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ABSTRACT. We compute the minimal exponent of the affine cone over a complete intersec-
tion of smooth projective hypersurfaces intersecting transversely. The upper bound for the
minimal exponent is proved, more generally, in the weighted homogeneous setting, while
the lower bound is deduced from a general lower bound in terms of a strong factorizing
resolution in the sense of Bravo and Villamayor.

1. INTRODUCTION

Let X be a smooth complex algebraic variety. If Z is a nonempty hypersurface in X,
then the minimal exponent a(Z) was defined by Saito in [Sai93] using the Bernstein-Sato
polynomial of a local equation of Z, as follows. Recall that if Z is defined in an open subset
U of X by f € Ox(U), then the Bernstein-Sato polynomial of f is the monic polynomial
b¢(s) € Cl[s] of minimal degree such that

by(s)f* € Dyls] - f+.

Here f? is a formal symbol on which the sheaf Dy of differential operators on U acts in the
expected way. By a result of Kashiwara [Kas76], all roots of by are negative rational numbers.
It is easy to see, by specializing s to —1, that if Z|y := ZNU is nonempty, then bs(—1) = 0.
By definition, a(Z|y) = a(f) is the negative of the largest root of bs(s)/(s + 1) (with the
convention that this is oo if by(s) = s+ 1). In order to define @(Z), one takes an open cover
X =, U; and a(Z) = min; a(Z|y,), where the minimum is over those ¢ such that Z|y, is

nonempty.

The minimal exponent of a hypersurface is an interesting invariant. A result due to Lichtin
and Kollar [Kol97] says that the minimal exponent refines an important invariant of singu-

larities in birational geometry, the log canonical threshold lct(X, Z); more precisely, we have

let(X, Z) = min {a(Z),1}.
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It was shown by Saito [Sai93] that &(Z) > 1 if and only if Z has rational singularities.
Moreover, we have a(Z) = oo if and only if Z is smooth. Recently, it was shown that the
minimal exponent characterizes the higher Du Bois property of the singularities of Z (see
[MOPW23] and [JKSY22]) and the condition for higher rational singularities (see [FL22] and
[MP22b]).

If Z has isolated singularities, then the minimal exponent can be described via asymptotic
expansions of integrals along vanishing cycles, see [Mal74] and [Mal75]. In this incarnation,

it has been extensively studied in [AGZV88] and is also known as the Arnold exponent of f.
In [CDMO24], the authors of the present article and Sebastidn Olano introduced and stud-

ied an extension of the minimal exponent &/(Z) to the case when Z is a complete intersection
in X of pure codimension r, for any » > 1. The definition was in terms of the Kashiwara-
Malgrange filtration associated to Z (the corresponding description in the hypersurface case
is a result due to Saito [Sail6]). One of the main results in [CDMO24] gave a description in
terms of the minimal exponent of a hypersurface, as follows. Suppose that Z is defined in
X by fi,....fr € Ox(X) and g = 377, fjy; € Oy(Y), where Y = X x A", with y1,....y,
being the coordinates on A”. If W = X x (A" \.{0}), then &(Z) = a(g|w). This description
allows deducing the main properties of the minimal exponent of local complete intersections
from the corresponding properties of the invariant in the case of hypersurfaces. Results on
the V-filtration from [BMS06] allowed us to relate again the minimal exponent to the log

canonical threshold and to rational singularities: we have
let(X, Z) = min {a(2),r}

and a(Z) > r if and only if Z has rational singularities. It was also shown in [CDMO24]
that one can use the minimal exponent to detect how far the Hodge filtration on the local
cohomology H',(Ox ) agrees with the pole order filtration, extending the corresponding result
for hypersurfaces from [Sail6] and [MP20]. In conjunction with results from [MP22a], this
implied that the minimal exponent detects the higher Du Bois property of local complete
intersections. The fact that it also detects higher rational singularities in this setting was
subsequently shown in [CDM22]. Finally, the minimal exponent can be described in terms
of the Bernstein-Sato polynomial be(s), associated to £ = (f1,..., f.), that was introduced
in [BMS06]: in this case we have bg(—r) = 0 and it was shown in [Dir23] that a(Z) is the
negative of the largest root of be(s)/(s +r).

