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The analysis of the time–frequency content of a signal is a classical problem in signal processing, 
with a broad number of applications in real life. Many different approaches have been developed 
over the decades, which provide alternative time–frequency representations of a signal each 
with its advantages and limitations. In this work, following the success of nonlinear methods 
for the decomposition of signals into intrinsic mode functions (IMFs), we first provide more 
theoretical insights into the so–called Iterative Filtering decomposition algorithm, proving an 
energy conservation result for the derived decompositions. Furthermore, we present a new time–
frequency representation method based on the IMF decomposition of a signal, which is called 
IMFogram. We prove theoretical results regarding this method, including its convergence to 
the spectrogram representation for a certain class of signals, and we present a few examples 
of applications, comparing results with some of the most well-known approaches available in the 
literature.

1. Introduction

The study of techniques for the time–frequency (TF) analysis of signals is a long lasting line of research in signal processing 
which have led over the decades to the development of many new algorithms and approaches, which are nowadays commonly 
used practically in many fields of research [22]. One of the main goals of these techniques is the derivation of what is called the 
TF representation (TFR) of a given signal. The TFR is a two-dimensional interpretation of a monodimensional signal, where one 
dimension relates to time and the other one to frequency. Studying the TFR of a signal allows in many cases to unveil its hidden 
features, especially the nonstationary ones.

There exist many types of TF analysis algorithms. Most of them belong to either linear or bilinear methods [22]. In linear 
methods, the signal is studied via inner products with (or correlations with) a pre-assigned basis. The most well-known methods 
are the windowed Fourier transform [14], and the wavelet transform [17]. However, in all these methods, and related ones, the 
chosen basis unavoidably leaves its peculiar footprint in the derived TFR, which may badly affect its interpretation when looking 
for properties of the signal. Moreover, the Heisenberg uncertainty principle limits the maximal achievable resolution of the TF plane 
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due to blurring or smearing out of the TFR. Different choices of the linear transform or basis can produce different trade-offs, but 
none is ideal [19,53]. In the bilinear methods for TFR, like the Wigner-Ville distribution and, more generally, the Cohen’s class or 
affine class, one can avoid introducing a basis with which the signal is compared or measured. As a consequence, some features 
can have a crisper and more focused representation in the TF plane with these methods. However, as a side effect, reading the 
TFR of a multi-component signal becomes more complicated by the presence of interference terms between the TFRs of the single 
components. These interferences lead in most cases the TF density to be even negative in some parts of the TF plane. This last flaw 
can be removed by some postprocessing of the representation, which, however, reintroduces unavoidably some blur in the TF plane 
[22]. Furthermore, the extraction of a signal, or part of it, is much less straightforward for bilinear than for linear TFRs. To make 
things worse, in many practical applications, the signals under study contain several components that are highly nonstationary, 
with time-varying characteristics that may be important to capture as accurately as possible. For such signals, both the linear and 
bilinear methods show their limitations. Bilinear methods TFRs end up being corrupted by many interference terms, and even if 
these interferences can be mitigated, the reconstruction of the individual components would still be a hard problem to solve. Linear 
methods are too rigid, or provide too blurred TFRs [19].

For all these reasons in the last few years, several approaches have been proposed, like the reassignment method [2,7], the 
scattering transform and the time-frequency scattering [1,35], the synchrosqueezing transform and the concentration of frequency 
and time [3,18–20]. For a more comprehensive list and further details on these methods please refer to [53]. All these methods allow 
to generate a much crisper and focused TF representation of a highly nonstationary multi-components signal. However, the problem 
of how to properly extract chirps from a given signal remains an open problem even with these approaches. This is because they have 
been developed for TF analysis and they have only limited abilities in the decomposition and separation of components, especially 
when the noise level increases [20]. New promising results in this direction are coming from the so-called de-shape algorithm and 
Ramanujan de-shape method [8,32]. Furthermore, the extension of these kinds of methods to higher dimensional and multivariate 
signals has been only partially explored so far [34].

Two decades ago a different kind of method was introduced, the so-called Hilbert Huang Transform (HHT) [28], a local and 
adaptive data-driven method which has an iterative “divide et impera” approach. The idea is simple but powerful: we first iteratively 
divide the signal into several simple oscillatory components via the so-called Empirical Mode Decomposition (EMD) method, then 
each of them is analyzed separately in the TF domain via the well-known Hilbert transform, i.e. the computation of the instantaneous 
frequency of each component [27,30]. This approach allows us to bypass in part the Heisenberg-Gabor uncertainty principle [22], 
overcoming, in particular, artificial spectrum spread caused by sudden changes. EMD allows to extract each simple oscillatory 
component via the subtraction of the signal moving average which is computed as the average between two envelopes connecting 
its minima and maxima [28]. These simple oscillatory components have been named intrinsic mode functions (IMFs) by Huang and 
collaborators [28] and are informally defined in that work as functions fulfilling two properties: the number of extrema and the 
number of zero crossings must either equal or differ at most by one; the mean between an upper envelope, connecting all the local 
maxima, and a lower envelope, connecting all the local minima of the function, has to be zero at any point.

The decompositions produced using the EMD algorithm proved to be successful for a wide range of applications, like, for example, 
[16,29,40,49,50,56]. Nevertheless, the EMD algorithm contains a number of heuristic and ad hoc elements that make hard its 
mathematical analysis, including an a priori convergence. This is because the core of the algorithm relies heavily on interpolates 
of signal maxima and minima. This very approach does have also some stability problems in the presence of noise, as illustrated 
in [54]. Several variants of the EMD have been recently proposed to address this last problem, e.g. the Ensemble Empirical Mode 
Decomposition (EEMD) [54], the complementary EEMD [55], the complete EEMD [51], the partly EEMD [59], the noise assisted 
multivariate EMD (NA-MEMD) [52]. They all allow us to address this issue as well as reduce the so-called mode mixing problem. 
But they pose new challenges both to our mathematical understanding of this kind of technique and to the ability of these methods 
to handle chirps, since they worsen the mode-splitting problem present in the EMD algorithm [55]. Given the attention that these 
methods received from the worldwide scientific community (Huang’s papers received far more than 30000 citations based on Scopus) 
many other research groups started working on this topic and proposed alternative approaches to signal decomposition. We recall the 
sparse TF representation [24,25], the Geometric mode decomposition [57], the Blaschke decomposition [15], the Empirical wavelet 
transform [23], the Variational mode decomposition [21], and similar techniques [37,43,45]. All of these methods are based on 
optimization with respect to an a priori chosen basis.

