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Abstract—We study the design of a goal-oriented sampling and 

scheduling strategy through a channel with highly variable twoway 
random delay, which can exhibit memory (e.g., Delay and Disruption 
Tolerant Networks). The objective of the communication is to optimize 
the performance of remote inference, where an inference algorithm 
(e.g., a trained neural network) on the receiver side predicts a time-
varying target signal using the data samples transmitted by a sensor. 
Previous formulations to this problem either assumed a channel with 
IID transmission delay, neglecting feedback delay or considered the 
monotonic relation that the performance only gets worse as the input 
information ages. We show how, with delayed feedback, one can 
effectively exploit the knowledge about delay memory through an 
indexbased threshold policy. This policy minimizes the expected 
timeaverage inference error that can be monotone or non-monotone 
in age. The index function is expressed in terms of the Age of 
Information (AoI) on the receiver side and a parameter regarding the 
distribution of subsequent transmission delay, both of which can 
readily be tracked. 

Index Terms—Goal-Oriented Communications, Markovian Delay, 
Two-way Delay, Remote Inference, Age of Information, Delay with 
Memory, Disruption Tolerant Networks (DTN). 

I. INTRODUCTION 

Orders of magnitude enhancement is desired in terms of 

performance, coverage, capacity, and energy efficiency in 6G 

with respect to existing cellular networks. Such striking 

objectives accompany the demand for intelligent applications 

that run based on remotely collected data, sometimes 

involving non-terrestrial links. Based on the envisioned 

coexistence of terrestrial and non-terrestrial connections in 

6G, it will not be unusual for network connections to be 

serviced through multiple alternative paths with highly 

variable delay. The relays in the network may force the 

utilization of a selected path for a particular application, and 

this path may be changed in time to manage the variety of 

flows in the network. Therefore, while developing efficient 

policies to optimize the performance of intelligent 

applications, considering their adaptability to significantly 

varying delay conditions, specifically the time dependence in 

the delay statistics, is crucial. 

On the other hand, for the increasing numbers of these 

intelligent applications, including remote monitoring, control, 

and inference over networks, the scalability of the network 
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architecture requires a paradigm shift in the communication 

system and protocol design. This paradigm shift is for networks 

to focus on the effective accomplishment of the sensing task at 

the destination side rather than be a vehicle to solve the 

transmission problem [1] whose goal is to reliably transmit the 

data produced by a source. Solving the effective 

communication problem in remote intelligence with efficient 

use of network resources requires combining the data 

generation and transmission problems whereby data samples 

that are most significant to the computation at the destination 

side are delivered in a timely manner [2]. We will refer to this 

paradigm as Goal-oriented communication. Recent activities in 

the communication and control communities illustrate the 

value of such an approach in reducing communication 

requirements for a given level of application performance [3]–

[6]. 

A goal-oriented communication network discards the 

assumption that data arrives at the communication system 

interface as part of an exogenous process. This implies that the 

communication link can pick and choose which data packets to 

transmit to the source for effective computation at the 

destination based on the state of the network (e.g., the delay 

state). As we do not expect the link layer to operate jointly with 

the application layer for all possible applications, a surrogate 

metric that the link layer can use when making the decisions of 

which packets to choose and send is useful. In this paper, 

following the model in [7], we use Age of Information (AoI) as 

an intermediate metric that can be tracked by the link, 

irrespective of the particular application. A mapping of 

application performance with respect to the AoI is then all that 

is needed for the link layer to operate in a goal-oriented 

manner. This paper builds on the work in the series of papers 

[7]–[10] that first demonstrated the usefulness of AoI metric as 

a surrogate for effective communication for remote tracking or 

inference of a process. 
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AoI is an indicator of the freshness of the data at the 

destination of a data flow [11]. The AoI at time t, ∆(t), is given 

by the relation ∆(t) = t − Ut, where Ut is the generation time of 

the most recently delivered data packet. This formulation is 

perhaps most meaningful when the data packets contain 

status updates, such that the most recent update makes all the 

past ones obsolete, yet age and functions thereof have also 

served very well in capturing performance related to freshness 

in a variety of other applications, through optimizing nonlinear 

functions of age. Examples of the use of generalized functions 

of AoI include control system scenarios [12], [13], remote 

estimation [8], [9], [14], and remote inference [7], [10], [15]. 

