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Abstract

This paper answers a long-standing open question in tile-assembly theory, namely that it is possible to
strictly assemble discrete self-similar fractals (DSSFs) in the abstract Tile-Assembly Model (aTAM). We prove
this in 2 separate ways, each taking advantage of a novel set of tools. One of our constructions shows that
specializing the notion of a gquine, a program which prints its own output, to the language of tile-assembly
naturally induces a fractal structure. The other construction introduces self-describing circuits as a means to
abstractly represent the information flow through a tile-assembly construction and shows that such circuits
may be constructed for a relative of the Sierpinski carpet, and indeed many other DSSFs, through a process
of fixed-point iteration. This later result, or more specifically the machinery used in its construction, further
enable us to provide a polynomial time procedure for deciding whether any given subset of Z? will generate
an aTAM producible DSSF. To this end, we also introduce the Tree Pump Theorem, a result analogous to
the important Window Movie Lemma, but with requirements on the set of productions rather than on the
self-assembling system itself.
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1 Introduction

In tile-based self-assembly or tile-assembly, primitive units called tiles combine via local interactions to form
complex structures. The study of tile-assembly is ostensibly largely motivated by work in DNA-nanotechnology
where synthetic DNA strands are made to combine, through the mechanism of nucleotide base pairing dynamics,
into structures that resemble microscopic square tiles with selectively sticky sides. With careful design, these
DNA tiles, under well chosen conditions (temperature, concentration, salinity, etc.), then tend to combine with
each other to form desired structures or even follow the execution of algorithms [50, 44, 39, 42, 41, 13, 43, 2]. The
abstract Tile-Assembly Model (aTAM) is a simplified, mathematical model of tile-assembly, and while the aTAM
is often used to aid in the design of DNA-based self-assembling systems [41, 2, 13], it has been known since its
introduction that the aTAM exhibits rich computational dynamics and even Turing universality[47]. Since then,
theoretical investigations into the aTAM (and variants thereof) have unveiled a complex tapestry of hierarchies,
asymptotic bounds, and intricate algorithmic constructions which has blossomed into a sort of computability and
complexity theory for these uniquely geometric computational models [45, 1, 40, 6, 4, 21, 5, 14, 22, 30, 31, 32,
49, 23]. Even compared to other geometric computational models such as Cellular Automata [17, 33] or Tilings
[38, 7, 46], the aTAM has uniquely asynchronous dynamics, making this landscape of results quite a change of
scenery.

One method for investigating the aTAM involves characterizing the shapes and patterns it is capable of
assembling. Early results in this direction found, for instance, that any finite shape may be constructed with an
asymptotically optimal number of unique tile types (proportional to the Kolmogorov complexity of the shape) if
one is willing to scale the shape by some finite but typically unfortunately large factor[45]. While the simulation of
a Turing machine within the aTAM is relatively simple, used there (and in many other results) as a primitive tile
gadget within a more complex aTAM construction, this result in particular illustrates an important specificity of
the aTAM compared to more conventional models of computation', namely the relevance of how the computation
is embedded into the geometric construction process of shapes. This makes it pertinent to consider what shapes
are difficult (or impossible) to self-assemble. As is the case in many areas of study focused on geometry, fractals
provide an interesting challenge.

While no single definition suffices for the term “fractal”, convenient for our purposes are discrete self-similar
fractals (DSSFs) [26], the limit points of self-substitution tilings of finite connected subsets of Z2. DSSFs are
infinite and aperiodic which is enough in its own right to make a construction difficult, but further still DSSFs are
sparse meaning that there is generally little contiguous space for tiles to simulate a Turing machine computation
or something analogous. It’s important to note here that this difficulty is only present in the context of strict
self-assembly where tiles are only allowed to occupy locations in the target shape. This is in contrast to weak
self-assembly wherein tiles may encroach into negative space, and the target shape is characterized by a specific
subset of tile types. While it is trivial to weakly self-assemble a host of DSSF's, strict self-assembly of DSSF's has
remained an open question. In [26] it was shown that the DSSF analog of the Sierpinski triangle is impossible to
strictly assemble, and such impossibility results have since grown to include subsets of DSSFs such as so-called
pinch point fractals, etc. [37, 15, 24, 3]. These results depend fundamentally on the fact that each stage of such
a fractal is connected by a bounded number of tiles to the previous stage. Interestingly, this seems to hold “just
barely”, and in [28] and [26] it was shown that by allotting only a logarithmically increasing amount of additional
connectivity between fractal stages, using processes called lacing and fibering respectively, it becomes possible to
strictly self-assemble these DSSF's. Another feature of fractal shapes is a notion of dimension which may generally
fall between integer values. More precisely, this notion generally assigns some value to how the amount of space
occupied by the shape scales with its radius. In the context of DSSFs in the aTAM, (-dimension [11] serves as
a convenient and common choice for this metric. It may be tempting to presume that a non-integer (-dimension
plays a role in characterizing the assemble-able shapes. Yet, there have been aTAM constructions which can
be configured to assemble shapes with any (-dimension among a dense subset of the interval (1,2), though the
resulting shapes are distinctly not DSSFs nor are they even sparse[19].

In this paper, we close the question of strictly assembling DSSFs in the positive. We show not only that
DSSF's can be assembled in the aTAM, we do so in 2 separate ways, and provide a polynomial time algorithm for
deciding whether a DSSF generated by a given substitution rule can be assembled. While these results answer
a long-standing open question in the field, more important are the novel and, we believe, delightful techniques

Lwith perhaps the exception of cellular automata
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developed for their construction. One of our DSSF constructions arises naturally from the question “what does
a quine look like in the aTAM?” where a quine typically refers to a program which prints its own description.
Here we substitute typical notions of description in the context of a universal Turing machine with that of an
intrinsically universal (IU) tileset in the aTAM [10]. An IU tileset is one capable of simulating all other aTAM
systems in some class, not just symbolically as with a Turing machine, but geometrically so that the full dynamics
of tile attachment are captured at scale. Our quine therefore is a tile system which grows into a scaled version
of itself. Our IU tileset, while restricted to simulating just a subset (albeit useful subset) of all possible aTAM
systems, is also certainly the smallest IU tileset published that has been fully implemented in an aTAM simulator
and can be downloaded [20]. This construction can also be made to have essentially any (-dimension desired
between 1 and 2. Our other DSSF construction relies on a novel scheme for identifying self-assemble-able shapes
by abstracting the flow of information through an aTAM system’s tiles into what we call self-describing circuits.
These circuits translate naturally into the tile types necessary for assembly while allowing for precise reasoning
about their functionality, and through fixed-point iteration we construct a self-describing circuit for a scaled
version of a close relative of the Sierpiriski Carpet. This latter construction generalizes to all generators (subsets
of Z? to be self-substitution-tiled) with sufficient bandwidth, a measure of a shape’s ability to transmit information
between their opposite sides. Namely, this generalization relies on having at least 2 disjoint paths between the
both the north and south sides and the east and west sides of the generator simultaneously.

Finally, and perhaps most importantly, we characterize the set of generators that result in DSSF's which can be
self-assembled in the aTAM. Specifically, we show that the assembly of a DSSF in the aTAM fundamentally relies
on the bandwidth requirement of our circuit construction: its bandwidth requirement is actually a characterization
up to a finite amount of iterations of the generator. Moreover, it may be determined for any generator shape in
polynomial time using a maximum flow algorithm. This result is not only satisfyingly intuitive, especially given
that the impossibility proof for constructing pinch point fractals depends on the same intuition, but additionally
our proof involves a wide range of novel devices which we believe are of general interest to the tile-assembly
community. This includes, among other things, the use of ordinal indexed assembly sequences to reason about
infinite ones and an important theorem we call the Tree Pump Theorem which serves a similar purpose to the
incredibly useful Window Movie Lemma[29]. Especially striking is the fact that the Tree Pump Theorem’s
hypotheses are about the shape of the productions of a system rather than the system itself, allowing anyone to
prove in one fell swoop that a given shape cannot be obtained by any aTAM system.

2 Overview of the Concepts

Please see Figure 7 for the articulation of the concepts and results of the paper.

2.1 The abstract Tile Assembly Model The definitions we use for the aTAM are borrowed and adapted
from [22] and we note that [40] and [26] are good introductions to the model for unfamiliar readers. The basic
components of the aTAM are unrotatable 2-dimensional square tiles. Fach side of a tile can have a glue, each
of which is composed of a string label and an integer strength. All glues with strength 0 are assumed to have
identical labels and are called null glues. A tile type is uniquely defined by an assignment of glues to its four
sides, and a tile is an instance of a tile type. When two tiles are placed so that they have abutting sides, if those
two sides share the same glue, they bind with the strength of that shared glue. An assembly is a configuration
of tiles in Z?2, and it is said to be T-stable if bonds whose strengths sum to at least 7 must be broken in order
to separate the assembly into two or more components. We say that assembly « is a subassembly of 8 (written
a C B) if dom o C dom 8 and « and 8 have the same tile types on their shared domain.

A tile-assembly system (TAS) is a triple T = (T,0,7), where T is a tileset, o is a finite 7-stable assembly
called the seed assembly, and T € Z* is called the binding threshold (a.k.a. temperature). A tileset must be finite,
but an infinite number of copies of each tile type are assumed to be present. If an assembly « can be produced
in T by a series of single-tile T-stable additions, starting from the seed assembly o, we say that « is a producible
assembly, and use A[T] to denote the set of producible assemblies. If no additional tiles can 7-stably bind to «,
we say that « is a terminal assembly, and use Ap[T] to denote the set of terminal assemblies. If |Ag[T]| =1, i.e.,
there is exactly one terminal assembly, we say that T is directed. Note that both of our DSSF constructions are
directed. We say T strictly self-assembles shape S if for any o € Ag[T], dom o = S.

When a tile initially attaches to an assembly, we call the sides with glues that perform that initial bonding its
input sides, and any other sides with non-null glues, to which later attaching tiles bind, its output sides. We define
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K = K' = x({0}) r({0,0+ E}) K? = n(K") = r2({0})

Figure 1: The substitution x of the Sierpinski’s Cacarpet.

standard aTAM systems as those which (1) are directed, (2) have for each tile type fixed and distinct sets of input
sides and output sides, (3) produce no assemblies with an input side glue on its exterior, (4) have for each tile type
the fact that its input sides are either a single side with a strength-2 glue or two diagonally adjacent sides with
glues of strength-1, (5) have no glue mismatches in the single terminal assembly, and (6) never produce assemblies
containing locations with cumulative inputs of strength 2 without a corresponding tile to attach in that location.
Since the aTAM is computationally universal [47], and relatively straightforward algorithms exist for performing
computational simulations of aTAM systems, there exists an aTAM tileset S such that, for any arbitrary aTAM
system T, a system using S that is appropriately seeded can computationally simulate 7. However, in [10] it
was shown that a more natural notion geometry-preserving simulation is also possible. This notion of simulation,
called intrinsic simulation, occurs when, for some ¢ € ZT, each ¢ x ¢ block of tiles of a simulating system S are
mapped to a single tile of the system 7 being simulated. These ¢ x ¢ blocks of tiles are referred to as macrotiles
and they must be formed in orderings that match the orderings of tile attachments in 7.

2.2 Discrete Self-Similar Fractal Shapes Fractals are usually defined in some continuous space such as R?
or C?. In the context of self-assembly, one needs to work with discrete fractals which are defined as fixed points
of some 2 dimensional substitution. A substitution og(X) : P(Z?) — P(Z?) based on a finite pattern G, called
the generator, replaces each pixel in a pattern X with a copy of G.

DEFINITION 2.1. (DICRETE SELF-SIMILAR FRACTAL) Let G be a finite subset of N2 with (0,0) € G. The discrete
self-similar fractal shape with generator G is G™ = |J,cy06({(0,0)}) C N2. The i-th step of the fractal is

G' = 05({(0,0)}.

The Sierpinski’s Cacarpet 2 is the self-similar fractal shape K° with generator K = {0,...,5}?\ {2,3}?,
represented on Figure 1; k = o is the associated substitution.

3 Overview of our Results

3.1 Fine Characterizations of the dynamics of the aTAM Three general results about the aTAM form
the foundation of our fractal results. Each of them advances the field of self-assembly and has general relevance
within it.

Standard aTAM systems are intrinsically universal and admit Quines
THEOREM 3.1. The class of standard aTAM tile assembly systems is intrinsically universal.

We fully implemented the tile set using a relatively small number of tile types (< 10,000). In this section we
describe the construction of an aTAM quine. In the broader context of computability theory, a quine refers to
a program that, with no input, will output precisely its own description. Here, description is generally defined
with respect to a universal machine U. If simulating U on the pair (d, z) yields the same results as machine M (z)
for all z, then d is a description of M in the context of U. A quine is then simply a description d of a machine
Mgy(x) = U(d,z) which outputs d for all z. Here we describe a natural sense in which this definition can be

2Compared to Sierpinski’s regular Carpet, the Cacarpet has a 2 x 2 hole, 2 layers of points around that hole and two occurences
of 7Ca” in its name.
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Figure 2: (a) A schematic depiction of the construction of the quine system. (1) Subsets of tile types capable
of various algorithmic functions (e.g. binary counting, rotation of values, etc.) make up the “functional” tileset
Tr. (2) The glue labels and tile types of Tr are encoded to generate the “seed row” tileset T that self-assembles
a row presenting an encoding of Tr (plus some additional necessary information) via its northern glues. The
seed tile is shown as green and the rest of the seed row as yellow. (3) Using the full tileset Q = Tr U Ts, the
system grows from the seed tile to form the seed row, then the tiles of Tr cause upward growth that computes
the definitions of the seed row tiles (via their northern glues and locations), appending those definitions to those
provided by the seed row. This results in an assembly with the full definition of ) encoded in its northern glues.
Further growth by the tiles of Tr causes that assembly to grow into a terminal square macrotile that is consistent
with the definition of a seed assembly representing the quine system’s seed tile for the IU tileset U. (4) If the
terminal assembly from (3) were used as the seed assembly for a system including the tile types from U, that
system would simulate the quine system. That is, each tile of ) would be simulated by a macrotile composed
of tiles from U, resulting in a terminal assembly that is a macro-macrotile representing the seed tile of Q. (b)
Schematic depiction of the formation of a macrotile square by the quine construction adapted for DSSFs. The
dimension X, counted by binary counters, can be set to an arbitrary value as long as it is greater than the height
of the grey rectangle (created by the earlier stages of the quine assembly growth), and the dimension Y can be
set to be any value between 0 and X /2. Careful setting of X and Y values can allow for arbitrary percentages of
the area contained within the macrotile to be empty space.

sufficiently specialized using the aTAM as the model of computation and intrinsic universality in place of Turing
universality. In this context, the universal machine is replaced by an intrinsically universal tile set U. The notion
of description here has to be modified to accommodate this change; for a description of a tile system 7T to be
meaningful in the context of U requires that 7 be encoded in some way that tiles in U can use to intrinsically
simulate 7. To this end, we introduce a notion of seeding where a tile system S is said to seed a system T with
respect to U if S grows into the shape of a macrotile which can initiate an intrinsic simulation of 7 using the
tiles in U.

DEFINITION 3.1. Fix a tileset U which is IU for some class € of TASs and let the corresponding representation
and seed generation functions be R and S respectively. We say that a TAS Q = (Q,0¢,7q) seeds the TAS
T = (T,op,7r) with respect to (U,R,S) if: (1) T € €, (2) log| =1, (3) Q is directed, and (4) the macrotile
seed assembly S(or) corresponding to o has the same shape and glues presented on its exterior as the terminal
assembly of Q.

In other words, for Q to seed 7 with respect to U means that Q will grow into an assembly which behaves
in all ways as a valid macrotile seed for the intrinsic simulation of 7 by tiles in U.
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Figure 3: Left, a 2-digit by 1-digit multiplier computing 32 (left, written bottom-to-top) times 7 (top) is 224
(right, bottom-to-top). When a gate has two input wires, each of them bends towards the other wire. Right, the
tile type corresponding to the a gate at the bottom-right of the circuit, and a neighborhood where it can attach.
The temperature 7 is the maximum in-degree of a gate in the circuit (here, 2).

DEFINITION 3.2. Given IU tileset U (and its corresponding representation and seed generating functions R and
S), an aTAM quine is a TAS Q = (Q,0,7) that seeds itself with respect to (U, R,S).

THEOREM 3.2. There exists an aTAM quine.

We prove Theorem 3.2 by construction, demonstrating an aTAM quine Q = (Q, 0,2) for the tileset U that
is TU for standard aTAM systems (and its corresponding representation and seed generating functions R and S)
given in the proof of Theorem 3.1. A high-level, schematic depiction of Q can be seen in Figure 2a. Essentially,
the tileset @ of Q consists of a subset of “functional” tile types, Tr, and a subset of “seed row” tile types, Ts.
The seed row tile types grow into a row that has an encoding of the definitions of the tile types in T, and then
the tiles of T attach to that row and grow into an assembly that computes the definitions of the tiles of T, so
that the resulting assembly presents a full definition of Q. It then grows into a square macrotile that represents
its own seed tile, having the glues of that tile represented on its sides along with the definition of Q.

Embedded Circuits and self-description Self-describing circuits are a novel device for presenting aTAM
systems. These are generally useful for rigorous yet readable proofs of the behaviour of aTAM systems, which are
crucial in the context of fractals.

A circuit is made of gates positioned on a subset D of Z2, as in Figure 3. Each of these gates has a function,
computing the outputs of the gate from the inputs. The gate is embedded on a unit square according to its
wiring, which states where its inputs come from and where its outputs go. The wiring and the function must be
compatible: the wiring must have as many inputs as the function. A circuit is evaluable if it has no input wires,
loops or infinite backwards paths. One can then evaluate the circuit, that is, give a value to each of its wires
according to the functions of the gates.