The only alternative method proposed so far in the literature which is based on iterations, and hence does not require any a priori 
assumption on the signal under analysis, is Iterative Filtering (IF) algorithm [33], its fast implementation based on FFT, named Fast 
Iterative Filtering (FIF) [11], and their generalizations, the Adaptive Local Iterative Filtering (ALIF) [10], and Resampled Iterative 
Filtering (RIF) algorithms [4,5] for the handling of signals containing strongly nonstationarities, like chirps, whistles, and multipath. 
These alternative iterative methods, although published only recently, have already been used effectively in a wide variety of applied 
fields like, for instance, in [31,36,38,39,41,42,46–48,58]. The structure of the IF, ALIF and RIF algorithms resemble the structure of 
the EMD method. Their key difference is in the way the signal moving average is computed, i.e., via convolution of the signal itself 
with an a priori chosen filter function, instead of using the average between two envelopes. This apparently simple difference opened 
the doors to the mathematical analysis of IF, ALIF, and RIF [4,9,11,13,26,49]. In particular, in [11], and [26], the mathematical 
analysis of the IF algorithm was conducted and a priori conditions for the convergence of that algorithm were identified. In [9]
the analysis of the boundary effects in the IF algorithm was conducted, and a formula to estimate a priori how much error can 
propagate inside each component of a decomposition was presented. In [49] the authors proposed a method which allows to reduce 
the boundary effects in all decomposition algorithm, including IF, and studied the ability of IF in separating components produced by 
stochastic processes. In [13] the authors, following the analysis done for EMD [60] and Synchrosqueezing [61], analyzed the ability 
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of IF in separating two stationary frequencies contained in a signal. Finally, in [4], [5] and [12] the authors studied the convergence 
of the ALIF method and proposed the alternative, faster, and convergent RIF algorithm.

In this work, we tackle the problem of building a fast, local, and reliable TFR method based on the IMFs decomposition produced 
by the IF–based methods. To do so, we present some new insight in the study of the IF–based methods, and we analyze in detail the 
properties of the derived IMFs. Based on these results we revise the newly introduced TFR technique, named IMFogram (pronounced 
like “infogram”), which proves to be a generalization of the spectrogram of a signal [44]. We point out that the IMFogram method 
requires only the IMF decomposition to produce in a fast, local, and reliable way the TFR of a signal. Therefore this method is 
not limited only to IF–based IMFs decompositions. IMFogram can be used to produce a TFR based on the IMFs derived by any 
decomposition method, like the EMD–based techniques, or any other signal decomposition method developed so far.

The rest of the work is organized as follows. In Section 2 we review the IF method, its fast implementation based on FFT, named 
Fast Iterative Filtering (FIF), and their main theoretical properties. Section 3 is devoted to presenting new theoretical insight into 
the decompositions produced by IF–based methods. Then, leveraging these new theoretical insights, we recall the IMFogram, and 
study its mathematical properties in Section 4. In Section 5 we show some numerical examples of applications of the newly proposed 
IMFogram to both artificial and real-life signals, and the comparisons with other methods, like spectrogram, also known as Short 
Time Fourier Transform, synchrosqueezing, and Hilbert transform-based TFRs. This work ends with an outlook on future research 
directions.

2. (Fast) iterative filtering

To begin, we recall briefly the Fast Iterative Filtering (FIF) method that decomposes a discrete signal 𝑠 into a collection of IMFs. 
To keep the discussion concise, our signal is always a finite sequence 𝑠 = (𝑠𝑗 )𝑛−10 in ℝ𝑛. This finite sequence should be viewed as a 
time series over the time interval [0, 𝐿], evenly sampled at the rate of 2𝐵. More precisely, for 𝑗 = 0, 1, … , 𝑛 − 1, 𝑛 = 2𝐵𝐿,

𝑡𝑗 =
𝑗
2𝐵 , 𝑠𝑗 = 𝑠(𝑡𝑗 ). (1)

Thus, (𝑠𝑗 ) can be viewed as a discretization of 𝑠. With a bit of abuse of notation, 𝑠 refers to both the underlining signal and the 
discretization of the signal. From a discrete signal 𝑠 = (𝑠𝑗 ) in ℝ𝑛, we can also view the signal 𝑠 as a continuous function by a linear 
interpolation of (𝑠𝑗 ) over the interval [0, 𝐿].

For convenience, instead of using the standard 2-norm of a vector in 𝑎 = (𝑎𝑘)1≤𝑘≤𝑛 ∈ℝ𝑛 which corresponds to a signal over a time 

domain [0, L], as 
(∑

𝑘
|𝑎𝑘|2

)1∕2

, throughout the paper, we use the normalized 2-norm:

‖𝑎‖2 =
√

𝐿
𝑛

(∑
𝑗
|𝑎(𝑡𝑗 )|2

)1∕2

where the function 𝑎 ∶ [0, 𝐿] →ℝ is obtained as the linear interpolation of the sequence (𝑎𝑘) over the interval [0, 𝐿].
The discrete Fourier transform of (𝑠𝑗 ), 𝑠̂𝑘 = 𝑠̂(𝜉𝑘), where

𝜉𝑘 =
𝑘
𝐿
, 𝑘 = 0,1,… ,𝑛− 1 (2)

and

𝑠̂(𝜉𝑘) =
𝑛−1∑
𝑗=0

𝑠𝑗𝑒−2𝜋𝑖𝑡𝑗 𝜉𝑘 . (3)

So the sampling rate for 𝑠̂, the discrete Fourier transform of 𝑠 is 1𝐿 over the frequency interval [0, 2𝐵].
For all the signals, and later any filters, that we will consider here, we assume that they are all pre-extended to eliminate any 

boundary error propagation that may occur due to the usage of Fast Fourier transformation (FFT). For a detailed discussion, please 
see [9,49].

A key object in the iterative filtering method is the filter. We recall the definition here for completeness.

Definition 1.

(1) A function 𝑤 ∶ [−𝑙, 𝑙] →ℝ is a filter if it is nonnegative, even, bounded, continuous, and ∫ℝ𝑤(𝑡) 𝑑𝑡 = 1.
(2) A double convolution filter 𝑤 is the self-convolution of a filter 𝑤̃, that is 𝑤 = 𝑤̃ ∗ 𝑤̃.
(3) The size, or the length, of a filter 𝑤 is half of its support: filter length of 𝑤 = 1

2 𝑚{𝑡 ∶𝑤(𝑡) > 0}.

The definition implies that convolutions of filters are filters. In particular, the range of the Fourier transform of a filter is in 
[−1, 1], and the range of the Fourier transform of a double convolution filter is in [0, 1] [11].
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We will also identify the filter 𝑤 with its discretization: 𝑤 = (𝑤𝑗 ) = (𝑤(𝑡𝑗 )), where 𝑡𝑗 is defined as in (1). Consider a signal 𝑠 = (𝑠𝑗 )
and a double convolution filter 𝑤 = (𝑤𝑗 ) in ℝ𝑛. Both sequences (𝑠𝑗 ) and (𝑤𝑗 ) are properly extended, as mentioned earlier so that 
there will be no boundary error when FFT is applied.

The moving average with respect to the filter 𝑤 is defined as the convolution

𝑤𝑠 =𝑤 ∗ 𝑠, (𝑤𝑠)𝑗 =
𝑛−1∑
𝑘=0

𝑤𝑘+𝑗𝑠𝑘. (4)

We subtract the moving average from the signal and obtain the variation of the signal around its 𝑤-moving average,

𝑤𝑠 = 𝑠− 𝑤 ∗ 𝑠, (𝑤𝑠)𝑗 = 𝑠𝑗 − (𝑤 ∗ 𝑠)𝑗 . (5)
Iterating 𝑝-times the linear operator 𝑤, we obtain the linear IMF operator,

𝑤,𝑝 = 𝑝
𝑤 (6)

Observe that in the frequency domain,
(̂𝑤𝑠

)
𝑗
= (1− 𝑤̂)𝑗 (𝑠̂)𝑗 , (̂𝑤,𝑝𝑠)𝑗 = (1− (𝑤̂)𝑗 )𝑝(𝑠̂)𝑗 . (7)

Taking the inverse FFT (iFFT), we obtain the IMF from 𝑠 with filter 𝑤 and 𝑝 iterations:

IMF = IMF𝑤,𝑝 = iFFT(̂𝑤,𝑝𝑠). (8)
The algorithm would run infinitely many times. To have finite time computations it is possible to use a stopping criterion. In the 

literature, the standard stopping criterion used [33] is the relative error in norm 2
‖𝑝+1

𝑤 (𝑠)− 𝑝
𝑤(𝑠)‖2

‖𝑝
𝑤(𝑠)‖2

≤ 𝛿. (9)

We recall the following theorem from [11], which guarantees that the difference of consecutive iterations of the variation opera-
tors converges to zero as the number of iterations increases.

