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A B S T R A C T

The high-latitude regions are known for a diverse array of benthic meiofauna, yet our understanding of these
communities remains limited, particularly in the deep ocean. This study aims to assess the variability and
adaptation of nematodes and agglutinated foraminifera in the modern sediments of the Southern Pacific Ocean at
>3500 m water depth. Seawater and sediment slurry from the first piston cores (i.e., mudline samples) from
International Ocean Discovery Program Sites U1539, U1540, U1541, and U1543 were analyzed for Rose Bengal
stained nematode and agglutinated benthic foraminifera. During the microscopic study seven nematode speci-
mens belonging to the genus Desmoscolex, with 16–17, 36 or 38 main rings were found. Scanning electron
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microscopy study suggest that one morphotype with 17 main rings used only coccoliths of the species Calcidiscus
leptoporus while the other specimens used fine-grained siliciclastic material on their concretion ring. Besides
nematodes, a few benthic agglutinated foraminifera specimens exclusively used a single species of planktic
foraminifera (Globoconella inflata) and/or robust coccoliths, in addition to other fine-grained siliciclastic mate-
rial, for their test construction. These patterns appear to be highly selective. Specimens of the same benthic
nematode Desmoscolex genus and agglutinated foraminifera that have diverse grain types show that these
specimens can adapt to their environments, choose specific grains as per their preference, and have no rela-
tionship with the grain/particle abundance. This study of Desmoscolex and agglutinated foraminifera species
suggests low to moderate organic matter flux and increased ventilation in the abyssal depth of the Southern
Pacific Ocean.

1. Introduction

Nematodes are the most abundant group among meiobenthic meta-
zoans (Platt and Warwick, 1980). They occur in all aquatic environ-
ments (freshwater, marine, and estuarine), terrestrial habitats, and polar
regions (Giere, 2009) and often constitute 70–90 % of meiobenthic
metazoans (Heip et al., 1982; Mokievskii et al., 2007; Miljutin et al.,
2010). The Desmoscolecidae are a distinct family of mainly marine
nematodes characterized in general by somatic setae and serial
concretion rings/desmens (Cesaroni et al., 2017). There are 311 species
present to date, belonging to 21 different genera (Decraemer, 1998; Lim
and Chang, 2006). Out of all the genera in this family, the Desmoscolex
genus stands out as the most common. Its 136 nominal species make up
43 % of the total number of species that are known to scientists (Lim and
Chang, 2006). From the deep sea to the seashore or salt marshes, this
genus is reported to be found globally and often living in marine sedi-
ments at water depths of over 3000 m (Decraemer, 1985). Desmoscolex
genus (family Desmoscolecidae) contains four subgenera, showing dif-
ferences in the body cuticle covering: (i) Desmoscolex with mainly
rounded main rings (desmen or concretion rings); (ii) Desmolorenzenia
with concretion rings with triangular outline (anterior rings with pos-
teriorly directed slope, posterior rings with anteriorly directed slope)
with abrupt reversal in slope at the level of a larger inversion ring; (iii)
Pareudesmoscolex with concretion rings only complete anteriorly and
posteriorly, rest of body with warts or papillae and (iv) Protricomodes
similar to Desmoscolex in appearance, but distinct from it by the presence
of interzones with scales made of tiny patches of “concretion” material
(i.e., secretion and foreign particles; Decraemer and Rho, 2014). One of
the most interesting features of Desmoscolex nematodes is their unique
structure of particle accumulations on the concretion rings. Represen-
tatives of this sediment dwelling genus move by looping and firmly
attach themselves to a substratum or organic material present in the
sediments (Raes and Vanreusel, 2006; Riemann and Riemann, 2010).
This adaptation allows them to survive in the harsh conditions of the
deep sea where food can be scarce and possibly contributing to nutri-
tional advantages for the Desmoscolecids (Schratzberger et al., 2008;
Riemann and Riemann, 2010; Armenteros et al., 2010; Semprucci et al.,
2016). Many factors such as organic flux, oxygenation, food availability,
salinity, and temperature control the abundance and diversity of the
deep-sea Desmoscolex genus, and the nature of their concretion rings
depends on the sedimentological environment (Platt and Warwick,
1980; Heip et al., 1985; Miljutin et al., 2010). The Desmoscolex genus has
the ability to form three-dimensional body by selecting grains of
different shapes and sizes and a few of them are able to sort out the
grains of their choice (Riemann and Riemann, 2010). The distribution of
adhering particles is influenced by the vigorous undulatory movements
of the organism, which leads to the formation of concretion rings, as
observed by Riemann and Riemann (2010) in their study of living
Desmoscolecids.
The North-Eastern Atlantic, Mediterranean, and Central Pacific re-

gions have been extensively studied for deep-sea nematode species
(Timm, 1970; Riemann, 1974; Freudenhammer, 1975; Riemann and
Schrage, 1977; Dinet and Vivier, 1979; Decraemer, 1983a, 1983b,
1983c; Soetaert and Decraemer, 1989; Decraemer and Soetaert, 1989;