An evaluable circuit is self-descriptive when there is a decoding function dec-gate which determines the gate
at any position p of the circuit from the inputs it receives. If this is the case, the circuit can be self-assembled
in the aTAM. In particular, the set D C Z? of positions where gates appear can be strictly self-assembled in the
aTAM.

THEOREM 3.3. Let C be a self-describing evaluable circuit in which exactly one gate has no inputs. Then there
is a standard aTAM system Sc which strictly self-assembles dom(C').
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The second column of Figure 3 shows the principle of the aTAM simulating such a circuit: each tile corresponds
to a gate with a set of input/output values, and the set of glues is the set of wires with values on them. Each
wire additionally encodes the set of directions with incoming wires in the gate, so the strength of each glue can
be chosen so that each tile attaches when all its inputs are present. Each of the glues on the input sides of the
gate then determines the set of input sides and by self-description, the combination of inputs on that set of sides
is unique. Hence, the aTAM is directed and its production is exactly the circuit.

The Tree Pump Theorem This pumping principle in the style of [29] deals with skinny productions, that
is those which do not encircle any square larger than m for some fixed m. The crucial property which makes
them simple(-ish) is their bounded treewidth.

THEOREM 3.4. (TREE PUMP) For any aTAM system T = (S,0,7) with o finite and connected, define the
following sets of assemblies:
o for any integer m, Cp,[T] is the set of assemblies of T which encircle an m x m square;
e for any real k and vector J, Bkj[ﬂ is the set of assemblies of T which do not cover any position P such
that - d > k + |dom o]
e for any vector cf, PAT] is the set of ultimately periodic assemblies A of T such that there is a vector p' with
D d>0 and a non-empty sub-assembly a © A such that a + p'C a.
Then, there is a function F': N x N — N such that for aTAM system T with n tile types and a 1-tile seed,
integer m and unit vector d of R2,

AGIT] A (ClT) U By, ATIUPATY) # 2.

3 X no tile
L (Q (
& 0 N 0 periodic

Figure 4: The three sets defined by theorem 3.4: C,,[T] is the assemblies which encircle an m x m square,
Br(m) 7171 is the set of assemblies which do not reach further than F(n,m) in direction d, and Pf{T] is the

assemblies which contain a periodic path with period p such that p'- d>o0.

The cases of theorem 3.4 are detailed in Figure 4. In order to do a meaningful amount of computation, a self-
assembling system with n tiles needs to encircle large squares —say, of size m, thus hitting C,,,[T]. If it does not,
then its productions look very much like trees drawn on Z? with a m-cell wide brush. A branch of that tree then
behaves like a finite automaton. If that automaton stops, the assembly goes no further than F(n,m) in any given

direction J; which gives a final production in B T]. If not, these long branches must have an ultimately

F(n,m J[
periodic behavior which gives a final production (in I;J[T]. The proof proceeds in two parts, all along assuming
that there are no m x m squares encircled by a production of 7 first the tree-like nature of the productions of
T is formalized through a tree decomposition. Then, the proof considers generalized assembly sequences, with
ordinal time and the freedom to escape Z2. In this generalized context, repeatedly using an adaptation of the
Window Movie Lemma [29] on a long enough branch of the tree decomposition yields an ultimately periodic path.

The full proof is given in Section 8, as it involves a fair few ancillary definitions.

3.2 From an aTAM Quine to a self-assembled DSSF Our first construction capable of strictly self-
assembling DSSF's in the aTAM uses a smaller number of tile types (combining the tileset that is IU for standard
aTAM systems and the quine tileset), but a very large scale factor.
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THEOREM 3.5. For z,e € Q, where 1 < z < 2 and € < 1, there exists an aTAM system F, . such that F, .

strictly self-assembles a DSSF whose (-dimension is in the range (z —e, z+€) and whose generator has side length
o(2%¢).

We prove Theorem 3.5 by construction. Given an arbitrary z,e¢ € Q, where 1 < z < 2 and € < 1, we
demonstrate an aTAM system F,. = (T,0,2) that strictly self-assembles a DSSF whose (-dimension is in
(z — ¢,z + €). By including the IU tileset U in the quine construction, the macrotile resulting from the quine’s
growth will then enable tiles in U to simulate additional macrotiles. These macrotiles will grow in the same
fashion as the individual tiles that attached to grow the quine in the first place. This process will continue at
larger scales indefinitely. Because intrinsic simulation is a transitive relation (see Section 9) and because our IU
system uses macrotiles with the same shape as our squared quine and does not place tiles in any macrotiles that
will not map to tiles, this simulation at increasing scales produces a DSSF. Additionally, our construction enables
the (-dimension to be tuned by adjusting the amount of empty space in each macrotile as depicted in Figure 2b

3.3 A self-assembled DSSF described as an Embedded Circuit The second construction relies on
theorem 3.3: any shape which can be endowed with a self-describing circuit can be strictly self-assembled. Taking
inspiration from [16] and others in this tradition, we observe that locally describing a recursive and self-similar
structure such as that of a DSSF can be done by combining information about several levels in the substitution
hierarchy in order to compute the address of each position. This affords strict-self-assembly of a DSSF with scale
factor only 6, namely the Sierpinski Cacarpet K°° given on Figure 9. Alas, because the tileset is generated by a
general theorem, its number of tile types ends up in the hundreds of millions.

THEOREM 3.6. There is an evaluable circuit Co with domain K*° and with an empty input bus which is self-
describing. Moreover, Co has only one gate without inputs.

COROLLARY 3.1. There is an aTAM system at T = 2 which self-assembles the DSSF pattern K°°.

In order to construct the circuit Cp, three things are needed. First, its alphabet X, that is, the set of messages
which are going to be circulating on its wires. Then the functions of its gates, and last the circuit itself, that is,
the position of the gates and wires within K°°. Because K> is obtained as the fixed point of a substitution, C™
itself is going to be defined as the fixed point of a substitution . This substitution associates to each gate g a
circuit, or macro-gate x(g) such that:

e each gate of k(g) announces its address within k(g) in its output values,

e cach gate of k(g) announces a description of ¢ in its output values, and

e as a circuit, x(g) simulates g.

In order for C to be well-defined, there is a special ”seed” gate s at (0,0) which has no inputs and which appears
in k(s) at position (0, 0).

This is almost sufficient for self-description: in the fixed point of k, every gate which has a predecessor within
the same macro-gate receives the value of g as well as the position of a neighbor within x(g), from which it
computes its own position. In each k(g) there is a gate p whose inputs all are from outside k(g); ensuring p
only depends on where the inputs of g are, and that it does receive that information from its predecessor gives
self-description.

The full details of the circuit are in Section 10; the idea is on Figure 5: each message in C contains two
instances of pairs of a gate description and a position within K. The first one corresponds to the parent of the
tile and the position of the tile within its parent, while the second one is used to simulate the parent.

3.4 A Characterization of Self-Assemblable DSSF's

Statement of the characterization The previous construction can be adapted to any discrete self-similar
fractal within which the communication pattern used by Cp can be embedded. Whether a particular fractal
is amenable to hosting such a communication pattern depends on the ability of its generator G to transport
information to copies of itself around it, as captured by its cardinal bandwidth. The bandwidth G[d <> d'] between
two directions d,d’ € {N, E, S, W} is the number of disjoint paths through G from its d neighbor to its d’ neighbor.

THEOREM 3.7. There is a polynomial time algorithm which, on input G, decides whether:
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Figure 5: The principle of C. Each gate G (top-left) is cut by « into a circuit (right). The messages are composed
of two parts. On the border of x(G), their second part corresponds to the messages of G. When a gate is cut,
some information is lost: the type of its input wires. This information is reconstructed from the output wires of
the predecessor, which are given in the local part of the messages from the neighboring x(G’). The seed gate’s
message (bottom-left) declares "I am the tile at (0,0) within a seed gate, at all scales”.

1. there is a k such that GF[N < S] > 2 and GF[E <> W] > 2 and G™ can be strictly self-assembled in the
aTAM, or

2. for all k, GFIN + S] < 2 and G™ cannot be strictly self-assembled in the a TAM, or

3. for all k, GF[E +» W] < 2 and G> cannot be strictly self-assembled in the aTAM.

The fact that distinguishing between the cases can be done in polynomial time is quite plain. The interesting
part is showing that this polynomial-time dichotomy is an actual characterization.
Bandwidth 2 is sufficient for strict self-assembly Let
G, H be finite, connected shapes of N2, with (0,0) € GN H. Then
H is a subconnector of G, written H <X G if G has a subgraph
which is an edge subdivision of H, including the edges between
adjacent copies of H when placing copies of G on a grid.
Now observe that whenever a graph G has K as a subconnec- E
tor, the circuit of theorem 3.6 can be embedded into G*°. Then
changing the messages to carry addresses in G rather than in K
yields a self-descriptive circuit with domain G*°. It actually suf-
fices that some finite iterate G* admits K as a subconnector in
order to Conclude7 since (Gk)oo = G, Figure 6: A generator where Only the second
iteration satisfies G2[N < S] > 2. Hence,
LEMMA 3.1. Let G > (0,0) a finite, connected subgraph of N? such GIN « S| =1, yet G* can be strictly self-
that for some finite k, K < G*. Then there is a self-descriptive assembled.
circuit with domain G°.

When does K < G¥? When G|N « S] > 2 and G[E — W] >
2: then K < G? as the 2 disjoint paths in each direction turn into 8, which is enough to get K as a subconnector.
This concludes the proof that condition 1 is sufficient to be able to strictly self-assemble G*°.

Bandwidth 2 is necessary for strict self-assembly In cases 2 and 3 of theorem 3.7, strict self-assembly
of G* is impossible by a generalization of the impossibility result of Hendricks et al. [25].

THEOREM 3.8. Let G 3 (0,0) a finite shape of N, and for k € N, GF = ¢&,({(0,0)}).
If sup, (GF[N « S]) = 1 or sup,(GF[E +> W]) = 1, then G cannot be strictly self-assembled in the aTAM
model unless G = N2,
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Consider the case where for all k, GF[E +» W] = 1. In G™, consider all edges which are East-West bridge
of G* for some k. Because T is finite, there is an infinite subset of those with the same glue on the bridge edge.
From at least one of these glues g which appear infinitely often, it is possible to grow unboundedly far to the
north. Let p be the vector joining two instances of g. By theorem 3.4, from g can grow either a periodic path
going up to the north, or productions circling arbitrarily large squares. In both cases, this entails that all the G*
admit p’as a period. Hence G is trivial.
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Figure 7: The articulation between the concepts and results of this paper. The gray boxes are from the literature,
the blue boxes are new concepts. The results in the yellow part are of general interest outside the scope of fractals.
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4 Definitions and Notations

In this section we provide mathematical definitions (extending the overview provided in Section 2) for the concepts
and model used throughout the paper.

4.1 Generic Notations We define the four cardinal directions in Z? as D = {N, E, S, W} and identify them
with the corresponding offsets from a location [ € Z2: O = {(0,1),(1,0), (0, 1), (—1,0)}. A variable with an
arrow such as @ denotes a vector of values indexed by some set S. Given s € S, as is the element of @ associated
with s. For any sets A, B and an indexing set S, given @ € A% and b e B%, the Cartesian product @ ® b is the
vector ¥ € (A x B)® defined by Vs € S,vs = (as,bs). Likewise, given f : AT s A and g : Bf + B9, the function
F®g:(Ax B) — (Ax B)° is defined by (f ® g)(@®b) = f(@) @ g(b).

The constructions in Section 7, Section 10 and Section 8 make heavy use of sets built as Cartesian products.
In an attempt to make their exposition more readable and distinguish the function of each component of
the product, they are given in a “record” or “object” like syntax using ’{}’ for record construction and

“r - field” for field access. That is, given an integer k, k base sets Xo,...,Xr_1 and a sequence of k labels
such as L = (zeroth, first, second, .. ., not-quite-k-th), the element = = (zo,z1,z2,...,zr-1) € IL;X; is written
x = {zeroth = xg, first = 21, ..., not-quite-k-th = x_1}. Symmetrically, zy can be extracted from z by writing

x-zeroth. A judicious set of labels can makes this notation actually useful in those sections.

4.2 Discrete Self-Similar Fractal Shapes In this paper, discrete self-similar fractal shapes are defined as
fixed points of some 2 dimensional substitution. In [37], self-similar fractal shapes are defined as the union of
an infinite hierarchy of shapes. The following definition is identical, as long as the generator contains (0, 0).
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ms
-

Figure 8: A colored substitution on a 3-colored alphabet ¥ = {., , '} is defined from a shape G = Bj and a
coloring of G for each color of X. It can then be applied to any colored shape (right).

Explicitly defining a geometrical substitution will help, as that substitution can guide constructions happening
on the fractal. If the generator does not contain (0,0), the classical definition can be recovered by iterating the
substitution associated with G'U (0, 0) to reach the fix-point, then iterating once the substitution associated with
G. The substitution o based on a finite pattern G replaces each pixel in a pattern X with a copy of G.

DEFINITION 4.1. (RECTANGULAR SUBSTITUTION) Let G be a finite subset of N2, Let w = max({z|(z,y) € G})
and h = max({y|(z,y) € G}). The substitution o : P(N?) — P(N?) associated with G is defined by:

VX C N? 0q(X) = {p € N?||p/G|] € X Apmod G € G}

Using substitution allows manipulating the recursive definition of DSSF with richer data than one bit per
position in the following way.

DEFINITION 4.2. (COLORED SUBSTITUTION) Let X be an alphabet and G a finite subset of N?; given for each
r € X a coloring C(z) € X©, the substitution oc associated with C is defined for each partial coloring
Y :N? - X by:

oc(Y): N2 -5 X

oc(Y):Z— C(Y(|2/G]))(z mod G),

Where oc(Y)(2) is defined whenever Y (|z/G|) is defined and z mod G € G.

DEFINITION 4.3. (SELF-SIMILAR FRACTAL SHAPE) Let G be a finite subset of N* with (0,0) € G. The discrete
self-similar fractal shape with generator G is the following subset of N?:

G = Joe({(0,00}).

€N
The i-th step of the fractal is G* = o&({(0,0)}.

One self-similar fractal shape will be of particular interest to us in this paper, wich we name Sierpinski’s
Cacarpet. Tt is the self-similar fractal shape K> with generator K = {0,...,5}2\ {2,3}2, represented on figure 9.
We note k = o the associated substitution.

4.3 The Abstract Tile Assembly Model and Standard Systems A complete definition of the aTAM is
given here. This section also introduces IO markings and the concept of a standard TAS system, which capture
the common practices used in the literature to obtain intelligible aTAM systems.

Let X to be some alphabet with X* its finite strings. A glue g € 3* x N consists of a finite string label and
non-negative integer strength. There is a single glue of strength 0, referred to as the null glue. A tile type is a
tuple t € (X* x N)4, thought of as a unit square with a glue on each side. A tileset is a finite set of tile types. We
always assume a finite set of tile types, but allow an infinite number of copies of each tile type to occupy locations
in the Z? lattice, each called a tile. Given a tileset T, a configuration is an arrangement (possibly empty) of tiles
in the lattice Z2, i.e. a partial function « : Z% --» T. Two adjacent tiles in a configuration interact, or are bound
or attached, if the glues on their abutting sides are equal (in both label and strength) and have positive strength.
Each configuration « induces a binding graph B, whose vertices are those points occupied by tiles, with an edge

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

2399



Downloaded 05/01/25 to 86.63.155.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

K = K' = x({0}) r({0,0+ E}) K? = n(K") = r2({0})

Figure 9: The substitution x of the Sierpinski’s Cacarpet.

of weight s between two vertices if the corresponding tiles interact with strength s. An assembly is a configuration
whose domain (as a graph) is connected and non-empty. The domain dom (a) C Z? of an assembly « is known
as its shape. We use T<Z to denote the set of all assemblies of tiles in tile set 7.

For some 7 € Z*, an assembly « is 7-stable if every cut of B, has weight at least 7, i.e. a T-stable assembly
cannot be split into two pieces without separating bound tiles whose shared glues have cumulative strength 7.
Given a tile assembly system 7 and an assembly a € TCZ2, an attachment candidate is a pair tQz, with t € T
and z € Z2. It is valid if z ¢ dom «. It is stable if o/ = aU{z + t} is stable. If it is both valid and stable, it is an

attachment, noted a 9%, /. In that case, we say that o T-produces o in one step. That is, « 10z, B if g differs
from « by the addition of a single tile of type ¢ at position z. The T -frontier is the set 07 o = {Z\El(t, B),a LN 5}

of locations in which a tile could 7-stably attach to a.
Given a TAS T = (T, 0,7), a sequence of k € ZT U {oo} assemblies ag, a1, ... over A7 is called a T -assembly

sequence if, for all i < k, there is an attachment tQz such that «; 19z, a;4+1. The result of an assembly sequence
is the unique limiting assembly of the sequence. For finite assembly sequences, this is the final assembly; whereas
for infinite assembly sequences, this is the assembly consisting of all tiles from any assembly in the sequence. We
say that a T-produces B (denoted a —7 f3) if there is a T-assembly sequence starting with o whose result is
B. We say « is T-producible if ¢ —7 a and write A[T] to denote the set of T-producible assemblies. We say
a is T -terminal if « is 7-stable and there exists no assembly that is 7-producible from «. We denote the set of
T-producible and T-terminal assemblies by Ag[T]. If |Ag[T]| = 1, i.e., there is exactly one terminal assembly,
we say that T is directed.

We say T strictly self-assembles shape P if for any A € Ag[T], dom A = P. Weak assembly of a target shape
is defined as follows. Given a TAS T = (T,0,7), we allow each tile type to be assigned exactly one color from
some set of colors C'. Let Cp C C be a subset of those colors, and T, C T be the subset of tiles of T' whose
colors are in Cp. Given an assembly o € A[T], we use dom ¢, () to denote the set of all locations of tiles in «
with colors in Cp.