Theorem 1 ([11]). Let 𝑠 = (𝑠𝑗 ) be a discrete signal with a double convolution filter 𝑤 = (𝑤𝑗 ). Then for all 𝑝,
‖‖‖𝑝+1

𝑤 (𝑠)− 𝑝
𝑤(𝑠)

‖‖‖2 ≤ 1
𝑒𝑝

‖𝑠‖2. (10)

As we see, an IMF depends on choices of the filter 𝑤 and the number of iterations 𝑝. Theorem 1 provides the theoretical 
justification for the stopping criterion for the inner loop of the following FIF algorithm. In practice, the number of iterations for the 
inner loop is much smaller than the theoretical bound.

Algorithm 1 Fast Iterative Filtering IMF = FIF(𝑠), 𝛿 > 0
IMF = {}
while the number of extrema of 𝑠 ≥ 2 do

compute the filter length 𝑙 for 𝑠 and the corresponding filter 𝑤
𝑠̂ = FFT(𝑠)
𝑤̂ = FFT(𝑤)
while ‖𝑠𝑚+1 − 𝑠𝑚‖2 > 𝛿‖𝑠‖2 do

(𝑠𝑚+1)𝑗 = (̂𝑤,𝑚𝑠)𝑗 , for 𝑗 = 0, ..., 𝑛 − 1
𝑚 =𝑚 + 1

end while
IMF = IMF∪ {iFFT(𝑠̂𝑚

)
}

𝑠 = 𝑠 − iFFT(𝑠̂𝑚
)

end while
IMF = IMF∪ {𝑠}

In [11] we proved the convergence of FIF

Theorem 2 ([11]). Given a signal 𝑠 ∈ ℝ𝑛, and a filter vector 𝑤 derived from a symmetric filter ℎ convolved with itself. Fixed 𝛿 > 0, then, 
for the minimum 𝑁0 ∈ℕ such that the stopping criterion (9) is satisfied, the first IMF contained in 𝑠 is given by

IMF = iFFT((𝐼 − 𝐹𝐹𝑇 (𝑤))𝑁0FFT(𝑠)) (11)

Regarding the filter, we choose a double convolution filter 𝑤0 like the Fokker-Plank filters [10], and for the length 𝑙 estimation, 
following [33], we compute
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𝑙 ∶= 2
⌊
𝜒 𝑛
𝑘

⌋
(12)

where 𝑛 is the length of the vector 𝑠, 𝑘 is the number of its extrema, 𝜒 is a tuning parameter chosen between 1.1 and 2, and usually 
fixed to 1.6, and ⌊⋅⌋ rounds a positive number to the nearest integer closer to zero. We point out that this formula computes some 
sort of average highest frequency contained in 𝑠.

Another possible approach could be using the Fourier spectrum of 𝑠 and the identification of its highest frequency peak. The filter 
length 𝑙 can be chosen to be proportional to the reciprocal of this value.

The Fokker-Plank filters, as well as the approaches just described for the computation of the filter length 𝑙 are pretty standard, 
we welcome the readers to design different filters.

The computation of the filter length 𝑙 is a crucial step of the FIF technique [13]. Clearly, 𝑙 is strictly positive, and, more impor-
tantly, it is based solely on the signal itself. This last property makes the method nonlinear.

In fact, if we consider two distinct signals 𝑠 and 𝑧 of the same length over the same time interval with the same sampling rate, 
then in general there is no relationship between the filter length associated with 𝑠, 𝑧, and 𝑠 + 𝑧. Hence, if IMF1(∙) represents the first 
IMF extracted by FIF from a signal, then

IMF1(𝑠+ 𝑧) ≠ IMF1(𝑠) + IMF1(𝑧).

3. New theoretical insights in nonstationary signals decomposition

In this section we present new theoretical insights into the decompositions produced using FIF–based methods and on the time-
frequency representation for nonstationary signals based on the IMFs. Using these results, we can now study a new tool to study 
nonstationary signals named IMFogram, which was recently introduced in [6] but was not discussed in detail.

It has been well established that the 2-norm represents the energy for a signal, either discrete or continuous. It follows from the 
Parseval-Plancherel identity that Fourier transform is an isometry, therefore the 2-norm of an 𝐿2 signal is the same as the 2-norm of 
its Fourier transform. Here we propose a new energy norm for a signal, the 𝐿1 Fourier Energy, when it is finite.

Definition 2 (𝐿1 Fourier Energy of a signal 𝑠). Given a signal 𝑠, its 𝐿1 Fourier Energy is defined as

𝐸1(𝑠) = ||𝑠̂||1. (13)
In particular, if 𝑠 = (𝑠𝑗 ) ∈ℝ𝑛, then 𝐸1(𝑠) =

∑
𝑘
|𝑠̂(𝜉𝑘)| where 𝜉𝑘 is defined as in (2).

Definition 3 (Conservation of 𝐿1 Fourier Energy). Let 𝑠 ∈ℝ𝑛 and 𝑠 =∑
𝑘 𝜙𝑘 be a decomposition of 𝑠. We say that the decomposition 

conserves the signal 𝐿1 Fourier Energy if and only if

𝐸1(𝑠) =
∑
𝑘
𝐸1(𝜙𝑘) (14)

Definition 4 (Unwanted oscillations). Let 𝑠 ∈ℝ𝑛 and 𝑠 =∑
𝑘 𝜙𝑘 be a decomposition of 𝑠. The decomposition {𝜙𝑘} contains unwanted 

oscillations if there exists 𝜉 such that
∑
𝑘

|||𝜙𝑘(𝜉)
||| > ||𝑠̂(𝜉)|| (15)

Our new theoretical insight is that Algorithm 1 will not produce any unwanted oscillation and the decomposition preserves the 
𝐿1 Fourier Energy norm.

Theorem 3. Let 𝑠 ∈ℝ𝑛 and 𝛿 > 0. Apply Algorithm 1 with 𝑤 a double convolution filter, and we have 𝑠 =
𝑚∑
1
IMF𝑘 + 𝑟, where 𝑟 is a trend. 

Then this decomposition preserves the 𝐿1 Fourier energy and produces no unwanted oscillations.

Proof. Following Algorithm 1, let 𝑠(1) = 𝑠, and 𝑤1 be the associated double convolution filter. Then

IMF1 = 𝑤1 ,𝑝1 (𝑠
(1))

for some positive integer 𝑝1 determined by 𝛿, and

ÎMF1(𝜉) = (1− 𝑤̂1(𝜉))𝑝1𝑠(1)(𝜉).

