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Abstract—We study the design of a goal-oriented sampling and
scheduling strategy through a channel with highly variable twoway
random delay, which can exhibit memory (e.g., Delay and Disruption
Tolerant Networks). The objective of the communication is to optimize
the performance of remote inference, where an inference algorithm
(e.g., a trained neural network) on the receiver side predicts a time-
varying target signal using the data samples transmitted by a sensor.
Previous formulations to this problem either assumed a channel with
IID transmission delay, neglecting feedback delay or considered the
monotonic relation that the performance only gets worse as the input
information ages. We show how, with delayed feedback, one can
effectively exploit the knowledge about delay memory through an
indexbased threshold policy. This policy minimizes the expected
timeaverage inference error that can be monotone or non-monotone
in age. The index function is expressed in terms of the Age of
Information (Aol) on the receiver side and a parameter regarding the
distribution of subsequent transmission delay, both of which can
readily be tracked.

Index Terms—Goal-Oriented Communications, Markovian Delay,
Two-way Delay, Remote Inference, Age of Information, Delay with
Memory, Disruption Tolerant Networks (DTN).

I. INTRODUCTION

Orders of magnitude enhancement is desired in terms of
perfgrmance, coverage, capacity, and energy efficiency in 6G
withD_respect to existing cellular networks. Such striking
objetfbtives accompany the demand for intelligent applications
that,ér run based on remotely collected data, sometimes
invagying non-terrestrial links. Based on the envisioned
coexdstence of terrestrial and non-terrestrial connections in
6G,® will not be unusual for network connections to be
sericed through multiple alternative paths with highly
varigple delay. The relays in the network may force the
utili%tion of a selected path for a particular application, and
this%ath may be changed in time to manage the variety of
ﬂov@ in the network. Therefore, while developing efficient
poliaes to optimize the performance of intelligent
appEcations, considering their adaptability to significantly
varyihg delay conditions, specifically the time dependence in
the gelay statistics, is crucial.

OfF the other hand, for the increasing numbers of these
inte@gent applications, including remote monitoring, control,
and Zﬁﬁference over networks, the scalability of the network
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architecture requires a paradigm shift in the communication
system and protocol design. This paradigm shift is for networks
to focus on the effective accomplishment of the sensing task at
the destination side rather than be a vehicle to solve the
transmission problem [1] whose goal is to reliably transmit the
data produced by a source. Solving the effective
communication problem in remote intelligence with efficient
use of network resources requires combining the data
generation and transmission problems whereby data samples
that are most significant to the computation at the destination
side are delivered in a timely manner [2]. We will refer to this
paradigm as Goal-oriented communication. Recent activities in
the communication and control communities illustrate the
value of such an approach in reducing communication
requirements for a given level of application performance [3]-
[6].

A goal-oriented communication network discards the
assumption that data arrives at the communication system
interface as part of an exogenous process. This implies that the
communication link can pick and choose which data packets to
transmit to the source for effective computation at the
destination based on the state of the network (e.g., the delay
state). As we do not expect the link layer to operate jointly with
the application layer for all possible applications, a surrogate
metric that the link layer can use when making the decisions of
which packets to choose and send is useful. In this paper,
following the model in [7], we use Age of Information (Aol) as
an intermediate metric that can be tracked by the link,
irrespective of the particular application. A mapping of
application performance with respect to the Aol is then all that
is needed for the link layer to operate in a goal-oriented
manner. This paper builds on the work in the series of papers
[7]-[10] that first demonstrated the usefulness of Aol metric as
a surrogate for effective communication for remote tracking or
inference of a process.
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Aol is an indicator of the freshness of the data at the
destination of a data flow [11]. The Aol at time ¢t, A(t), is given
by the relation A(t) = t - Ut, where U:is the generation time of
the most recently delivered data packet. This formulation is
perhaps most meaningful when the data packets contain
status updates, such that the most recent update makes all the
past ones obsolete, yet age and functions thereof have also
served very well in capturing performance related to freshness
in a variety of other applications, through optimizing nonlinear
functions of age. Examples of the use of generalized functions
of Aol include control system scenarios [12], [13], remote
estimation [8], [9], [14], and remote inference [7], [10], [15].
While a number of studies considered the analysis of age in
queuing models, closest to the spirit of this paper is the control
of age via replacement of exogenous data arrivals with the
generation of data "at will” [12], [16]—[23]. A generalization of
this approach is to incorporate jointly optimal sampling and
scheduling policies to control not only age but a more
sophisticated end-to-end distortion criterion by using age as an
auxiliary parameter [7]-[9], [15], [24]. While strikingly more
demanding of analysis, these formulations take us closer to
goal-oriented communication system design.