DEFINITION 4.4. (INPUT AND OUTPUT SIDES) Let T = (T,0,7) be a TAS in the aTAM, and let o € A[T] be a
producible assembly in T. If t is a tile of type t € T that attaches to a, we call the subset of sides on which t has
non-null glues that form bonds with o at the time that  attaches its input sides and denote them as IN(f) CD.
Let G(t) C D be the set of sides of t containing non-null glues. We refer to the set G(f)\ INt) as the tile’s output
sides, and denote them as OUT(t).

DEFINITION 4.5. (IO MARKED TILE SET) Let T = (T,0,7) be a TAS in the aTAM. We say that T is an 10
marked tile set if there exists an ordered set of 4 unique symbols I0s = {sn,sE, Ss,Sw} such that the following
conditions hold for every tile type t € T where a tile of type t is not contained in o:

1. For some subset of sides of t whose glues are non-null such that the strengths of those glues sum to exactly
T, the glue labels of the glues on those sides end with the symbols from IO corresponding to the directions
of those sides. We say that those sides are input marked.

2. For all sides of t that contain non-null glues which are not input marked, the glue labels of the glues of glues
on those sides ends with the symbols from I0s corresponding to the opposite directions of those sides. We
say that those sides are output marked.
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For each t € T such that a tile of type t is contained in o, it may have no sides that are input marked, or
input marked sides whose glue strengths sum to < T.

LEMMA 4.1. Let T = (T,0,7) be an aTAM TAS where T is IO marked. If all exposed glues on the perimeter of
o are output marked, then for all « € A[T], all exposed non-null glues on the perimeter of o are output marked.

Proof. We prove Lemma 4.1 by induction. Our base case is ¢ which by definition is in A[7] and is given to have all
exposed non-null glues on its perimeter to be output marked. Our induction hypothesis is that, given producible
assemblies o, 3 € A[T] such that a —7 f, if all non-null glues on the perimeter of a are output marked, then
the same holds for 3. This must be true because, since T' is IO marked, whatever tile ¢ of whichever type t € T
attaches to a to form 8 must only have glues whose strengths sum to exactly 7, the minimum possible that allow
it to bind, that are input marked. Since all glues on the perimeter of « are output marked, and the only way
for glues on t and the perimeter of « to match and thus form bonds is for them to be on tile sides of opposite
directions and one to be input marked and the other output marked (since those are the same symbols for the
opposite sides), every input marked glue of £ must bind during its attachment. This leaves only null and output
marked glues remaining on { to possibly be exposed and added to the perimeter of 8. Therefore, all exposed
non-null glues on the perimeter of 8 must also be output marked and our induction hypothesis holds and Lemma
4.1 is proven. ]

COROLLARY 4.1. Given aTAM TAS T = (T,0,7) where T is I0 marked and all exposed glues on the perimeter
of o are output marked, then for every tile type t € T, all tiles of type t that attach to any producible assemblies in
T must have the exact same input sides and output sides (noting that output sides are not required to ever form
bonds with other tiles).

Corollary 4.1 follows immediately from Lemma 4.1 since the tiles of T are IO marked and therefore can only
ever use (exactly) their input marked sides as their input sides when initially binding, and any remaining non-null
glues are output marked and also available as output sides. Therefore, for such systems we will also use the
notation IN(t) and OUT(t), referring to tile type t, in addition to IN(f) and OUT(f) referring to individual tiles of

type t.
Throughout this paper, we will use the following two sets of symbols to IO mark tile sets: I04; = {V, <, A, >}

and I0s, = {VV,<<,AA,>>}. Intuitively, they can be thought of as “pointing into the tile” when on input
sides, and out of the tile on output sides.

DEFINITION 4.6. (STANDARD TAS) Let T = (T,0,2) be a TAS in the aTAM. We say that T is standard if and
only if:

1. T is directed,
2. T is I0 marked,

3. For everyt € T, the sides that have input markings are either exactly (1) a single glue of strength-2, or (2)
two diagonally adjacent strength-1 glues (i.e. not on opposite sides),

4. All glues on the exterior of o are output marked, and

5. There are no mismatches in the terminal assembly (i.e. all adjacent pairs of tile sides in a € Ag[T] have
the same glue label and strength on both sides)

6. In any tile location between two diagonally adjacent non-null glues or next to a strength-2 glue, exactly 1
tile may attach.

Note that throughout the literature of the aTAM, most constructions consist of standard aTAM systems or
systems that could trivially be turned into standard systems by adding 10 markings (e.g. [27, 36, 45, 40]).
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4.4 Encodings of aTAM tile types and systems Here we provide definitions related to the ways in which
aTAM tile types and systems can be encoded for use in systems that simulate their behaviors.

DEFINITION 4.7. (GLUE ENCODING) Let G be a set of glue labels, 3 an alphabet, and fg : G — £* be an injective
(i.e. one-to-one) function mapping glue labels to strings. For g € G, we say that fo(g) is a glue encoding of g
over Y. That is, fa(g) is a unique representation of g among all glues in G using the fived alphabet X.

DEFINITION 4.8. (GLUE LOOKUP ENTRY) Given an IO marked tile set T, some t € T, and alphabets ¥ and X'
with ¥ C Y/, we define a glue lookup entry of t over ¥/ as a string s € X'* that consists of glue encodings of the
input sides of t under ¥ followed by glue encodings of the output sides of t under ¥, possibly separated and/or
surrounded by additional characters in ¥/ — X.

DEFINITION 4.9. (GLUE LOOKUP TABLE) Given an IO marked tile set T and alphabets ¥ and ¥’ with ¥ C ¥,
we define a glue lookup table of T over ¥/ as a string s € ¥.'* that consists of a glue lookup entry of each t € T
over X, possibly separated and/or surrounded by additional characters in ¥’ — X.

4.5 Intrinsic Simulation in the aTAM This section describes what it means for a TAS to intrinsically
simulate another TAS. Intuitively, intrinsic simulation of a system 7 by another system S is done with respect
to some scale factor ¢ € ZT such that ¢ x ¢ squares of tiles in S, called macrotiles, represent individual tiles in
T, and there is a representation function that is able to map the macrotiles in S to tiles in 7 (or empty space)
and thus interpret the assemblies of S as assemblies in 7. Furthermore, the progression of the mapped macrotiles
from S faithfully mimics the addition of tiles in 7.

In the following definitions, it will be assumed that 7 = (T, o7, 77) is a TAS being simulated by another TAS
S = (S,0s,7s). Furthermore, let Z,, be the set {0,1,...,n — 1} equipped with the typical notions of modular
arithmetic. Given a positive integer c called the scale factor, a c-block macrotile over S is a partial function
w: Z. --» S. That is, u assigns tiles from S to some subset of the locations in a ¢ x ¢ block of locations.
If the domain of u is empty, then the macrotile is called empty. During a simulation, it is assumed that the
lattice Z? is divided regularly into c-block macrotiles so that the origin occupies the south-westernmost location
in the corresponding macrotile block. Given a general assembly o € AS and some coordinates (z,y) € Z?, we
can recover the macrotiles from « by letting Mg , [a] refer to the c-block macrotile in a whose southwest corner
occupies location (cz,cy). In other words M¢ ,[a](4, j) = a(cx + i, cy + j), when defined, for (i,7) € Z2.

A partial function R : %5 --» T is called a macrotile representation function from S to T if for any p,v € %5
where  C v and p € dom R, then R(u) = R(v). In other words, if R maps a macrotile p to a tile type in T,
then any additional tile attachments to p should not change how it maps under R. This is clearly required since
tiles in the aTAM cannot detach or change to other tile types so macrotiles should not be able to change their
representation once assigned. With respect to an assembly sequence «aq, aq, ... in S, a macrotile at location (x, y)
is said to resolve into tile type t € T" at step i if .#  [ov;—1] is not in the domain of R but R(.Z; ,[ai]) = t.

Given a c-block macrotile representation function R, The corresponding assembly representation function is
denoted R* : &% — /T and is defined so that R*(o/) = a exactly when a(z,y) = R(g ,[o/]) for all (z,y) € Z*.
In other words, the assembly representation function is just the result of applying the macrotile representation
function to each macrotile in §. Additionally, the notation R*fl(a) is used to refer to the producible preimage
{o/ € A[S] | R*(e) = a} of the assembly representation function R* on . In other words R**(a) is the set of
all S-producible assemblies that map to o under R*.

In order for intrinsic simulation to be a distinctly unique and meaningful definition compared to traditional
notions of simulation, a restriction on R* is necessary. Given an assembly o € A[S] let & = R*(a/). It is
then said that o maps cleanly to o under R* if all tiles in o/ appear in the macrotile blocks which have either
themselves resolved to tiles in « or which are adjacent (not diagonally) to macrotiles which have resolved. This
means that tiles may not exist in macrotile blocks of o’ mapping to locations of a that could not possibly admit
a tile attachment due to their distance from all tiles in a. Tiles are allowed to attach in macrotile blocks of
o’ adjacent to resolved macrotiles to determine if the macrotile block might eventually resolve to a tile. These
unresolved macrotiles adjacent to resolved macrotiles are called fuzz macrotiles since at scale the tiles attaching
in them resemble fuzzy hairs on the surface of a resolved assembly.

DEFINITION 4.10. Formally, o' maps cleanly to o/ when for every non-empty block M ,[o'], there evists a vector

(u,v) € Z* with length less than or equal to 1, such that Mg, ., [o/] € dom R.
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DEFINITION 4.11. We say that S and T have equivalent productions (under R), written S < g T, if the following
conditions hold:

o {R*(c/)]a" € A[S]} = A[T],
o {R*(/)|a € Ag[S]} = Ap[T], and
e For all o € A[S], o/ maps cleanly to R*(a/).

DEFINITION 4.12. We say that T follows S (under R), written T 4g S, if for all o/, B’ € A[S], o/ —° ' implies
R*(o/) =T R*(8").

In the following definition let R*fl(oz) refer to the producible pre-image of the assembly representation
function R* on a. That is R* !(a) = {o/ € A[S]|R*(/) = a}, so that R*'(a) consists of all S-producible
assemblies that represent o under R.

DEFINITION 4.13. We say that S models T (under R), written S Er T, if for every a € A[T], there ezists a
non-empty subset I, C R*~(a), such that for all § € A[T]| where a —7 B, the following conditions are satisfied:

1. for every o/ € 1l,, there exists ' € R*~(B3) such that o/ —5 '
2. for every o' € R* ") and " € R* () where o/’ —S B", there exists o/ € Il such that o/ =S o,

For each o € A[T], we call the corresponding set I, the stem set of a.

In Definition 4.13 above, the stem set II,, of « is defined to be a set of assemblies representing a from which it
is still possible to produce assemblies representing all possible 8 producible from «. Informally, the first condition
specifies that all assemblies in II, can produce some assembly representing any [ producible from «, while the
second condition specifies that any assembly o representing o that may produce an assembly representing /3 is
producible from an assembly in II,. In this way, II, represents a set of the earliest possible representations of
« where no commitment has yet been made regarding the next simulated assembly. Requiring the existence of
such a set I, for every producible « ensures that non-determinism is faithfully simulated. That is, the simulation
cannot simply “decide in advance” which tile attachments will occur.

4.6 Intrinsic Universality Now that we have a formal definition of what it means for one tile system to
simulate another, we can proceed to formally define the concept of intrinsic universality, i.e., when there is one
general-purpose tile set that can be appropriately programmed to simulate any other tile system from a specified
class of tile systems.

Let REPR denote the set of all supertile representation functions (i.e., c-block supertile representation functions
for some ¢ € Z*). Define € to be a class of tile assembly systems, and let U be a tile set. Note that each element
of €, REPR, and Agoo is a finite object, hence encoding and decoding of simulated and simulating assemblies can
be defined to be computable via standard models such as Turing machines and Boolean circuits.

DEFINITION 4.14. We say a tile set U is intrinsically universal (IU) for € if there are computable functions
R :¢€ - REPR and S : € — AZOO such that, for each T € €, there is a constant ¢ € ZT such that, letting

R = R(T), or = S(T), and Uy = (U,o7,7), Ur simulates T at scale ¢ and using supertile representation
function R.

That is, R(7T) outputs a representation function that interprets assemblies of U as assemblies of T, and S(T)
outputs the seed assembly used to program tiles from U to represent the seed assembly of 7. We refer to R as a
representation function generator and S as a seed generator.

5 Standard aTAM Systems are Intrinsically Universal

We now prove that the class of standard aTAM systems is intrinsically universal by providing a construction of
a tileset that is IU for it. This universal tileset will be combined with the quine system presented in the next
section to make systems that are capable of self-simulation.
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5.1 Outline of IU construction Here we describe in broad strokes how our construction is designed. Technical
details regarding individual tile gadgets are deferred to Section 5.2. It’s important to emphasize here that there
is no single best way to implement such a tileset; many of the choices we made are entirely arbitrary. This
section therefore does not describe a fundamental construction, but rather one of infinitely many possible ways
to implement a tileset IU for standard systems. It should also be noted that the restriction to standard systems
makes designing an IU tileset significantly simpler than if the entire class of aTAM systems were to be simulated.
This allows our IU tileset to consist of considerably fewer than 10,000 tile types while more general TU tilesets
can easily contain orders of magnitude more [22].

In this section, it will be assumed that U is refer to the IU tileset and we will describe the various parts of
our construction under the pretext that a standard system 7 = (T, o7, 7r < 2) is being intrinsically simulated
by a standard system U = (U, oy, 70 = 2).

DEFINITION 5.1. We say that the intrinsic simulation of a system T by another U is pristine if no terminal
assembly in U has any fuzz tiles. That is, any macrotile of U containing a tile maps to a tile type in T under the
representation function.

In addition to being universal for all standard systems, our IU tileset U also has the property that if the
seed macrotile oy encodes all of the tiles in T" according to the convention described in Section 5.2.1, then the
simulation of 7 by U will be pristine. This property is essential for our DSSF construction since otherwise the
resulting shape would contain tiles in what should be empty locations.

5.1.1 Macrotile structure In this construction, we insist that every tile attachment occurring within a
macrotile block is dedicated solely to either determining how that macrotile block will resolve or to presenting
information along the edges of that macrotile block to indicate to neighboring macrotiles how it has resolved.
We also ensure that each macrotile block will only contain tiles in U if the corresponding tile location in T will
contain a tile in the terminal assembly. This can be guaranteed since standard systems are locally deterministic.

The 4 sides of a completed macrotile in I/ each encode 2 pieces of information: the tileset 7" in the form of a
data structure called a glue table, and the glue to be presented along the corresponding side of the T-tile type ¢
being represented. Note that this encoding is predicated on the fact that ¢ has a glue with positive strength on
the corresponding side. If any of the sides of ¢ contain the null glue, then the corresponding side of the macrotile
will entirely consist of null glues.

Each side of a macrotile may be logically divided into 7 sections each separated by dedicated glues. The
layout of these sections is symmetric along the side of the macrotile, though the data contained in these sections
is decidedly not symmetric. The center section encodes the glue table for T'. It is surrounded by two equally sized
padding sections consisting only of strength-1 blank glues that encode no information. These are surrounded
by identical copies of glue encodings called glue signatures whose purpose is to indicate which glue from 7T the
macrotile side represents. Finally, these are surrounded by two additional, equally sized padding sections. Note
that the outer and inner padding sections need not be the same size and only serve to accommodate space inside
the macrotile for passing information around.

The boundaries that divide a macrotile side into 7 sections extend into the macrotile so that the entire block is
divided into 49 logical sections as illustrated in Figure 10. Note that these sections may differ in their functionality
depending on whether a cooperative or strength-2 attachment is being simulated in the current macrotile, though
there are only a small number of distinct functional tasks that a section may perform. These tasks include the
following:

1. Filler sections Filla region with generic tiles up to the boundaries (indicated by gray boxes with thin,
dotted arrows),

2. Propagation sections propagate and/or rotate a sequence of symbols (encoded by the glues of tiles) from
one side of the section to one or more other sides (indicated by thick colored arrows in Figure 10),

3. Propagation intersection sections pass two sequences of symbols through each other to the opposite
sides of the section ( indicated by thick arrows of different colors passing over each other),

4. Glue combination sections combine glue signature information from a pair of neighboring strength-1
glues (indicated by the symbol @ in Figure 10),
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Figure 10: Blue arrows indicate the propagation of the glue table while red arrows indicate the propagation of
glue signatures. Gray boxes indicate sections which are filled with generic tiles. Thin green lines indicate places
where tiles growing from opposite directions place null glues between themselves so that mismatches are avoided.

5. Glue table read sections read from the glue table to convert an input glue signature into an output glue
signature, and

6. Glue output sections “clean up” an output glue signature which may contain several output glue
encodings (one for each output side) so that only the one for a specific output side is presented (indicated
by a thick colored arrow struck-through by a thin line with a cardinal direction symbol).

5.1.2 Section boundary tiles Each section of a macrotile is separated by special section boundary tiles.
These grow along the sides of adjacent macrotiles and completed sections within the current macrotile to drive
the growth of each consecutive section. These tiles keep track of the current section within a macrotile using a
local coordinate system of rows and columns. Each macrotile section exists between a pair of rows and a pair of
columns. For instance, when simulating a cooperative attachment, the first tile to attach between two diagonally
adjacent macrotiles is a section boundary tile representing the corner between row 0 and column 0. Additional
section boundary tiles may then attach to form the entirety of row 0 and column 0 of the macrotile and the
sections may begin to grow by attaching to these boundary tiles.

Which function a section of a macrotile performs is dependent on the local coordinates of the section within the
macrotile, so the section boundary tiles enforce that the correct function is performed in each section. Additionally,
the boundary tiles also serve to pass information between macrotile sections when necessary and keep track of
whether the current macrotile represents a strength-2 attachment or a cooperative one.