Inductively, for 𝑘 = 1, 2, ..., 𝑚 − 1, define

𝑠(𝑘+1) = 𝑠(𝑘) − IMF𝑘, ÎMF𝑘+1(𝜉) = (1−𝑤𝑘+1(𝜉))𝑝𝑘+1𝑠(𝑘+1)(𝜉),
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where 𝑤𝑘 is the double convolution filter associated with 𝑠(𝑘) and 𝑝𝑘 is associated with the stopping criterion 𝛿. It follows immediately 
that for 𝑘 = 1, 2, … , 𝑚

ÎMF𝑘(𝜉) = 𝑠̂(𝜉)(1−𝑤𝑘(𝜉))𝑝𝑘
𝑘−1∏
𝑗=1

(
1− (1− 𝑤̂𝑗 (𝜉))𝑝𝑗

)
.

Define 𝑓𝑘(𝜉) = (1 −𝑤𝑘(𝜉))𝑝𝑘
∏𝑘−1

𝑗=1
(
1− (1− 𝑤̂𝑗 (𝜉))𝑝𝑗

) and 𝑓0(𝜉) = 𝑟̂(𝜉). Observe that
𝑚∑

𝑘=0
𝑓𝑘(𝜉) = 1, 0 ≤ 𝑚∑

𝑘=1
𝑓𝑘(𝜉) ≤ 1, for all sampling points 𝜉,

therefore, 0 ≤ 𝑓0(𝜉) = 𝑟̂(𝜉) ≤ 1. It follows immediately that
∑
𝑘

|||ÎMF𝑘(𝜉)
||| =

𝑚∑
𝑘=1

𝑓𝑘(𝜉) ||𝑠̂(𝜉)|| ≤ ||𝑠̂(𝜉)|| .

The conservation of the 𝐿1 Fourier Energy follows from
𝑚∑

𝑘=0
||ÎMF𝑘||1 =

𝑚∑
𝑘=0

∑
𝑗
𝑓𝑘(𝜉𝑗 )

|||𝑠̂(𝜉𝑗 )
||| =

∑
𝑗

𝑚∑
𝑘=0

𝑓𝑘(𝜉𝑗 )
|||𝑠̂(𝜉𝑗 )

|||

=
∑
𝑗

|||𝑠̂(𝜉𝑗 )
||| = ||𝑠̂||1 □

An important result that follows from Theorem 3 is that, intuitively speaking, the Fourier transforms of the first IMF contains, 
for every fixed frequency 𝜉, a percentage, precisely 𝑓1(𝜉) = (1 − 𝑤̂1(𝜉))𝑝1 , of 𝑠̂(𝜉), i.e. the original signal Fourier transforms at 
frequency 𝜉. Subsequent IMFs contain at 𝜉 a percentage of the leftover signal Fourier transforms in 𝜉. For instance the second IMF 
Fourier transform contains at 𝜉 the percentage 𝑓2(𝜉) = (1 − 𝑤̂2(𝜉))𝑝2

(
1− (1− 𝑤̂1(𝜉))𝑝1

), which is the (1 − 𝑤̂2(𝜉))𝑝2 of the percentage (
1− (1− 𝑤̂1(𝜉))𝑝1

) leftover in the signal after subtracting the first IMF. The very same reasoning applies to all the subsequent IMFs. 
This observation allows us to state in an intuitive way that, when we add together all the IMFs from the first to the 𝑚-th one, the ∑𝑚

𝑘=1 ÎMF𝑘(𝜉) is given by the complex number 𝑠̂(𝜉) multiplied by a real number in the interval [0, 1]. Furthermore, this number is 
strictly monotonically increasing and tends to 1 as 𝑚 ∈ ℕ grows.

Furthermore, this theorem justifies our definition of 𝐿1 Fourier Energy, energy conservation, and what can be considered as an 
unwanted oscillation potentially produced by FIF methods. This implies also that the conservation of 𝐿1 Fourier Energy in FIF–based 
methods is all we need to guarantee the meaningfulness of the decomposition. In particular, Theorem 3 allows us to conclude that, 
when we apply FIF to any signal, the IMFs produced do not contain any energy contribution coming from the filter 𝑤. The oscillations 
contained in the IMFs they are all originated from the energy contained in the signal under investigation. The filter 𝑤 contributes 
only to the way this energy is split among the different IMFs.

It is important to point out that unwanted oscillations and mode-mixing are two distinct concepts. Unwanted oscillations represent 
energy injected in the IMFs by the decomposition method, whereas mode-mixing represents the presence of two or more frequencies 
in a single IMF [54]. Theorem 3 guarantees that FIF will not produce unwanted oscillation in the decomposition of any signal. 
However, based on this theorem, nothing can be concluded regarding the mode-mixing in a decomposition produced by FIF. All is 
known so far is that, based on numerical results, the IMFs produced by FIF are close to be mutually orthogonal, if the filter length 
selection is done properly and following the information contained in the data. This implies that mode-mixing is almost absent in 
a decomposition produced by FIF. Nevertheless, studying this problem goes beyond the scope of the present work. We leave it to 
future work.

3.1. Example of FIF with a bad choice for the filter

If we run FIF with a filter that is not a double convolution filter we may end up introducing unwanted oscillations in the 
decomposition.

In Fig. 1, left panel, we plot the signal 𝑠(𝑡) obtained as composition of the two non-stationary components

𝑠1(𝑡) = cos
(
480𝜋𝑡2 + 240𝜋𝑡

)

𝑠2(𝑡) = cos
(
𝜋𝑡3 + 36𝜋𝑡2 + 24𝜋𝑡+ 2𝜋

)
, where 𝑡 ∈ [0, 1]. (16)

In Fig. 1, the central panel, it is shown the FIF decomposition into two IMFs obtained using a Fokker-Planck filter [10], which has 
not been convolved with itself. It is already evident from this plot that the algorithm is not converging to a meaningful solution and 
that unwanted oscillations become present. If we look at the absolute values of the Fourier coefficients of the original signal versus 
the summation of the absolute values of the Fourier coefficients of two IMFs produced, Fig. 2 left column, we have the confirmation 
that the 𝐿1 Fourier Energy of the signal is clearly not conserved in this case.

If, instead, we consider the same Fokker-Planck filter used in the previous passage and, before applying it in the FIF algorithm, 
we convolve it with itself, then, by Theorem 3, we are guaranteed a priori that the 𝐿1 Fourier Energy of the signal will be conserved 
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Fig. 1. First example: FIF run with a bad choice of the filter. Left panel, signal. Central panel, FIF decomposition using a Fokker-Planck filter without convolving it 
with itself. Right panel, FIF decomposition using a filter obtained as convolution of a Fokker-Planck filter with itself.

Fig. 2. First example. First row: the absolute value of the signal FFT compared with the sum of the absolute values of the IMFs FFT. Left panel, FIF with a bad choice 
of the filter, right panel, FIF with a double convolution filter. Second row the differences between the absolute value of the signal FFT and the sum of the absolute 
values of the IMFs FFT, left when the filter does not guarantee the convergence of FIF, right when the filter is chosen appropriately. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. Second example. Left panel, the signal. The central panel, FIF decomposition with a double convolution filter. Right panel, EMD decomposition.

and, even more importantly, no unwanted oscillation will appear. This is confirmed by looking at the numerical results plotted in 
Fig. 1 right panel, where the newly produced IMFs are depicted and no unwanted oscillations are visible naked eye. Furthermore, the 
absence of unwanted oscillations is confirmed also by looking at the absolute values of the Fourier coefficients of the original signal 
versus the summation of the absolute values of the Fourier coefficients of these two newly obtained IMFs, Fig. 2 right column. The 
differences between these two curves, which are plotted in the bottom row, second column of Fig. 2, is around machine precision.

