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Abstract. We compute the minimal exponent of the affine cone over a complete intersec-
tion of smooth projective hypersurfaces intersecting transversely. The upper bound for the
minimal exponent is proved, more generally, in the weighted homogeneous setting, while
the lower bound is deduced from a general lower bound in terms of a strong factorizing
resolution in the sense of Bravo and Villamayor.

1. Introduction

Let X be a smooth complex algebraic variety. If Z is a nonempty hypersurface in X,

then the minimal exponent α̃(Z) was defined by Saito in [Sai93] using the Bernstein-Sato

polynomial of a local equation of Z, as follows. Recall that if Z is defined in an open subset

U of X by f ∈ OX(U), then the Bernstein-Sato polynomial of f is the monic polynomial

bf (s) ∈ C[s] of minimal degree such that

bf (s)f s ∈ DU [s] · f s+1.

Here f s is a formal symbol on which the sheaf DU of differential operators on U acts in the

expected way. By a result of Kashiwara [Kas76], all roots of bf are negative rational numbers.

It is easy to see, by specializing s to −1, that if Z|U := Z ∩U is nonempty, then bf (−1) = 0.

By definition, α̃(Z|U ) = α̃(f) is the negative of the largest root of bf (s)/(s + 1) (with the

convention that this is ∞ if bf (s) = s+ 1). In order to define α̃(Z), one takes an open cover

X =
⋃

i Ui and α̃(Z) = mini α̃(Z|Ui), where the minimum is over those i such that Z|Ui is

nonempty.

The minimal exponent of a hypersurface is an interesting invariant. A result due to Lichtin

and Kollár [Kol97] says that the minimal exponent refines an important invariant of singu-

larities in birational geometry, the log canonical threshold lct(X,Z); more precisely, we have

lct(X,Z) = min
{
α̃(Z), 1

}
.
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It was shown by Saito [Sai93] that α̃(Z) > 1 if and only if Z has rational singularities.

Moreover, we have α̃(Z) = ∞ if and only if Z is smooth. Recently, it was shown that the

minimal exponent characterizes the higher Du Bois property of the singularities of Z (see

[MOPW23] and [JKSY22]) and the condition for higher rational singularities (see [FL22] and

[MP22b]).

If Z has isolated singularities, then the minimal exponent can be described via asymptotic

expansions of integrals along vanishing cycles, see [Mal74] and [Mal75]. In this incarnation,

it has been extensively studied in [AGZV88] and is also known as the Arnold exponent of f .

In [CDMO24], the authors of the present article and Sebastián Olano introduced and stud-

ied an extension of the minimal exponent α̃(Z) to the case when Z is a complete intersection

in X of pure codimension r, for any r ≥ 1. The definition was in terms of the Kashiwara-

Malgrange filtration associated to Z (the corresponding description in the hypersurface case

is a result due to Saito [Sai16]). One of the main results in [CDMO24] gave a description in

terms of the minimal exponent of a hypersurface, as follows. Suppose that Z is defined in

X by f1, . . . , fr ∈ OX(X) and g =
∑r

j=1 fjyj ∈ OY (Y ), where Y = X ×Ar, with y1, . . . , yr

being the coordinates on Ar. If W = X×
(
Arr{0}

)
, then α̃(Z) = α̃(g|W ). This description

allows deducing the main properties of the minimal exponent of local complete intersections

from the corresponding properties of the invariant in the case of hypersurfaces. Results on

the V -filtration from [BMS06] allowed us to relate again the minimal exponent to the log

canonical threshold and to rational singularities: we have

lct(X,Z) = min
{
α̃(Z), r

}
and α̃(Z) > r if and only if Z has rational singularities. It was also shown in [CDMO24]

that one can use the minimal exponent to detect how far the Hodge filtration on the local

cohomology Hr
Z(OX) agrees with the pole order filtration, extending the corresponding result

for hypersurfaces from [Sai16] and [MP20]. In conjunction with results from [MP22a], this

implied that the minimal exponent detects the higher Du Bois property of local complete

intersections. The fact that it also detects higher rational singularities in this setting was

subsequently shown in [CDM22]. Finally, the minimal exponent can be described in terms

of the Bernstein-Sato polynomial bf (s), associated to f = (f1, . . . , fr), that was introduced

in [BMS06]: in this case we have bf (−r) = 0 and it was shown in [Dir23] that α̃(Z) is the

negative of the largest root of bf (s)/(s+ r).