While many of the basic properties of the minimal exponent are by now understood in the
local complete intersection case, there are few known explicit examples beyond codimension 1.
One example given in [CDMO24] is that of a complete intersection in A", with an isolated
singularity at 0, defined by homogeneous equations of the same degree d; in this case we have

a(Z) =4, extending a well-known formula for hypersurfaces. Our main result in this note is
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the following extension to the case when the homogeneous equations defining Z have possibly

different degrees:

Theorem 1.1. Let fi,..., fr € Clz1,...,x,] be homogeneous polyomials that form a regular
sequence, with deg(f;) = d; for 1 < i <r, and such that 2 < d; < ... <d,. For every i, we
denote by H; the hypersurface defined by f; in A™ and by Z the intersection Hy N ... N H,.

If on A™ \ {0} each H; is smooth and Y ;_, H; has simple normal crossings, then
(1) aZ)=min{i+(n—di—...—d)| 1§i§r}:p+i(n—d1—...—dp),

where p is the smallest i < r that satisfies dy + ...+ d; > n (with the convention that p =r

if there is no such ).

We are interested, in particular, in the case when a(Z) > let(X, Z), that is, when a(Z) > r.
The formula in the theorem implies that this is the case if and only if >, ; d; < n. We also
recover the well-known facts that under the assumptions in the theorem, the pair (X,rZ2)
is log canonical if and only if >, ;d; < n and Z has rational singularities if and only if
Z;Zl d; < n.

We also note that if d; = ... = d, and we only assume that ZN (A” ~ {0}) is smooth, then
after replacing each f; by a general linear combination of fi,..., f,, the Kleinman-Bertini
theorem implies the condition that on A™ ~\ {0} each H; is smooth and > _;_; H; has simple
normal crossings. Therefore the above theorem implies the formula for the minimal exponent
in [CDMO24, Example 4.23].

The upper bound for &(Z) in Theorem 1.1 can be extended to the weighted homogeneous
case, even without assuming that the equations themselves are homogeneous. The hypersur-
face case follows directly from a well-known formula for the minimal exponent of an isolated
singularity that is nondegenerate with respect to its Newton polyhedron and the semiconti-
nuity of the minimal exponent in families. We then obtain the following result for complete
intersections: consider on R = Clz1,...,z,] the grading such that deg(z;) = w; > 0 for
1 <i < n. For every nonzero f € R, we denote by wt(f) the smallest degree of a monomial

" =z} - zl» that appears with a nonzero coefficient in f.

Theorem 1.2. With the above notation, suppose that f1,..., fr € (x1,...,2,)?> C R are such
that wt(f;) = di, for 1 <i <r, withdy < ds < ... <d,. If Z is a complete intersection of

pure codimension r in some neighborhood of 0, then

ao(Z)Smin{i—l—d%(wl—i—...—&—wn—dl—...—di)llgigr}.

For the precise definition of ap(Z) the local version of the minimal exponent of Z, see
Section 2. We expect that if, in addition, fi,..., f, are homogeneous with respect to the above
grading and the hypersurfaces H; defined by f; satisfy a suitable transversality assumption

on A"~ {0} (for example, each H; is irreducible and ) ;_, H; has simple normal crossings
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in A”™ \ 0}), then the inequality in Theorem 1.2 is an equality. When all f; have the same
degree, this can be proved as in [CDMO24, Example 4.23]. When the degrees are different,

however, we can only prove the assertion in the usual homogeneous case.

The key ingredient in the proof of the lower bound for &(Z) in Theorem 1.1 is a result
of independent interest, giving a lower bound for the minimal exponent of a local complete
intersection Z in X in terms of a suitable resolution of (X, Z): a strong factorizing resolution
in the sense of Bravo and Villamayor [BVU03]. Under the assumption that Z is generically
reduced, this is a proper morphism 7: X — X which is an isomorphism over the complement
X N Zging of the singular locus of Z, with X smooth, and such that the reduced exceptional
divisor E and the strict transform Z of Z have simple normal crossings, and Z is smooth.