Almost all previous studies on the “generate-at-will” model
adopted an assumption that the penalty of information aging
is @ monotonic non-decreasing function of the Aol [8], [9], [12],
[17]-[24]. However, it was shown in [7], [10], [15] that the
monotonicity of information aging depends heavily on the
divergence of the time-series data from being a Markov chain.
If the input and target data sequences in a system can be
closely approximated as a Markov chain, then the penalty
increases as the Aol grows; otherwise, if the data sequence
significantly deviates from a Markovian structure, then the
monotonicity assumption does not hold. The most closely
related work to this paper is [7], which developed scheduling
policies for remote inference considering the possibly non-
monotonic dependency of the Aol and practical performance.
The paper [7] considered random IID delay for packet
transmissions from the transmitter to the receiver and
assumed a delayfree feedback channel from the receiver to the
transmitter. In practical scenarios, there may be a feedback
delay [25], [26], and this may affect the performance of the
remote inference algorithm. Moreover, in the light of the
application scenarios mentioned above (e.g., satellite and
space communication), the IID delay may not be a good model,
requiring a model that captures the memory in the delay
process as in [17]. Delayed feedback and significantly varying
distribution of transmission delay are the main differences of
this paper from [7], and these differences require more
technical efforts to solve the problem, as explained later in
Section lll. To that end, the following are the technical
contributions of this paper:

. We developed an index-based threshold policy to
minimize the steady-state time-average inference error of
an intelligent application whose input data packets are

transmitted from a distant location. Given the age penalty
function corresponding to a particular application, not
necessarily monotonic, our policy ensures optimal
practical performance, making the scheduler operate in a
Goaloriented manner.

« The policy in [7] cannot achieve the optimal in the
systems where channel delay statistics vary significantly
with memory because of IID transmission delay and
immediate feedback assumption. Hence, we expanded
upon the formulation introduced in [7], incorporating the
Markovian transmission delay, with a finite number of
states, and removing the assumption of immediate
feedback. Although this extension is crucial for
eliminating the limitations of the policy in [7], it was not
clear whether such a nicely structured policy still existed.
The developed policy preserves the structure and
provides a solution for practical systems with significantly
varying delay statistics. Such systems will be abundant
due to the envisioned coexistence of terrestrial and non-
terrestrial connections in 6G, as mentioned above.

« The simulation results highlight the significance of (i) the
policy being adaptive to non-monotonic age penalty
functions and (ii) considering the memory of the delay.
Numerically, the generate-at-will + zero-wait policy
achieves 33% to 57% higher inference error than the
developed policy. Furthermore, the performance gain
from incorporating delay memory increases by up to 13%
with growing delay memory.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a discrete-time remote inference system, as
depicted in Fig. 1. The transmitter incorporates a data buffer
and a scheduler. At each time slot t, a new data packet X:€ X is
sampled from the source and added to the buffer; meanwhile,
the oldest is discarded. By this, the buffer contains the most
recently sampled B packets (X;Xt-1,...,Xt-p+1) at any time slot ¢.
The scheduler can submit any packet stored in the buffer to the
channel at suitable time slots. The Age of Information (Aol),
A(t), is the time difference between the current time t and the
generation time t — A(t) of the most recently delivered packet
Xi-a. The value of Aol depends on (i) which packet in the
buffer is selected by the scheduler during the submission of the
most recently delivered packet and (ii) communication delays.
A trained neural network on the receiver side takes the packet
Xe-aand the Aol A(t) as inputs and produces an action a € A
to infer the current value of a target signal Y: € Y at each time
slot t. Given the Aol A(t) = 6, the average inference error is [7]

h(8) = Evx-prss [L(Y,p(6,Xi-5)], (1) where ¢ : Z+xX 7— A is the
function representing the neural network, L : YxA 7— R is a
loss function, and Py.x:.sis the joint distribution of the target Y:
and the packet X:-s. L(y,a) is the incurred loss if the output a is
used for prediction when the target signal Y:=y.