5.1.3 Initiating the growth of macrotiles In standard systems, there are 2 distinct ways tiles may attach:
using a single strength-2 glue or by the cooperation of two strength-1 glues from diagonally adjacent tiles.
Growth of a macrotile simulating a cooperative attachment is initiated by a cooperative attachment between
the diagonally adjacent macrotiles, while growth of a macrotile simulating a strength-2 attachment is initiated by
a single strength-2 glue which is guaranteed to exist by convention on the counter-clockwise-most glue signature
on the face of a completed macrotile. In this latter case, the strength-2 glue always exists in the position of the
most-significant bit of the binary encoding of the glue from 7, though this convention represents a completely
arbitrary choice.
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Figure 11: Different phases of IU macrotile growth when simulating strength-2 attachment to an existing macrotile
on the south (top) and cooperative attachment to existing macrotiles from the south and west (bottom). For
strength-2 attachments, the encoding of the 7 glue (red) is simply rotated towards where the glue table (blue)
read will take place. For cooperative attachments, the two glue encodings are combined into one before being
propagated towards the glue table. Reading from the glue table is then performed while also propagating the glue
table information towards the center of the macrotile. The resulting glue signature encoding all output glues is
propagated around the center of the macrotile and finally presented along the relevant edges of the macrotile.
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When simulating a cooperative attachment, the current macrotile receives input glue encodings from 2
adjacent macrotiles. These encodings are combined into a single glue signature representing the combined
information from both glues. For macrotiles simulating a strength-2 attachment, this step is skipped since there
is only 1 input glue for the simulated tile. Instead, the glue signature representing this single input glue is simply
rotated so that it is propagated towards the glue table. In either case, our convention for glue signatures ensures
that glue signatures representing a single glue are the same width as signatures representing pairs of glues and
that the direction of the glues is indicated implicitly in the encoding. See Section 5.2.1 for specific details on our
glue signature conventions.

5.1.4 Reading from the glue table Whether it be from a pair of input glues or a single input glue, the next
step of the macrotile growth process involves using the input glue signature to read from the glue table. The
glue table encodes all of the tile types in T" as pairs of input and output glue signatures. Reading from the glue
table is done in a specific section that receives the input glue signature along one axis and the glue table encoding
along the other. The input glue signature is propagated along the length of the glue table encoding using tiles
that perform symbol matching logic to determine if the input glue signature exactly matches any of the input
glue signatures in the glue table. If a match is found, the corresponding output glue signature is rotated in place
of the input glue signature and additional matching is skipped. On the side opposite of the input glue signature
is then the corresponding output glue signature, ready to be propagated to the output sides of the macrotile.
Additionally, the encoding of the glue table is propagated towards the center of the macrotile unaltered so that
it may be distributed to the output sides for use in adjacent macrotiles.

The representation function for our IU simulation may be defined by the output of the glue table reading
gadget. Since the glue table contains information regarding all tiles to be simulated in a fixed order, the location
where the glue table read gadget succeeds in finding a match uniquely corresponds to the tile type into which
the macrotile should resolve. This macrotile resolution can occur as soon as the match is detected, but the exact
tile attachment used to determine this is immaterial so long as resolving the macrotile occurs before any output
information is presented to neighboring macrotiles.

Our convention for initiating macrotile growth ensures that the only time any tiles may attach inside of a
macrotile is when two diagonally adjacent macrotiles present non-zero-strength glues to common neighbor or when
a macrotile presents a strength-2 glue to a neighbor. Consequently, assuming the glue table contains encodings
of all tiles to be simulated, by our requirements on standard systems, our IU simulation of standard systems will
never contain fuzz tiles in unresolved macrotiles in any terminal assembly. In other words, because of the way
macrotiles are initiated, assuming all tiles to be simulated are encoded in the glue table and the system to be
simulated is standard, the simulation will be pristine.

5.1.5 Propagating output information The definition of standard systems ensures that the glue table will
always have an entry corresponding to any input glue signature that it may see. After reading from the glue
table, all that remains is to propagate the resulting glue signature (which represents the output glues of the tile
from T represented by the macrotile) to the output sides of the macrotile. This is mostly done using standard
tile gadgets for rotating and propagating sequences of symbols, though care needs to be taken to ensure that
each side of the macrotile only has the part of the glue signature dedicated to that side. For instance, an output
glue signature might contain information for glues to be presented on the north and east faces of a macrotile,
but the north face should only present the north part of the signature and the east face the east part. This is
handled by the glue output sections which, using two passes over the signature, removes any part of the signature
corresponding to other directions and replaces the most significant bit of the counter-clockwise-most signature on
a face with a strength-2 glue in the case that the encoded glue is itself strength-2.

5.2 Technical details

5.2.1 Conventions and Encodings Throughout this construction, we choose and stick with a few conventions
for encoding glues and tilesets. These conventions are essentially completely arbitrary and the only motivation
for our choice was ease of implementation. There are certainly other choices that could easily work, and ours is
in no way canonical.
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Glue Signatures For glues gy, gg, gs, gw € 4[T), let the notation (gn, 9r, gs, gw) be called a glue signature
and denote a mapping from the cardinal directions (north, east, south, and west in that order) to the respective
glues. In any situation where a glue in a glue signature is the strength-0 glue, the symbol 0 can be used in the
notation. For instance, the glue signature (0, g1, g2, 0) would assign the glue g; to the direction “east”, the glue go
to “south”, and the strength-0 glue to both the north and west directions. Keep in mind that glue signatures are
not required to refer to a tile type with the corresponding glues on its respective sides. Instead, they are used as
abstract data types in the construction, simply for when it is more convenient to keep track, for whatever reason,
of multiple glues from different directions rather than individual glues. A glue signature is nothing more than the
information contained in assigning a glue from ¥[T] to each cardinal direction.

Now let ¢ : 4[T] x {N,E,S,W} — {0,1}"™ be an injective mapping, called the glue encoding function, from
glues of [T and the corresponding side of the tile on which the glue appears to binary strings of a fixed length
m. Furthermore, it is assumed that there is only a single strength-0 glue in ¢[T] which is mapped under ¢ to the
string 0. In the case that T contains tile types using multiple distinct strength-0 glues, it can easily be modified
to use only one without altering its behavior by choosing one of the strength-0 glues arbitrarily and using that in
place of the others. Additionally, it is assumed that all strength-1 glues map under ¢ to binary strings whose left
(most significant) bit is 0 and all strength-2 glues map to binary strings whose left bit is 1. Since ¢[T] is finite,
it is not difficult to devise an implementation of ¢ and length m which satisfy these constraints.

Given a glue signature (g1, g2, g3, 94), the notation ¢(g1, g2, 93, 94) is abused to refer to the concatenation
of the binary strings ¢(g1), ¢(g2), @(g3), and ¢(gs), each prefixed by a special symbol “#”. In other words,
®{g1, 92, g3, ga) is a string over the alphabet {0, 1, #} which matches the following regular expression.

#(0[1)™ #(0[1)™#(0[1)™#(0]1)™

Since ¢ is injective, this assignment of strings to glue signatures is invertible so that a glue signature may be
recovered from its assigned string representation.

Glue Tables During our intrinsically simulation of 7, the tiles of & will need to somehow encode all relevant
details regarding the dynamics of 7. Particularly, this includes information about which tile types of 7 can attach
along different parts of a growing assembly. To accomplish this, each macrotile in U keeps track of a data structure
called the glue table which encodes the full tile set 7" as a mapping between glue signatures.

A glue table T' is a finite sequence of entries, ordered pairs of glue signatures representing an input and
output. Recall that glues in T" are I0-marked. Each tile type t in T is assigned an entry in the glue table where
its input glues are assigned to the input signature of the glue table, and its output glues are assigned to the
output signature. Output glues are assigned directly to the output signature so that the direction of the glue in
the signature is the direction of the face on which the glue appears. For instance, if an output glue of type g,
appears on the north face of tile type ¢, then the output signature corresponding to tile type ¢ will have g, as
its north component. Input glues on the other hand, are assigned to the input glue signature with the opposite
direction of the face on which they appear. For example, if an input glue g; appears on the east face of ¢, then
it will be assigned to the west component of the corresponding input signature. All other components of the
input and output glue signatures are assigned 0. Figure 12 illustrates what these signatures would look like for 2
example tile types.

Given a tile set T of size n to be simulated, a glue table I' may be constructed by iterating over each tile type
t € T. For each tile type, an entry is constructed using the glues of ¢ as described above. Specifically, the input
glues of each tile are assigned the signature s!, and the output glues to the signature s! . A glue table therefore
is a sequence of pairs of glue signatures:

I'= (Sitrllv Sélut)v (Sfrzlv Sézut)v Tt (5?71 Stn )
The order of entries in the glue table is immaterial since this construction will parse glue tables using string
matching logic rather than index counting logic. Given a glue table I" and a glue signature encoding function ¢,
the notation @I is abused to refer to the concatenation of glue signature encodings using the special separator
symbols “$”, “—”7 and “—3” in the following way. For each tile type ¢t encoded in the glue table with input

signature s and output signature s, the corresponding glue table entry will be encoded as the string

(bsitn |1 |2 (bsgut
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Figure 12: Two example tile types (top) and their corresponding glue table entry signatures (bottom). Glue
IO-marks are indicated by small triangles, pointing into the tile type for input glues and out of the tile type for

output glues. The left tile type has 2 strength-1 glues as inputs on its south and west sides. The right tile type
has a single strength-2 glue as input on its south side.

In other words, the encoding of each entry is the encoding of the input and output glue signatures separated by
“l1;” and “|2”. Each of these entries is then prefixed by the separating symbol “$” and concatenated together so
that a glue table encoding may look like:

$ psil |1 |2 DS @i 1 2 dsede - S dsi 1 |2 s

This encoding is summarized by a grammar whose terminal characters are {0,1,#,$, |1, |2}, non-terminals are
T, E, and S representing the encodings for a glue table, glue table entry, and glue signatures respectively, and
production rules are:

T — $ET

T — $E

E — S|1|28

S — #(0[1)™4(0[1)™#(0[1)™ #(0[1)™

5.2.2 Common gadgets The bulk of our IU construction relies on the array of common gadgets we present
here. When simulating a tile attachment, most sections within a macrotile will contain some variation of these
gadgets. The gadgets presented here all exhibit rectilinear growth meaning that within each gadget, all tiles have
the same pair of adjacent input directions. Rectilinear growth begins with the cooperative attachment of a tile
in one corner of a section and ends with the attachment of a tile in the diagonally opposite corner.

Note also that it’s possible to combine these gadgets so their functionality operates simultaneously in the
same section. This enables, for instance, tiles to rotate a sequence of symbols in multiple directions at the same
time. This does come at the cost of tile complexity however; combining gadgets requires tiles with glue labels
that systematically concatenate the relevant information from the corresponding glue labels of the gadgets to be
combined. The specific method of concatenating glue labels to form new ones is essentially a free choice, but
effectively, this results in the tile complexity of the combined gadget being proportional to the product of tile
complexity of each component gadget.

The first gadget, illustrated in Figure 13 propagates information from each of the input sides of a section
to the opposite sides. This same gadget can be used to propagate information in just one direction by simply
ensuring that the orthogonal direction propagates blank symbols that don’t encode any information. The tile
complexity for this gadget is proportional to the product of the number of distinct symbols that need to be
propagated in both directions.
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Figure 13: A schematic of tiles used to propagate two bit strings, one from south to north and the other from
west to east. Arrows indicate the direction in which information is being propagated. Note that each tile in this
illustration represents a schema of tile types. For instance, if the string of symbols being propagated contain only
the binary bits 0 and 1, then there would need to be 4 distinct tiles to allow the information to propagate, one
for each pair of bits (one from the west and one from the south).

The next gadgets, illustrated in Figure 14, rotate symbol information from one direction to an orthogonal
one.

5.2.3 Combining glue signatures When simulating cooperative attachments between strength-1 glues, our
IU tileset must combine the glue signatures presented from both of the cooperating macrotiles. Figure 15 depicts
how information is propagated and combined as tiles attach.

5.2.4 Reading a glue table Throughout the IU construction, glue tables will be encoded by rows of tiles along
the sides of each macrotile in the simulation. The purpose of a glue table is to help determine which simulated
tile the macrotile should resolve into. To facilitate this, we introduce a tile gadget capable of reading an input
glue signature from an entry of a glue table and comparing it to another glue signature representing the glues
presented to the macrotile. This gadget is described in Figure 16 and is capable of comparing two bit strings
of the same length for equality. The result of the comparison is a column of tiles which each encode a whether
the corresponding symbols in each string match. These boolean values are then reduces via the AND function to
result in a single boolean value which is true if and only if all symbols match. The result can then be used to
control the behavior of the tiles on the corresponding output glue signature of the glue table entry. If true, then
the output glue signature may be rotated to replace the input glue signature, otherwise the input glue signature
will be propagated to the next entry of the glue table for comparison.

6 A Self-Reproducing aTAM System: Self-Assembly of a Quine

We prove Theorem 3.2 by construction, demonstrating an aTAM quine Q = (Q, 0, 2) for the tileset U that is TU
for standard aTAM systems (and its corresponding representation and seed generating functions R and S) given
in the proof of Theorem 3.1. Section 3.1 contained a brief overview.

THEOREM 6.1. There exists an aTAM quine.

Proof. The remainder of this section consists of the full details of the construction of Q.

6.1 Overview of Q A high-level, schematic depiction of @ can be seen in Figure 2a. Here we briefly describe
its main components and growth process.
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(a) Cis-rotation results in the output bits being aligned
in the same direction as the input bits. Arrows to the
side of the tiles indicate the orientation of the bits with
the arrow pointing from most to least significant. Note
that both the input and output bits have the MSB
nearest the center of rotation.
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(b) Trans-rotation results in the output bits being
oriented in the opposite direction of the input bits.
Notice that the input bits have their MSB nearest
the center of rotation, while the output bits are the
opposite. Both types of rotations can be implemented
using the same number of tiles.

Figure 14: Gadgets can be made to rotate bit information encoded on the glues of tiles. After rotation, the
resulting bit information will be propagating orthogonally to it’s initial direction of propagation. Input bits are
represented by red tiles and output bits by blue tiles. Gray tiles indicate tiles with no bit information, but which
present strength-1 glues along which the rotation tiles can attach. Lines ending in a T-shape rather than an arrow
indicate that a strength-1 attachment is occurring, but there is not bit information being propagated. Arrows
indicate the propagation of a bit. The white circle indicates the center of rotation.

Overview of Q:
1. The seed o consists of a single tile.

2. @ is an 10 marked tile set.

3. Q =TsUTg, where Tg is a subset of tile types we refer to as seed row tiles, and TF is a subset of tile types

we refer to as functional tiles.

4. The tile type of ¢ is in Ts, and one copy of each tile of the types in T attaches to the right of ¢ to form a
hard-coded line of length |Ts| that we refer to as the seed row.

5. The glues on the north side of the seed row present a preliminary compressed version of the glue lookup
table for ) that contains glue lookup entries for only the tile types in Tx, as well as additional information
necessary to complete the tile lookup table and correctly format the sides of the macrotile that forms.

6. The primary functions of the functional tiles that attach to the seed row and grow the macrotile are:

(a) For each tile in the seed row, compute its compressed glue lookup entry and append that to the glue
lookup table encoding so that the table eventually has entries for all tiles in Q = Tr U Ts.

(b) Decompress the glue encodings to ensure that all encodings are of the same width.

(¢) Turn the assembly into a square while positioning and formatting the information encoded its perimeter
to be consistent with the format utilized by the IU tile set. That is, turn it into a macrotile representing
its own seed, with a full glue lookup table of the entire system encoded on the perimeter.
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Figure 15: A schematic for the process of combining glue representations in the SW corner of a newly-forming
macrotile. The adjacent macrotiles from the west and south present their glue signatures. The macrotile on the
west presents an eastward facing glue so its signature only contains non-zero bits after the second glue separator
(“#7). Likewise for the south macrotile, it presents a north glue after the first glue separator. These glues are
combined into a glue representation encoding both the south and west inputs. This is done using rectilinear
growth, initiated from the point of cooperation between the padding regions between the diagonally adjacent
tiles. Each of the binary representations in the south signature (or more generically, the counter-clockwise-most)
is propagated upwards until it meets with the corresponding binary representations from the east. The binary
representations are then XOR’ed together. Binary representations corresponding to different glue directions will
be propagated through each other. To determine which direction a binary string corresponds to, the tiles that
perform the propagation and combination also keep count of how many separators they have passed. In the end,
the result is a new glue signature propagated to the east (more generally, the opposite direction of the clockwise-
most cooperating macrotile) with non-zero strings for 2 directions.

In order to understand how the tiles of T perform their work, we first describe several sets, values, and
encodings that will be used in the construction.

6.2 Glue lookup table encoding Let Gy be the set of all glue labels on any north or south (i.e. vertically-
binding) sides of tiles in T, and G be the set of all glue labels on any east or west (i.e. horizontally-binding) sides
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Figure 16: A schematic for a gadget which compares two strings of symbols and determines if they are equal.
The string from the west Wy ... Wy is compared with the string from the south Sy ...S4 by means of tiles which
attach in the rectangle spanned between them. These tiles propagate the information from both the west and
south strings until they meet in the diagonal. If a symbol of one string matches the corresponding symbol of the
other, a boolean signal (either true or false) will be propagated to the east indicating the match. Once the tiles
have attached, an upward growing column of tiles will attach along the column of boolean signals and effectively
AND all of them together (cyan tiles). This final signal is propagated back down to the south east of the gadget
where it can be used to determine how the next gadget behaves. This behavior can be used to read from the
glue table by performing a string comparison between each input entry of the glue table with the glue signature
representing the current inputs to the macrotile. If the output boolean signal is true, indicating that the glue
signature matches the input entry of the glue table, then it is “known” by the macrotile that the corresponding
output entry encodes the tile to which the macrotile should resolve.
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of tiles in Tr. Let g,, = max(|Gv |, |Gx|) be the size of the largest set, Gy or Gg. Let function BIN : N — {0, 1}*
be defined such that BIN(n) is the (standard) binary representation of natural number n. Thus, l; = [BIN(g,,)| is
the number of bits needed for the binary representation of the size of the largest set, Gy or Gp.