Moreover, we have a factorization
(2) Iz -05=1; 0x(—F),

for an effective divisor F' supported on FE, where 77 and Z; are the ideals of Z and Zin X
and X, respectively. Note that the usual Hironaka algorithm does not guarantee the latter
condition; the existence of strong factorizing resolutions for all generically reduced Z is the
main result of [BVUO03]. Given such a resolution, we write F = Z;VZI E; as the sum of prime
divisors and for every j, we denote by a; and k; the coefficients of E; in the divisors I and,

respectively, the relative canonical divisor K g /X

Theorem 1.3. Suppose that X is a smooth complex algebraic variety and Z is a reduced
subscheme of X that is a local complete intersection, of pure codimension r. If m: X — X is
a strong factorizing resolution of (X, Z) as above, then

a(2) z 1gjl‘i§nN k]c;_l'

Note that if Z is a hypersurface in X, then the condition (2) is automatically satisfied,
hence a strong factorizing resolution is simply a log resolution of (X,Z) such that 7 is
smooth. In this case, the inequality in Theorem 1.3 was proved in [MP20, Corollary D] using
the theory of Hodge ideals (see also [DM22, Corollary 1.5] for a more elementary proof). We
deduce the general case in Theorem 1.3 by reducing it to the case of hypersurfaces. In order

to get the lower bound for a(Z) in Theorem 1.1, we construct an explicit strong factorizing
resolution of (A", 7).

2. AN UPPER-BOUND IN THE WEIGHTED HOMOGENEOUS CASE

Our goal in this section is to prove Theorem 1.2. Let us begin by recalling the local version
of the minimal exponent discussed in the Introduction. If Z is a local complete intersection in
the smooth variety X, of pure codimension r, and P € Z, then for every open neighborhood
U of P, we have a(Z NU) > a(Z) and a(Z NU) is constant if U is small enough. This
constant value is denoted by ap(Z). It is then easy to see that a(Z) = minpez ap(Z). We
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refer to [CDMO24, Definition 4.16] and the discussion around it for details. Of course, ap(Z)
is defined if we only know that Z is a local complete intersection of codimension r at P. If

Z is a hypersurface defined by f, we also write ap(f) for ap(Z).
We begin with the following result in the case of hypersurfaces. We let R = Clzy, ..., x,)

and use the notation in Theorem 1.2.

Proposition 2.1. If f € R is nonzero and 0 € Z is a singular point, then
~ wy+...+w
ao(f) € ———m—

wt(f)

Proof. We write f = .\ ay,x", with A finite and a, # 0 for all u € A. Let N > 2 be such
that Nw; > wt(f) for all i. We consider the family of hypersurfaces parametrized by the
open subset U C AlA+" with the hypersurface corresponding to v = ((cu)ueA,bl, e ,bn)
being defined by hy = >, cp cut® + bizY + ...+ b,zY (here U consists of those v such that
hy is nonzero). It is clear that for v € U general, h, has an isolated singularity at 0 and it is
nondegenerate with respect to its Newton polyhedron P (recall that P is the convex hull of
U, (u+RZ,), where the union over all monomials z* that appear with nonzero coefficient in
the equati?)n h of the hypersurface). In this case, it is known that the minimal exponent at

0 of such a hypersurface is 1/c, where
c=min{¢t>0]|(,...,t) € P}

(see [Var81], [EL82], or [Sai88]). Note that P is the convex hull of (AU{Ney, ..., Ne,})+R2,,
where eq,...,e, is the standard basis of Z™. Since Y ., ww; > wt(f) for all u € AU
{Nei,...,Ney,}, it follows that > | u;w; > wt(f) forallu € P, and thus ¢y i w; > wt(f).
On the other hand, it follows from the semicontinuity of minimal exponents (see [MP20, The-
orem E(2)]) that for every v' € U, we have ag(hy) < ag(hy) = 1/c, when v € U general. In
particular, this applies for f, and we get

- 1 w+...4+w,
aO(f)SES—Wt<f) .

0

Before giving the proof of Theorem 1.2, we give a lemma that describes the infimum in
this theorem.
Lemma 2.2. Let w € R and let d; < ... < d, be positive integers. If for 1 < i <r, we put
oy ;:i—|—d%(w—d1—...—di),
then the following hold:
i) If i <r —1 is such that d; = d;11, then a; = ajt1.
i) If i <r—1 and d; < dit1, then a; > a1 if and only if dy + ... + d; < w.

ii) We have min; o; = oy, where p is the smallest ¢ < r that satisfies di + ...+ d; > w

(with the convention that p = r if there is no such i).
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Proof. The first two assertions follow from the fact that for ¢ < r — 1, we have

(w —dy—...— dz)(dHl — dz)
didii1 ’

Qi — Qi1 =

and the third assertion is an easy consequence. ([l

We can now prove the upper bound for the minimal exponent of complete intersections in

terms of the weights of the defining equations.