Soetaert and Heip, 1995; Soltwedel et al., 1996; Sebastian et al., 2007;
Tchesunov et al., 2012; Leduc et al., 2016; Zhao et al., 2020). However,
the remaining parts of the deep ocean have received considerably less
attention, as highlighted by Miljutin et al. (2010). Although there is a
lack of research on desmoscolecids in the Central and Eastern South
Pacific Ocean, existing studies have demonstrated their substantial
abundance in deep-sea sediments and their critical contribution to the
regional food web (Platt andWarwick, 1980; Heip et al., 1985). They are
significant predators that consume microscopic organisms, including
bacteria and fungi. Taxonomic research on Desmoscolex nematodes and
its ecological interpretation is sparse in the Southern Ocean and the
southern Pacific Ocean (Gambi et al., 2003; Sebastian et al., 2007; Neira
et al., 2013; Guilini et al., 2013; Lins et al., 2015).
Similar to nematodes, agglutinated benthic foraminifera form their

tests using sedimentary particles available in the substratum, which they
bind together (Kaminski, 2014). Some agglutinated foraminifera select
suitable sedimentary grains as well as biogenic material (such as
planktic foraminifera, coccoliths, or fragments of calcareous and sili-
ceous microfossils), and arrange them very methodically to form intri-
cate three-dimensional tests (Murray, 1971; Gooday, 1990; Pearson
et al., 2018; Capotondi et al., 2019). Some of these agglutinated benthic
foraminifera are highly selective of size and composition and pick heavy
minerals like ilmenite, rutile, and garnet (Allen et al., 1999; Makled and
Langer, 2010; Capotondi et al., 2019) or biogenic clasts like echinoderm
plates (e.g., Heron-Allen and Earland, 1909). Multiple factors control
the abundances and assemblages of agglutinated foraminifera and the
nature of their test. Stefanoudis et al. (2015) suggested variations in the
community composition of agglutinated benthic foraminiferal tests’
topographical relationship, which influences the test morphology. The
agglutinated benthic foraminifera are well-established and widely used
meiofauna in comparison to nematodes. However, particle selection and
its relationship with the environment in the abyssal plain is sparse.
Further ecological interpretation of abyssal plain agglutinated benthic
foraminifera and nematodes from the Southern Pacific Ocean is limited.
Hence, this research is an attempt to present a novel and distinct

assessment of species belonging to the Desmoscolex genus and aggluti-
nated benthic foraminifera from the Southern Pacific Ocean, accompa-
nied by photomicrographs and scanning electron microscope (SEM)
photos. Additionally, it offers a fresh perspective and probable ecolog-
ical interpretation based on the Desmoscolex genus and agglutinated
foraminifera found in the abyssal plain below 3500 m at International
Ocean Discovery Program (IODP) Sites U1539, U1540, U1541, and
U1543 in the Central and Eastern South Pacific Ocean.

2. Material and methods

IODP Sites U1539 (56◦09.06′ S 115◦08.05′W, 4071 m water depth),
U1540 (55◦8.47′ S, 114◦50.52′ W, ~3584 m water depth), and U1541
(54◦12.76′ S, 125◦25.54′W, ~3603 m water depth) were drilled during
IODP Expedition 383 (Dynamics of the Pacific Antarctic Circumpolar
Current) in the Central South Pacific (CSP) / Pacific sector of the
Southern Ocean (Fig. 1; Lamy et al., 2021a).
Site U1543 (54◦35.06′ S, 76◦40.59′ W, ~3860 m water depth) is

located in the Eastern South Pacific, ~204 km west of the Chilean coast
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(Fig. 1; Lamy et al., 2021a). IODP Sites U1539 and U1540 are located
~2963 km west of the Magellan Strait, and Site U1541 is ~3389 km
west of Magellan Strait in the CSP (Fig. 1; Lamy et al., 2021a). At these
sites, present-day temperature ranges between +1 and 0 ◦C (Fig. 1b;
Locarnini et al., 2018), the dissolved oxygen concentration is very high
and varies between 200 and 220 μmol/kg (Fig. 1c; Garcia et al., 2019),
and the salinity fluctuates between 34.7 and 34.8 (Fig. 1d; Zweng et al.,
2019) for the bottom water column.
Seawater and sediment slurry (i.e., mudline or soupy core-top sedi-

ment material) were collected in a bucket from the first piston cores
crossing the water-sediment interface at Holes U1539A, U1540B,
U1541B, U1541C, and U1543A. A part of the sediment slurry was
transferred into a Polyvinyl chloride bottle and a mixture of Rose Bengal
and ethanol solution (2 g of rose Bengal per 1 l of ethanol) was added to
identify any living benthic meiofauna specimens. The treated samples
were kept for a minimum of 10 days for proper staining of the living

meiofauna (Barik et al., 2019, 2022), gently washed later over a 63 μm-
sieve, and dried in an oven at 50o C. The dried residues were inspected
for agglutinated foraminifera. Nematode specimens of the Desmoscolex
genus were found while analyzing the samples. The agglutinated fora-
minifera and nematode specimens were photographed using a table-top
SEM (Hitachi TM 3000) available onboard the scientific research vessel
JOIDES Resolution during Expedition 383. Additional photomicrographs
of Desmoscolex nematodes and agglutinated foraminifera specimens
were taken using a Leica M205A stereo microscope having three-
dimensional imaging capability. Selected agglutinated nematodes of
Desmoscolex genus were further analyzed using a Field-Emission SEM
(Zeiss Ultra 55+) attached with Energy Dispersive Spectroscopy (EDS)
at the Indian Institute of Technology Bhubaneswar, India. The body of
these specimens were chemically characterized using the EDS at 3–5
different spots within various parts of the specimen.