Let I = |Ts| be the number of seed row tiles, which is also the length of the seed row. Each adjacent pair
of seed row tiles has a strength-2 glue on their abutting west and east sides with a label that is unique to that
pair, among all glues in Tr UTs. (These will be the only glue labels unique to the seed row tiles, as all other glue
labels will also be found on tiles of Tr, allowing them to bind to the seed row tiles.) This requires I; — 1 unique
glue labels. If we let G’y be G unioned with these glues, then if we let g/, = gm + Is — 1, since l; > 0 we know
g > |G| and g, > |Gy |, meaning that g/, is at least as large as the size of the largest set of unique glue labels,
the vertical or horizontal glue labels. We define [,,;, = [BIN(g},)|, the length of the binary representation of g/,
and call it the padded glue length.

Given a set of glue labels G, let LEX(G) be a lexicographic ordering of the glue labels in G. To create the glue
encodings for our construction, we use the alphabet X ¢g = {0, 1} and define the function PAD BIN : NxN — {0, 1}*
such that PAD_BIN(n,l) is the string s € {0, 1}* consisting of the binary representation of n padded on the left with
the number of 0s needed to make |s| = [, with the requirement that [BIN(n)| < I. For each 0 <4 < |LEX(Gy)|,
let g; be PAD_BIN(i,p). To create the glue encoding for a vertical glue (i.e. one on a north or south glue face) we
use the index ¢ of its label in LEX(Gy) to get PAD_BIN(i,l,,). Then, if the glue has strength 1, we prepend a 0
to PAD_BIN(4,l,,). If it has strength 2, we instead prepend a 1. We define the glue encodings for G’; similarly,
noting that the glue encodings of any two glues in the same set, Gy or G, will be unique, but two glues in
different sets may have the same encoding. Furthermore, since l,,4 is based on g],, we know that [,4 is guaranteed
to be long enough to contain the bits of any glue encoding in Gy or G’ and thus any glue in @ = TF U Tgs,
with possible leading Os for padding. Therefore, all glue encodings will be of the same length, {,; + 1. Given a
tile type t, direction d € {N, E,S,W}, and io € {IN, OUT}, we define GLUE_ENC(¢, d, i0) as a function such that, if
to = IN and the glue on side d of ¢ is an input glue, or io = 0UT and the glue on side d of ¢ is an output glue,
returns the glue encoding of that glue in the specified format. Otherwise, if the value of i0 does not match the
glue’s input/output status, a string of l,; + 1 zeros is returned. One additional value that we will define for use
later is l,, = I,y — 4. That is, I, is the length of padded glues minus the length of the longest encoding needed for
a glue in Gy or Gy (whichever requires the longest). Note the use of Gy and not G, so this does not include
the glues specific the T, which contain the (overwhelmingly) largest proportion of all unique glue labels in @.

For the glue lookup entries of our construction, we use the alphabet ¥grp = {0,1,#,] 1,| 2}. For each
t € @, the glue lookup entry for ¢ consists of the concatenation of the following three strings (which consist of the
concatenation of the encodings of input glues, two separator symbols, then concatenation of the encodings of the
output glues):

‘#GLUE_ENC(t, N, IN)#GLUE_ENC(¢, E, IN)#GLUE_ENC(¢, S, IN)#GLUE_ENC(¢, W, IN)’

t‘ 1 | 2’

‘#GLUE_ENC(t, N, OUT)#GLUE_ENC(¢, E, OUT)#GLUE_ENC(¢, S, OUT) #GLUE_ENC(¢, W, OUT)’

Given a tile type t € @), we define GLE(¢) as the function that returns the glue lookup entry for ¢ using that
format.

For the glue lookup table of our construction, we use the alphabet Xgrr = {0,1,#,| 1,| 2,$}, and the table
is the string ‘SGLE(to)$GLE(to) ... $GLE(t;—1) for 0 < ¢ < |@Q] and ¢; the ith tile type of @ (i.e. the glue lookup
entry of each tile type, with a $ symbol prepended to each).

6.3 Macrotile side encoding Since only the north and east sides of the seed tile type, t,, have non-null glues,
only the north and east sides of the macrotile representing ¢ will encode glues and the glue lookup table. The
glues on those sides of the macrotile represent 7 distinct regions, each contained between a pair of lexicographically
adjacent pairs of delimiter symbols taken from the set {B0,B1,B2,B3,B4,B5,B6,B7}. We will refer to the layout
of the symbols and regions on the north side of the macrotile as follows (and for the east side, gn is replaced with
9p):
BO(blank,,;)B1(gy)B2(blank;, )B3(T)B4(blank;,)B5(gy)B6(blank,,)B7
The strings between the pairs of delimiters are defined as follows:

blank,,;) = a string of blank symbols (i.e. ‘_’) of length [,,;, where l,,; will be defined later.
g g
(gN) = ‘#GLUE_ENC(to, N, OUT)#0s T140ls+1440la+17 That is, a string consisting of the glue encoding of
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[ input signature | || I.]output signature |

[$| entry 1 [$ | entry 2 [$| entry 3 | wmnnn [$] entry n |

Figure 17: Example depicting the format of the glue lookup table. The glue lookup table (bottom) is composed
of a list of glue lookup entries separated by $ characters. Each glue lookup entry (middle) is composed of the
input and output signatures of the corresponding tile separated by the two characters | | 1 and | 2. The input
and output signatures have the same format, and an example output signature (top) is shown with output glues
on the N and E sides (since the W and S glues are all Os, or null). Since each of the N and E glue representations
begin with a 0, they each represent a strength-1 glue, and their labels are encoded as 10 and 11, respectively.

the north glue of ¢, followed by “empty” glue encodings for the other three directions (i.e. each is a string
of lpg + 1 zeroes).

(blank;,) = a string of blank symbols (i.e. ‘_’) of length l;,,, where l;,, will be defined later.
(T') = the glue lookup table for Q.

On the east side of the macrotile will be the same information, presented from top to bottom, with the slight
difference that in the regions between B1 and B2, and between B5 and B6, the east glue of ¢, will be encoded
instead of the north, i.e. ‘#0s ™' #GLUE ENC(t,, F, OUT)#0%rs T140lps T17,

6.4 Seed row encoding The labels on the glues on north sides of the tiles of the seed row encode a truncated,
compressed, and slightly modified version of the information that will eventually be presented on the north and
east sides of the macrotile. We will refer to the layout of the symbols and regions on the north side of the seed
row as follows:

BO!(ctrpad)Bl{gn, gr)B2(gluepad)B3(T)B4
The strings between the pairs of delimiters are defined as follows:

(ctrpad) = the binary string representing g,, + 1 padded to length I,, with Os on the left, then reversed in
direction so that the least significant bit is on the left.

(gn,9E) = ‘#GLUE_ENC(t,, N, OUT)#GLUE_ENC(t,, N, OUT)#0'»s 140 +1° That is, a string consisting of
the glue encoding of the north glue of ¢, followed by glue encoding of the east glue of ., then 2 “empty”
glue encodings for the other two directions (i.e. each is a string of I, + 1 zeroes).

(gluepad) = a string of 0s of length [,,.
(T') = the compressed glue lookup table for the tiles of T.

The “B0!” symbol is a special symbol used to initiate growth and later replaced by the “B0” delimiter symbol.

The northern glues of the tiles of T in the (') region present encodings of all of the tiles of T, and since
there are g,, symbols in the largest set, Gy or G, which contain all of the vertical and horizontal glue labels of
Tr, respectively, then the largest value of a glue encoding used to encode the tiles of TF is ¢, (since the value 0
is reserved for the null glue). As previously mentioned, none of the vertical glue labels of the seed tiles are unique
to tiles of T (i.e. one or more tiles of T also use each). Additionally, the east glue label of the easternmost seed
row tile is FILL_BOTT, which is shared by another tile in 77 (and therefore already in Gg), and the south sides
of the seed row tiles have no glues. Therefore the only new glue labels that need to be encoded in order to create
the glue lookup entries for the tiles of Ts are those between pairs of seed row tiles. As stated, there are I3 — 1 of
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these (where I = |Ts|). In order to allow the tiles of T to create the glue lookup entries of the tiles of T, the
value g,, + 1 is encoded into the (ctrpad) region between BO and B1. This will be the value of the glue encoding
of the first new glue representation.

In order to make the seed row more compact, requiring many fewer tiles for T's, we compress the glue encodings
contained in the glue lookup table which encodes Tr. This is done in two ways: (1) any glue encoding which
needs to represent an empty glue location is represented by a single ‘n’ character (rather than the string of 0s of
length [,,, that will later be necessary), and (2) for the glue encoding of each non-empty glue, starting from the
second leftmost bit (since the leftmost bit represents the strength of the glue), I, bits are replaced by a single
‘p’ character. Those bits are guaranteed to all be Os by the definition of I, since it I, = l,; — [;, meaning that
it is the length of a fully padded binary representation of a glue minus the length of the longest encoding in Gy
and Gp, which includes any glue being encoded for Tr. So, the additional bits (which are only needed for the
encoding of horizontal glues of seed row tiles) can be replaced by the ‘p’ character and since (gluepad) contains
a string of I, 0s, each such ‘p’ can later be replaced by I, 0s. (Note that the only glue encodings that are not
compressed in this way are those in the (gn, gg) region due to the physical layout of the information later used
to decompress glue encodings.) The “decompression” is necessary because the IU tileset U requires that all fields
representing glues on the sides of a macrotile to be of the same width.

6.5 Building the macrotile from the seed row In order to grow and transform the information encoded
along the north of the seed row into the information needed for the sides of the macrotile, the following phases of
assembly occur:

1. Phase 1: For each tile in the seed row, the northernmost row is extended by a fixed number of tiles that
consist of a preliminary representation of that seed tile, called a compressed glue lookup entry.

2. Phase 2: Every ‘p’ symbol is replaced by a string of I, Os.
3. Phase 3: Every ‘n’ symbol is replaced by a string of 4 + 1 Os.

4. Phase 4: The ctr symbols in the seed row tile templates are replaced by appropriate values of the counter
encoded in (ctrpad).

5. Phase 5: The symbols in the regions between BO and B1, and between B2 and B3, are each replaced by a ‘_’
symbol.

6. Phase 6: The contents of the regions between (a) B2 and B3, (b) B1 and B2, and (c) BO and B1 are copied
to extend the right side of the row into regions between (a) B4 and B5, (b) B5 and B6, and (c) B6 and B7,
respectively.

7. Phase 7: The rectangular assembly created by the previous phases is turned into a square macrotile with
correct representations on the N and E sides of the glues of ¢, and all information rotated and spaced
appropriately for simulation of the system by the IU tile set.

We now give a brief overview of each phase. Note that for Phases 1-6, all growth is done in a zig-zag manner
after the seed row. The seed row grows from left to right, and so does row 1 directly across its north. Then, row
2 and all subsequent even numbered rows grow from right to left. Row 3 and all odd rows grow from from left to
right. The right-to-left growing rows always start immediately north of the furthest rightmost tile(s) and stop in
the column immediately north of the seed tile (at z-coordinate 0). The left-to-right growing rows always start at
x-coordinate 0 and either stop above the furthest rightmost tile(s) or extend the row by some constant number
of tiles (depending on the phase) beyond the previously rightmost tile(s).

6.5.1 Phase 1: adding compressed glue lookup entries for the tiles of Ts In this phase, the compressed
glue lookup entry for each tile of the seed row is appended to the right end of the seed row. Figure 18 shows an
example of the compressed lookup entry added for the seed tile.

1. For 0 < i < |Ts|—1, let ts, € Tg be the ith tile of T's and also the ith tile from the left of the seed row once
it has completed growth.
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Figure 18: Example depiction of the seed row (bottom) and the compressed glue lookup table entry added for
the leftmost (i.e. seed) tile (top). (Not all glue markings are shown.)

2. During the growth of this phase, which is performed by the tiles of T, the full definition of each ¢4, is
inferred from its location in the seed row. For each, its northern glue can be read directly by a tile from
Tr attaching to its north since the seed row tiles are carefully designed so that their northern glues only
consist of the following symbols:

{BO!,B1,B2,B3,B4,$, |1, |2, #,n,p,0,1}.

Therefore, the tiles of T can be created before the tiles of T's but still be guaranteed to be able to correctly
bind to them and infer their definitions. The tile type of ¢s, only has that northern glue and a strength-2
glue on its east side that allows a tile of type ts, to bind, and its south and east sides contain the null glue.
All other tiles in the seed row except for the rightmost, i.e. t;,, are similar except that they each also have
a western glue that allow them to bind to ts, ,. The rightmost tile of the seed row, of type [ZP. only
has such a western glue, but its eastern glue is of strength-1 and has a label of ‘FILL_BOTT’ (which will be
explained later).

3. The strength-2 glues between each pair t,, and ¢, ,
from g¢,,41, which is the value encoded in {ctrpad).

are assigned consecutive glue encoding values beginning

4. For example, the tile type of t,, is known to be a special case with a strength-2 glue on its north whose
label is BO! and it has one other non-null glue, on its east side, that is of strength-2 and whose label
is assigned the glue encoding ¢,,+1. Since it is the seed tile and thus has no input, its north glue is
strength-2 with the label BO! (which gets mapped to index number 1), and its eastern glue is assigned
the current counter value (denoted by the ctr symbol) its compressed glue lookup entry is the string
"#0lwa F£0a #£00s #£0%w9 | 1 | 34 1PAD_BIN(BO!, I,y )#ctr #0029 #0!s”. For another example, we’ll describe the
entry for a tile tg,, for 0 < ¢ < |Tg| — 1, assuming it has a north glue of strength-1 encoding a symbol
x € {B1,B2,B3,B4,$, |1, |2, #,n,p,0,1} (which is the full set of labels of the northern glues of the tiles of
Ts other than the leftmost and rightmost, which are BO! and B4, respectively). Then, the glue lookup entry
for tg, is ‘#0ws#0ws #0watctr |1 | 9#0PAD BIN(x, I,y )Fctr#£0rs #0lws”,

5. Since the north glue of any tile in T is one of those in the given set and the rest of the tile’s definition
is fixed with the caveat that the value used to encode the horizontal glues increases by one for each glue
moving to the right and a single generic variable symbol ctr can be used to represent all of these values
(to be explained in a later phase), there are a fixed number of possible compressed glue lookup entries of
fixed width. Thus, the hard-coded set of tiles needed for each possible northern symbol of a seed row tile
are created as part of Tr, before the tiles of Tg are generated (therefore allowing the tiles of Ts to encode
them in their northern glues).

6. Each row of Phase 1 that grows from left to right reads and stores the northern glue label x of the tile that
currently has the marking symbol ext (which starts on the leftmost tile), moves the ext symbol one tile to
the right, then grows to the far right end of the row below it, whose rightmost tile has the glue label B4.
At that location, the tiles that encode the compressed glue lookup entry for symbol z to attach and extend
the row further to the right. The location with the B4 symbol is changed to have a $ symbol, and the B4
symbol is placed at the rightmost end of the newly extended row.
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Figure 19: High-level depiction of an iteration of the main loop of Phase 2, i.e. inserting a string of 0s (whose
length is equivalent to the number of 0s between the B2 and B3 delimiters) into the location of the leftmost p
symbol. (Note that, to highlight the main logic, not all glues are fully shown.) At the beginning of an iteration
(the bottom row), the leftmost 0 following B2 is marked (here with a “*” symbol), and the leftmost p is also
marked. The first row of the iteration grows above it, from left to right, and moves the marker on the 0 one
position to the right, then inserts a tile representing a 0 immediately following the marked p. This requires the
inserted location and the rest of the tiles of the row to pass the original value of each column to the right and to
change the value of the column to the value received from their left, growing the row by one tile. Right-to-left
growing rows simply copy values upward. Subsequent left-to-right growing rows continue the process until the
final 0 before B3 is encountered, at which point the marker for the Os is removed and that row replaces the marked
p with a 0, then marks the next p encountered to the right. In this example, three Os are between B2 and B3,
so the marked p is replaced by three Os. To begin the next iteration, the first 0 after B2 is marked. Iterations
continue until no p symbols remain in the row.

7. Having completed growth of that row, adding the encoding of one more tile of T, the next row grows all
the way back to the left and initiates growth of the next left-to-right now that continues the process. Once
the marker ext passes the column in which the seed row ended (whose location is preserved via another
special marker symbol), Phase 1 is complete since every tile of Ts will now have a compressed glue lookup
entry for it added to the tile lookup table.

At the end of this phase, there is a (compressed) glue lookup entry for every tile in Q.

6.5.2 Phase 2: replacing p symbols with strings of [, 0s Phase 2 executes a relatively simple procedure.
It begins by marking the location of the leftmost p. Then, for each 0 in the region between B2 and B3, except for
the final 0, it “inserts” a 0 after the marked p. It does this by growing a row to one position right of the marked
p, setting the north glue of the tile at that location to 0 while encoding the symbol currently at that location in
its east glue. The tile to the east places uses that symbol for its northern glue and propagates the current value
for that location to the right. This occurs until the B4 symbol is encountered at the end of the row, at which
point it is most right to a tile that extends the row rightward by one tile. For the final 0, instead of inserting a
0, it simply replaces the marked p by 0. In this way, the location of the marked p has a string of [, Os inserted in
its place, and by moving the mark to the next p to the right after completing each such loop, that happens for
all p symbols. This results in all glues with the “padding” marker being decompressed to the full, fixed length
required for all glue encodings. Figure 19 shows a high-level example of one such loop iteration.