Proof of Theorem 1.2. For every i, with 1 <4 <7, let
— 1
Ozi—z—}-dfi(wl-i-...—l-wn—dl—...—di),

and let p be such that a, = min; ;. By Lemma 2.2i), we may assume that if p > 1, then
dpfl < dp.
Let g = Z;Zl fiy; € O(A™ x A"), where y1,...,y, are the coordinates on A". It follows

from the description of the minimal exponent of Z in terms of g given in the Introduction
that if U = A"\ {0} D U’ = (y, # 0), then

ao(Z) = & < & ,
ao(2) rggga(glvw)_rggga(glvw),

where V' runs over the open neighborhoods of 0 in A™. We put z; = y;/y, for 1 < j <,
J# P, S0 21,...,%p,...,% can be viewed as coordinates on A"~ Since ¢ is homogeneous of

degree 1 with respect to y1,...,y,, it follows that if we put
h=g/yp=frz1+ .-+ fo12p1+ fo+ for1zp1 + - + frzr € O(A" X A1),
then
a(glvxur) = alhlyxar-1)

(we use here the fact that the minimal exponent does not change by pull-back by a smooth

surjective morphism, see for example [CDMO24, Proposition 4.12]). We thus conclude that
3) ao(Z) < ao,0)(h)-

By assumption, we have f, € (21,...,2,)?, and thus h has a singular point at (0,0). If we
consider the weight of z; to be d, —d; for 1 <j <p—-1ande>0forp+1<j <r, then
we see that wt(h) = d,, hence it follows from Proposition 2.1 that

r—p
dp

~ 1
(4) a0 (h) < d—(wl +.oootwy+ (dp—di) 4 ...+ (dp —dp1) + (r —p)e) = o + €.
P

By combining (3) and (4), and letting € go to 0, we obtain the inequality in the theorem. [
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3. A GENERAL LOWER BOUND VIA A STRONG FACTORIZING RESOLUTION

In this section, we prove the lower bound on the minimal exponent in terms of a strong

factorizing resolution.

Proof of Theorem 1.3. We may and will assume that X is affine and Z is defined by a regular
sequence fi,...,fr € Ox(X). Let g = fivyai + ...+ fryr € Oy(Y), where Y = X x A", with
Y1, ...,y being the coordinates on A™. Let W = X x (A" \ {0}), so &(Z) = a(g|w)-

Consider now the morphism
p=nxidar: Y =X x A" > Y.

This is a projective morphism which is an isomorphism over the complement of Zg,, x A".
The exceptional divisors of ¢ are the E; x A", with 1 < ¢ < N. Moreover, it follows from
the definition of a strong factorizing resolution that we can cover X by open subsets Vj, such

that on each V; x A" we can write

T
goelv,xar = v+ Y hiyi,
i=1

where the divisor div(v;) defined by v; is supported on G = E x A" and hy, ..., h, generate
the ideal of Z in Vj. Moreover, the coefficient of E; x A" in div(v;) is a;. Note that if
VN Z = (), then > iy hiyi defines a smooth hypersurface in V; x A", that has simple normal

crossings with G.

By assumption, 7 is smooth, of codimension 7 in X , and has simple normal crossings
with E (that is, both E' and E|; are reduced simple normal crossing divisors). Therefore we
may and will assume that for every j such that V; N Z # ), we have algebraic coordinates
T1,..., 2y on Vj such that h; = a; for i < rand Ely, = 3777 a; - div(z;).

Let ow: ¢~ 1(W) — W be the restriction of ¢ over W. Note that on o~ L(W)N (V; x A"),
with V; N Z # 0, the divisor defined by

r+s

(x1y1 + -« + 20yr) - H x}
i=r+1

has simple normal crossings. Since g o ¢ clearly defines a simple normal crossing divisor in
e 1(W)N(V; x A") when V NZ = 0, we conclude that gy is a log resolution of (W, div(g)|w )
which is an isomorphism over W \ V(g). The exceptional divisors of ¢y are the E! =
E; x (A"~ {0}) and the relative canonical divisor of ey is Zf\i1 k;E!. Moreover, the divisor
div(g)|w is reduced: its singular locus is contained in Zgng X (A’" ~ {0}) (see [CDMO24,
Lemma 4.22]) and thus div(g) is generically reduced, hence reduced. In addition, its strict
transform on ¢~ (W) is smooth: this is clear on V; x (A" ~\ {0}) if V; N Z = 0, while if
Vin Z # 0, it follows from the fact that it is defined by >, z;y;. We can thus apply the

lower bound on the minimal exponent of a hypersurface in terms of a log resolution (see
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[MP20, Corollary D] or [DM22, Corollary 1.5]) to conclude that