While many of the basic properties of the minimal exponent are by now understood in the

local complete intersection case, there are few known explicit examples beyond codimension 1.

One example given in [CDMO24] is that of a complete intersection in An, with an isolated

singularity at 0, defined by homogeneous equations of the same degree d; in this case we have

α̃(Z) = n
d , extending a well-known formula for hypersurfaces. Our main result in this note is
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the following extension to the case when the homogeneous equations defining Z have possibly

different degrees:

Theorem 1.1. Let f1, . . . , fr ∈ C[x1, . . . , xn] be homogeneous polyomials that form a regular

sequence, with deg(fi) = di for 1 ≤ i ≤ r, and such that 2 ≤ d1 ≤ . . . ≤ dr. For every i, we

denote by Hi the hypersurface defined by fi in An and by Z the intersection H1 ∩ . . . ∩Hr.

If on An r {0} each Hi is smooth and
∑r

i=1Hi has simple normal crossings, then

(1) α̃(Z) = min
{
i+ 1

di
(n− d1 − . . .− di) | 1 ≤ i ≤ r

}
= p+ 1

dp
(n− d1 − . . .− dp),

where p is the smallest i ≤ r that satisfies d1 + . . . + di > n (with the convention that p = r

if there is no such i).

We are interested, in particular, in the case when α̃(Z) > lct(X,Z), that is, when α̃(Z) > r.

The formula in the theorem implies that this is the case if and only if
∑r

i=1 di < n. We also

recover the well-known facts that under the assumptions in the theorem, the pair (X, rZ)

is log canonical if and only if
∑r

i=1 di ≤ n and Z has rational singularities if and only if∑r
i=1 di < n.

We also note that if d1 = . . . = dr and we only assume that Z∩
(
Anr{0}

)
is smooth, then

after replacing each fi by a general linear combination of f1, . . . , fr, the Kleinman-Bertini

theorem implies the condition that on An r {0} each Hi is smooth and
∑r

i=1Hi has simple

normal crossings. Therefore the above theorem implies the formula for the minimal exponent

in [CDMO24, Example 4.23].

The upper bound for α̃(Z) in Theorem 1.1 can be extended to the weighted homogeneous

case, even without assuming that the equations themselves are homogeneous. The hypersur-

face case follows directly from a well-known formula for the minimal exponent of an isolated

singularity that is nondegenerate with respect to its Newton polyhedron and the semiconti-

nuity of the minimal exponent in families. We then obtain the following result for complete

intersections: consider on R = C[x1, . . . , xn] the grading such that deg(xi) = wi > 0 for

1 ≤ i ≤ n. For every nonzero f ∈ R, we denote by wt(f) the smallest degree of a monomial

xu = xu1
1 · · ·xun

n that appears with a nonzero coefficient in f .

Theorem 1.2. With the above notation, suppose that f1, . . . , fr ∈ (x1, . . . , xn)2 ⊆ R are such

that wt(fi) = di, for 1 ≤ i ≤ r, with d1 ≤ d2 ≤ . . . ≤ dr. If Z is a complete intersection of

pure codimension r in some neighborhood of 0, then

α̃0(Z) ≤ min
{
i+ 1

di
(w1 + . . .+ wn − d1 − . . .− di) | 1 ≤ i ≤ r

}
.

For the precise definition of α̃0(Z) the local version of the minimal exponent of Z, see

Section 2. We expect that if, in addition, f1, . . . , fr are homogeneous with respect to the above

grading and the hypersurfaces Hi defined by fi satisfy a suitable transversality assumption

on An r {0} (for example, each Hi is irreducible and
∑r

i=1Hi has simple normal crossings
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in An r 0}), then the inequality in Theorem 1.2 is an equality. When all fi have the same

degree, this can be proved as in [CDMO24, Example 4.23]. When the degrees are different,

however, we can only prove the assertion in the usual homogeneous case.

The key ingredient in the proof of the lower bound for α̃(Z) in Theorem 1.1 is a result

of independent interest, giving a lower bound for the minimal exponent of a local complete

intersection Z in X in terms of a suitable resolution of (X,Z): a strong factorizing resolution

in the sense of Bravo and Villamayor [BVU03]. Under the assumption that Z is generically

reduced, this is a proper morphism π : X̃ → X which is an isomorphism over the complement

X r Zsing of the singular locus of Z, with X̃ smooth, and such that the reduced exceptional

divisor E and the strict transform Z̃ of Z have simple normal crossings, and Z̃ is smooth.