6.5.3 Phase 3: replacing n symbols with strings of /,; +1 Os Phase 3 is performed in almost the exact
same manner as Phase 2, but with the number of positions between BO and B1 being used to determine how many
0Os to insert for each n symbol. Irrespective of the actual bit values between BO and B1, for each a 0 is inserted,
and for the final bit two Os are inserted so that the n symbol will be replaced by a string of 0 symbols of length
lpg + 1, since each glue label is encoded with [,4 bits and the extra 0 bit is in the location denoting the strength
of the glue. Recall that this glue encoding, composed of all Os, represents the special case of the null glue.
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Figure 20: Schematic example of seed row tiles (bottom) and their corresponding compressed glue lookup entries
(top). The only instance of the ctr symbol in the entry for ¢ty will be as its output glue to the east. The entry
for t; has two instances of ctr with the left representing its input glue to the west and the second its output glue
to the east. Note that the leftmost two instances of ctr in the table refer to the same glue, shared by ¢y and
t1. Therefore, the same value, which is the current value of the counter whose bits are represented in the region
between BO and B1, is put into both locations. Then the next two instances of ctr also refer to the same glue,
so once the counter is incremented to create a new unique encoding value for that glue, the counter’s value can
then be put into both locations. This pattern continues until the final, rightmost glue between seed row tiles.

6.5.4 Phase 4: replacing the ctr symbols with counter values Phase 4 is also performed in a manner
very similar to the previous two phases, with just a few notable differences. For 0 < i < |Tg|, let gs, be the
label of the horizontal glue shared by two adjacent seed row tiles such that it is the ith such glue from the left
(e.g. gs, is the label of the glue shared by leftmost seed row tile and its neighbor immediately to the right). The
compressed glue lookup entries for the seed row tiles (added in Phase 1) are located from left to right in the same
order as the seed row tiles themselves, and within those the glues used as input are listed to the left of those used
as output. The leftmost seed row tile has no input since it is ¢, the seed of the system, and every tile to the right
of that tile has a single input glue on its west side. Except for the rightmost seed row tile, each has an output to
its east. Since compressed glue lookup entries encode all such glues simply using the symbol ctr, and each pair
of adjacent edges between seed row tiles share the same glue, the pattern exists where the leftmost two instances
of ctr in the table refer to the same glue as each other, the next two instances to the same glue as each other,
etc. This pattern can be seen in Figure 20. Since the glues are encoded using values that are each one larger than
the previous, from left to right, in this phase all that is required is that the current value of the counter bits is
inserted into the locations of both of the two leftmost ctr symbols, and then the counter is incremented by one
and the process repeated until all copies of ctr have been replaced.

Recall that the symbols representing the bits of the counter in the seed row are in reverse order, with the
least significant bit being on the left. Since the bits are copied from left to right, and each inserted immediately
following a ctr symbol, the copied values are again reversed, to be in the correct order. Finally, once all counter
bits have been copied to the right of a ctr symbol, the ctr symbol is replaced by a 1 symbol. This is in the
position of the bit that specifies the glue’s strength, and is a 1 because all such glues are of strength-2.

6.5.5 Phase 5: Blanking out spacer regions Phase 5 is the simplest phase. Its purpose is simply to turn

all symbols in the current “spacer” regions (blank,,; between BO and B1, and blank;, between B2 and B3), into

blank, i.e. “_”, symbols. This is done by a single row that grows left to right that detects when it is growing over
W

one of those regions and presents only “_” symbols to the north until leaving the region. Once completed, a row
grows back right-to-left to reset and allow for the next phase to begin.

6.5.6 Phase 6: Copying regions to the right Phase 6 also performs a relatively simple task. Namely, it
copies the contents of the blank,,:, gn,9gE, and blank;, regions so that they each have a copy on the right side
of the glue lookup table. The ordering and a schematic depiction can be seen in Figure 21.

6.5.7 Phase 7: Squaring the Quine (chmod +x quine.atam) In the previous stages, the rightmost tiles
of each row are given a strength-1 glue labeled FILL, except for those of the first row, which are given a strength-1
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Figure 21: Schematic depiction of Phase 6 of the quine creation, the copying of 3 regions to the right. From
bottom to top, the three leftmost regions are copied to the right side. Although the ordering in which the regions
are copied is from right to left, the contents of each region are copied from left to right so that they end up in the
same ordering on both sides.

glue labeled FILL_BOTT. Additionally, every tile that attaches via a strength-2 glue on its west, and thus has
no input glue on its south, has a strength-1 glues labeled FILL on its south. This allows two tile types, the
“filler” type with strength-1 glues labeled FILL on all four sides, and the “filler bottom” type with a strength-1
glue labeled FILL on its north and strength-1 glues labeled FILL_BOTT on its east and west sides, to cause the
otherwise diagonally slanted assembly to fill out into a rectangle.

An example assembly resulting after the first 6 phases, produced in the WebTAS simulator [18] (with a seed
row of reduced size due to the large scale factor), can be seen in Figure 22. In order for this assembly to become
a quine and act as a macrotile seed for tileset U (which is the IU tileset for standard aTAM systems), it needs to
be in the shape of a square and have its perimeter glues in the format of a macrotile utilized by U. Note that, as
this quine construction is a component our first fractal construction (i.e. Theorem 3.5, the strict self-assembly of
a DSSF), the way in which we create the square macrotile is slightly more complex than would be necessary solely
for the proof of Theorem 3.2. However, this is done to simplify the final construction for Theorem 3.5. Therefore,
in this section we will describe the basic features needed for the current proof, and the additional complexities
will be further explained in the proof of Theorem 3.5.

Figure 23 shows an overview of the process that completes the macrotile formation. The rectangular assembly
formed by the first 6 phases has the information required for a macrotile used by U on its north, including both
the glue information that will ultimately need to be on the north, gy, and that for the east, gg (since those are
the two sides of the seed tile type ¢, that are non-null). This information is first rotated using a standard string
rotation gadget so that it’s presented to both the north and the east. After that, 4 square frames are grown using
loops of binary counter gadgets that act as the 4 corners of the macrotile (red and yellow). The size of each
frame is dictated by an initial counter value and may be chosen arbitrarily (to be discussed more for the proof
of Theorem 3.5) as long as it is greater than the height of the rectangular assembly. Referring to that size as X,
O(log(X)) tile types are created for the counters. The space inside of each of the frames is empty except for solid
squares of tiles that grow from each interior corner (green). The side length of these green squares, which must
be < X/2, is controlled by an additional binary counter made from hard-coded tiles (also discussed more later).
Referring to that size as Y, O(log(Y")) tile types are created for these regions. The information for the north and
east sides, rotated from the rectangle, is then propagated along the square frames so that it is centered along the
north and east faces of the resulting square macrotile. Additionally, generic filler tiles grow outward to the west
side, and from the south of the grey rectangle to the south side.

Upon reaching the ends of the counters, the growths to each side initiate growth of a final row of tiles that
forms the outer later of the macrotile. On the south and west sides, the tiles of these rows expose no glues to
the south and west, respectively, making the south and west sides of the macrotile blank, representing no output
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Figure 22: The rectangular assembly of the quine construction after the first 6 phases of growth (with a reduced
set of tiles from T encoded by the seed row tiles due to the size of the full assembly, so phases aren’t exactly to
relative scale). Growth is from the bottom upward, and phases are marked. Phase 1: the compressed glue lookup
entry of each tile of the seed row (the relatively very short portion to the left of the grey portion at the bottom)
is appended. Phase 2: Each ‘p’ symbol is replaced. (Note that the example seed row used has few p symbols,
but there would actually be many more.) Phase 3: Each ‘n’ symbol is replaced. Phase 4: The ‘ctr’ symbols are
replaced. Phase 5: The “spacer” regions are replaced with blanks. (Phase 5 is a single pair of rows, which is not
very visible at this scale.) Phase 6: The regions to the left of the glue lookup table are copied to the right. The
grey portion is composed of tiles of the “filler” type, except for the bottom row which is composed of the “filler
bottom” type.

——<—/

~

Figure 23: Schematic depiction of the formation of a macrotile square from the rectangular assembly formed after
the first 6 phases (shown in grey). The dimension X, counted by binary counters, can be set to an arbitrary value
as long as it is greater than the height of the grey rectangle, and the dimension Y can be set to be any value
between 0 and X/2. The settings of those values will be important for the construction of Theorem 3.5.
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glues for those sides. On the north and east sides, the following occurs during the growth of that final row:

1. During the growth of the row along the north, the entries for the east glue, gg, in the regions between the
B1 and B2 delimiters and B5 and B6 delimiters, are changed to be all zeroes, while the entries for gy are left
intact. During the growth of the row along the east, the corresponding entries for gy are changed to be all
zeroes, while the entries for gg are left intact.

2. The outward facing glues at the locations of the BO and B7 delimiter symbols are changed to blank symbols
(i.e. <) of strength 1, and as growth proceeds outward from the middle regions (blue in Figure 23) along
the counters (orange and yellow in Figure 23), all outward facing glues are blank symbols of strength 1.

3. Other than the tiles placed in these outer rows, the tiles of tileset @@ use IO markings that make them
incompatible with the tiles of U. Specifically, Q uses the set I055 = {VV, <<, AA,>>}, while U uses the set
105, = {V, <,A,>}. (This is done to make the constructions modular and ensure that there is no possibility
for unintended tile attachments.) In order to make the terminal assembly of Q compatible with the tiles of
U, the 10 markings of the outward facing glues of the tiles of these rows use I0y;.

4. Once a row has completed growth along an (orange and yellow) counter, it waits until the row of the side
with which it shares the corner to complete. At that point, the final two tiles of those sides cooperate to
place the corner tiles.

(a) On the corner tile of the northwest corner, the northern glue is a strength-2 glue with label BO, and its
western glue is null.

(b) On the corner tile of the northeast corner, its northern glue is a strength-1 glue with label B7, and its
eastern glue is a strength-2 glue with label BO.

(¢) On the corner tile of the southeast corner, its eastern glue is a strength-1 glue with label B7, and its
southern glue is null.

(d) On the corner tile of the southwest corner, both its southern and western glues are null.

Upon completion of the outer row, the assembly is terminal. The outer row essentially causes the blank,,:
regions to be expanded to encompass the dimensions of the counters, presents the full and correct information
needed by a macrotile of system using the tiles of U to simulate Q (especially the glue encodings for the
corresponding sides and the glue lookup table), has the IO markings that are compatible with the tiles of U,
and has strength-2 glues exposed along the north and east sides that represent strength-2 glues of ¢,. As such,
the terminal assembly correctly seeds itself with respect to U (and representation function R and seed generation
function S).

The final point that must be shown is that Q is a standard aTAM system (which is the class of systems that
U is IU for). Recalling that all of the tiles of @ are IO-marked, both facts follow immediately for the growth of
phases 1 through 6, which consist solely of (1) zig-zag growth, and (2) additions of the “filler” and “filler bottom”
tiles. For the zig-zag growth, all tile attachments are via a single strength-2 input glue or two diagonally adjacent
strength-1 input glues, and every tile side with a non-null glue is used as either an input or output glue, meaning
that no mismatches occur. Furthermore, careful design of the subsets of tiles to be specific for each phase easily
ensures that no two tiles have the same set of input glues. From these facts, it follows that the zig-zag growth
is also directed. There are only two filler tile types, “filler” and “filler bottom”, and both have two strength-1
input glues, one on each of their north and west sides. The “filler” type has strength-1 output glues on its east
and south, and the “filler bottom” only on its east. This means that all attachments are via diagonally adjacent
input glues, there can be no mismatches, and all growth is directed. Finally, the growth of phase 7, in which
the rectangular assembly grows into a square macrotile also follows our requirements for a standard TAS. The
tiles attach in a directed fashion. The square frames of side length X + log,(X) are made from standard binary
counter gadgets that were easily made to be directed and without mismatches. The interior corner squares also
use binary counter gadgets to control their size and are seeded from a single glue presented on the interior corners
by the row of tiles that seeds the frame counters. This is the only glue that is shared between the interior squares
and the frame (all others being the null glue) to avoid mismatches. The tiles that fill up the space between the
frames and propagate the simulation information from the quine also have the null glue on the clockwise-most
side to avoid mismatches when interfacing with the opposite side frame.

Thus Q is a quine and Theorem 3.2 is proven. 0

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

2422



Downloaded 05/01/25 to 86.63.155.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

6.6

Breaking circular dependencies in tile type creation Here we discuss a few technical details about

the creation of the tile sets Tr and Tg, which have slight circular dependencies, and how those are handled.

10.

11.

12.

The high-level algorithm for generating Tr and Ty is the following:

. Initialize the value for the full, final width of glue representations l,, = 1 (which will also be the width of

the field needed for the counter value encoded in the seed row).

. Initialize the width of compressed glue representations l; = 1.

. These will yield the width of padding I, = l,,; — I, (which is a field encoded in the seed row).

Using [,4, generate the functional tile set Tr (i.e. the tiles that perform phases 1 through 7 of the quine
construction, following the descriptions previously provided for those phases). Note that I,, will slightly
impact the size of Tr by determining how many tiles must be hard-coded for the set of glue lookup entries.
This is because for each symbol x in the constant-sized set of symbols that can be northern glue labels for
the seed row tiles, there is a set of hard-coded tiles to represent PAD_BIN(z,[,4), which is as long as l,4.

. Get the count of unique horizontal glue labels, g, = |G x|, and unique vertical glue labels, g, = |Gv|, in TF.

L If 1y < log(gn) or 1y < log(gy):

(a) Set I, equal to the maximum of log(gp) and log(g.).
(b) If lpg < g, set lpg = 1.

(c) Return to Step 3 so that the process is redone and a (currently) accurate value for [, can be determined.

Eventually [, (and l,4) can accommodate both g, and g,. This must happen since each increase of [, allows
twice as many glues to be encoded but only causes a constant number of additional tiles to be generated,
namely 13. That is, for the encoding of each of the 13 possible northern glue symbols in the seed row tiles,
one extra bit is added and thus one extra tile is needed for each.

. Using the current l,g, Iy, I, = I, — g, and Tk, generate the tile set for the seed row, Ts, which includes

the counter field padded to width I,,, the encodings of the northern and eastern glues of the seed tile (both
of length [,,4), the glue padding field of length [,,, and the glue lookup table containing the compressed glue
lookup entries for the tiles of T (whose glue representations depend upon ;).

. Let g}, = |Ts| — 1 (i.e. the number of unique horizontal glues between the tiles of the seed row). Note that

the tiles of Ts add no new vertical glues since the tiles of T have tiles with glues that can bind to each of
them.

If 1,4 < log(g), + gn) or I,y < log(gy), increase I,y by 1, let I, = l,g — I, for this new value of l,, and return
to Step 3, since l,4 was not enough bits to encode all of the unique glue labels.

Eventually, l,, will be large enough (this must happen since any increase only causes one additional tile for
each of the counter field of width /,, and the padding field of width [,, so a constant number of added tiles
and new glues, but a doubling of the number that can be represented.

Let the final tile set Q = Tr U Ts.

7 An Abstract Model of Self-assembly: Self-Describing Embedded Circuits

Sections 5 and 6 demonstrate that completely analyzing the behavior of an aTAM system, even when it is standard,
involves a lot of details. This analysis is made harder by the asynchronous nature of the aTAM. It is necessary
in the case of intrinsically universal systems (and thus of their quines) since intrinsic universality characterizes
the behavior of the universal system. On the other hand, when one is merely interested in designing a standard
system with a given set of productions, it is possible to use a so-called self-descipting circuit as a blueprint, which
can then be compiled into a standard aTAM system. This device will be of use in section Section 10 to prove the
existence of a standard aTAM system which strictly assembles the Sierpinski Cacarpet K°.
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7.1 Embedded circuits As a way to design and analyze complex standard aTAM systems, these can be viewed
as circuits drawn on Z2. When defined that way, one does not need to consider the effects of concurrency between
different parts of the assembly, nor how the attachments are ordered. In exchange, a condition of self-description
is needed for the circuit to translate into a TAS system. The following definitions can be skipped if one admits
that a circuit is ”like Figure 25”, where wires coming into the same gate bend towards each other, so that the
type of each gate g determines the set of inputs which will be received by its successors in addition to g’s output
(if any).

A circuit is made of gates. Fach of these gates has a function, computing the outputs of the gates from the
inputs. The gate is embedded on a unit square according to its wiring, which states where its inputs come from
and where its outputs go to. The wiring and the function must be compatible: the wiring must have as many
inputs as the function.

DEFINITION 7.1. (WIRE) A wire is a pair of a list of distinct directions De {N,E,S,W}* and a distinguished
element d € D. It is noted as a word on the alphabet {n,e, s,w} containing the elements of D, with d capitalized.
For instance, the wire ((N, E), E) is noted nE, while (N, E), N) is noted Ne.

Given a wire w = (5, d), its opposite —w is ((—D;), —d), i.e. —Ne = Sw. The set of wires is noted Wires.

DEFINITION 7.2. (WIRING) Given two integers i,0 such that i +o0 < 4, a (i,0)-wiring w (i.e. a wiring with
in-degree i and out-degree o) is given by

e a partition of {N,E,S,W} into three sets, w-Inputs, w- Outputs and w- Inert, where w-Inputs is ordered
e ¢ map w-output-num : w- Outputs — {0,...,0 — 1};
e a map w-outwires : w- Outputs — Wires such that —d is the distinguished element of w- outwires(d).

The set of all wirings is noted W.