~ ~ ki +1
Z) = > mi
a(2) = alglv) 2 min ——

)

which is the assertion in the theorem. OJ

4. THE FORMULA IN THE HOMOGENEOUS CASE

Our main goal in this section is to prove Theorem 1.1. In order to prove the lower bound

in the theorem, we will use Theorem 1.3. We thus proceed to describe a strong factorizing
resolution of (A", 7).

With the notation in Theorem 1.1, let m1: X; — A™ be the blow-up of the origin, with
exceptional divisor Fq. Suppose that £k > 1 and 1 < pq,po,...,pr are such that

di=...= dpl < dp1+1 = ... =Ap4py < ... < dp1+~--+pk71+1 = ... =0api+..4pg-

Note that p1 + ...+ pr = 7. In order to simplify the notation, we put e; = dp, 1 4p,
for 1 < j < k. We define a morphism n: ¥ — A" to be the composition of m; with
Zf:_ll(eiﬂ — e;) smooth blow-ups, as follows. First, we consider (ez — e1) blow-ups, each of
these blowing up the intersection of the previous exceptional divisor with the strict transforms
of Hy,..., Hp,. We next consider (e3—es) blow-ups, each of these blowing up the intersection

of the previous exceptional divisor with the strict transforms of Hy, ..., Hp, 4p,, etc.

Proposition 4.1. With the above notation, the composition m: Y — A™ has the following

properties:

i) If r <n—1, then 7 is a strong factorizing resolution of (A", Z).

ii) If r =n, then 7 is a log resolution of the pair (A™, 7).

Proof. We note that if r < n — 1, then the assumption on Z implies that it is generically
reduced, hence reduced, since it is a complete intersection and thus Cohen-Macaulay. There-

fore, in this case, it makes sense to say that 7 is a strong factorizing resolution.

The blow-up X7 is covered by affine open charts Uy, ..., U,, where U; has coordinates

TisYly-o s Yiml,Yitly -5 Yn

such that x; = x;y; for all j # i. Note that if Iz = (f1,..., f-), then
Iz -Oy, = (x?lgl, ... ,a:?Tgr),

where g; = fj(y1,...,¥i—1, L, Yit1,...,yn) for 1 < j < r. Moreover, Ey NUj; is defined by z;
and if < n, then the strict transform Z of Z on X is defined in U; by (g1,-..,9r), hence it
is smooth. Note that if £ = 1 (that is, we have d; = ... = d,.), then 7 is a strong factorizing
resolution when r < n and is a log resolution of (X, Z) for r = n. Therefore we are done in

this case.
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Suppose now that £ > 1. We note that, by our assumption on fi,..., f., the hypersurfaces
defined by z;, g1, . . ., gr in U; are smooth and their sum has simple normal crossings. It follows
that for every point P € U;, we can find algebraic coordinates z, ..., 2,—1 in a neighborhood
Wp of P such that the ideal Iz - Oy, is equal to:

Case 1. (21,...,2). This is the case when P ¢ E;, when we may assume that Wp N Ey = ().
This case is clear: it follows from the definition of 7 that the morphism Y — X; is an
isomorphism over Wp and it is clear that above Wp the condition for m to be a strong

factorizing resolution (if 7 < n) or a log resolution of (X, Z) (if » = n) is satisfied.

Case 2. (zglzl, . .,ngzr). This is the case when r < n and P lies on the hypersurfaces
defined by x;, g1, ..., g-. Note that Z is defined in Wp by (z1,...,2r).

Case 3. (zglzl, . .,zngq,zgq“), for some ¢ < r. This is the case when P lies on E; and
gj(P) = 0 for j < q, but gq11(P) # 0. After getting rid of some redundant generators, we
may assume that ¢ = p; + ...+ pp. If r < n, then we see that Z does not meet Wp in this

case.