Moreover, we have a factorization

(2) IZ · OX̃
= I

Z̃
· O

X̃
(−F ),

for an effective divisor F supported on E, where IZ and I
Z̃

are the ideals of Z and Z̃ in X

and X̃, respectively. Note that the usual Hironaka algorithm does not guarantee the latter

condition; the existence of strong factorizing resolutions for all generically reduced Z is the

main result of [BVU03]. Given such a resolution, we write E =
∑N

j=1Ej as the sum of prime

divisors and for every j, we denote by aj and kj the coefficients of Ej in the divisors F and,

respectively, the relative canonical divisor K
X̃/X

.

Theorem 1.3. Suppose that X is a smooth complex algebraic variety and Z is a reduced

subscheme of X that is a local complete intersection, of pure codimension r. If π : X̃ → X is

a strong factorizing resolution of (X,Z) as above, then

α̃(Z) ≥ min
1≤j≤N

kj + 1

aj
.

Note that if Z is a hypersurface in X, then the condition (2) is automatically satisfied,

hence a strong factorizing resolution is simply a log resolution of (X,Z) such that Z̃ is

smooth. In this case, the inequality in Theorem 1.3 was proved in [MP20, Corollary D] using

the theory of Hodge ideals (see also [DM22, Corollary 1.5] for a more elementary proof). We

deduce the general case in Theorem 1.3 by reducing it to the case of hypersurfaces. In order

to get the lower bound for α̃(Z) in Theorem 1.1, we construct an explicit strong factorizing

resolution of (An, Z).

2. An upper-bound in the weighted homogeneous case

Our goal in this section is to prove Theorem 1.2. Let us begin by recalling the local version

of the minimal exponent discussed in the Introduction. If Z is a local complete intersection in

the smooth variety X, of pure codimension r, and P ∈ Z, then for every open neighborhood

U of P , we have α̃(Z ∩ U) ≥ α̃(Z) and α̃(Z ∩ U) is constant if U is small enough. This

constant value is denoted by α̃P (Z). It is then easy to see that α̃(Z) = minP∈Z α̃P (Z). We
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refer to [CDMO24, Definition 4.16] and the discussion around it for details. Of course, α̃P (Z)

is defined if we only know that Z is a local complete intersection of codimension r at P . If

Z is a hypersurface defined by f , we also write α̃P (f) for α̃P (Z).

We begin with the following result in the case of hypersurfaces. We let R = C[x1, . . . , xn]

and use the notation in Theorem 1.2.

Proposition 2.1. If f ∈ R is nonzero and 0 ∈ Z is a singular point, then

α̃0(f) ≤ w1 + . . .+ wn

wt(f)
.

Proof. We write f =
∑

u∈Λ aux
u, with Λ finite and au 6= 0 for all u ∈ Λ. Let N ≥ 2 be such

that Nwi > wt(f) for all i. We consider the family of hypersurfaces parametrized by the

open subset U ⊆ A|Λ|+n, with the hypersurface corresponding to v =
(
(cu)u∈Λ, b1, . . . , bn

)
being defined by hv =

∑
u∈Λ cux

u + b1x
N
1 + . . .+ bnx

N
n (here U consists of those v such that

hv is nonzero). It is clear that for v ∈ U general, hv has an isolated singularity at 0 and it is

nondegenerate with respect to its Newton polyhedron P (recall that P is the convex hull of⋃
u(u+Rn

≥0), where the union over all monomials xu that appear with nonzero coefficient in

the equation h of the hypersurface). In this case, it is known that the minimal exponent at

0 of such a hypersurface is 1/c, where

c = min
{
t > 0 | (t, . . . , t) ∈ P

}
(see [Var81], [EL82], or [Sai88]). Note that P is the convex hull of

(
Λ∪{Ne1, . . . , Nen}

)
+Rn

≥0,

where e1, . . . , en is the standard basis of Zn. Since
∑n

i=1 uiwi ≥ wt(f) for all u ∈ Λ ∪
{Ne1, . . . , Nen}, it follows that

∑n
i=1 uiwi ≥ wt(f) for all u ∈ P , and thus c·

∑n
i=1wi ≥ wt(f).