3.2. Example of EMD decomposition

The previous definition of unwanted oscillations has been tailored on IF–based technique decompositions, but it can be tested 
also on other signal decompositions. For instance, the EMD algorithm is well known to be unstable in the presence of noise [54]. In 
this example, we compare the FIF and EMD decomposition of a nonstationary signal 𝑠(𝑡) = 𝑠1(𝑡) + 𝑠2(𝑡), where 𝑠1 and 𝑠2 are defined 
in (17), perturbed by a component 𝑠3(𝑡), which is stationary in frequency at 200 Hz, and whose amplitude 𝐴(𝑡) is a white Gaussian 
noise distribution whose four statistical momenta are 𝜇 = 0, 𝜎 = 0.18, skewness 0.17 and kurtosis 6.

𝑠1(𝑡) = cos
(
50𝜋𝑡2 + 100𝜋𝑡

)

𝑠2(𝑡) = cos
(
−10𝜋𝑡2 + 40𝜋𝑡

) (17)
𝑠3(𝑡) =𝐴(𝑡) cos(400𝜋𝑡), where 𝑡 ∈ [0, 1].

From the rightmost panel of Fig. 3, we can see that a mode mixing problem arises when we apply EMD to decompose the signal. 
This is due to the local instability of the decomposition that affects the classical EMD method [54]. Many generalizations of the EMD 
have been proposed in the last decade to fix this issue, as we mentioned in the introduction. It is important to recall here that the IF 
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Fig. 4. Second example. The absolute value of the signal FFT compared with the sum of the absolute values of the IMFs FFT when we apply FIF or EMD decomposition, 
respectively left and right columns.

and FIF algorithms are not prone by construction to mode mixing. In Fig. 4 we plot the absolute values of the signal FFT as well as 
the sum of the absolute values of the IMFs FFT, for both the FIF and EMD decomposition, as well as their differences, bottom row. 
From these results, it is evident that FIF, as expected from the theory, conserves the 𝐿1 Fourier Energy of the signal, whereas EMD 
decomposition does not conserve it. However, we remind that this result does not allow us to derive any further conclusion on the 
EMD, more than the mode mixing is reflecting, as expected, also in the frequency domain. Theorem 3, in fact, can be proved only 
for FIF algorithm.

4. On the time-frequency representation of the IMFs

In this section, we recall the IMFogram technique for the time-frequency representation of signals, which was first introduced in 
[6]. Here we will give a more in-depth analysis of the IMFogram and comparisons to other time-frequency representations.

It is by design that each IMF has a small range of frequency with a relatively large amplitude. With this in mind, we start by 
defining the local amplitude, and local frequencies of an IMF.

It is important to point out that classical methods based on Fourier and wavelet transforms implicitly assume that each component 
contained in the signal presents only interwave modulation, i.e. modulation from one period to the next one, in frequency and 
amplitude, and not intrawave modulation, i.e. modulation inside each period. This is a consequence of the choice of sinusoidal bases 
in the Fourier transform, or the choice of a fixed predefined mother wavelet that is used to build all other wavelets in the wavelet 
transform. From now on, following the same kind of reasoning, we make the assumption that each component contained in the 
signal presents only interwave modulation in frequency and amplitude, and not intrawave modulation. This is a strong assumption, 
however, it allows us to build a time-frequency representation based on IMFs which, as we will prove in the following, converges 
to the spectrogram representation for a certain class of signals. Developing a time-frequency representation based on IMFs that can 
capture the intrawave modulations contained in them remains an open problem that deserves to be studied in future work.

Definition 5 (Instantaneous amplitude and Instantaneous frequency function for an IMF). Fix an IMF = (IMF(𝑡𝑗 ))𝑛−10 .

(1) Let 𝑔 be the linear interpolation of the local maximum of |IMF|. The instantaneous amplitude function for this IMF, is defined as 
𝑖𝐴IMF ∶ [𝑡0, 𝑡𝑛−1] →ℝ, the linear interpolation of (𝑡𝑗 , 𝑖𝐴IMF(𝑡𝑗 )), where 𝑖𝐴IMF(𝑡𝑗 ) =max{𝑔(𝑡𝑗 ), |IMF(𝑡𝑗 )|}.

(2) Let 𝑓 be the linear interpolation of IMF(𝑡𝑗 ) over the interval [𝑡0, 𝑡𝑛−1], and denote the zero crossings of 𝑓 by {𝑧1 < 𝑧2 <⋯ < 𝑧𝑝}. 
For 𝑗 = 1, 2, … , 𝑝, define 𝑦𝑗 = 1

𝑧𝑗+1−𝑧𝑗
, 𝑧0 = 𝑡0, and 𝑧𝑝+1 = 𝑡𝑛−1, 𝑦0 = 𝑦1, 𝑦𝑝+1 = 𝑦𝑝. The instantaneous frequency function, 𝑖𝐹 IMF ∶

[𝑡0, 𝑡𝑛−1] →ℝ is the linear interpolation of {(𝑧𝑗 , 2𝑦𝑗 )}𝑝+1𝑗=0 .

The instantaneous amplitude and instantaneous frequency of IMF at 𝑡𝑗 is 𝑖𝐴IMF(𝑡𝑗 ) and 𝑖𝐹 IMF(𝑡𝑗 ) respectively. By slightly abuse of no-
tation, if we identify the discrete sequence IMF with its linear interpolation function, the instantaneous amplitude and instantaneous 
frequency of IMF at 𝑡 ∈ [𝑡0, 𝑡𝑛−1] is simply 𝑖𝐴IMF(𝑡) and 𝑖𝐹 IMF(𝑡) respectively.

We observe that the choice of the envelope in the computation of the instantaneous amplitude and frequency is not stringent 
for the IMFogram method, since all that is needed in this context is the computation of a local amplitude and frequency which is 
produced as an average of the instantaneous values. In the following, to construct the envelopes, we use linear interpolation for 
simplicity.

As one knows, the concept of instantaneous frequency and amplitude are not universally accepted. The purpose of the last 
definition is to fix the terminology and not to start a philosophical discussion. Our goal is to use the instantaneous frequency and 
amplitude to define a version of local frequency and amplitude.

Fix the size of the time window to be the positive integer 𝐽 . Consider the 𝑛 × 𝑛 matrix (for simplicity, we assume that 𝑛 is a 
multiple of 𝐽 ) 𝑇 , the averaging matrix, defined as
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𝑇𝑖,𝑘 =
{

1∕𝐽 , 1 + (𝑝− 1)𝐽 ≤ 𝑖,𝑘 ≤ 𝑝𝐽 , for 𝑝 = 1,2,… ,𝑛∕𝐽
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where 𝑇𝑖,𝑘 is the (𝑖, 𝑘) - entry of 𝑇 . The operator norm for 𝑇 is ‖𝑇 ‖ = 1, with respect to the normalized 2-norm.
Similarly for the 2-norm of a localized function. Let 𝑠 = (𝑠𝑗 ) be a vector in ℝ𝑛 and 𝑡𝑗 is defined as in (1) if [𝑎, 𝑏] ⊂ [0, 𝐿] in the 

time domain, with 𝑎 = 𝑡𝑖 and 𝑏 = 𝑡𝑖+𝑘, then the local 2-norm of 𝑠 over [𝑎, 𝑏] is

‖𝑠|[𝑎,𝑏]‖2 = 𝐿
𝑛

( ∑
0≤𝑗≤𝑘

|𝑠(𝑡𝑖+𝑗 )|2
)1∕2

(18)

Next, we define the local amplitude and local frequency of an IMF. In practice, we observe that for any interval [𝑎, 𝑏] that 
is comparable to the filter length, say the length of [𝑎, 𝑏] is 2 to 5 times the length of the filter length, then ‖IMF|[𝑎,𝑏]‖2 and 
‖𝑖𝐴IMF|[𝑎,𝑏]‖2 are comparable. This is the base for the following definition of local amplitude.