Fig. 1. (a) Southern Ocean bathymetry generated using Ocean Data View (ODV version 5.6.2; Schlitzer, 2021). Red stars indicate the IODP Sites (U1543, U1541,
U1540, and U1539), oceanographic fronts (Orsi et al., 1995) are shown in solid lines: Sub Antarctic Front (SAF), Antarctic Circumpolar Current (ACC), Polar front
(PF), Southern ACC fronts, Ross Sea gyre and Weddell gyre, (b, e) Vertical profile of seawater temperature (◦C) (objectively analyzed annual mean; (Locarnini et al.,
2018), (c, f) Dissolved Oxygen (DO; μmol/kg) (objectively analyzed annual mean; Garcia et al., 2019), (d, g) Vertical profile of seawater salinity levels (objectively
analyzed annual mean; (Zweng et al., 2019), in the Central and Eastern South Pacific were generated using Matlab software (version R2023b). For (b, c, and d)
latitude is fixed at 54.5 oS and for (e, f, and g) latitude is fixed at 56.5 oS, the white area represents the bathymetry surrounding the core locations. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3. Results and interpretations

3.1. Desmoscolex nematode specimens found at the central and eastern
South Pacific

Seven specimens of nematodes were found in the mudline samples
over 63 μm at our study sites. The taxonomic and morphological details
of these specimens are provided in Annexure A. The specimens, being
inadequately fixed and shrunken (Fig. 2), not only limited us to get their
actual size but also to observe the inner structures and several diagnostic
features to identify them at species level (see Annexure A). The speci-
mens are identified and belong to the genus Desmoscolex (Fig. 2). The
specimens look similar under the stereo microscope having 16–17
concretion rings (Figs. 2a, b, d, e, g), except for two specimens one with
36 concretion rings (Fig. 2c) and another with 38 concretion rings
(Fig. 2f). However, after SEM analysis, it became evident that the
concretion rings of Desmoscolex sp. 7 was exclusively made of coccoliths
(Figs. 2g, 3) and the others exclusively of fine-grained sediment particles
(Figs. 2a, b, c, d, e, f; Fig. 4). We found seven stained specimens of
Desmoscolex genus, one specimen at Site U1539 (Fig. 2a), two specimens
at Site U1541 (Figs. 2c, g) and four specimens at Site U1543 (Figs.2 b, d,
e, f). Desmoscolex sp. 7 having 17 concretion rings use coccoliths of
Calcidiscus leptoporus subsp. leptoporus (from now on C. leptoporus) on its
concretion rings (Figs. 2g, 3) is a relatively recent addition from this
study to the Desmoscolecidae family.
It is known that Desmoscolex taxa have the capability to move by

crawling and attaching themselves to substrates (Soetaert et al., 2009).
This provides an ecological advantage to marine nematodes, due to their
ability to clump together organic particles, which results in the forma-
tion of lumps or burrows of a few millimeters in size (Riemann and
Schrage, 1978; Riemann and Helmke, 2002). They capture particles by
utilizing a sticky mucus supply located in their head area. This mucus
causes the particles to clump together, forming an agglutination that
eventually surrounds the nematode’s posterior region (Riemann and
Helmke, 2002). Desmoscolex nematodes have somatic setae, different in
length and shape between subdorsal and subventral side, an annulated
body cuticle covered by thick transverse rings made up of sedimentary
particles and cement (secretion). The stout body (see description in
section 3.4) and specialized head region with sensory organs allow
Desmoscolex nematodes to traverse their surroundings (Lim and Chang,
2006; Decraemer et al., 2013). The Desmoscolex specimens found in the
deep South Pacific has narrow tails tapered towards the endring; in 17
main ring species the anus or cloacal opening is located at the end of
main ring/concretion ring (Fig. 2). However, specimens with similar
morphological appearance choosing different types of sedimentary
particles suggest that these Desmoscolex nematodes have access to other
types of grains available in their surroundings (Fig. 6). This may be their
adaptation to evolve and survive in the challenging deep-sea habitat by
using the intricate designs and structures of coccoliths, which provide
protection and support. The external morphology of the nematodes in
general affected by the attachment of bacteria or other microorganisms
(Decraemer et al., 2013). Hence, these species managed to select and
pick either coccoliths of C. leptoporus or siliciclastic grains depending
upon the surrounding environment.

