH for Dirichlet L-functions. Then,
for any € > 0, we have

Fa(a,Q) = (1+o(1)) (f(a) +2(Q71) log Q (% r; ’%(it)f dt) _1>
+0(2(Q ") VF(a)log Q).

lal, for la] <1

unzfo’rmly fO’I" |a| < 2 — €, as Q — OO, whe')"@ f(a) = {1 f | | 1
R or || > 1.

By Plancherel’s theorem for the Mellin transform, the term

o(Q 1) 1og Q (%f ‘5(#)\2@)1

—0
behaves like a Dirac delta at the origin (see the argument in [8, pp. 82-83]). Now
let A be the class of continuous, even, and non-negative functions g € L*(R) such
that g(a) < 0 for || = A. For 1 < A < 2, Lemma 11 motivates the definition of
the functional pa, acting on functions g € A, by

0

1
pale) =500+ | dleleldat [ le o

Under GRH, for 1 < A < 2 and if g € Aa, we observe that Lemma 11 plainly

yields
1 Q/Q Wx)logQ V3 (i
M@ 2 (mZ)Z ( )‘I)Wq’”x)
(3.3) _ fo Fa(0,Q)3(0) da

A
<f Fa(a, Q) §(a) da = palg) +o(1),

—-A

as Q — oo. This leads us to consider the following limiting extremal problem (for
A =2).

Extremal Problem 2 (EP2). Find the infimum

. Pz(g)
3.4 Cy = f .
(34) 2=

9(0)>0
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We now claim that we can develop the complete analogue of the Fourier optimiza-
tion framework of Section 2 and arrive at Lemmas 12 and 13.

Lemma 12. Assume GRH, let be R and € > 0. Then, for { = {y(e), we have

1 b+4
limsup—f Fo(a,Q) da < Cq +e.
Q-m Ly

Lemma 13. Assume GRH, let b > 1, and let ¢ > 0. Then, for £ = £y(b,e), we

have
b+l

1

liminf — Fo(o,Q)da>14¢(Cz—1) —e.
QﬁDO g b

We only need a minor adjustment to the proofs. Letting AﬁL < Aa be the

subclass of bandlimited functions, we have already noted (see remark after problem

(EP1)) that, given € > 0, it is possible to choose g € AZ* with g(0) = 1 such that

€
p2(9) < Ca + 1

For A < 2, let ga(z) := g(Ax/2). Then ga(a) = (2/A)g(2a/A), and we see that
ga € ABL. For A sufficiently close to 2, we have
€ €

(3.5) palga) < p2g) + 5 < Cat 5
We then start as in the proofs of Lemmas 7 and 8, using this test function ga and
(3.5) in place of (2.5) and (2.12). The rest of the outline is the same, replacing
(2.2) by (3.3) at the end of the key computation in Step 3.

With Lemmas 12 and 13, one plainly arrives at Theorem 5. A numerical upper
bound for the constant Cs is discussed in Section 4.

4. NUMERICAL APPROXIMATIONS

In Sections 2 and 3, we have seen examples of how one can set up Fourier
optimization problems that are related to number theoretical situations. Other ex-
amples in the literature include [3,5,6,10-12,22]. Quite often, it is a hard task to
find the exact solutions and extremal functions for such Fourier optimization prob-
lems, and one is naturally led to the search of near-extremizers via computational
methods.

For instance, if we restricted ourselves in (EP1) to the subclass of functions
g € Ay with supp(9) < [—1,1], the answer of the problem would be the classical
constant

1
Cur = 5 +27 % cot (27%) = 1.32749. ..

found by Montgomery and Taylor [20] (for alternative proofs, see [4, Corollary 14]
or [18, Appendix A]). Thanks to our Fourier optimization setup, this would already
be an improvement over the current best bound appearing on the right-hand side
of (1.5). Having this classical constant Cpr as our initial benchmark, one of the
points we want to make is that the extended class .A; allows one to go further.

It turns out that our extremal problems (EP1), (EP1*), and (EP2) are connected
to the thorough study of Chirre, Gongalves, and de Laat [9] on simple zeros of ((s)
and families of L-functions via a pair correlation approach. In this work, similar
extremal problems received a robust numerical treatment via modern semidefinite
programming tools, and we shall take advantage of certain upper bounds established
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therein; see Lemma 14. Since the notation used in [9] is slightly different than ours,
let us briefly review their setup. Chirre, Gongalves, and de Laat in [9] work within
the linear programming class App, introduced by Cohn and Elkies [11] for the
sphere packing bounds. Here, Ay p is the class of even and continuous functions
f € LY(R), satisfying the following conditions:

(i) £(0) = f(0) = 1;
(ii) f = 0;
(iii) f is eventually non-positive.

By eventually non-positive one means that f(x) < 0 for all sufficiently large |z|.
One defines the last sign change of f by

r(f) = inf {r > 0: f(2) <0 for |z] > r}.

In [9], the authors are interested in minimizing the following three functionals over
the class Arp:

r(f)

2=+ | f@ e

~ o () 3r(h) 9 [3r(H)

2= gy ) swede s T a5 [© 7 s wan
’ o) r(f)

L(f):= % + %L fx)zdx + 2[7“) f(z)dz.

They prove the following result.
Lemma 14 (cf. [9]). The following upper bounds hold:
inf Z(f) < 1.3208;

feArp

inf Z < 1.3155;
feArLp (f)

inf  L£(f) < 1.0650.
jonf (f)

Our problems (EP1), (EP1*), and (EP2) are related to these as follows.
Proposition 15. We have

(4.1) Ci< inf Z(f);
%k

(4.2) Ci< inof 2(f);

(4.3) C: < felaip L(f).

Proof. In order to show (4.1), note that if f € App then g(x) := f(z/r( f) e A
since g(a) = r(f) f(r(f) a). Note that g(0) = 1 and §(0) = r(f). Then, a change
of variables yields

1

2(f) :§<0>+2f §(@)a da = p(g).

0
This plainly leads to (4.1). The same construction leads to (4.2). For (4.3), if
f € ALp, we consider instead g(z) := f(2z/r(f)) € As. O
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The upper bounds from Lemma 14 and Proposition 15, together with our Fourier
optimization framework developed in Sections 2 and 3, lead us to the bounds pro-
posed in Corollaries 2, 4, and 6.
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