On the other hand, it follows from the semicontinuity of minimal exponents (see [MP20, The-

orem E(2)]) that for every v′ ∈ U , we have α̃0(hv′) ≤ α̃0(hv) = 1/c, when v ∈ U general. In

particular, this applies for f , and we get

α̃0(f) ≤ 1

c
≤ w1 + . . .+ wn

wt(f)
.

�

Before giving the proof of Theorem 1.2, we give a lemma that describes the infimum in

this theorem.

Lemma 2.2. Let w ∈ R and let d1 ≤ . . . ≤ dr be positive integers. If for 1 ≤ i ≤ r, we put

αi := i+ 1
di

(w − d1 − . . .− di),

then the following hold:

i) If i ≤ r − 1 is such that di = di+1, then αi = αi+1.

ii) If i ≤ r − 1 and di < di+1, then αi ≥ αi+1 if and only if d1 + . . .+ di ≤ w.

ii) We have mini αi = αp, where p is the smallest i ≤ r that satisfies d1 + . . . + di > w

(with the convention that p = r if there is no such i).
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Proof. The first two assertions follow from the fact that for i ≤ r − 1, we have

αi − αi+1 =
(w − d1 − . . .− di)(di+1 − di)

didi+1
,

and the third assertion is an easy consequence. �

We can now prove the upper bound for the minimal exponent of complete intersections in

terms of the weights of the defining equations.

Proof of Theorem 1.2. For every i, with 1 ≤ i ≤ r, let

αi = i+ 1
di

(w1 + . . .+ wn − d1 − . . .− di),

and let p be such that αp = mini αi. By Lemma 2.2i), we may assume that if p > 1, then

dp−1 < dp.

Let g =
∑r

j=1 fjyj ∈ O(An ×Ar), where y1, . . . , yr are the coordinates on Ar. It follows

from the description of the minimal exponent of Z in terms of g given in the Introduction

that if U = Ar r {0} ⊇ U ′ = (yp 6= 0), then

α̃0(Z) = max
V 30

α̃(g|V×U ) ≤ max
V 30

α̃(g|V×U ′),

where V runs over the open neighborhoods of 0 in An. We put zj = yj/yp for 1 ≤ j ≤ r,

j 6= p, so z1, . . . , ẑp, . . . , zr can be viewed as coordinates on Ar−1. Since g is homogeneous of

degree 1 with respect to y1, . . . , yr, it follows that if we put

h = g/yp = f1z1 + . . .+ fp−1zp−1 + fp + fp+1zp+1 + . . .+ frzr ∈ O(An ×Ar−1),

then

α̃(g|V×U ′) = α̃(h|V×Ar−1)

(we use here the fact that the minimal exponent does not change by pull-back by a smooth

surjective morphism, see for example [CDMO24, Proposition 4.12]). We thus conclude that

(3) α̃0(Z) ≤ α̃(0,0)(h).

By assumption, we have fp ∈ (x1, . . . , xn)2, and thus h has a singular point at (0, 0). If we

consider the weight of zj to be dp − dj for 1 ≤ j ≤ p − 1 and ε > 0 for p + 1 ≤ j ≤ r, then

we see that wt(h) = dp, hence it follows from Proposition 2.1 that

(4) α̃(0,0)(h) ≤ 1

dp

(
w1 + . . .+ wn + (dp − d1) + . . .+ (dp − dp−1) + (r − p)ε

)
= αp +

r − p
dp

ε.

By combining (3) and (4), and letting ε go to 0, we obtain the inequality in the theorem. �
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3. A general lower bound via a strong factorizing resolution

In this section, we prove the lower bound on the minimal exponent in terms of a strong

factorizing resolution.

Proof of Theorem 1.3. We may and will assume that X is affine and Z is defined by a regular

sequence f1, . . . , fr ∈ OX(X). Let g = f1y1 + . . .+ fryr ∈ OY (Y ), where Y = X ×Ar, with

y1, . . . , yr being the coordinates on Ar. Let W = X ×
(
Ar r {0}

)
, so α̃(Z) = α̃(g|W ).

Consider now the morphism

ϕ = π × idAr : Ỹ = X̃ ×Ar → Y.

This is a projective morphism which is an isomorphism over the complement of Zsing ×Ar.