We now consider the next blow-up mo: Xo — X; in our sequence: we blow up along
Ein I/fl N...N ﬁ;, where l?I; denotes the strict transform of H; on X;. Let’s describe ms
over the above open subset Wp C U; when we are in Case 2 or Case 3. Note that we are
blowing up along the zero locus of (2o, 21,. .., %p,), which is smooth. Let V; be the chart in

7y L (Wp) given by
zp=wup for Le{jp1+1,...,n} and zp=wujuy for 0<L<p,L#]

for some j, with 1 < j < p1. An easy computation shows that Iz - Oy, is generated by
di+1
J

the strict transform of Ey, we see that Iz - Oy, is the ideal of a divisor supported on the

U ugl in both Cases 2 and 3. Since u; defines the me-exceptional divisor and ug defines

exceptional locus. Therefore the condition for a strong factorizing resolution (in the case

r < n) or for a log resolution (in the case r = n) will be trivially satisfied over V;.

We next consider the chart Vj in my 1(I/Vp) given by
zo=wuy for £€{0,p1+1,...,n} and zp=wouy, for 1<0<p.

Note that the my-exceptional divisor is defined in this chart by ug. Again, an easy computation

shows that Iz - Oy, is equal to

e1+1 e1+1 e2 €k
(ug" ", gt T Uy U U 1 - - UG )
in Case 2 and to
e1+1 e1+1 em+1
(ug" ™ u, - ug Uy, ug ™)

in Case 3 (we recall that m is such that ¢ = p1 + ... 4+ p;,). We thus see that if we are in
Case 2, after performing (ea — e;) such blow-ups, we are in the situation where k is replaced

by k — 1: in the only charts that we need to consider, we have coordinates vy, v1,...,Up_1,
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such that the pull-back of Iz is equal to

(VG201 -+« s VG Upy 4o s U2 Upytpot1s - - - 5 VGE U ).
If & > 2, then the next blow-up is along the ideal (vg, v1, ..., Vp,4p, ), and the process continues
as above. In the end, we see that in the only charts that we need to consider, we have
coordinates wy, ..., wp_1 such that the pull-back of Iz is wgr - (w1, ...,w;). Therefore, in

such a chart, the condition for having a strong factorizing resolution is satisfied.

Similarly, if we are in Case 3, then after the first (e2 —e1) + ... + (€my1 — €m) blow-
ups, in the only charts that we need to consider, we have coordinates wy,...,w,—1 such
that the pull-back of Iz is (w;™™"). Therefore, in this chart, we only have the ideal of a
divisor supported on the exceptional locus, so this satisfies the condition for 7 to be a strong
factorizing resolution when r < n and to be a log resolution when » = n. This completes the

proof of the proposition. O

Remark 4.2. With the notation in Proposition 4.1, it follows from the definition of 7 that if
r < n, then starting with X7, at each step we blow up a smooth center that is not contained
in the strict transform of Z on the respective variety. In fact, with the notation in the proof,
for every chart U; on X7 and for every exceptional divisor on Y whose image in X intersects

U;, we see that g, does not vanish along this image.

We can now prove the main result of this note.

Proof of Theorem 1.1. For every k, with 1 < k < n, we put ap. = k + %ﬂ“. By
Lemma 2.2, we know that minj aj = a;, where p is as in the statement of the theorem. Since
the inequality

a(Z) <
follows from Theorem 1.2, we only need to prove the opposite inequality.

Suppose first that Z;Zl d; > n. Note that since a(Z) < oy, < r, we know that in this case
we have a(Z) = lct(X, Z), and thus only need to show that lct(X,Z) > «,,. For basic facts
about log canonical thresholds (including the definition), we refer to [Laz04, Chapter 9]. As
in the proof of Proposition 4.1, we consider the blow-up m1: X7 — A" of A™, with exceptional
divisor 1. Note that Kx, ja» = (n—1)E;. We have seen in the proof of Proposition 4.1 that
we can cover X by affine open charts U;, such that Iz - Oy, = (w?lgl, e ,x?rgr), where x;
defines F; in U;, and the divisors defined by x;, g1, . . . , g are smooth and their sum has simple
normal crossings. We need to show that if G is a prime divisor on W, where ¢: W — X;
is such that 7 o ¢ is a log resolution of (X, Z), with the valuation ordg corresponding to
G, and if ag = ordg(Iz) and k¢ is the coefficient of G in Ky x, then ki—;l > ap. Suppose
that the image of G on X intersects the chart U; and let by = ordg(z;) and b; = ordg(g;)
for 1 < j <r. We may and will assume that by > 0: otherwise, since Z \ {0} is smooth, of
codimension 7 in A™ ~\ {0}, we have lct(A™ \ {0}, Z \ {0}) = r, and thus kz’—;rl > > ap.
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It is well-known that since the divisor div(z;) + Z§:1 div(g;) has simple normal crossings, if