DEFINITION 7.3. (INPUT / OUTPUT / INERT SIDES, DEGREE) Given a wiring w € W, the elements of
w-Inputs are the input sides of w, the elements of w- Outputs are its output sides, and the elements of w- Inert
are its inert sides. The in-degree of w is the number of its input sides, its out-degree of w is its number of output
sides.

Additionally, each output side also determines the input sides on the following gate and their ordering. That
is, a wiring w with nE € w- outwires can only have a wiring w’ with w’- Inputs = (S, W) to its right.

The graphical representation of a wiring is given on Figure 24. Each direction in w- Inputs has an incoming
arrow, and each direction in w-Outputs has an outgoing arrow. If w-Inputs has only one element, the
corresponding arrow is straight and simple. Likewise for the outgoing arrow when w-outwires(d) is a singleton.
When w- outwires(d) is made of two adjacent directions, the corresponding arrows bend to come near each other;
likewise, modulo rotation, when w- outwires(N) € {Ne,eN}, the corresponding arrow bends left, and right if it is
Nw or wN. For pairs of opposite directions, an arrow with a double tip is used. Triple and quadruple inputs are
not used in this paper. Inputs are numbered according to the order of w- Inputs and output wires are numbered
according to w- output-num.

DEFINITION 7.4. (GATE) Given an alphabet 3 two integers i,0, a gate g is a pair { func : f, wiring : w}, with f
a function f: ¥ — ¥° and w an (i,0)-wiring.
The set of gates on alphabet ¥ is noted Gates(X).

These gates may be placed onto a subset of the grid Z2? to make circuits. An example of a circuit, a multiplier
built from a handful of adders and auxiliary gates is given on Figure 25.

DEFINITION 7.5. (CIRCUIT) Let ¥ be an alphabet. Let D be an oriented subgraph of 72, I bea sequence of arcs
from Z2\ D to D and O a sequence of arcs from D to Z?\ D.
A circuit C with dependency graph D, input bus I and output bus 0is a map D — Gates(X) such that:

e for any arc E in direction d € {N,E,S,W} between two positions a,b € D, let w, = C(a)- wiring and
wy = C(b)- wiring; then we have d € wg- Outputs, —d € wy- Inputs, and w,- Outputs(d) = (—d, w,- Inputs),
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O 1
! 0
1
Figure 24: The graphical representation of three wirings: w; = {Inputs = (W), Outputs =

{N, S, E}, output-num = {N — 1,E — 0, — 1}, outwires = {Se,W,wN}}, ws = {Inputs =
(W, S), Outputs = {N}, output-num = {N — 0}, outwires = {Sn}} and ws = {Inputs = (W, E), Outputs =
{S}, output-num = {S — 0}, outwires = {wN}}. Neighboring input wires bend to come together into the
wiring. Double arrows indicate a pair of opposite input arrows. The output wire in direction d bends to mirror
w- outwires(d).

e for any adjacent positions a,b in Z* with no arc between a and b in D, d € C(a)-wiring-Inert and
—d € C(b)- wiring- Inert

e and for any arc e of Z? in direction d € {N, E,S, W} between two positions a € D and b € Z*\ D, either:

— d € C(a)- wiring- Inert and e is neither an element of I nor of O,
— d € C(a)- wiring- Outputs and e is an element of 0,

— —d € C(a)- wiring- Inputs and —e is an element off.
The support of C' is the vertex-set of D.

Let C be a circuit, and A the arc-set of its dependency graph D. A function v : A — X conforms to C at a
position Z in the support of C, if for any d € C(2)- wiring- Outputs, v(0) = (C(v)- func)(v(ip), . .., v(im))r with
10, - - - » i the input arcs of C(2), o its output arc in direction d and k = C(Z)- wiring- output-num(d).

A circuit is well-founded when its dependency graph has no cycle or infinite backwards paths. For a well-
founded circuit, given a vector of inputs 7 indexed by I there is a unique function C (%, —) which conforms to C
and such that the values on I are 7. The circuit function C : 7 — %0 is defined by C(7) = (C(7,0r)).-

A circuit is finitely rooted when its input bus is finite and its number of gates with in-degree 0 is finite. It is
evaluable if it is well-founded and finitely rooted.

The circuit M} on figure 25 is a multiplier. Take two natural integers a < 10,b < 100, pose b = by + 10b;
with Vi, 0 < b; < 10. Let 7,4 = (ao, bg,b1). Then C(7,;,) = 0, with ab = Y 0;10°. Figure 25 gives an example of
the evaluation of the circuit on inputs 32 and 7; the values of C’(z —) on each arc are given on the figure.

When the alphabet ¥ is structured in two layers, i.e. ¥ = A x B, the function f of a gate g may act
independently on layer A and layer B, i.e. f = fa ® fg. Then, taking g4 = { wiring : w, func : f4} € Gates(A)
and gp = { wiring : w, func : fg} € Gates(B), ¢g can be written as g4 ® gg. In other words, the tensor product
® applies to pairs of gates with the same wiring.

7.2 Self-description The process of self-assembly in the aTAM and the evaluation of an evaluable embedded
circuit are somewhat alike, in that information propagates from an initial region outwards. In both processes,
there is no global synchronisation, but each step can take place as soon as its inputs are ready. In the aTAM, the
initial region is the seed, while in a circuit, it is the input bus together with the gates of in-degree 0.

There are three differences between these processes. First, the input bus of a circuit does not have an analog
in the aTAM. Hence, aTAM systems are akin to closed circuits. Secondly, there can be competition between
attachments in the aTAM, as well as mismatches, while in circuits the input and output directions of each gate
are fixed. This entails that an aTAM derived from a circuit by the compilation process detailed below will be
standard. The last and most important difference is that in a circuit, the outputs of each gate depends not only
on its input, but also on the function of the gate. For an aTAM system to simulate a circuit, this information
needs to be derived from the inputs of the gate. Self-description captures the possibility to do so.
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RS> m: %% — %2

i(x) == m(z,y) = (xy mod 10, |zy/10])

ig: 22 5 X2 a:¥? > Y2

iz(2,y) = (z,y) a(z,y) = ((z +y) mod 10, [(x +y)/10])

Figure 25: A multiplier circuit M and the definition of the functions of its gates. The alphabet is the set of
digits Z/10Z. The values in the grey squares are an example of evaluation: 32 x 7 = 224

DEFINITION 7.6. (SELF-DESCRIBING CIRCUIT) An evaluable circuit C' on alphabet 3 is self-describing on input
vector 7 if there is a decoding function dec-gate : (X x {N, E,S,W})<* — Gates(X) such that for any position p
with incoming arcs (eg, . ..,ex—1) = p + (C(p)- wiring- Inputs):

dec-gate((C'(%, e0),do), - - ., (C(Tex—1),dk—1)) = C(p),
where d; is the direction of e;.

A closed self-describing circuit really is a circuit with only one function of each in-degree. Having one function
per in-degree is a harmless technicality: in a circuit, successive gates have compatible wirings, so the in-degree of
each gate is known from the wiring of any of its predecessor gates, whether or not the circuit is self-describing.

LEMMA 7.1. Let C be a closed self-describing circuit. There is a closed circuit Cy with only only one function of
each in-degree such that C = C1.

Proof. C7 has the same wirings as C, and for each i, all of its gates of in-degree ¢ have as function f; : zg...x;—1 —
(6c(xo, - .. xi—1)-func)(xo, ... x;—1), where d¢ is the decoding function of C. d

7.3 Locally deterministic patterns If C is a self-describing closed circuit, then from C~', one gets a coloring
of the arcs of its dependency graph with the property of local determinism.

DEFINITION 7.7. (LOCALLY DETERMINISTIC ARC COLORING) Let P be a coloring of the arcs of some acyclic
oriented subgraph G of Z2. For each vertex v € G with in-degree §, the input vector of v is 7, =
((do, P(eq)), .., (ds—1,P(es—1))), where e; is the i-th incoming edge of v and d; its direction

P is locally deterministic if there are two prediction functions pred-inputs : {N,E,S,W} x ¥ —
P({N,E,S,W}) and pred-symbols : ({N,E,S,W} x £)<* x {N,E,S,W} — X such that for each arc e from
vertex a to vertex b in direction d € {N, E,S,W},

e P(e) = pred-symbols(iy, d)

e pred-inputs(d, P(e)) is the set of directions of the incoming arcs of b,
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Figure 26: Three arc colorings on the alphabet ¥ = {A4,0,1}. All arcs go either to the right or up. The coloring
C1, in the upper left is locally deterministic. In the upper-right, C5 is not because the two circled arcs have value
1 and direction E, but the vertices they point into have different incoming directions ({E} versus {N, E}). At
the bottom, Cj3 is not locally deterministic, because the two triangle vertices get the same incoming values, but
have different outputs: (0,0) versus (1,1).

LEMMA 7.2. Let C be a closed self-describing circuit on alphabet ¥, with dependency graph Do = (V, A). Let
C" be the self-describing circuit on alphabet ¥ x W where each gate outputs its wiring in addition to its normal
output. Then the function C' is a locally deterministic coloring of D¢ .

Proof. A candidate function for pred-inputs takes as input the direction d of an arc e : @ — b, and the value of
C’(e), that is, an element of ¥ corresponding to C'(e) as well as the wiring w of the gate at a. Thus, the function
(d, z,w) — w-outwires(d) must, by the constraints on neighboring gates in a circuit, output the set of directions
of the incoming arcs at b.

Likewise, a candidate function for pred-symbols takes as input the direction of the arc e : a — b, and a vector
M ® d of the inputs coming into a with their directions. Reorder m ® d so that d is in the order of the inputs of
C(a). Let { wiring : w, func : f} = dec-gate(1m ® d). Then taking pred-symbols(e) = (f(17), w) works. |

From locally deterministic patterns to aTAM systems

DEFINITION 7.8. (VERTEX TYPE, ATLAS) Let P be a coloring of the arcs of some acyclic oriented subgraph G of
Z2. For a verter v of G, its vertex type is the partial function v : d € {N, E,S,W} + (o,x), where o = —d if the
edge e in direction d from v is an incoming edge, o = d if it is an outgoing edge, and x € ¥ is P(e). If v has no
edge in direction d, then v(d) is undefined.

The atlas of P is the set of its vertex types.

A locally deterministic coloring can be reconstructed from its atlas and the positions of its in-degree 0 vertices.

LEMMA 7.3. Let Py, Py be locally deterministic colorings of the arcs of some oriented subgraphs of Z2, G1 and
G2 respectively. If

1. Gy and G2 are acyclic and have no infinite backwards paths,
2. Py and P, have the same atlas,
8. G1 and Go have the same vertices with in-degree 0,
then G1 = G and P, = Ps.
Proof. By induction on the longest path to each position in Gj. ]

Finally, a locally deterministic pattern with a unique in-degree 0 vertex can be self-assembled in the aTAM.
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LEMMA 7.4. Let Y be some finite alphabet, and let P be a locally deterministic coloring of the arcs of some acyclic
graph G with no infinite backwards path. Assume the maximal in-degree of a vertex in G is 6 and that G has only
one vertex with in-degree 0.

Then there is an aTAM system Sp with temperature § with P as its only final production.

Proof. Let Ap be the atlas of P, pred-inputs and pred-symbols the prediction functions of P. By convention,
suppose pred-inputs returns an input vectors which is ordered clockwise, starting from direction N.

First define the glues of S, and their strength. Each glue is a pair (s,d) € ¥ x {N, E, S, W}. For any symbol
s € 3 and direction d € {N, E,S,W}, let ¥ = pred-inputs(s,d). If d is the first element of 7, then its strength is
0 + 1 — 7], otherwise it is 1. Hence, for any vertex type v € Ap with input vector 7,, the sum of the strengths on
the input sides is §.

Then define the set of tile types S, to be A,, with the glue on the d side of the tile type © being o(d) if
defined, and the null glue otherwise. The seed tile of S, is the only vertex type of A, with in-degree 0.

Indeed, any production of Sp is an initial subset of P, as can be seen by induction on the attachments.

Then, consider a production p of Sp. If G contains some position not covered by p, then because G contains
neither loops nor infinite paths, it must contain some v with all its predecessors within dom(p). But then the
total strength of glues into v is d, and the tile corresponding to P(v) must be attachable there. Hence p is not
terminal.

Finally, Sp assembles P. ]

Putting all this together, it is possible to compile a self-describing circuit into a self-assembling system.

THEOREM 7.1. Let C be a self-describing evaluable circuit in which exactly one gate has no inputs. Then there
is a standard aTAM system Sc which strictly self-assembles dom(C).

Proof. By Lemmas 7.2 and 7.4. a

8 A Geometric limitation of aTAM computation: The Tree Pump Theorem

The dynamics of the aTAM are limited by pumping principles in the style of [29], whereby under some conditions,
their behavior must become periodic. The one presented here deals with skinny productions, that is those who
do not encircle any square larger than N for some fixed N. The crucial property which makes them simple(-ish)
is their bounded treewidth [8]. One remarkable feature of this pumping theorem is that it allows pumping in
a chosen direction. In Section 11, this pumping principle will be the final argument for ruling out the least
connected of shapes from generating DSSFs which can be self-assembled.

THEOREM 8.1. (TREE PuMP) For any aTAM system T = (S,0,7) with o finite and connected, define the
following sets of assemblies:
o for any integer m, Cp,[T] is the set of assemblies of T which encircle an m x m square;
e for any real k and vector d_: Bkj[T] is the set of assemblies of T which do not cover any position p such
that - d > k + |dom o]
e for any vector d: PAT] is the set of ultimately periodic assemblies A of T such that there is a vector p’ with
D d>0 and a non-empty sub-assembly a & A such that a + p'C a.
Then, there is a function F': N x N — N such that for aTAM system T with n tile types and a 1-tile seed,
integer m and unit vector d of R2,

Ap[T] N (Cn[T]U BF(n,m),J[T] U P4{T]) # 2.

The Tree Pump Theorem states that in order to do a meaningful amount of computation, a self-assembling
system with n tiles needs to encircle large squares —say, of size m, thus hitting C,,[T]. If it does not, then its
productions look very much like trees drawn on Z2? with a m-cell wide brush. A branch of that tree then behaves
like a finite automaton. If that automaton stops, the assembly goes no further than F'(n,m) in any given direction
J: which gives a final production in B Flnm), 71T]. If not, these long branches must have an ultimately periodic

behavior which gives a final production in P3{7].
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Figure 27: The three sets defined by theorem 3.4: C,,[S] is the assemblies which encircle an m x m square,
Bpn.m) 71S] is the set of assemblies which do not reach further than F(n,m) in direction d, and PS] is the

assemblies which contain a periodic path with period p such that p'- d>0.

The proof of theorem 3.4 needs some ancillary definitions. The objects they introduce may seem overly
sophisticated in view of the concreteness of the statement of theorem 3.4, but one needs to soldier on. The reader
may find solace in knowing that they are the result of persistent failure in one of the author’s search of a more
down-to-earth argument. The proof plainly needs systems endowed with the ability to escape the confines of the
Euclidian plane Z? and those of a merely infinite time. Hence, the definition and use of Ordinal-length sequences
of Free Assemblies.

8.1 Free Assemblies In this appendix, assemblies sit on a graph called an assembly support instead of Z2.

DEFINITION 8.1. (ASSEMBLY SUPPORT) An assembly support is a directed graph G with labels in {N, E,S, W}
on its arcs, such that:

e cach vertex has at most one incoming arc with each label,
e cach vertex has at most one outgoing arc with each label,
e for any cycle ¢ of G, the sum of the labels of the arcs of ¢ is equal to O as a vector of Z2,

e for any path ™ of 1 or 3 arcs from u to v, if the sum in Z? of the labels of T is de {N,E,S, W}, then there
is an arc from v to u with label —d.

An example of a correct assembly support is given on Figure 29, while Figure 28 shows some counter-examples
of labeled graphs which are not assembly supports. Because of the conditions on the incoming and outgoing arcs
of each vertex, it makes sense to represent the vertices as tiles, and arcs as sides the tiles share. This hopefully
helps build the intuition that assembly support are “like Z2, but long separated paths which should come to the
same position may avoid each other”. On Figure 28, the direction corresponding to each side of the tile is given
explicitely. With correct Assembly Supports, like the ones on Figure 29, the convention is that the direction
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Figure 28: Ceci n’est pas un Assembly Support: three labelled graphs which fail to be assembly supports. Each
vertex is represented by a tile, the labels of its sides are the labels of its outgoing arcs. A label on a side with
no neighbor corresponds to an exterior arc. The bottom-left graph has a path of length 1 with label E from z
to u but the —E = W neighbor of u is t. Also, the N neighbor of ¢ is u, which has no S neighbor. The one
in the top right has a 3 arc path “nope” whose labels sum to N + E 4+ S = F, but n is not the W neighbor of
e (actually, there is none). The one on the right has a cycle “e miscounted” for which the sum of the labels is
3E + 3N + 2W + 3S = E, which is not 0.

of each side corresponds roughly to its direction on the page, and small adjustments allow tiles which would
otherwise be adjacent on the page not to be. The appearance of tiles avoiding each other by going in the third
dimension is deliberate, as a way to build intuition.

An embedding from an assembly support G to another assembly support G’ is a graph embedding which
preserves the label of the arcs. An isomorphism between G and G’ is a graph isomorphism preserving the arc
labels.

DEFINITION 8.2. (PERSPECTIVE DIFFERENCE, TRANSLATION) For any two vertices (z,z") of a connected com-
ponent of an assembly support G, their perspective difference 2’ —z is Eaep a, where p € {N,E,S,W}* is the
sequence of labels of a path from z to z'. For any embedding e : G — 7.2, e(2') — e(z) = 2'~z. By convention,
z,2" are in different connected components, 22z =00.

A translation between two subgraphs A C G and B C G’ of two assembly support is an isomorphism from A
to B which preserves perspective differences. Any isomorphism between connected subgraphs is a translation.