The exceptional divisors of ϕ are the Ei ×Ar, with 1 ≤ i ≤ N . Moreover, it follows from

the definition of a strong factorizing resolution that we can cover X̃ by open subsets Vj , such

that on each Vj ×Ar we can write

g ◦ ϕ|Vj×Ar = vj ·
r∑

i=1

hiyi,

where the divisor div(vj) defined by vj is supported on G = E ×Ar and h1, . . . , hr generate

the ideal of Z̃ in Vj . Moreover, the coefficient of Ei × Ar in div(vj) is ai. Note that if

Vj ∩ Z̃ = ∅, then
∑r

i=1 hiyi defines a smooth hypersurface in Vj ×Ar, that has simple normal

crossings with G.

By assumption, Z̃ is smooth, of codimension r in X̃, and has simple normal crossings

with E (that is, both E and E|
Z̃

are reduced simple normal crossing divisors). Therefore we

may and will assume that for every j such that Vj ∩ Z̃ 6= ∅, we have algebraic coordinates

x1, . . . , xn on Vj such that hi = xi for i ≤ r and E|Vj =
∑r+s

i=r+1 ai · div(xi).

Let ϕW : ϕ−1(W )→W be the restriction of ϕ over W . Note that on ϕ−1(W )∩ (Vj ×Ar),

with Vj ∩ Z̃ 6= ∅, the divisor defined by

(x1y1 + . . .+ xryr) ·
r+s∏

i=r+1

xaii

has simple normal crossings. Since g ◦ ϕ clearly defines a simple normal crossing divisor in

ϕ−1(W )∩(Vj×Ar) when Vj∩Z̃ = ∅, we conclude that ϕW is a log resolution of (W, div(g)|W )

which is an isomorphism over W r V (g). The exceptional divisors of ϕW are the E′i =

Ei×
(
Ar r {0}

)
and the relative canonical divisor of ϕW is

∑N
i=1 kiE

′
i. Moreover, the divisor

div(g)|W is reduced: its singular locus is contained in Zsing ×
(
Ar r {0}

)
(see [CDMO24,

Lemma 4.22]) and thus div(g) is generically reduced, hence reduced. In addition, its strict

transform on ϕ−1(W ) is smooth: this is clear on Vj ×
(
Ar r {0}

)
if Vj ∩ Z̃ = ∅, while if

Vj ∩ Z̃ 6= ∅, it follows from the fact that it is defined by
∑r

i=1 xiyi. We can thus apply the

lower bound on the minimal exponent of a hypersurface in terms of a log resolution (see
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[MP20, Corollary D] or [DM22, Corollary 1.5]) to conclude that

α̃(Z) = α̃(g|U ) ≥ min
1≤i≤N

ki + 1

ai
,

which is the assertion in the theorem. �

4. The formula in the homogeneous case

Our main goal in this section is to prove Theorem 1.1. In order to prove the lower bound

in the theorem, we will use Theorem 1.3. We thus proceed to describe a strong factorizing

resolution of (An, Z).

With the notation in Theorem 1.1, let π1 : X1 → An be the blow-up of the origin, with

exceptional divisor E1. Suppose that k ≥ 1 and 1 ≤ p1, p2, . . . , pk are such that

d1 = . . . = dp1 < dp1+1 = . . . = dp1+p2 < . . . < dp1+...+pk−1+1 = . . . = dp1+...+pk .

Note that p1 + . . . + pk = r. In order to simplify the notation, we put ej = dp1+...+pj

for 1 ≤ j ≤ k. We define a morphism π : Y → An to be the composition of π1 with∑k−1
i=1 (ei+1 − ei) smooth blow-ups, as follows. First, we consider (e2 − e1) blow-ups, each of

these blowing up the intersection of the previous exceptional divisor with the strict transforms

of H1, . . . ,Hp1 . We next consider (e3−e2) blow-ups, each of these blowing up the intersection

of the previous exceptional divisor with the strict transforms of H1, . . . ,Hp1+p2 , etc.

Proposition 4.1. With the above notation, the composition π : Y → An has the following

properties:

i) If r ≤ n− 1, then π is a strong factorizing resolution of (An, Z).

ii) If r = n, then π is a log resolution of the pair (An, Z).