kg is the coefficient of G in Ky x,, then
ki +1>bg+by+ ...+ b,
(see, for example, the proof of [Laz04, Lemma 9.2.19]). Since
Kyw)x = Kwx, +¢"(Kx,/an) = Kw/x, + (n — 1)p"(E1),
we have
,
ko +1=ki+1+ (n—1)by >nby+ > b
j=1
Since
Ordg(Iz) = min{bgdj + bj | 1<5< T'},
it follows that it is enough to show that
T
(5) nbo—Fij Zap-min{bodj+bj 1< S’I"}
j=1
If we put uj = bj/by for 1 < j <r and M =min{d; +u; | 1 < j <r}, then (5) becomes
T
(6) n—i—ZujZosz.
j=1
We define an increasing sequence k1 < ko < ... < ks = r such that
by = mas{j | 1< j <r,d; +u; = M},
and if ky < r, then
key1 = max{k > k¢ | di + b = min{dj + u; | j> /{g}}

With this notation, the inequality (6) becomes
(7) n—|—u1—|—...—|—u7«>

> .
diy + g, P
For 1 < g <s, let us put

k
n+ kqug, + qu:1(qu —dj) + Zj>kq Uy
dy, + ur, ‘

(8) Br, =

For every j < ki, we have uj > ug, + (dg, — d;), hence the left-hand side of (7) is > S, and

thus (7) follows if we show

(9) ﬁkl = Qp.

The key step is to show that if ¢ < s, then

(10) Br, = min{ag,, B,y }-
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Indeed, if we view By, as a function of uy,, since 0 < uy, < ug,,, +(dg, , —dg,), we see that Sy,
is bounded below by the minimum taken when ug, = 0 and when uy, = ug,,, + (qu+1 —dg, )
In the former case, the value is
k
n+ quzl(qu —dj) + Zj>kq Uj
dy,

while in the latter case, using the fact that w; > ug,,, + dk, , — dj for kg < j < kgy1, the

> Akgs
q

value is
k
n+ kQ(uktPrl + qu+1 - qu) + quzl(qu B dJ) + Zj>kq uj
Ukg iy T hgy

2 Brgsa-
We thus obtain the inequality in (10). Using the fact that ay, > «, for all ¢ gives

Bkl > min{apy ﬁks}
On the other hand, we have ks = r, and thus
dy + uy '
As above, if we view this as a function of u,., we see that it is bounded below by the minimum

Br, =

of its values when u, = 0 (which is a,) and the value of the limit when wu, goes to infinity
(which is 7 > ;). We thus conclude that S, > «;, completing the proof of (9), and thus
the proof of the theorem when 7%_, d;j > n.

Suppose now that 2521 d; < n. Note that since we assume d; > 2 for all j, we have r < n.
By Theorem 1.3, in order to show that a(Z) > «,, it is enough to show that if G is a prime

m-exceptional divisor on Y, then we have kg—;l

> «, (note that we keep the notation in the
first part of the proof). We choose again a chart U; on X; that intersects the image of G and

put by = ordg(z;) and b; = ordg(g;) for 1 < j < r. As before, it is enough to show that

(1) mhytbibeths > g

where ag = min{bod; +b; | 1 < j < r}. A key point is that, by construction, we have b, =0
(see Remark 4.2). This implies that

(12) ac < bod,.

On the other hand, since b; > ag — bod; for 7 > 1, we have

T
nby byttt 5 700+ 251 (06 — body) p oy (nmdim . —dr)by

ag - ac aG
where the last inequality follows from (12), using the fact that n > 7%, d;. This proves
(11) and completes the proof of the theorem. O

Remark 4.3. In the statement of Theorem 1.1, we made the assumption that d; > 2. The
general case can be easily reduced to this one: indeed, suppose that d; = 1 < dg41 for

some ¢ < r — 1. In this case, Z is isomorphic to a closed subscheme W of A"9 defined
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by homogeneous equations of degrees dy+1 < ... < d,, and which satisfies the hypothesis in
Theorem 1.1. Moreover, by [CDMO24, Proposition 4.14], we have a(Z) = a(W) + q.
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