The loss function L is determined by the purpose of the
application. For example, a quadratic loss function L2(yy") =
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ly —9l3 is used in neural network based minimum
meansquared estimation, where the action a = " is an
estimate of the target Y:=y and ||yllzis the Euclidean norm. In
softmax regression (i.e., neural network based maximum
likelihood classification), the action a = Qyis a distribution of
Y., and the loss function Liog(y,Qr) = -logQy (y) is the negative
log-likelihood function of the value Y:=y.

The communication is carried out between the transmitter
and receiver over a two-way channel. The two-way channel has
a finite number of states C = (1,2,..,C). Each state ¢
corresponds to a distinct transmission and feedback delay

Backward Receiver
- Channel

X Xpgoo Xepey)

| Inference of
—> the target Y,

Data ‘\ / j
source et /1 / —>
Scheduler Neural
Forward Network
Transmitter Channel

Fig. 1. The remote inference system with two-way communication where the
neural network on the receiver side predicts the current value of a target
variable using the most recently delivered packet.

distribution represented by the discrete random variables Q.
and R, respectively, where E[Qc] < o0 and E[Rc] < oo for all c.
The delay duration is at least one time slot for each packet or
feedback transmission. In practice, the state ¢ of the channel
could be wused to characterize time-varying physical
phenomena that affect the transmission and feedback delay
distribution, Qcand R.. Examples of such phenomena include
(i) the transmission duration varying due to an erasure channel
situation leading to possibly a number of retransmissions, (ii)
long or short network routes that packets may go through, and
(iii) the delay increasing or decreasing with network congestion
varying in time. Upon the delivery of the i-th packet, the
receiver is able to detect the channel state c;jvalid during the
transmission of packet i. Then, the channel state ciis fed back
to the transmitter along with an ACK. The twoway channel is
reliable; that is, no packet or message is lost during the
transmission.

Recent studies [7], [27] have exhibited scenarios where the
inference error in (1) is not monotonic with age, where fresher
packets do not always lead to a smaller inference error than
stale ones. In other words, in certain scenarios, an older packet
with Aol > 0 can be more relevant than a fresher packet, in the
sense that this packet can lead to a smaller inference error than
a packet with Aol = 0 [7], [27]. In these cases, the “generateat-
will” approach, which samples a fresh packet upon making a
transmission decision, will not be general enough to achieve
optimal performance. In recognition of this fact, the
"selectionfrom-buffer” model was proposed in [7], [15]. In this
paper, we adopt this latter model.

The system starts to operate at time slot t = 0. We assume
that the buffer initially contains the packets
(Xo,X-1,..,X-B+1). By this, the buffer is kept full at all time slots ¢t
> 0. At time slot S;, the packet Xsi-»:is submitted to the channel,
which is the (b:i + 1)-th freshest packet in the buffer, with b; €
B={0,1,..,B - 1}. The packet is delivered to the receiver at time
slot Di, and the transmitter receives the corresponding ACK
and channel state c;at time slot A, such that Si< Di< Ai. We
assume that the transmitter always waits for the ACK before
submitting a new packet to the channel. In other words, the
scheduler always remains silent at the time slots between S;
and Aifor all i. Let i-th epoch be composed of the time slots in
the interval [Ai-1,4i)). The channel state ci specifies the
transmission delay distribution in the i-th epoch and evolves
following a finite-state ergodic Markov chain with the
transition probabilities pi;, where i,j € C, and pjjis the transition
probability from state i to state j. The Markov chain makes a
single transition at the time slots A;and none otherwise. Let T;
= Di=Si and F; = Ai-Di be the incurred transmission and
feedback delays in i-th epoch, respectively. The distributions of
Tiand Fiare determined by the channel state in the i-th epoch.
That is, prici=0(q) = pe(q) and prici=c(r) = pr(r), where px(k)
is the probability mass function (PMF) of the discrete random
variable K. The Aol at time slot t is given by

A(t) =t - Si+b; if Dist < Dis1. (2)

The initial conditions of the system are So=0, A(0) < o0, co€ C,
and bo € B.