Proof. We note that if r ≤ n − 1, then the assumption on Z implies that it is generically

reduced, hence reduced, since it is a complete intersection and thus Cohen-Macaulay. There-

fore, in this case, it makes sense to say that π is a strong factorizing resolution.

The blow-up X1 is covered by affine open charts U1, . . . , Un, where Ui has coordinates

xi, y1, . . . , yi−1, yi+1, . . . , yn

such that xj = xiyj for all j 6= i. Note that if IZ = (f1, . . . , fr), then

IZ · OUi = (xd1i g1, . . . , x
dr
i gr),

where gj = fj(y1, . . . , yi−1, 1, yi+1, . . . , yn) for 1 ≤ j ≤ r. Moreover, E1 ∩ Ui is defined by xi

and if r < n, then the strict transform Z̃ of Z on X1 is defined in Ui by (g1, . . . , gr), hence it

is smooth. Note that if k = 1 (that is, we have d1 = . . . = dr), then π1 is a strong factorizing

resolution when r < n and is a log resolution of (X,Z) for r = n. Therefore we are done in

this case.
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Suppose now that k > 1. We note that, by our assumption on f1, . . . , fr, the hypersurfaces

defined by xi, g1, . . . , gr in Ui are smooth and their sum has simple normal crossings. It follows

that for every point P ∈ Ui, we can find algebraic coordinates z0, . . . , zn−1 in a neighborhood

WP of P such that the ideal IZ · OWP
is equal to:

Case 1. (z1, . . . , zr). This is the case when P 6∈ E1, when we may assume that WP ∩E1 = ∅.
This case is clear: it follows from the definition of π that the morphism Y → X1 is an

isomorphism over WP and it is clear that above WP the condition for π to be a strong

factorizing resolution (if r < n) or a log resolution of (X,Z) (if r = n) is satisfied.

Case 2. (zd10 z1, . . . , z
dr
0 zr). This is the case when r < n and P lies on the hypersurfaces

defined by xi, g1, . . . , gr. Note that Z̃ is defined in WP by (z1, . . . , zr).

Case 3. (zd10 z1, . . . , z
dq
0 zq, z

dq+1

0 ), for some q < r. This is the case when P lies on E1 and

gj(P ) = 0 for j ≤ q, but gq+1(P ) 6= 0. After getting rid of some redundant generators, we

may assume that q = p1 + . . . + pm. If r < n, then we see that Z̃ does not meet WP in this

case.

We now consider the next blow-up π2 : X2 → X1 in our sequence: we blow up along

E1 ∩ H̃1 ∩ . . . ∩ H̃p1 , where H̃j denotes the strict transform of Hj on X1. Let’s describe π2

over the above open subset WP ⊆ Ui when we are in Case 2 or Case 3. Note that we are

blowing up along the zero locus of (z0, z1, . . . , zp1), which is smooth. Let Vj be the chart in

π−1
2 (WP ) given by

z` = u` for ` ∈ {j, p1 + 1, . . . , n} and z` = uju` for 0 ≤ ` ≤ p1, ` 6= j

for some j, with 1 ≤ j ≤ p1. An easy computation shows that IZ · OVj is generated by

ud1+1
j ud10 in both Cases 2 and 3. Since uj defines the π2-exceptional divisor and u0 defines

the strict transform of E1, we see that IZ · OVj is the ideal of a divisor supported on the

exceptional locus. Therefore the condition for a strong factorizing resolution (in the case

r < n) or for a log resolution (in the case r = n) will be trivially satisfied over Vj .

We next consider the chart V0 in π−1
2 (WP ) given by

z` = u` for ` ∈ {0, p1 + 1, . . . , n} and z` = u0u` for 1 ≤ ` ≤ p1.

Note that the π2-exceptional divisor is defined in this chart by u0. Again, an easy computation

shows that IZ · OV0 is equal to

(ue1+1
0 u1, . . . u

e1+1
0 up1 , u

e2
0 up1+1, . . . , u

ek
0 ur)

in Case 2 and to

(ue1+1
0 u1, . . . , u

e1+1
0 up1 , . . . , u

em+1

0 )

in Case 3 (we recall that m is such that q = p1 + . . . + pm). We thus see that if we are in

Case 2, after performing (e2 − e1) such blow-ups, we are in the situation where k is replaced

by k − 1: in the only charts that we need to consider, we have coordinates v0, v1, . . . , vn−1,
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such that the pull-back of IZ is equal to

(ve20 v1, . . . , v
e2
0 vp1+p2 , v

e3
0 vp1+p2+1, . . . , v

ek
0 vr).