Definition 6 (Local amplitude and Local frequency of an IMF). Given an IMF ∈ ℝ𝑛 and let 𝑖𝐴IMF ∈ ℝ𝑛 and 𝑖𝐹 IMF ∈ ℝ𝑛 be the corre-
sponding instantaneous amplitude and frequency, respectively. The average of each of them over a segment of length 𝐽 is the local 
amplitude LAIMF and local frequency LFIMF, respectively. That is

LAIMF = 𝑇 (𝑖𝐴IMF), LFIMF = 𝑇 (𝑖𝐹 IMF)

As we have observed above, ‖𝑇 ‖ = 1, thus, we have

‖LAIMF‖2 ≤ ‖𝑖𝐴IMF‖2.
Leveraging on the previous results we can introduce the TFR method named IMFogram, whose pseudocode for the discrete setting 

is detailed in Algorithm 2.

Algorithm 2 IMFogram 𝐴 = IMFogram(IMFs)
𝑀 number of IMFs
𝑁 signal length
𝑅 number of overlapping time windows 𝐼𝑗 = [𝑎𝑗 , 𝑏𝑗 ]
for 𝑘 = 1 to 𝑀 do

Compute the local amplitudes LA(𝑘)
𝐼𝑗

Compute the local frequencies LF(𝑘)𝐼𝑗
for 𝑗 = 1 to 𝑅 do

𝐴(LF(𝑘)𝐼𝑗
, 𝑗) =𝐴(LF(𝑘)𝐼𝑗

, 𝑗) + LA(𝑘)
𝐼𝑗

(19)

end for
end for
return 𝐴

The proposed TFR method requires as input the IMF decomposition of a given signal. In this work, based on the theoretical results 
proved so far in the literature [11], we opt to use the IMFs produced by the FIF method. However, we point out, that any other 
alternative decomposition techniques proposed in the literature which produce IMFs can be used. As output, the IMFogram produces 
a matrix 𝐴 which contains the local amplitudes of the various IMFs distributed by rows and columns depending on the corresponding 
local frequency and time window, respectively.

Regarding the choice of the time window, the IMFogram differs from the spectrogram, or similar TFR methods, since it does not 
require a clever choice of the time window length. The sliding time window is basically required in the IMFogram to reduce the 
number of columns of the output matrix 𝐴. The user, in fact, can choose as the length of the sliding time window a value that goes 
from one sample point to the length of the signal itself.

Another important result concerning the FIF method is the following theorem proved in [13]

Theorem 4. Given the signal 𝑠 ∈ ℝ𝑝 defined as 𝑠(𝑥𝑘, 𝑎, 𝑓 ) = cos(2𝜋𝑥𝑘) + 𝑎 cos(2𝜋𝑓𝑥𝑘 + 𝜙), 𝑘 ∈ [1, … 𝑝], sampled at Fs = 1
𝑇 ≫ 1 sam-

ples/sec such that 𝑝 = 𝑛 1
𝑇 , where 𝑓 ∈ ( 1𝑛 , 1), assuming 𝑤 is a double convolution filter, whose filter length measures 2𝐿 + 1, such that the 

smallest positive zero in the DFT of 𝑤 corresponds to frequency 1.
Then FIF algorithm without stopping criterion can always resolve 𝑠 into the two components cos(2𝜋𝑥𝑘) and 𝑎 cos(2𝜋𝑓𝑥𝑘 + 𝜙), as far as 

𝑓 ≤ 1 − 1
𝑛 .

As an immediate corollary of this theorem, we have that
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Corollary 1. Given a multicomponent signal 𝑠 =∑𝑁
𝑗=1 𝑎𝑗 cos(2𝜋𝑓𝑗𝑥𝑘 + 𝜙𝑗 ), 𝑘 ∈ [1, … 𝑝], sampled at Fs = 1

𝑇 ≫ 1 samples/sec such that 
𝑝 = 𝑛 1

𝑇 , where 𝑓𝑗 ≪
1
2𝑇 , ∀ 𝑗 = 1, … , 𝑁 , 𝑓𝑗+1𝑓𝑗

∈ ( 1𝑛 , 1 −
1
𝑛 ), ∀ 𝑗 = 1, … , 𝑁 − 1, and 𝑎𝑗𝑎ℎ = O(1), ∀𝑗, ℎ = 1, … , 𝑁 . Assuming that to extract 

each IMF component we are using a double convolution filter 𝑤𝑗 , whose filter length measures 2𝐿𝑗 +1, such that the smallest positive zero in 
the DFT of 𝑤𝑗 corresponds to the frequency 𝑓𝑗 .

Then FIF algorithm without stopping criterion can always resolve 𝑠 into 𝑁 IMF components 𝑎𝑗 cos(2𝜋𝑓𝑗𝑥𝑘 + 𝜙𝑗 ), 𝑗 = 1, … , 𝑁 .

The proof follows directly from the previous theorem and the observation that FIF, as any EMD–like method, produces all the 
IMFs by subsequent subtraction from the signal, starting from the highest frequency component to the lowest one.

Based on these results, we are now ready to prove the following

Theorem 5. Given a discrete nonstationary signal 𝑠 ∈ℝ𝑝, sampled at Fs = 1
𝑇 ≫ 1 samples/sec such that 𝑝 = 𝑛 1

𝑇 , and which we assume to be 
stationary on 𝐾 non-overlapping time windows 𝐼𝑖, 𝑖 = 1, … , 𝐾 , of length 𝐿 = 𝑝

𝐾 , assuming that in each time interval 𝐼𝑖 the signal is given by 

𝑠(𝐼𝑖) =
∑𝑁𝑖

𝑗=1 𝑎
(𝑖)
𝑗 cos(2𝜋𝑓 (𝑖)

𝑗 𝑥𝑘 + 𝜙(𝑖)
𝑗 ), 𝑥𝑘 ∈ 𝐼𝑖, 

𝑓 (𝑖)
𝑗+1

𝑓 (𝑖)
𝑗

∈
(
1
𝑛 ,1−

1
𝑛

)
, for every 𝑗 = 1, … , 𝑁𝑖 − 1, and 𝑎

(𝑖)
𝑗

𝑎(𝑖)ℎ
= O(1), ∀ 𝑗, ℎ = 1, … , 𝑁𝑖, if we 

let the FIF stopping criterion 𝛿 to go to zero, then the Hadamard power two of the IMFogram matrix 𝐴 converges to the spectrogram matrix 
obtained as the entry-wise squared absolute value of the DFT of the matrix 𝑆 ∈ℝ𝐿×𝐾 , which contains in each column the non-overlapping 
time windows 𝐼𝑖, 𝑖 = 1, … , 𝐾 , of length 𝐿 of the signal.