We strive to minimize the expected inference error per time
slot in steady-state. Accordingly, the scheduler on the
transmitter side has to determine (i) when to submit a packet
to the channel and (ii) which packet in the buffer to submit. A
scheduling policy is a tuple (f,g), where the buffer position
sequence f = (b1,bz...) controls which packet in the buffer to
submit in each epoch, and the packet submission time
sequence g = (51,52...) specifies when to submit the packet to
the channel and start the transmission in each epoch. Let [T be
the set of all policy tuples (f,g). Then, the problem formulation

is given by
T—1

. . 1
inf limsup TE'U"Q) [Z h(A(t))} , (3

hupf -
(FLa)ell 100 pyrt

where h(A(t)) is the inference error at time slot ¢, and hopt is
the optimum value of (3).

This problem formulation extends the single-source
scheduling problem in [7] to more practical systems by
considering the memory of the transmission delay and by
removing the delay-free feedback assumption.

Ill.  OPTIMAL SCHEDULING PoLicy

We provide an optimal scheduling policy to (3) in two steps.
First, we consider a class of policy tuples (fy,g) € Il such that fy
= (bybz..) is a stationary deterministic buffer position
sequence, where
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bi+1=P(ci), (4)

foralli={0,1,2,...}, and W is the set of all mapping functions i
: C 7> B. Given a stationary deterministic buffer position
sequence fy = (Y(co),Y(c1),..), we first optimize the packet
submission time sequence g = (51,52,...):

T-1
1
inf limsupTIE(_fv___,),)[E h(A(f))], (5)
=0

hl_-"i.(?pt =
(Fo.9)Ell T

where hy,optis the optimum value of (5). In the second step, we
present an optimal scheduling policy for the original problem
(3) using the solution to (5).

The optimal packet submission time sequence g for (5) will
be described by using an index function defined by

v—1
1
’“,(5. (.3) = illf - ZE|:]!(5 + 'Tr,j_H_ + k) C; = (_f:| N (6)
k=0

veEZ+ V
where 6 € Z+and c € C.

Theorem 1. If |h(6)| < M for all § = 1,2,...,, then the packet
submission time sequence g = (S1(By),S2(By),...) is an optimal
solution to (5), where

Si+1(By) = min{t =2 Ai(By) : Y(A(t),ci) = By}, (7) and By is the

unique root of

Aip1(fy)—1

2.

t=Ai(By)

E R(AW®) |~ BoE[ i1 (B) - AiBy)] = 0, ®8)

where Ai(fy) = Si(By) + Ti+ Fiis the i-th ACK feedback time and
A(t) = t - Si(By) + biis the Aol at time slot t. Moreover, By is
exactly the optimum value of (5), i.e., By = hy,opt.

Proof sketch. The problem (5) is an infinite-horizon averagecost
semi-Markov decision process (SMDP) [28, Chapter 5.6].
Define T = Six1 — Aias the waiting time for sending the (i+1)-th
packet after the ACK feedback of the i-th packet is delivered to
the transmitter. Given A(4;) = 6§ and c¢i = ¢, the Bellman
optimality equation of the average-cost SMDP (5) is

Vi(d,¢) =
T+T,'|17].
inf E h(id+k)—h .,_U.,) c;=c
re{0,1,...} LZ:[:] ( ( ) = Tsomr
Fiy1—1
+E Z (h(?;','(c?-) + T +7)— hb-,.,opt> ¢ =c
=0
+E[Vy((ci) + Tiva + Figa, civa)|ei = ¢, (9)

forall § € 2+, Y(:) € ¥, and c € C, where Vy(-) is the relative
value function of the average-cost SMDP (5). Theorem 1 is
proven by directly solving the Bellman optimality equation (9).
Due to space limitation, the detailed proof of Theorem 1 is
relegated to our technical report [29]. [J

Theorem 1 signifies that the optimal solution to (5) is an
index-based threshold policy, where the index function
depends on both the Aol and the channel state in the previous
epoch. The scheduler submits (i + 1)-th packet according to (4)
at the first time slot for which the following conditions are
satisfied: (i) the ACK of the previous transmission is received,
i.e., t = Ai(fy), and (i) the index function exceeds the
threshold. The threshold Sy is exactly the optimum value of (5)
and can be found by solving equation (8) using the low-
complexity algorithms, e.g., bisection search, provided in [9,
Algorithms 1-3]. The index function in (6) is obtained by
directly solving the Bellman optimality equation (9).