While a number of studies considered the analysis of age in 

queuing models, closest to the spirit of this paper is the control 

of age via replacement of exogenous data arrivals with the 

generation of data ”at will” [12], [16]–[23]. A generalization of 

this approach is to incorporate jointly optimal sampling and 

scheduling policies to control not only age but a more 

sophisticated end-to-end distortion criterion by using age as an 

auxiliary parameter [7]–[9], [15], [24]. While strikingly more 

demanding of analysis, these formulations take us closer to 

goal-oriented communication system design. 

Almost all previous studies on the “generate-at-will” model 

adopted an assumption that the penalty of information aging 

is a monotonic non-decreasing function of the AoI [8], [9], [12], 

[17]–[24]. However, it was shown in [7], [10], [15] that the 

monotonicity of information aging depends heavily on the 

divergence of the time-series data from being a Markov chain. 

If the input and target data sequences in a system can be 

closely approximated as a Markov chain, then the penalty 

increases as the AoI grows; otherwise, if the data sequence 

significantly deviates from a Markovian structure, then the 

monotonicity assumption does not hold. The most closely 

related work to this paper is [7], which developed scheduling 

policies for remote inference considering the possibly non-

monotonic dependency of the AoI and practical performance. 

The paper [7] considered random IID delay for packet 

transmissions from the transmitter to the receiver and 

assumed a delayfree feedback channel from the receiver to the 

transmitter. In practical scenarios, there may be a feedback 

delay [25], [26], and this may affect the performance of the 

remote inference algorithm. Moreover, in the light of the 

application scenarios mentioned above (e.g., satellite and 

space communication), the IID delay may not be a good model, 

requiring a model that captures the memory in the delay 

process as in [17]. Delayed feedback and significantly varying 

distribution of transmission delay are the main differences of 

this paper from [7], and these differences require more 

technical efforts to solve the problem, as explained later in 

Section III. To that end, the following are the technical 

contributions of this paper: 

• We developed an index-based threshold policy to 

minimize the steady-state time-average inference error of 

an intelligent application whose input data packets are 

transmitted from a distant location. Given the age penalty 

function corresponding to a particular application, not 

necessarily monotonic, our policy ensures optimal 

practical performance, making the scheduler operate in a 

Goaloriented manner. 

• The policy in [7] cannot achieve the optimal in the 

systems where channel delay statistics vary significantly 

with memory because of IID transmission delay and 

immediate feedback assumption. Hence, we expanded 

upon the formulation introduced in [7], incorporating the 

Markovian transmission delay, with a finite number of 

states, and removing the assumption of immediate 

feedback. Although this extension is crucial for 

eliminating the limitations of the policy in [7], it was not 

clear whether such a nicely structured policy still existed. 

The developed policy preserves the structure and 

provides a solution for practical systems with significantly 

varying delay statistics. Such systems will be abundant 

due to the envisioned coexistence of terrestrial and non-

terrestrial connections in 6G, as mentioned above. 

• The simulation results highlight the significance of (i) the 

policy being adaptive to non-monotonic age penalty 

functions and (ii) considering the memory of the delay. 

Numerically, the generate-at-will + zero-wait policy 

achieves 33% to 57% higher inference error than the 

developed policy. Furthermore, the performance gain 

from incorporating delay memory increases by up to 13% 

with growing delay memory. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

We consider a discrete-time remote inference system, as 

depicted in Fig. 1. The transmitter incorporates a data buffer 

and a scheduler. At each time slot t, a new data packet Xt ∈ X is 

sampled from the source and added to the buffer; meanwhile, 

the oldest is discarded. By this, the buffer contains the most 

recently sampled B packets (Xt,Xt−1,...,Xt−B+1) at any time slot t. 