Proof. We start considering a single time window 𝐼𝑖. From Corollary 1 follows that FIF, when 𝛿 → 0, ends up separating the signal 
𝑠(𝐼𝑖) =

∑𝑁𝑖
𝑗=1 𝑎

(𝑖)
𝑗 cos(2𝜋𝑓 (𝑖)

𝑗 𝑥𝑘 + 𝜙(𝑖)
𝑗 ) into the 𝑁𝑖 IMFs 𝑎(𝑖)𝑗 cos(2𝜋𝑓 (𝑖)

𝑗 𝑥𝑘 + 𝜙(𝑖)
𝑗 ), 𝑗 = 1, … , 𝑁𝑖. Furthermore, based on Definition 6, the 

local frequency will be LF(𝑗)𝐼𝑖
= 𝑓 (𝑖)

𝑗 and the local amplitude will be LA(𝑗)
𝐼𝑖

= 𝑎(𝑖)𝑗 . Therefore, from Algorithm 2 it follows that the matrix 
𝐴 will contain in the 𝑖-th column and at rows corresponding to frequencies 𝑓 (𝑖)

𝑗 the values 𝑎(𝑖)𝑗 , 𝑗 = 1, … , 𝑁𝑖. These amplitudes match 
the Fourier coefficients computed via Discrete Fourier Transform in the interval 𝐼𝑖 at frequencies 𝑓 (𝑖)

𝑗 ’s. The same result applies for all 
intervals 𝐼𝑖, 𝑖 = 1, … , 𝐾 . Hence, the entry-wise power two of the matrix 𝐴, i.e. the Hadamard power two of the matrix 𝐴, converges 
to the spectrogram of the signals 𝑠 computed on 𝐾 non-overlapping time windows of length 𝐿 as the FIF stopping criterion 𝛿 goes 
to 0. □

We point out that if we consider a time window in the IMFogram that matches the length of the signal, the proposed TFR method 
boils down to a periodogram of the signal.

It is important to highlight here that the TFR produced by IMFogram and spectrogram/periodogram are different in nature 
when the signal under study is not stationary inside time windows. In this more general scenario, their difference is due to the 
fact that the IMFogram uses information coming from the time domain, local periods, and local amplitudes, to produce the TFR. 
Whereas, the spectrogram and periodogram, depending if we window or not the signal, use information coming from the frequency 
domain to produce the TFR. This explains why IMFogram can be more local in its TFR. The IMFogram does not need to extract 
frequency information from the Fourier transform of signal windows. Furthermore, this windowing is the main cause of artifacts 
in the spectrogram. In fact, if on the one hand, the Heisenberg uncertainty principle cannot be eliminated, on the other hand, the 
IMFogram allows removal of the uncertainties coming from the necessity, in the spectrogram and equivalent methods, of windowing 
the signal on sufficiently long time windows to reduce the local boundary effects induced by the Fourier Transform.

Another important observation regards how, in acoustics, a vibrato (frequency modulation with stationary amplitude) of a musical 
instrument can be perfectly reproduced by an expert musician as an amplitude modulation of a stationary frequency signal, what 
it is called an amplitude modulated monochromatic signal. With this knowledge, we observe that, while the TFR methods based on 
Fourier Transforms, like the well-known periodogram and spectrogram, make use of stationary amplitude components to represent 
a nonstationary signal, the IMFogram, based on FIF–like decompositions, tends to represent a quasi–stationary frequency signal with 
modulated amplitude. From this perspective, the IMFogram is a new and complementary way of looking at a signal with respect to 
standard TFR methods.

5. Numerical examples

In this section, we present a few synthetic and real-life examples of the application of the IMFogram algorithm as well as 
its comparisons with other classical methods. In particular, we compare IMFogram with spectrogram (STFT), continuous wavelet 
transform (CWT), synchrosqueezing transform (SST), and Hilbert Huang transform (HHT).

The following tests have been conducted using MATLAB® R2021a installed on a 64–bit Windows 10 Pro computer equipped with 
an Intel® Core® i7-8550U at 1.80GHz CPU and 16GB RAM. All tested examples and algorithms are freely available online.1 For all 
the following examples, to produce a decomposition with FIF we used the Fokker-Plank filter developed in [10], and we use as a 
stopping criterion the formula (9) with a value 𝛿 = 0.001.

1 www .cicone .com.

http://www.cicone.com
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Fig. 5. Duffing equation example: the 𝑥̇ solution of (21).

Fig. 6. Duffing equation example: In the first column, we plot the STFT, CWT, and SST representation of the 𝑥̇ solution of (21), respectively first, second, and third 
row of the first column. Second column, we show the Fast Iterative Filtering decomposition into IMFs of 𝑥̇, the HHT, and the IMFogram of these IMFs, respectively 
first, second, and third row of the second column.

5.1. Synthetic example – undamped Duffing equation

As a first example, we consider the synthetic signal generated as the solution of the undamped Duffing equation

𝑥̈+ 𝛼𝑥+ 𝛽𝑥3 = 𝛾 cos(𝜔𝑡), (20)
where 𝛼 represents the linear stiffness, 𝛽 the nonlinearity in the restoring force, 𝛾 the amplitude, 𝜔 the angular frequency of the 
forcing term. We can also rewrite (20) to read

𝑥̈+
(
𝛼 + 𝛽𝑥2

)
𝑥 = 𝛾 cos(𝜔𝑡), (21)

where (𝛼 + 𝛽𝑥2) is the nonlinear stiffness coefficient 𝑘(𝑥).
In Fig. 5 we plot the 𝑥̇ solution of (21) when 𝛼 = −1, 𝛽 = 1, 𝛾 = 0.1, and 𝜔 = 1. The signal under investigation apparently contains 

two superimposed oscillatory components. In Fig. 6 we report the STFT, CWT, and SST representation of 𝑥̇. From all these TFR plots, 
it appears that three nonstationary frequency components are contained in the signal. However, if we decompose, instead, the signal 
into IMFs, we discover that there are actually only two components contained in this signal, Fig. 6 second column. If we apply the 
HHT and the IMFogram, we obtain the TFRs plotted in the second column of Fig. 6. Using these two plots it is possible to solve the 
riddle. The high-frequency component is modulated in frequency at a high pace. In fact, the frequency of that component varies from 
period to period. It is evident from this example that it is not possible for methods based on wavelet or sinusoidal bases to capture 
properly such behavior. By comparing the HHT, right column second row in Fig. 6, with the IMFogram, right column bottom row in 
Fig. 6, we can see that both methods are able to produce a good TFR of the signal. However, it is important to mention that the HHT 
requires in this particular example an ad hoc tuning of the IMFs amplitudes to produce the result plotted in Fig. 6. Otherwise, the 
first highest frequency component instantaneous frequency curve would not be visible in the plot. Whereas, the IMFogram did not 
require any special tuning to produce the result shown in Fig. 6.

Furthermore, we underline that it is not sufficient to decompose the signal into IMFs to obtain a higher accuracy in its TFR. In 
Fig. 7 we show that, even if we first split the signal into two IMFs and then apply the SST to them, the TFR obtained contains the 
same artificial harmonics seen when we studied the whole signal, Fig. 6.
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Fig. 7. Duffing equation example: Time-Frequency representations of each IMF using SST (left column) and IMFogram (right column). First row IMF1 , second row 
IMF2 .