3.2. Chemical characteristics of Desmoscolex specimens

The chemical characterization of the Desmoscolex specimens, carried
out using FE-SEM equipped with EDS, shows that the specimens whose
concretion rings have C. leptoporus contain carbon, oxygen, and calcium
with a minor amount of silicon (Fig. 3c; Table 1), but the amount of
silicon increases at the girdle and somatic setae (Figs. 3d, e; Table 1).
This represents the calcite composition of C. leptoporus coccoliths used
by the nematodes on its concretion rings. The girdle comprising silicate
grains may be an artefact, as this type of structure has never been
observed in Desmoscolex and also not found on other specimens. The

cuticle of this specimen in between the concretion rings is rich in cal-
cium, oxygen, chlorine and iodine with a minor amount of sulphur and
phosphorus (Fig. 3f; Table 1). The specimen that used fine-grained sil-
iciclastic materials on its concretion rings have carbon, oxygen, silica,
and aluminum with a minor amount of calcium, sodium, and iron
(Figs. 4c, d, f; Table 2). This suggests that this nematode selected fine
siliciclastic material on its concretion rings. The cuticle of this specimen
in between the concretion rings is rich in calcium, oxygen, and carbon
with a minor amount of silica (Fig. 4e; Table 2), suggesting its pre-
dominantly calcareous composition. The higher abundance of carbon
and oxygen indicates that in both Desmoscolex specimens the picked
grains are bounded together by calcareous cement (Figs. 3, 4; Tables 1,
2). These specimens are very delicate and were not thoroughly cleaned
using ultrasonication before EDS analysis, which may be the reason for
the presence of a minor amount of sodium, potassium, chlorine, and
iodine within the Desmoscolex specimens, probably linked to the envi-
ronment where they lived (Tables 1, 2).