The scheduler can submit any packet stored in the buffer to the 

channel at suitable time slots. The Age of Information (AoI), 

∆(t), is the time difference between the current time t and the 

generation time t − ∆(t) of the most recently delivered packet 

Xt−∆(t). The value of AoI depends on (i) which packet in the 

buffer is selected by the scheduler during the submission of the 

most recently delivered packet and (ii) communication delays. 

A trained neural network on the receiver side takes the packet 

Xt−∆(t) and the AoI ∆(t) as inputs and produces an action a ∈ A 

to infer the current value of a target signal Yt ∈ Y at each time 

slot t. Given the AoI ∆(t) = δ, the average inference error is [7] 

h(δ) = EY,X∼PYt,Xt−δ [L(Y,ϕ(δ,Xt−δ)], (1) where ϕ : Z+×X 7→ A is the 

function representing the neural network, L : Y×A 7→ R is a 

loss function, and PYt,Xt−δ is the joint distribution of the target Yt 

and the packet Xt−δ. L(y,a) is the incurred loss if the output a is 

used for prediction when the target signal Yt = y. 

The loss function L is determined by the purpose of the 

application. For example, a quadratic loss function L2(y,yˆ) = 
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  is used in neural network based minimum 

meansquared estimation, where the action a = yˆ is an 

estimate of the target Yt = y and ∥y∥2 is the Euclidean norm. In 

softmax regression (i.e., neural network based maximum 

likelihood classification), the action a = QY is a distribution of 

Yt, and the loss function Llog(y,QY ) = −logQY (y) is the negative 

log-likelihood function of the value Yt = y. 

The communication is carried out between the transmitter 

and receiver over a two-way channel. The two-way channel has 

a finite number of states C = (1,2,...,C). Each state c 

corresponds to a distinct transmission and feedback delay 

 

Fig. 1. The remote inference system with two-way communication where the 
neural network on the receiver side predicts the current value of a target 
variable using the most recently delivered packet. 

distribution represented by the discrete random variables Qc 

and Rc, respectively, where E[Qc] < ∞ and E[Rc] < ∞ for all c. 

The delay duration is at least one time slot for each packet or 

feedback transmission. In practice, the state c of the channel 

could be used to characterize time-varying physical 

phenomena that affect the transmission and feedback delay 

distribution, Qc and Rc. Examples of such phenomena include 

(i) the transmission duration varying due to an erasure channel 

situation leading to possibly a number of retransmissions, (ii) 

long or short network routes that packets may go through, and 

(iii) the delay increasing or decreasing with network congestion 

varying in time. Upon the delivery of the i-th packet, the 

receiver is able to detect the channel state ci valid during the 

transmission of packet i. Then, the channel state ci is fed back 

to the transmitter along with an ACK. The twoway channel is 

reliable; that is, no packet or message is lost during the 

transmission. 

Recent studies [7], [27] have exhibited scenarios where the 

inference error in (1) is not monotonic with age, where fresher 

packets do not always lead to a smaller inference error than 

stale ones. In other words, in certain scenarios, an older packet 

with AoI > 0 can be more relevant than a fresher packet, in the 

sense that this packet can lead to a smaller inference error than 

a packet with AoI = 0 [7], [27]. In these cases, the ”generateat-

will” approach, which samples a fresh packet upon making a 

transmission decision, will not be general enough to achieve 

optimal performance. In recognition of this fact, the 

”selectionfrom-buffer” model was proposed in [7], [15]. In this 

paper, we adopt this latter model. 

The system starts to operate at time slot t = 0. We assume 

that the buffer initially contains the packets 

(X0,X−1,...,X−B+1). By this, the buffer is kept full at all time slots t 

≥ 0. At time slot Si, the packet XSi−bi is submitted to the channel, 

which is the (bi + 1)-th freshest packet in the buffer, with bi ∈ 

B = {0,1,...,B − 1}. The packet is delivered to the receiver at time 

slot Di, and the transmitter receives the corresponding ACK 

and channel state ci at time slot Ai, such that Si < Di < Ai. We 

assume that the transmitter always waits for the ACK before 

submitting a new packet to the channel. In other words, the 

scheduler always remains silent at the time slots between Si 

and Ai for all i. Let i-th epoch be composed of the time slots in 

the interval [Ai−1,Ai). The channel state ci specifies the 

transmission delay distribution in the i-th epoch and evolves 

following a finite-state ergodic Markov chain with the 

transition probabilities pij, where i,j ∈ C, and pij is the transition 

probability from state i to state j. The Markov chain makes a 

single transition at the time slots Ai and none otherwise. Let Ti 

= Di−Si and Fi = Ai−Di be the incurred transmission and 

feedback delays in i-th epoch, respectively. The distributions of 

Ti and Fi are determined by the channel state in the i-th epoch. 