5.2. Real life example – violin vibrato

In this real-life example, we consider the recording of a violin when a G open string is played with vibrato.2 The signal is plotted 
in Fig. 8, together with its STFT, CWT and SST representations. Furthermore, we report a few IMFs from the signal decomposition 
produced using the FIF algorithm. In the bottom row of this figure, we report both HHT and IMFogram TFRs. The HHT is clearly 
having problems properly capturing the instantaneous frequencies contained in this signal. The IMFogram, instead, proves able 
to provide a crisp and clear representation of the time-frequency behavior of this signal which is, at first view, comparable with 
the quality of the signal SST representation. However, with a more accurate analysis, we can observe how the IMFogram contains 
many fine details that are completely missing in the SST representation. For instance, the oscillatory component around 800 Hz 
appears almost stationary in the SST representation, whereas in the IMFogram plot, it has an instantaneous frequency that is clearly 
oscillating.

5.3. Real life example – Earth’s ionospheric electron density

In this last example, we consider the electron density (Ne), expressed in cm−3, as measured in the topside ionosphere by the 
Langmuir Probes onboard one of the three spacecrafts constituting the Swarm3 constellation of the European Space Agency [62]. As 
an example, we consider the Ne samples measured at a 2 Hz rate by the Swarm Alpha satellite between 15:39 UT and 15:58 UT on 
8 September 2017, covering the auroral and polar ionospheric sectors (magnetic latitudes below 55◦ S) of the southern hemisphere, 
Fig. 9 first row. The selected date is characterized by severe geomagnetic storm conditions triggered by Coronal Mass Ejections [64]
that struck the Earth’s ionosphere, and caused the formation of ionospheric irregularities with largely varying spatial scales in the 
high-latitude ionosphere [63]. Swarm Alpha satellite flies in a quasi–polar orbit and, in the selected period, its speed was about 7.5 
km/s and its altitude ranges between 440 km and 470 km.

From Fig. 9 we can see that the STFT cannot achieve a high time-frequency localization accuracy, whereas the CWT can allow 
for a more accurate TFR.

In Fig. 10, first row, we show how the SST can improve, as expected theoretically [18,19], the time and frequency localization 
obtained using the classical CWT. If we decompose the signal first into IMFs, then we can produce the HHT and IMFogram TFRs, 
which are plotted in the middle and bottom row of Fig. 10. From these last two panels, we can see that the HHT has problems, at 
least in this example, capturing in an accurate way the energy and frequency of the IMFs, whereas the IMFogram proves to be really 
accurate, producing a plot that is even crisper and more focused than the SST.

2 https://en .wikipedia .org /wiki /File :Violin _vibrato _on _open _string _notes _and _on _fingered _notes .ogg.
3 The Swarm dataset is the “2 Hz Langmuir Probe Extended Dataset” and it is provided by the European Space Agency (ESA) at swarm -diss .eo .esa .int and at http://

vires .services.

https://en.wikipedia.org/wiki/File:Violin_vibrato_on_open_string_notes_and_on_fingered_notes.ogg
http://swarm-diss.eo.esa.int
http://vires.services
http://vires.services
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Fig. 8. Violin vibrato example: in the first row we plot the signal (left) and its STFT (right). In the second row, we show the CWT (left) and SST representation (right). 
In the third row the signal IMF decomposition produced by the FIF algorithm, left, and its zoomed-in version in the time interval [1.5, 2] seconds, right. Bottom row, 
the HHT of the IMFs (left), and the IMFogram (right).

6. Conclusions

In many real-life applications, the focus is on the time-frequency analysis of nonstationary signals. Many classical methods, like 
short-time Fourier transform, and continuous wavelet, and modern techniques, like reassignment, synchrosqueezing, and alternative 
algorithms, prove to have limitations in producing crisp and focused time-frequency representations of signals. By leveraging on the 
groundbreaking idea of first decomposing a given signal into simple oscillatory components, also known as intrinsic mode functions 
(IMFs), and then applying to each of them a time-frequency analysis, in this work we present the innovative IMFogram time-frequency 
representation method, and its numerical analysis. In particular, after reviewing known theoretical properties of the so-called Fast 
Iterative Filtering (FIF) method for the decomposition of a signal into IMFs, we propose new theoretical results regarding FIF and 
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Fig. 9. Ionospheric electron density example: in the first row we plot the electron density (Ne) signal sampled by the ESA Swarm Alpha satellite between 15:39 UT 
and 15:58 UT on 8 September 2017. In the second and third row, we report its STFT and CWT, respectively.

Fig. 10. Ionospheric electron density example: in the first row we show the SST representation of the sampled electron density. In the second and third row, we 
present its HHT and IMFogram TFRs, respectively.

IMFogram. For FIF, we prove that the algorithm can preserve the “𝐿1 Fourier Energy” of the signal, which allows us to prove that 
FIF decomposition cannot contain “unwanted oscillations”, meaning that all IMFs produced by FIF are meaningful. Furthermore, for 
the IMFogram algorithm, we prove that, under some hypothesis on the signal, the IMFogram time-frequency representation does 
converge to the corresponding spectrogram as the stopping criterion 𝛿 used in FIF to produce the IMFs is sent to 0. We conclude this 
work with a few synthetic and real-life numerical examples showing the performance of the proposed technique.

Even though many new insights on the decomposition into IMFs and their time-frequency representation are presented in this 
work, many problems still remain unsolved. First of all, iterative decomposition methods, like FIF–based and EMD–based techniques, 
and all other methods based on optimization, like sparse time-frequency representation, empirical wavelet transform, and variational 
mode decomposition, just to name a few, cannot guarantee a uniqueness in the decomposition. How this can impact the associated 
time-frequency representation is yet to be studied.
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In this work, we propose a new definition of “unwanted oscillations” produced by a decomposition method. This definition is, to 
the best of our knowledge, the first of its kind. We assume that other definitions of what an unwanted oscillation is can be proposed 
in the context of signal decomposition and we plan to work in this direction in the future.

The IMFogram convergence to the spectrogram has been proved in this work for a nonstationary signal that is piece-wise station-
ary. This result can be extended to more general nonstationary signals. We plan to study this problem in a separate work.

Another interesting problem regards IMFogram time-frequency representation robustness to parameters tuning in the IMFogram 
itself, as well as in the FIF decomposition method. This is an open research direction. We plan to tackle it in a future work.

It is also important to point out that the main step of the IMFogram algorithm, i.e. (19), is meaningful because the IMFs produced 
by IF and FIF methods are, based on numerical evidence we collected so far, in general quasi–orthogonal. However, this fact has not 
been proven rigorously yet. We plan to study this aspect in another work.

Finally, we point out that the proposed IMFogram time-frequency representation algorithm is based on the strong assumption 
that during each period of oscillation, the IMFs have a constant instantaneous frequency. This is true for signals having interwave 
modulation of their frequencies. The very same assumption is made, implicitly, in all classical methods based on Fourier and wavelet 
transforms. However, many real-life signals show what is called an intrawave modulation of their instantaneous frequencies. There 
is a need to develop a more general time-frequency representation able to handle also such intrawave modulations. This will be the 
subject of future work.
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