3.3. Agglutinated foraminifera in the abyssal plain of South Pacific deep
environment

Well preserved agglutinated foraminifera were found in the mudline
(ocean floor) and core samples from Sites U1539 (Figs. F28, 29 in
Winckler et al., 2021a), U1540 (Figs. F27–30 in Winckler et al., 2021b),
Site U1541 (Figs. F26, 27 in Winckler et al., 2021c) and U1543 (Lamy
et al., 2021b). The dominant agglutinated benthic foraminiferal taxa
found at these sites are Reophax and Rhabdammina species, Hormosina
globulifera, Spiroplectommina biformis, Lagenammina difflugiformis,
Ammodiscus anguillae, and Paratrochammina sp. (Lamy et al., 2021a;
Fig. 5). The detail taxonomy of these specimens are provided in
Annexure B. These taxa generally prefer siliciclastic sedimentary grains
(Gooday, 1990; Heron-Allen and Earland, 1909). However, in this study,
we are focussing on the agglutinated benthic foraminifera that exhibit
tests made with selected foraminifera tests and coccoliths. As shown in
Fig. 5 (j), a Reophax fusiformis specimen used coccoliths of Coccolithus
pelagicus subsp. pelagicus (from now on C. pelagicus), C. leptoporus, and
Helicosphaera carteri -all of them very robust coccoliths- (Fig. 5j) to build
its test, while a Paratrochammina specimen, used almost exclusively
C. leptoporus coccoliths with a minor contribution of C. pelagicus to build
its test (Fig. 5m). The agglutinated benthic foraminifera picking exclu-
sively coccoliths or planktic foraminifera test is not new and reported by
various workers earlier from different sea and oceans from different
depths (e.g., Thomsen and Rasmussen, 2008; Mancin et al., 2015; Perner
and Knudsen, 2018; Pearson et al., 2018). Perner and Knudsen (2018)
reported two agglutinated foraminifera species of Pseudobolivina
islandica andHaplophragmoides atlanticus from Recent and Late Holocene
sediments in the north Icelandic shelf in the North Atlantic, which
selected coccoliths to build their test. The trochospirally coiled tro-
chamminid and biserial textularid were reported to have a preferential
selection of almost exclusively C. pelagicus (Wollenburg, 1992; Young
and Geisen, 2002). Thomsen and Rasmussen (2008) have reported tro-
chospiral, planispiral, unilocular, uniserial, biserial, and triserial forms
of agglutinated benthic foraminifera that build their test using exclu-
sively made up of coccoliths of species Watznaueria barnesae from the
Early Cretaceous marine clastic sediments deposited in the North Sea
basin. The other species retrieved using coccoliths of speciesW. barnesae
is Spiroplectinella from Upper Cretaceous deposits in the Pacific Ocean
(Holbourn and Kaminski, 1997). Several other studies also retrieved
agglutinated benthic foraminifera that select coccoliths for their test
construction (Widmark and Henriksson, 1995; Almogi-Labin et al.,
1996; Henriksson et al., 1998; Thomsen and Rasmussen, 2008).
Brönnimann and Whittaker (1988) illustrated coccolith-cementing tro-
chamminids from the Atlantic sector of the Southern Ocean (see Fig. 37
of their work). However, this is the first report of Paratrochammina sp.
from recent sediments of the deep South Pacific having coccoliths test.
We also found a number of Rhabdammina specimens that have
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Fig. 2. Photomicrographs (Scale bars = 100 μm) of dominant living (i.e., Rose Bengal stained) Desmoscolex nematoda found at >3500 m water depth in the Southern
Pacific. (a) Desmoscolex sp.1, (b) Desmoscolex sp. 2, (c) Desmoscolex sp. 3, (d) Desmoscolex sp. 4, (e) Desmoscolex sp. 5, (f) Desmoscolex sp.6 have siliciclastic grains on
their concretion rings (also see Fig. 4), (g) Desmoscolex sp.7, used coccoliths of the single species Calcidiscus leptoporus (also see Fig. 3) on its concretion rings. (a –
IODP Site U1539; c, g – Site U1541; b, d, e, f – Site U1543). Scanning Electron Microscopy (SEM, Scale bars = 10 μm) image of (ai) Desmoscolex sp.1 (total view), (aii)
lateral view of head and 4 anterior concretion rings showing insertion of subdorsal somatic setae on rings 1 and 3, and (aiii) posterior body region in left lateral view
(Site U1539), (bi) Desmoscolex sp.2 (total view), (bii) first 13 concretion rings, one somatic setae visible on the sixth ring, (biii) view of posterior body region, last four
concretion rings showing insertion of subdorsal somatic setae on rings 14 and 17, somatic setae visible on the tail (Site U1543), (ci) Desmoscolex sp.3 (total view), (cii)
lateral view of head showing cephalic setae and amphideal fovea and three anterior concretion rings with triangular outline and (ciii) view of posterior body region,
last three concretion rings, no somatic setae visible (Site U1541), indeed in Fig. 2ciii no pair of subdorsal setae visible on the terminal main ring, however, such a pair
of somatic setae is visible in Fig. 4f. The presence of a terminal pair of somatic setae is characteristic for the tribe Desmoscolecini, (di) Desmoscolex sp. 4 (total view),
(dii) enlarged view of the apertural region of head portion, (diii) view of posterior body region, last four concretion rings showing insertion of subdorsal somatic setae
on ring 16, somatic setae visible on tail (Site U1543), (fi) Desmoscolex sp.6 (total view), (fii) first 13 concretion rings showing insertion of subdorsal somatic setae on
rings 2, 7, and 9, (fiii) view of posterior body region, last seven concretion rings showing one somatic setae on ring 38 (Site U1543), (gi) Desmoscolex sp.7 having
C. leptoporus on its concretion rings, (gii) apertural, right lateral view of head and concretion rings 1–4, showing subventral somatic setae on rings 2 and 4, and (giii)
view of posterior body region (Site U1541). (Taxonomic details provided in Annexure A). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 3. Scanning Electron Microscopy (SEM) with energy dispersive spectroscopy (EDS) analysis of Desmoscolex sp. 7 having single species of coccolith Calcidiscus
leptoporus on its concretion rings, (a) SEM image, (b) Photomicrograph, (c) EDS on anterior head region, (d) EDS on a subventral somatic setae on concretion ring 8,
(e) EDS of girdle portion, (f) EDS of body cuticle between the concretion rings, Scale bar = 50 μm in (a) and (b).
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Fig. 4. Scanning Electron Microscopy (SEM) with energy dispersive spectroscopy (EDS) analysis of Desmoscolex sp.3 having randomly picked grains on its concretion
rings, (a) Photomicrograph, (b) SEM image, (c) EDS of aperture head portion, (d) EDS of inner portions of concretion rings, (e) EDS of body cuticle between the
concretion rings, (f) EDS of tail portion showing endring with pair of subdorsal somatic setae, Scale bar = 50 μm in (a) and (b).
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selected specific planktic foraminifera Globoconella inflata species
(Fig. 5n), or have used multi-species planktic foraminifera of the same
size to build their test (Figs. 5o, p; see also F29. A, C, and D in Winckler
et al., 2021b). Our findings match those of Pearson et al. (2018) who
reported unique probable Rhabdammina species from 1466 m water
depth in the northwest Australian margin (IODP Hole 1482B), which
exclusively selected planktic foraminifera Turborotalita clarkei to build
their test. Turborotalita clarkei is a subsurface dwelling species that may
occur below the thermocline and occupies tropical to temperate waters.
This species has a detritivorous feeding habit on exported organic matter
below thermocline (Levy et al., 2023). The other studies also reported
the use of dead planktic foraminifera test for constructing test of
agglutinated benthic foraminifera (Brady, 1879; Cartwright et al., 1989;
Gooday, 1990). However, this is the first report of such specimens from
the abyssal plain of the Southern Pacific Ocean, one of which exclusively
used planktic foraminifera G. inflata species (Fig. 5n).