That is, pTi|(ci=c)(q) = pQc(q) and pFi|(ci=c)(r) = pRc(r), where pK(k) 

is the probability mass function (PMF) of the discrete random 

variable K. The AoI at time slot t is given by 

 ∆(t) = t − Si + bi, if Di ≤ t < Di+1. (2) 

The initial conditions of the system are S0 = 0, ∆(0) < ∞, c0 ∈ C, 

and b0 ∈ B. 

We strive to minimize the expected inference error per time 

slot in steady-state. Accordingly, the scheduler on the 

transmitter side has to determine (i) when to submit a packet 

to the channel and (ii) which packet in the buffer to submit. A 

scheduling policy is a tuple (f,g), where the buffer position 

sequence f = (b1,b2,...) controls which packet in the buffer to 

submit in each epoch, and the packet submission time 

sequence g = (S1,S2,...) specifies when to submit the packet to 

the channel and start the transmission in each epoch. Let Π be 

the set of all policy tuples (f,g). Then, the problem formulation 

is given by 

 

where h(∆(t)) is the inference error at time slot t, and hopt is 

the optimum value of (3). 

This problem formulation extends the single-source 

scheduling problem in [7] to more practical systems by 

considering the memory of the transmission delay and by 

removing the delay-free feedback assumption. 

III. OPTIMAL SCHEDULING POLICY 

We provide an optimal scheduling policy to (3) in two steps. 

First, we consider a class of policy tuples (fψ,g) ∈ Π such that fψ 

= (b1,b2,...) is a stationary deterministic buffer position 

sequence, where 
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 bi+1 = ψ(ci), (4) 

for all i = {0,1,2,...}, and Ψ is the set of all mapping functions ψ 

: C 7→ B. Given a stationary deterministic buffer position 

sequence fψ = (ψ(c0),ψ(c1),...), we first optimize the packet 

submission time sequence g = (S1,S2,...): 

 

where hψ,opt is the optimum value of (5). In the second step, we 

present an optimal scheduling policy for the original problem 

(3) using the solution to (5). 

The optimal packet submission time sequence g for (5) will 

be described by using an index function defined by 

 

where δ ∈ Z+ and c ∈ C. 

Theorem 1. If |h(δ)| < M for all δ = 1,2,..., then the packet 

submission time sequence g = (S1(βψ),S2(βψ),...) is an optimal 

solution to (5), where 

Si+1(βψ) = min{t ≥ Ai(βψ) : γ(∆(t),ci) ≥ βψ}, (7) and βψ is the 

unique root of 

 

where Ai(βψ) = Si(βψ) + Ti + Fi is the i-th ACK feedback time and 

∆(t) = t − Si(βψ) + bi is the AoI at time slot t. Moreover, βψ is 

exactly the optimum value of (5), i.e., βψ = hψ,opt. 

Proof sketch. The problem (5) is an infinite-horizon averagecost 

semi-Markov decision process (SMDP) [28, Chapter 5.6]. 

Define τ = Si+1 − Ai as the waiting time for sending the (i+1)-th 

packet after the ACK feedback of the i-th packet is delivered to 

the transmitter. Given ∆(Ai) = δ and ci = c, the Bellman 

optimality equation of the average-cost SMDP (5) is 

 (9) 

for all δ ∈ Z+, ψ(·) ∈ Ψ, and c ∈ C, where Vψ(·) is the relative 

value function of the average-cost SMDP (5). Theorem 1 is 

proven by directly solving the Bellman optimality equation (9). 

Due to space limitation, the detailed proof of Theorem 1 is 

relegated to our technical report [29].  