If k > 2, then the next blow-up is along the ideal (v0, v1, . . . , vp1+p2), and the process continues

as above. In the end, we see that in the only charts that we need to consider, we have

coordinates w0, . . . , wn−1 such that the pull-back of IZ is wdr
0 · (w1, . . . , wr). Therefore, in

such a chart, the condition for having a strong factorizing resolution is satisfied.

Similarly, if we are in Case 3, then after the first (e2 − e1) + . . . + (em+1 − em) blow-

ups, in the only charts that we need to consider, we have coordinates w0, . . . , wn−1 such

that the pull-back of IZ is (w
em+1

0 ). Therefore, in this chart, we only have the ideal of a

divisor supported on the exceptional locus, so this satisfies the condition for π to be a strong

factorizing resolution when r < n and to be a log resolution when r = n. This completes the

proof of the proposition. �

Remark 4.2. With the notation in Proposition 4.1, it follows from the definition of π that if

r < n, then starting with X1, at each step we blow up a smooth center that is not contained

in the strict transform of Z on the respective variety. In fact, with the notation in the proof,

for every chart Ui on X1 and for every exceptional divisor on Y whose image in X1 intersects

Ui, we see that gr does not vanish along this image.

We can now prove the main result of this note.

Proof of Theorem 1.1. For every k, with 1 ≤ k ≤ n, we put αk = k + n−d1−...−dk
dk

. By

Lemma 2.2, we know that mink αk = αp, where p is as in the statement of the theorem. Since

the inequality

α̃(Z) ≤ αp

follows from Theorem 1.2, we only need to prove the opposite inequality.

Suppose first that
∑r

j=1 dj > n. Note that since α̃(Z) ≤ αn < r, we know that in this case

we have α̃(Z) = lct(X,Z), and thus only need to show that lct(X,Z) ≥ αp. For basic facts

about log canonical thresholds (including the definition), we refer to [Laz04, Chapter 9]. As

in the proof of Proposition 4.1, we consider the blow-up π1 : X1 → An of An, with exceptional

divisor E1. Note that KX1/An = (n−1)E1. We have seen in the proof of Proposition 4.1 that

we can cover X1 by affine open charts Ui, such that IZ · OUi = (xd1i g1, . . . , x
dr
i gr), where xi

defines E1 in Ui, and the divisors defined by xi, g1, . . . , gr are smooth and their sum has simple

normal crossings. We need to show that if G is a prime divisor on W , where ϕ : W → X1

is such that π1 ◦ ϕ is a log resolution of (X,Z), with the valuation ordG corresponding to

G, and if aG = ordG(IZ) and kG is the coefficient of G in KW/X , then kG+1
aG
≥ αp. Suppose

that the image of G on X1 intersects the chart Ui and let b0 = ordG(xi) and bj = ordG(gj)

for 1 ≤ j ≤ r. We may and will assume that b0 > 0: otherwise, since Z r {0} is smooth, of

codimension r in An r {0}, we have lct(An r {0}, Z r {0}) = r, and thus kG+1
aG
≥ r > αp.
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It is well-known that since the divisor div(xi) +
∑r

j=1 div(gj) has simple normal crossings, if

k′G is the coefficient of G in KW/X1
, then

k′G + 1 ≥ b0 + b1 + . . .+ br

(see, for example, the proof of [Laz04, Lemma 9.2.19]). Since

KW/X = KW/X1
+ ϕ∗(KX1/An) = KW/X1

+ (n− 1)ϕ∗(E1),

we have

kG + 1 = k′G + 1 + (n− 1)b0 ≥ nb0 +

r∑
j=1

bj .

Since

ordG(IZ) = min{b0dj + bj | 1 ≤ j ≤ r},

it follows that it is enough to show that

(5) nb0 +

r∑
j=1

bj ≥ αp ·min{b0dj + bj | 1 ≤ j ≤ r}.

If we put uj = bj/b0 for 1 ≤ j ≤ r and M = min{dj + uj | 1 ≤ j ≤ r}, then (5) becomes

(6) n+
r∑

j=1

uj ≥ αpM.