Recent studies [7], [15] have revealed a connection between
the Aol optimization problems, such as (5), and the restart-
instate formulation of the Gittins index in [30, Ch. 2.6.4]. The
optimal scheduling policy in Theorem 1 has been obtained by
employing that connection.

Now, we present an optimal solution to problem (3).

Theorem 2. If |h(8)| < M for all 6 = 1,2,..,, then the policy tuple
(f~.g*) is an optimal solution to (3) such that
i.) fr=(07.05, .. -), where

b::_,'_] :U*((’?), ?:012 ..... (10)
¥ = argmin by ope
: J‘aﬁ!E‘I’ P,opt (11)
and hy,opt is the optimum value of (5). ii.)
g* = (57,55, -), where
Si+1=min{t = Sr+Ti+Fi: y(A(t),¢i) = hopt},
(12)
and
hnpf = min hz;‘).opf
vew (13)

Proof. Due to space limitation, the proof of Theorem 2 is
relegated to our technical report [29]. ]

Theorem 2 points out that the optimal buffer position at any
submission time slot is independent of the current Aol and
only depends on the channel state in the previous epoch. The
reasoning behind such a result can be understood deeply by
analyzing the system. At the beginning of epoch [D;Di+1), i.e.,
at time slot D;, the Aol of the process resets to bi+ T, indicating
that the buffer position b; determines the Aol reset value for
time slot Di. The epoch [D; Di+1) evolves starting from this Aol
value. Then, the Aol resets again at time slot D;+1 following the
delivery of the subsequent packet, and the Aol values in epoch
[DiDi+1) become irrelevant to the future evolution of the
process. In other words, each epoch of the process has an
isolated Aol evolution, and b;is the parameter that allows us to
control Aol evolution in i-th epoch. Apart from b;, Tiis the other
parameter affecting the Aol reset value for time slot D;, and ci-1
reveals the distribution of Tithanks to the Markovian structure.
Thus, biis chosen, considering the distribution of Tj, through
ci-1, to ensure the Aol of the process reset to the desired value
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at time slot D;. Due to this inherent structure of the process, as
shown in Theorem 2, the optimal buffer position sequence to
problem (3) is f* = fy-= (¥*(co),Y*(c1),...), where P* € W is the
optimal mapping function. Since * € ¥, the optimal packet
submission time sequence is obtained by Theorem 1.

Even though the optimal policies outlined in Theorems 1 and
2 maintain the nice structure of the policies in [7], there are
two critical distinctions. Firstly, the derived index function for
this problem formulation is not solely dependent on the Aol
but also incorporates the channel state. The existence of such
an index function was not evident in the presence of a finite
number of channel states, necessitating additional technical
efforts for derivation. Secondly, in contrast to [7], where

0.06

0.05

0.04

0.03

Inference error

0.02

10 20 0 a0 50 60 70

Aol

Fig. 2. The incurred inference error when the current sample of the target Y:is
predicted using a past sample X:-swith Aol é ranging from 1 to 70.

the optimal buffer position sequence is constant due to the
assumption of [ID transmission delay and immediate feedback,
this problem formulation considers transmission delay and
non-zero feedback delay significantly varying with memory.
Consequently, achieving optimal performance requires a
buffer position sequence that can adapt to these variations in
delay statistics. This paper unveils the relationship between
the buffer position sequence and delay memory while
developing Theorems 1 and 2.

In the special case that the inference error h(6) is a
nondecreasing function of the Aol §, the index function y(6,¢)
in (6) reduces to E[h(6 + Ti1)|ci= c]. Moreover, the optimal
buffer position sequence is f = (0,0,...).