3.4. Ecological Implications in Central and Southeastern Pacific Ocean

Free-living marine nematodes survive by burrowing between sedi-
ment particles, suggesting a significant relationship between the type of
nematodes and the size of the surrounding sediment grains (Fleeger
et al., 2011). The morphometrics, including length, diameter, bio-
volume, biomass, body form, tail shape, etc., of free-living marine
nematodes exhibit variations in response to different environmental
circumstances. The deep-sea unconsolidated muds are a common
habitat for short, stout nematodes, which are particularly prevalent in
the uppermost sediment levels (1–2 cm; Soetaert et al., 2002). This study

shows that all the specimens of Desmoscolex are short and stout except
Desmoscolex sp. 3 and sp. 6 (Figs. 2c, f).
The species composition and diversity of deep ocean nematodes are

shown to be associated with variations in bottom water temperature and
sediment type (Tietjen, 1976). Dinet and Vivier (1979) found that the
Desmoscolecidae are more prevalent in the Bay of Biscay’s deeper wa-
ters with higher clay-silt sediments and susceptible to the periodic harsh
deep ocean conditions (Heip et al., 1982). The deep abyssal depths of the
Southern Pacific Ocean have limited clay-silt sediments and are rich in
bioclast (Lamy et al., 2021a; Fig. 6), which may be the reason for a lower
abundance and diversity of Desmoscolex at the CSP Sites U1539 and
U1541 compared to Site U1543 from the Southeastern Pacific (Fig. 6).
Decreasing food availability, because of increasing water depth, might
benefit smaller nematodes (Udalov et al., 2005; Soetaert et al., 2009;
Fleeger et al., 2011). Further, the Desmoscolex nematodes abundance is
linked to higher surface primary productivity and high organic matter
flux to the sea floor (Lins et al., 2015). Hence the reduced organic matter
transport to the abyssal depth of the Southern Ocean (Das et al., 2024)
may be another reason for the smaller size and low abundance of Des-
moscolex nematodes in the Southern Pacific Ocean.
Lamy et al. (2021a) reported several agglutinated benthic forami-

nifera from the deeper Southern Pacific IODP Sites U1539, U1540,
U1541 and U1543. The dominant and common agglutinated forami-
nifera like Siphotextularia rolshauseni, Cribrostomoides subglobosus,
Eggerella bradyi and Hormosina globulifera, present in the mudline sam-
ples of Sites U1539, U1540, U1541 and U1543 are preserved in the
sediment sequences, but some fragile mudline agglutinated species like
Rhabdammina spp., and Reophax sp. were not found in the geological

Table 1
Energy dispersive spectroscopy (EDS) analysis of Desmoscolex sp.7, which selected a single species of coccolith Calcidiscus leptoporus on its concretion rings (Please refer
to Fig. 3 for portion scanned).

Fig. 3 (c) Fig. 3 (d) Fig. 3 (e) Fig. 3 (f)

Element Weight (%) Atomic (%) Weight (%) Atomic (%) Weight (%) Atomic (%) Weight (%) Atomic (%)

C 50.47 60.44 52.07 62.24 23.11 31.84
O 40.66 36.56 38.13 34.21 54.44 56.32 14.36 35.04
Na 0.5 0.36
Al 0.16 0.09 0.23 0.12 1.36 0.83
Si 0.13 0.07 1.26 0.64 12.02 7.09
S 0.5 0.22 7.86 9.56
Cl 0.72 0.29 0.46 0.19 0.14 0.06 16.91 18.61
K 0.37 0.15
Ca 6.11 2.19 6.96 2.49 8.07 3.33 24.12 23.49
Mn
Fe
Ba
I 1.25 0.14 0.89 0.1 34.65 10.66
P 2.09 2.64
Total 100 100 100 100

Table 2
Energy dispersive spectroscopy (EDS) analysis of Desmoscolex sp.3, which randomly picked grains on its concretion rings (Please refer to Fig. 4 for portion scanned).

Fig. 4 (c) Fig. 4 (d) Fig. 4 (e) Fig. 4 (f)

Element Weight (%) Atomic (%) Weight (%) Atomic (%) Weight (%) Atomic (%) Weight (%) Atomic (%)

C 62.88 70.95 20.15 29.57 18.02 34.31 27.43 37.36
O 31.67 26.83 45.1 49.69 21.68 31 47.1 48.15
Na 0.42 0.25 2.7 2.07 1.48 1.06
Mg 0.17 0.09 0.7 0.47
Al 0.49 0.24 5.14 3.36 3.39 2.05
Si 2.26 1.09 20.73 13.01 1.2 0.98 16.57 9.65
Cl 0.56 0.21 0.18 0.08
K 0.15 0.05 1.07 0.48 0.42 0.17
Ca 0.42 0.14 2.74 1.2 59.1 33.72 1.75 0.71
Ti 0.28 0.1 0.16 0.06
Fe 0.26 0.06 1.31 0.42 0.83 0.24
I 0.72 0.08 0.78 0.11
Total 100 100 100 100