Theorem 1 signifies that the optimal solution to (5) is an 

index-based threshold policy, where the index function 

depends on both the AoI and the channel state in the previous 

epoch. The scheduler submits (i + 1)-th packet according to (4) 

at the first time slot for which the following conditions are 

satisfied: (i) the ACK of the previous transmission is received, 

i.e., t ≥ Ai(βψ), and (ii) the index function exceeds the 

threshold. The threshold βψ is exactly the optimum value of (5) 

and can be found by solving equation (8) using the low-

complexity algorithms, e.g., bisection search, provided in [9, 

Algorithms 1-3]. The index function in (6) is obtained by 

directly solving the Bellman optimality equation (9). 

Recent studies [7], [15] have revealed a connection between 

the AoI optimization problems, such as (5), and the restart-

instate formulation of the Gittins index in [30, Ch. 2.6.4]. The 

optimal scheduling policy in Theorem 1 has been obtained by 

employing that connection. 

Now, we present an optimal solution to problem (3). 

Theorem 2. If |h(δ)| < M for all δ = 1,2,..., then the policy tuple 

(f∗,g∗) is an optimal solution to (3) such that 

i.) , where 

  (10) 

  (11) 

and hψ,opt is the optimum value of (5). ii.) 
, where 

Si∗+1 = min{t ≥ Si∗+Ti+Fi : γ(∆(t),ci) ≥ hopt}, 

(12) 

and 

 . (13) 

Proof. Due to space limitation, the proof of Theorem 2 is 

relegated to our technical report [29].  

Theorem 2 points out that the optimal buffer position at any 

submission time slot is independent of the current AoI and 

only depends on the channel state in the previous epoch. The 

reasoning behind such a result can be understood deeply by 

analyzing the system. At the beginning of epoch [Di,Di+1), i.e., 

at time slot Di, the AoI of the process resets to bi + Ti, indicating 

that the buffer position bi determines the AoI reset value for 

time slot Di. The epoch [Di,Di+1) evolves starting from this AoI 

value. Then, the AoI resets again at time slot Di+1 following the 

delivery of the subsequent packet, and the AoI values in epoch 

[Di,Di+1) become irrelevant to the future evolution of the 

process. In other words, each epoch of the process has an 

isolated AoI evolution, and bi is the parameter that allows us to 

control AoI evolution in i-th epoch. Apart from bi, Ti is the other 

parameter affecting the AoI reset value for time slot Di, and ci−1 

reveals the distribution of Ti thanks to the Markovian structure. 

Thus, bi is chosen, considering the distribution of Ti, through 

ci−1, to ensure the AoI of the process reset to the desired value 
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at time slot Di. Due to this inherent structure of the process, as 

shown in Theorem 2, the optimal buffer position sequence to 

problem (3) is f∗ = fψ∗ = (ψ∗(c0),ψ∗(c1),...), where ψ∗ ∈ Ψ is the 

optimal mapping function. Since ψ∗ ∈ Ψ, the optimal packet 

submission time sequence is obtained by Theorem 1. 

Even though the optimal policies outlined in Theorems 1 and 

2 maintain the nice structure of the policies in [7], there are 

two critical distinctions. Firstly, the derived index function for 

this problem formulation is not solely dependent on the AoI 

but also incorporates the channel state. The existence of such 

an index function was not evident in the presence of a finite 

number of channel states, necessitating additional technical 

efforts for derivation. Secondly, in contrast to [7], where 

 

Fig. 2. The incurred inference error when the current sample of the target Yt is 
predicted using a past sample Xt−δ with AoI δ ranging from 1 to 70. 

the optimal buffer position sequence is constant due to the 

assumption of IID transmission delay and immediate feedback, 

this problem formulation considers transmission delay and 

non-zero feedback delay significantly varying with memory. 

Consequently, achieving optimal performance requires a 

buffer position sequence that can adapt to these variations in 

delay statistics. This paper unveils the relationship between 

the buffer position sequence and delay memory while 

developing Theorems 1 and 2. 