We define an increasing sequence k1 < k2 < . . . < ks = r such that

k1 = max{j | 1 ≤ j ≤ r, dj + uj = M},

and if k` < r, then

k`+1 = max{k > k` | dk + bk = min{dj + uj | j > k`}
}
.

With this notation, the inequality (6) becomes

(7)
n+ u1 + . . .+ ur

dk1 + uk1
≥ αp.

For 1 ≤ q ≤ s, let us put

(8) βkq :=
n+ kqukq +

∑kq
j=1(dkq − dj) +

∑
j>kq

uj

dkq + ukq
.

For every j < k1, we have uj ≥ uk1 + (dk1 − dj), hence the left-hand side of (7) is ≥ βk1 and

thus (7) follows if we show

(9) βk1 ≥ αp.

The key step is to show that if q < s, then

(10) βkq ≥ min{αkq , βkq+1}.
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Indeed, if we view βkq as a function of ukq , since 0 ≤ ukq ≤ ukq+1+(dkq+1−dkq), we see that βkq
is bounded below by the minimum taken when ukq = 0 and when ukq = ukq+1 + (dkq+1 −dkq).

In the former case, the value is

n+
∑kq

j=1(dkq − dj) +
∑

j>kq
uj

dkq
≥ αkq ,

while in the latter case, using the fact that uj ≥ ukq+1 + dkq+1 − dj for kq < j ≤ kq+1, the

value is

n+ kq(ukq+1 + dkq+1 − dkq) +
∑kq

j=1(dkq − dj) +
∑

j>kq
uj

ukq+1 + dkq+1

≥ βkq+1 .

We thus obtain the inequality in (10). Using the fact that αkq ≥ αp for all q gives

βk1 ≥ min{αp, βks}.

On the other hand, we have ks = r, and thus

βks =
n+ rur +

∑r
j=1(dr − dj)

dr + ur
.

As above, if we view this as a function of ur, we see that it is bounded below by the minimum

of its values when ur = 0 (which is αr) and the value of the limit when ur goes to infinity

(which is r > αr). We thus conclude that βk1 ≥ αp, completing the proof of (9), and thus

the proof of the theorem when
∑r

j=1 dj > n.

Suppose now that
∑r

j=1 dj ≤ n. Note that since we assume dj ≥ 2 for all j, we have r < n.

By Theorem 1.3, in order to show that α̃(Z) ≥ αr, it is enough to show that if G is a prime

π-exceptional divisor on Y , then we have kG+1
aG
≥ αr (note that we keep the notation in the

first part of the proof). We choose again a chart Ui on X1 that intersects the image of G and

put b0 = ordG(xi) and bj = ordG(gj) for 1 ≤ j ≤ r. As before, it is enough to show that

(11) nb0+b1+...+br
aG

≥ αr,

where aG = min{b0dj + bj | 1 ≤ j ≤ r}. A key point is that, by construction, we have br = 0

(see Remark 4.2). This implies that

(12) aG ≤ b0dr.

On the other hand, since bj ≥ aG − b0dj for j ≥ 1, we have

nb0+b1+...+br
aG

≥
nb0 +

∑r
j=1(aG − b0dj)
aG

= r + (n−d1−...−dr)b0
aG

≥ αr,

where the last inequality follows from (12), using the fact that n ≥
∑r

j=1 dj . This proves

(11) and completes the proof of the theorem. �

Remark 4.3. In the statement of Theorem 1.1, we made the assumption that d1 ≥ 2. The

general case can be easily reduced to this one: indeed, suppose that dq = 1 < dq+1 for

some q ≤ r − 1. In this case, Z is isomorphic to a closed subscheme W of An−q defined
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by homogeneous equations of degrees dq+1 ≤ . . . ≤ dr, and which satisfies the hypothesis in

Theorem 1.1. Moreover, by [CDMO24, Proposition 4.14], we have α̃(Z) = α̃(W ) + q.
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II, Monographs in Mathematics, vol. 83, Birkhäuser Boston, Inc., Boston, MA, 1988. Monodromy
and asymptotics of integrals; Translated from the Russian by Hugh Porteous; Translation revised
by the authors and James Montaldi. ↑2

[BVU03] A. Bravo and O. Villamayor U., A strengthening of resolution of singularities in characteristic
zero, Proc. London Math. Soc. (3) 86 (2003), no. 2, 327–357. ↑4
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