S.K. Das et al. Marine Micropaleontology 192 (2024) 102409 

8 



record (Lamy et al., 2021a; Das et al., 2024). No other specimens of
agglutinated foraminifera, which exclusively built their tests using sin-
gle or multiple species of coccoliths or planktic foraminifera were found
in the geological strata of any of the studied sites (Lamy et al., 2021a).
This suggests that the deep Southern Ocean environment is conducive
for various fragile agglutinated foraminiferal species, but most of them
are not preserved in sediment downcore. We argue that it may be
possibly due to a stronger and seasonal corrosive bottom water current
or degradation of organic cement over time (Das et al., 2024). Most of
the common agglutinated foraminiferal species like Siphotextularia rol-
shauseni, Hormosina spp., and Eggerella bradyi are cosmopolitan in nature
and suggest low to intermediate organic flux and better deep-sea
oxygenation, whereas Reophax species tends to be an opportunistic
form (Kaminski et al., 1988; Hess et al., 2001) indicating low quality of
organic flux to the seafloor. The abundance of Reophax and Rhabdam-
mina species, along with the other calcareous and agglutinated species
reported from the mudline sample in Lamy et al. (2021a) suggest low to
intermediate organic flux in the CSP sites and slightly improved condi-
tions at Southeastern Pacific. The presence of Oridorsalis umbonatus,
Globocassidulina subglobosa, Cibicidoides mundulus, and Melonis affinis,
etc. calcareous benthic foraminifera in the mudline samples further
confirm the better oxygenation conditions (Lamy et al., 2021a).

3.5. Selective grains and bioclasts preferences of meiofauna

The agglutinations of Desmoscolex nematodes and benthic forami-
nifera specimens with only C. leptoporus coccoliths is an important factor
to consider. Emiliania huxleyi (recently renamed as Gephyrocapsa huxleyi,

Bendif et al., 2023) is actually the dominant extant coccolithophore
species in the Pacific sector of the Southern Ocean (e.g., Saavedra-Pel-
litero et al., 2014). However, due to the small size of its coccoliths
(usually 2–4 μm in length) and its delicate structure, E. huxleyi is more
prone to dissolution than for instance, C. leptoporus (with coccolith di-
ameters usually ranging from 5 to more than 8 μm). That is why rela-
tively higher numbers of C. leptoporus have been previously reported in
Southern Pacific Ocean surface sediment samples (e.g., Saavedra-Pelli-
tero and Baumann, 2015). We speculate that this particular Desmoscolex
nematode specimen (Desmoscolex sp.7; Figs. 2g, 3) preferentially
selected the largest and most robust coccoliths available in the surface
sediments (i.e. C. leptoporus, Figs. 6c, Site U1541) on its concretion rings.
The dissolution resistance and higher abundance or availability of

C. leptoporus at water depths greater than 3500 m may be one reason for
its selection by one of this Desmoscolex specimen (Desmoscolex sp. 7,
Figs. 2g, 6). It would appear that the coccoliths are always arranged such
that the convex surfaces face outwards and the concave surfaces face
inside (Fig. 3). The development of a more robust test with fewer empty
areas might be the primary benefit of adapting the coccoliths (Thomsen
and Rasmussen, 2008).
There are some agglutinated benthic foraminifera genus like Para-

trochammina and Reophax species found at the studied sites that also
selected coccoliths from the species C. leptoporus, C. pelagicus, and
H. carteri for test construction (Figs. 5j, m). Still, some of the aggluti-
nated benthic foraminifera, like Rhabdammina sp., specimens that have
selected specific planktic foraminifera G. inflata species (Figs. 5n, 6).
Globoconella inflata is a deep-dwelling transitional water planktic fora-
miniferal species, having a higher abundance between 30 and 50 oS. This