In the special case that the inference error h(δ) is a 

nondecreasing function of the AoI δ, the index function γ(δ,c) 

in (6) reduces to E[h(δ + Ti+1)|ci = c]. Moreover, the optimal 

buffer position sequence is f∗ = (0,0,...). 

IV. SIMULATION RESULTS 

In this section, we demonstrate the performance of our 

optimal scheduling policy in Theorem 2. To obtain an inference 

error function h(δ), we use a discrete-time autoregressive 

model of the order p (AR(p)): 

 Xt = a1Xt−1 + a2Xt−2 + ... + apXt−p + Wt, (14) 

where the noise Wt ∈ R is zero-mean Gaussian with variance 

σW2 and Xt ∈ R. Let Yt = Xt + Nt be the target variable, where the 

noise Nt is zero-mean Gaussian with variance σ
N2 . Fig. 2 

indicates the average inference error values incurred when the 

target Yt is predicted using Xt−δ, where the value of AoI δ ranges 

from 1 to 70. We set σW2 = 0.01, σN2 = 0.001 and construct an 

AR(50) with coefficients a7 = a13 = 0.007, a8 = a12 = 0.05, a9 = 

a11 = 0.1, and a10 = 0.68. 

The remaining coefficients are zero. We consider a quadratic 

loss function  . Because Xt−δ and Yt are 

jointly Gaussian, and the loss function is quadratic, the optimal 

inference error performance is achieved by a linear MMSE 

estimator. Hence, a linear regression algorithm is adopted in 

our simulations. However, our study can be readily applied to 

other neural network-based predictors. 

We compare the performance of three scheduling policies: 

(i) the optimal policy in Theorem 2, (ii) the single-source 

scheduling policy in [7], and (iii) generate-at-will + zero wait 

policy: (f,g) is such that f = (0,0,...) and g = (A1,A2,...). 

The simulation parameters related to the channel statistics 

have been set as follows: (i) the number of channel states C = 

2, (ii) the random variable Q1 has the PMF pQ1(3) = 0.7, 

 

Fig. 3. The time-average inference error achieved by the three different 
scheduling policies. 

and pQ1(4) = 0.3, (iii) the random variable Q2 has the PMF 

pQ2(11) = 0.35, and pQ2(12) = 0.65, (iv) the random variable R1 

has the PMF pR1(1) = 1, and (v) the random variable R2 has the 

PMF pR2(4) = 1. The memory of the transmission delay is 

adjusted by varying the parameter α = p12 + p21 between 0 and 

2. We set p12 = p21, which ensures that the fraction of epochs 

with convenient delay condition is always 0.5. The scheduling 

policy in [7] assumes both channel states are equally likely at 

each epoch independent of the history for any value of α. 

Fig. 3 presents the time-average inference error values 

achieved by the three scheduling policies mentioned above. 

The results underscore that consistently submitting the 

freshest packet with zero waiting time leads to a 33% to 57% 

higher inference error compared to the optimal policy outlined 

in Theorem 2. Additionally, the optimal policy shows minimal 

improvement compared to the corresponding policy in [7] for 

α values around 1. The reason for the negligible improvement 

is that the delay distribution is exactly IID when α = 1. However, 

as α deviates from this point, resulting in increased delay 

memory, the advantage of the optimal policy described in 

Theorem 2 becomes apparent, leading to an important 

performance gain of up to 13%. 
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V. CONCLUSION 

In this paper, we studied a remote inference problem where 

a neural network on the receiver side predicts the real-time 

value of a target signal using the data packets transmitted from 

a distant location. Motivated by the foreseen coexistence of 

terrestrial and non-terrestrial connections in 6G, we assumed 

it would be typical for a data flow to be served through 

multiple alternative paths and considered transmission and 

feedback delay distributions significantly varying with memory. 

For this system model, we developed an optimal index-based 

threshold policy that minimizes the expected inference error 

per time slot in steady-state. The policy optimizes the 

performance for a given inference error function specific to the 

application and goal on the receiver side, addressing the 

expectation for future networks to operate in a goal-oriented 

manner. Finally, we demonstrated, with the simulation results, 

the performance gain that can be achieved in the remote 

inference problems by considering the memory of the delay. 
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