IV. SIMULATION RESULTS

In this section, we demonstrate the performance of our
optimal scheduling policy in Theorem 2. To obtain an inference
error function h(6), we use a discrete-time autoregressive
model of the order p (AR(p)):

Xe= a1Xe-1+ a2Xe-2 + ... + apXe-p+ Wy, (14)

where the noise W: € R is zero-mean Gaussian with variance
ow?and X:€ R. Let Y= Xt + N:be the target variable, where the
noise N is zero-mean Gaussian with variance 2 . Fig. 2
indicates the average inference error values incurred when the

target Y:is predicted using Xt-s, where the value of Aol § ranges

from 1 to 70. We set 9»2=0.01, 52 = 0.001 and construct an

AR(50) with coefficients a7 = a13= 0.007, as= a1z = 0.05, as =
ai1=0.1, and aio= 0.68.

The remaining coefficients are zero. We consider a quadratic
loss function L2(¥.9) = [ly — ili3. Because X:-s and Y: are
jointly Gaussian, and the loss function is quadratic, the optimal
inference error performance is achieved by a linear MMSE
estimator. Hence, a linear regression algorithm is adopted in
our simulations. However, our study can be readily applied to
other neural network-based predictors.

We compare the performance of three scheduling policies:
(i) the optimal policy in Theorem 2, (ii) the single-source
scheduling policy in [7], and (iii) generate-at-will + zero wait
policy: (f,g) is such that f= (0,0,...) and g = (A1,4z,...).

The simulation parameters related to the channel statistics
have been set as follows: (i) the number of channel states C =
2, (ii) the random variable Q1 has the PMF p:(3) = 0.7,

0.06 T T T T T T T |

0.055 -

——Optimal Policy in Theorem 2
005 - ——Single Source Scheduling Policy in [7]
Generate-at-will and Zero-wait Policy

0.045 -

Inference error

6
0.035

0.2 04 06 08 1 12 1.4 16 18 2
The sum of transition probabilities a = Pzt Py

Fig. 3. The time-average inference error achieved by the three different
scheduling policies.

and po:(4) = 0.3, (iii) the random variable Q: has the PMF
Po2(11) = 0.35, and pgz(12) = 0.65, (iv) the random variable R1
has the PMF pri(1) = 1, and (v) the random variable Rz has the
PMF pr:(4) = 1. The memory of the transmission delay is
adjusted by varying the parameter a = p12 + p21 between 0 and
2. We set p12 = p21, which ensures that the fraction of epochs
with convenient delay condition is always 0.5. The scheduling
policy in [7] assumes both channel states are equally likely at
each epoch independent of the history for any value of a.

Fig. 3 presents the time-average inference error values
achieved by the three scheduling policies mentioned above.
The results underscore that consistently submitting the
freshest packet with zero waiting time leads to a 33% to 57%
higher inference error compared to the optimal policy outlined
in Theorem 2. Additionally, the optimal policy shows minimal
improvement compared to the corresponding policy in [7] for
a values around 1. The reason for the negligible improvement
is that the delay distribution is exactly IID when a = 1. However,
as a deviates from this point, resulting in increased delay
memory, the advantage of the optimal policy described in
Theorem 2 becomes apparent, leading to an important
performance gain of up to 13%.
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V. CONCLUSION

In this paper, we studied a remote inference problem where
a neural network on the receiver side predicts the real-time
value of a target signal using the data packets transmitted from
a distant location. Motivated by the foreseen coexistence of
terrestrial and non-terrestrial connections in 6G, we assumed
it would be typical for a data flow to be served through
multiple alternative paths and considered transmission and
feedback delay distributions significantly varying with memory.
For this system model, we developed an optimal index-based
threshold policy that minimizes the expected inference error
per time slot in steady-state. The policy optimizes the
performance for a given inference error function specific to the
application and goal on the receiver side, addressing the
expectation for future networks to operate in a goal-oriented
manner. Finally, we demonstrated, with the simulation results,
the performance gain that can be achieved in the remote
inference problems by considering the memory of the delay.
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