Fig. 5. Photomicrographs (Scale bars = 100 μm) of dominant living (i.e., Rose Bengal stained) agglutinated benthic foraminifera species found at >3500 m water
depth in the central South Pacific. (a) Hormosina globulifera (IODP Site U1539); (b) Spiroplectammina biformis (Site U1539); (c) Lagenammina sp. (Site U1539); (d)
Reophax sp. (Site U1539); (e) Rhabdammina sp. 1 (Site U1541); (f) Hormosinella distans (Site U1539); (g) Reophax gaussica (Site U1539); (h) Ammobaculites exilis (Site
U1539); (i) Reophax excentricus (Site U1539); (j) Reophax fusiformis (Site U1539); (k) Lagenammina difflugiformis (Site U1539); (l) Ammodiscus anguillae (Site U1543);
(m) Paratrochammina sp. (Site U1543). Scanning Electron Microscopy (SEM, Scale bars = 10 μm) image of (ji) Reophax fusiformis, (jii) enhanced view of a Coccolithus
pelagicus from (ji) (Site U1539); (mi) Paratrochammina sp. (Site U1543); (ni) Rhabdammina sp. 2 composed of planktic foraminiferal species Globoconella inflata only,
(nii) enlarged view (Site U1540); (o) Rhabdammina sp. 3 composed of differently sized planktic and benthic foraminifera (Site U1540); (pi) Rhabdammina sp. 4 built
up using same-sized planktic and benthic foraminifera, (pii) enlarged view (Site U1540). (Taxonomic details provided in Annexure B). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Scanning Electron Microscopy image of finest fraction of the mudline samples of Sites (ai) U1539, (bi) U1540 taken onboard at Joides Resolution using
Tabletop SEM Hitachi TM 3100 and of Sites (ci) U1541, (di) U1543 at University of Portsmouth using Zeiss Evo MA10 SEM comprising of coccolith C. leptoporous,
various diatoms, and siliciclastic fragments; Photomicrographs (scale = 1 mm) of coarse fraction (>63 μm) of the mudline samples taken at IIT Bhubaneswar using a
Leica M205A stereo microscope showing composition at Sites (aii) U1539, (bii) U1540, (cii) U1541, rich in planktic foraminifera, but not dominant by G. inflata and
at Site (dii) U1543 rich in diatom, radiolaria and siliciclastic fragments.
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species’ maximum numbers occur within the thermocline (e.g., Groe-
neveld and Chiessi, 2011) and is more abundant in phytoplankton-rich
and productive cold waters (Martínez-García et al., 2023). Both
T. clarkei and G. inflata species have similar morphology, but G. inflata
reach higher numbers in the sub-Antarctic frontal zone of the study sites
in comparison to T. clarkei; hence, we argue that these Rhabdammina
species preferred G. inflata at our studied central South Pacific Site
U1540 due to biogeographical limitations (Figs. 5n, o, p). However,
various other Rhabdammina species choose different species of planktic
foraminifera, coccoliths, and rarely available siliciclastic grains, but
have the preferences for planktic foraminifera test and coccolith
(Figs. 5p, q, 6). Most of the agglutinated benthic foraminifera Rhi-
zammina and Rhabdammina species found in mudline samples from
Southern Pacific IODP Sites U1539, U1540, U1541 and U1543 built
their test by randomly selecting available fragments or whole tests of
different planktic foraminifera, and coccolith besides or along with sil-
iciclastic grains (Figs. 5, 6; Lamy et al., 2021a). However, a few speci-
mens are selectively picked a particular shape and size of planktic
foraminifera or coccolith. It should also be taken into account that the
variations in agglutinated foraminifera test composition can be influ-
enced by grain availability (Hess and Kuhnt, 1996; Stefanoudis et al.,
2016). Henriksson et al. (1998) suggested that certain species, such as
Spiroplectinella sp. from the Early Cretaceous and Gaudryina cri-
brosphaerellifera from the Late Cretaceous, might not have been selective
in their picking of coccoliths but rather had simply picked up the most
abundant particles/grains from the seafloor. However, the mudline
samples of sites U1539, U1540, and U1541 are not all dominated by
C. leptoporus or G. inflata, which are picked by some of the above-
mentioned meiofauna (Fig. 6). Hence, this study suggests that these
meiofauna have selectively picked C. leptoporus, G. inflata and/or other
planktic foraminifera and coccoliths for their test construction and has
no relationship with the abundance.

3.6. Limitations

The study is based on limited retrieval of Rose-Bengal stained Des-
moscolex nematodes (Only Seven). These specimens are shrunk and
badly fixed, which may not allow us to get the main diagnostic features
for reliable identification. Further limited specimen occurrences do not
allow us to conduct a detailed study of these nematodes. The aggluti-
nated foraminifera found was not quantitatively analyzed during on-
board analysis at the scientific research vessel JOIDES Resolution,
which restricted us from doing further detailed analyses. Despite this,
we consider that these meiofauna will contribute to enhance our
knowledge about the abyssal plain of Central and Eastern Southern
Pacific Ocean.

4. Conclusions

Recent Desmoscolex genus nematodes and agglutinated benthic
foraminiferal tests studied in mudline samples from IODP Sites U1539,
U1540, and U1541 of Central South Pacific and Site U1543 in the
Eastern South Pacific are made up of a range of lithic and biogenic
sedimentary particles. This study reports Desmoscolex species, which
used coccoliths from a single taxon (Calcidiscus leptoporus subsp. lep-
toporus) on its concretion rings. This specimen looks morphologically
similar to the few other specimens of nematodes, which used fine sili-
ciclastic grains on its concretion rings. We also found an agglutinated
foraminiferal species of Rhabdamminidae family, which picked single
planktic foraminiferal species, such as Globoconella inflata to build its
test and a Paratrochammina specimen, which used almost exclusively
C. leptoporus subsp. leptoporus coccoliths (with a minor contribution of
Coccolithus pelagicus subsp. pelagicus). A Reophax fusiformis specimen
picked robust coccoliths of C. pelagicus, C. leptoporus, and Helicosphaera
carteri to build its test. These meiofauna specimens selectively choose
and pick the bioclast grains, which are robust and available in the

sediments but not linked to the dominance of bioclast grains. The deeper
Southern Pacific (>3500 m water depth) shows fragile Desmoscolex
nematode and agglutinated foraminiferal species of Rhabdammina, and
Reophax in core-top (i.e. recent) sediments, but most of them are not
preserved in the geological record, possibly due to a stronger and sea-
sonal corrosive bottom water current or degradation of organic cement
over time. Desmoscolex species and the commonly occurring aggluti-
nated foraminiferal species mentioned in Lamy et al. (2021a) suggest
low to intermediate organic flux and relatively better ventilated bottom
water conditions in the modern Central and Eastern South Pacific. This
study of nematodes and agglutinated benthic foraminifera enhances our
ecological knowledge about the underexplored deep abyssal plain of the
Southern Pacific Ocean and provides information about modern condi-
tions of the deep ocean’s oxygenation and organic matter flux. However,
limited retrieval of nematodes and non-quantitative analysis of agglu-
tinated foraminifera limit its ecological interpretations.
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