For any Assembly Support G and 2 € G, squash, o : G — 72 is the embedding 2’ + (2'—z). Since changing
z in squash, ; only amounts to a translation, it will generally be omitted. The index G will be omitted as well
when this causes no ambiguity.

The analysis in the Tree Pump Theorem relies on an examination of the holes of the productions of 7. These
holes need to be suitably defined now that the assemblies are no longer necessarily planar.

DEFINITION 8.3. (EXTERIOR ARC) An exterior arc of an assembly support G is a pair of a vertez v of G and a
direction d such that v has no arc labelled d in G.

DEFINITION 8.4. (CONVERGING EXTERIOR ARCS, GROWTH) Two exterior arcs (v,d), (v',d") are converging
when v'~v = d' — d ~they virtually point to the same empty position.

Given an assembly support G and a set Z of converging arcs, the assembly support G+ Z (G grown by Z) is
G U{(}, where there is an arc z — ¢ (for z € G) in direction d whenever (z,d) € Z.

DEFINITION 8.5. (STEP, EXTERIOR PATH, HOLE) There is a step between two arcs or exterior arcs (v,d) and

', d) if:
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Figure 29: An example of an assembly support, the shifts in the 3rd dimension between e and g as well as between
r and n are artistic license to show the absence of adjacencies between those two branches. The sum of the vectors
between neighbors on the cycle abede fghijklmnopgrsta is 3E +4N +3E 425 +6E + 25 = 0. The sum of vectors
between neighbors on the path fedcbatsrgp is 25 +3W + 2N + 3E = 0, yet the vertices f and p are distinct. The
small pending vertices next to the tiles are the exterior arcs; they form two holes, one for the square exterior arcs,
and one for the circles. The dotted lines shows the steps between the exterior arcs of the “circle” hole. The step
between the exterior arcs (m, S) and (m, F) stems from the first case of the definition, the one between (b, N)
and (¢, N) from the second case, and the one between (¢, F) and (r, S) because of the third. In this last case, s
acts as the pivot between r and s. Both holes have perimeter 20.

o G=G"andd,d form a T angle,

e d=d' and there is an (non-exterior) arc from v to v’ with label d", with d,d" forming a £% angle
o d,d form a £7 angle and there is a cell v with v" +d = v and v" +d" ='.

A (simple) exterior path is a sequence P = (pg,p1,...,pr) of arcs, such that:

e for each i, there is a step between p; and p;+1, and

o for 0 <i <k, p; is an exterior arc.

A hole is a simple exterior path which loops back to its starting exterior arc.
The perimeter of a hole H = (hg,...hx = hg) is the set of vertices appearing in the exterior vertices h;.

These definitions are illustrated on Figure 29, which features an assembly support with two holes of perimeter
20. These holes are “morally infinite”, so they resist attempts at a definition of area —at least the author’s naive
ones. For an assembly which embeds into Z2, the free definition of hole corresponds to the intuition of a hole in
an assembly, up to the detail that the exterior of the assembly forms a hole, so that all finite assemblies have at
least one hole. Note that exterior paths are oriented: they turn in the positive direction around each tile.

DEFINITION 8.6. (FREE ASSEMBLY) A free assembly A of the TAS T = (T,0,7) is composed of an assembly
support A-support and a total function A-tile : A-support — T.
For a TAS T, the set of free assemblies of T is written T¥ree.

When there is an injective embedding e : A-support — G, it naturally defines a free assembly e(A) with
e(A)-support = e(A-support) and for 2 € e(A-support), e(A)(e(z)) = A(z). An assembly A embeds into Z>
if squash is a one-to-one embedding A-support — Z2; as above, this embedding naturally defines an assembly
squash(A).

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

2431



Downloaded 05/01/25 to 86.63.155.147 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

DEFINITION 8.7. (FREE ATTACHMENT, FREE ASSEMBLY SEQUENCE) Let A, A" be free assemblies of some TAS
system T = (T,0,s), andn: A — A" an embedding. The tuple (A, A’,n) is an assembly candidate if:

e there is a z € A’-support such that ) : A-support — A’-support \{z} is a translation,
e for any z' € A-support, A-tile(z’) = A-tile(n(z)).

The definitions of attachment, assembly sequence, production and terminal production extend to free
assemblies. The Z? wversion of each definition is simply the particular case where every assembly embeds into
72,

For a TAS T, the set of free assembly sequences of T is written H™°[T].

The definition of free attachment is illustrated on Figure 30. The fact that n is an isomorohpism ensures
that parts of the assembly which do not touch the position z are unaffected by the attachment. This preserves
the locality of the aTAM process, in contrast to what happens in the FTAM [12] for instance. Hence, while the
above definition of attachment is given from the point of view of A’, “after the fact”, from the point of view of
A, an attachment candidate can be defined from a tile type ¢ and a set Z of convergent exterior arcs: t@QZ is the
attachment candidate (A, A’,n) where:

e A’-support = A-support +Z, and ( is the vertex of A’-support which is not in A-support,

7 is the identity on A-support,

A-tile(¢) = ¢,

A’ tile(z) = A-tile(z) whenever z # (.

For clarity, a “normal” assembly will be referred to as a Z2-assembly, likewise for the other concepts which
were just endowed with a “free” variant.

Embeddings act not only on assembly supports and assemblies, but also on assembly sequences. In doing so,
they may break the correctness of attachments if they are not one-to-one; when that happens, the sequence is cut
short.

DEFINITION 8.8. (ASSEMBLY SEQUENCE EMBEDDING) Let a = (49 — A1 — ...) € HIT[T], let G =
(lim o) support and G’ an assembly support. Let e : G — G’ be an embedding; since up to translation,
Ap-support C Aj-support C ... C (lim«)-support, for each i, e induces an embedding from A;-support into
G'.

Let k be the largest i such that e is an isomorphism on A;-support, then e(a) is the assembly sequence

(e(Ap), ..., e(Ar)).

8.2 Ordinal Assembly Sequences It is often practical to consider what happens in an assembly sequence «
after it has placed an infinite number of tiles. For this, ordinal assembly sequences become useful.

DEFINITION 8.9. (ORDINAL ASSEMBLY SEQUENCE) Let o € wy be a countable ordinal, an o-Assembly Sequence
starting from an assembly Ag is a sequence of length o of free assemblies such that for any i < j < o, there is an
injective embedding n;—; : Ay — A; with:

o fori <o, (Ai, Ait1,Mi—it1) i a free attachment,
o fori<j<k<o, njkonNisj = Niok

The i-th production of « is A;, and its i-th attachment is 1; ;1.
For an o-Assembly Sequence «, the notation lima = A, is consistent with the case of usual Assembly
Sequences, i.e. w-Assembly Sequences.

These sequences correspond to the intuitive generalization of attachment sequences to “times larger than
infinity”. In particular, any tile attached through an ordinal attachment sequence reaches the starting assembly
of the sequence through a finite number of attachments. Indeed, for a tile to have been added through an ordinal
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Figure 30: Some possible and impossible free attachments from a starting free assembly S, at temperature 7.
Again, the third coordinate is a visual aid to show non-adjacencies; small dashed lines link points which embed
in the same position in Z2. Assemblies A and D are reachable through one attachment ¢ @z, where in each case,
z is the position in dark gray. The assembly B is an attachment candidate, but it is not stable, since the new tile
tp only binds through a strength-1 glue. The assembly C' can not even form an attachment candidate from S, as
C- support does not contain an isomorphic copy of S-support
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assembly sequence « at time ¢, the neighbors to which it attaches must have been attached at some time t' < ¢.

Since these times are ordinals, such an decreasing sequence of times reaches 0 in a finite number of steps. In

particular, these ordinal assembly sequences produce the same productions as the usual w-assembly sequences.
This remark formalizes thus:

REMARK 1. Let T be an assembly system, o a countable ordinal, o an o-Assembly Sequence, k < o and tQZ the
k-th attachment of a.. There is a sequence & of length o' and a bijection 1 : 0 — o' such that:

e for allt < o, the attachments oy and ai(t) are the same,
o (k) is finite.

LEMMA 8.1. Let T be an assembly system, o a countable ordinal, and o an o-Assembly Sequence. Then if o is
infinite, there is a w-Assembly Sequence o such that lima’ = lim a.

Proof. The proof goes by transfinite induction.

If 0 = w, then « itself satisfies the conclusion of the lemma.

If o = p+ 1 is a successor ordinal, by induction hypothesis, there is an w-assembly sequence o such that
lima” = A,, where A, is the p-th production of «. Let t@Z be the p-th attachment of «; there is an integer
k such that at time k, all the origin vertices of the arcs in Z are attached in o’. The attachment sequence
o = (af,...,0p,tQZ aj ,...) satisfies the conclusion of the lemma.

If 0 is a limit ordinal, there is a sequence (a/?);~, of w-assembly sequences such that for each 7, lim o/* = A;. Let
A;-i be the j-th production of a’*. Since o is countable, it has cofinality w; pick an increasing sequence € : w — o

such that sup,., €(i) = o. Let o’ be the enumeration of the set {A;e(i) |7 < i < w} ordered lexicographically
re(7)

according to (i,7). This sequence o is an attachment sequence, and it satisfies lim o’ = J,_,(4;

d

) = lima.

8.3 Holes and Fizziness The Tree Pump Theorem is about tree-like assemblies. Since trees are acyclic graphs,
the holes of the assemblies are inherently limited and thus play an important part in characterizing how these
tree-like assemblies behave. Fizziness is the tendency of assembly sequences to create a lot of holes.

DEFINITION 8.10. (F1zZINESS) Let A, A’ be two free assemblies with A-support C A’-support, the fizziness
fz(A, A”) is the number of holes of A’ whose perimeter is not contained in A.

Let a = (A9 — A1 — ...) be an Assembly Sequence in H¥™°[T]. The fizziness of a, noted fz(a) is the
sequence i — fz(A;, A; + 1).

A sequence « is more fizzy than B8, written « >¢, B if fz(«) > fz(8) lexicographically.

LEMMA 8.2. (MAXIMAL F1zZINESS) Let T = (S,0,7) be a seeded assembly system. Assume o has a finite number
of non-null glues on its evternal edges. Then there is an w-Assembly Sequence amax € H¥[T] with mazimal
fizziness among w-Assembly Sequences.

Proof. Using Kénig’s Lemma. ]

Note that this lemma does not hold for o-assembly sequences with o > w. Indeed, after time w, there might
be an infinity of possible attachments, thwarting Konig’s Lemma.

LEMMA 8.3. (F1zZINESS-INCREASE OF EMBEDDINGS) Let T be a seeded TAS, and o € HI™°[T]. Let G =
support (im &), G’ an assembly support, and e : G — G' an embedding.
Then:

1. e(a) is a free assembly sequence,
2. e(a) > a
3. e(a) >, av if e is not injective on dom (lim «).
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Proof. Let a = (t;Qz;); be an assembly sequence in H"e¢[T].

For Ttem 1, the attachments of e(«) are valid by definition of k. They are stable since for each attachment,
the edges adjacent to z; which make this attachment stable are preserved by e.

For Item 2, for each assembly A of o which is mapped injectively, each hole of « is mapped by e to a hole of
e(A) with the same labels on its border.

For Item 3, if e is not injective on dom (lim «v), then there are i < k such that e(z;) = e(zx). Since « is a
valid assembly sequence, z; # z, there are two different paths from the seed to e(z;). From these two paths, it
is possible to construct a hole in dom (e(a)) which is not a hole in dom («). Hence, from the first attachment
where this hole appears, the assemblies of e(«) are more fizzy than the corresponding ones in a. 0

LEMMA 8.4. (MAXIMAL SEQUENCES ARE FLAT) Let T be a seeded TAS, S an assembly of T and X C
HE™ee [T, S] be a set of Free, Ordinal Assembly Sequences such that for any o € X, there is a o/ € X such
that o >y, squash(a).

Assume o is a free assembly sequence with mazimal fizziness within X. Then o embeds into Z>.

Proof. If a does not embed into Z? by squash, then squash(a) is fizzier than o and thus a cannot be maximal in
X. d

8.4 The Window Movie Lemma The Window Movie Lemma [29] applies to free assembly sequences as well
as to Z? assembly sequences. In order to account for holes, movies need to record not only the glues appearing
on either side of the window, but also the paths between edges of the window through either side.

DEFINITION 8.11. (WINDOW, FRAME, MOVIE) Let a = (Ao, Ay,...) be an assembly sequence of H™°[T]. A
window W of « is a cut of (lim «)- support separating it into two connected components Near(W) and Far(W).
The width w(W) of a window is the mazimum perspective difference between two vertices along the window.
Let Arcs(W) be the set of arcs (either normal or external) of (lim «)- support through W.
The frame f on W at time k records for each arc a = (v,d) € Arcs(W):

e f(a) present: whether v € Ay support, and if so,
e f(a) glue = Ay-tile(v)(d), as well as

e f(a)-successor the arc of Arcs(W) which is reachable from a through an exterior path which does not cross
W, if there is one.

The movie associated with W is the ordered set MOVIE(W) of distinct frames appearing on W.

Figure 32 gives an example free assembly sequence a with a window W. The arrows between the edges on
either side of W represent the relation “successor”.

LEMMA 8.5. (WINDOW MOVIE LEMMA) Let o € H™[T,04] and B € H™ [T, 05| two assembly sequences.
Assume there are two windows A in « and B in 8 and a translation T such that 7(A) = B, MOVIE(A) is the
same as MOVIE(B) up to translation by T, and lastly T can be extended to a translation from Far(A) to Far(B)
which maps op NFar(B) to o4 N Far(A).

Let o = o par(ay € HF™[T, lim N Near(A)] be the sequence of attachments of o within Far(A), and likewise
gt = Q| Far(B) € HEree[ T, lim B N Near(B)] be the sequence of attachments of 3 witihn Far(B).

Let o/ be the candidate assembly sequence consisting of o where for every k, the attachment a}; is replaced
with B;L

Then there is a window A" on o/ and two translations 7y : Near(A’) — Near(A) and 7p : Far(A’) — Far(B)
such that:

(8.1)

Vz € Near(A4'), (lima’)-tile(z) = (lim «)- tile(7n(2))
Vz € Far(4), (limda/)-tile(z) = (lim B)- tile(7r(2))

Moreover, if Bt >¢, af, then o’ >, a.
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Figure 31: An assembly sequence o of some temperature 1 aTAM, which yields a terminal production F' = lim o'
Below a sequence « >, o which yields a smaller production P which is bounded in direction d (vertically). The
assembly sequence « is fizzier since by step 50, it just closed its seventh hole while o’ is lagging at only 5 holes.
Because a skips any unprofitable attachment, lim « is very much not terminal: its seed (tile number 0) as well as
every tile attached at a time of the form 16 4+ 7k has an attachable yet unfilled position. It can thus be extended
into an ordinal assembly sequence «” which does reach lim «, but in time 3w. The attachment times of the form
i.j in o’ should be read as iw+j. At time w, o’ has assembled lim «; at time 2w, it has added the upwards path,
and at time 3w, it has added the last tile to each hole of lim «.
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Figure 32: Example assembly sequence o and window W. On the main picture, the labels of the tiles of lim «
are the order in which they attach. The small pictures are the successive assemblies of «a, their associated frames
and the obtained movie. The movie is made up of the sequence of the unique frames, in order of apparition.

Proof. Define o as « where for each k, the k-th attachment t@QZ within Far(A) has been replaced by the k-th
attachment within Far(B) of 5. When doing this, for an attachment {@QZ within Far(B), any arc a = (v,d) in Z
with v € Near(B) is replaced by the arc 771(a).

The translations 7 and 7 can be defined inductively on the attachments of o/, such that Equation (8.1)
holds.

The proof that o is a valid free assembly sequence is the same as in the Z? case. Note that since B is a cut
of (lim 8)- support, any attachment of 8 in Far(B) can be replayed in o’ in Far(A’) without conflicts since they
do not create any adjacency outside Far(f).

Observe that every attachment in Far(B) which affects holes in 5 affects the same number of holes in o'
holes which are wholly within Far(B) have had all of their tiles attached in o/, and holes which go through B
become holes through A because the part within Near(B) has the same connections in Near(A) at that frame in
the movie. 0

The fact that the grafting process of Lemma 8.5 is increasing in the fizziness of the far part of the assembly

sequences implies that when the original assembly sequences have maximal fizziness, so does the chimera sequence
/
o'

Lemma 8.5 will be most useful in this paper in the case where the cuts A and B are on the same branch of

the assembly. In this case, by iterating Lemma 8.5, it is possible to get a production with a periodic subassembly.

COROLLARY 8.1. Let a = (A;)i<o be an assembly sequence with two windows A and B satisfying the hypothesis
of Lemma 8.5 and such that Far(B) C Far(A). Let 7 be the translation between A and B. Then, there is an
assembly sequence a” such that F = lima™ N Far(A) verifies 7(F) C F, and within Near(B), o does the same
attachments in the same order as «.

Proof. Let 7 be the translation sending A to B.

Show by induction that for any k, there is a sequence a* such that the movie on the windows A and B within
a¥ are the same as in «, and for each z € Near(B) N Far(A) and j < k, (lima*)(77(z)) = (lima)(z), and the
attachments done by o* and o’ within Ui<; 7¢(Near(B) N Far(A)) are the same.
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Figure 33: The Window Movie Lemma: consider two assembly sequences ¢ (the ibex) and 8 (the bunny), with
their productions depicted in the top row. The sequence ¢, has two windows W; and W),. In W,, Far(WW;) is
the head of the ibex, Near(W;) its body. In W}, Far(W}) is the tip of the horn. Each of them is associated
with a translation, 7 and 7, respectively, which sends the window to another window with the same movie, and
satisfying the hypothesis of Lemma 8.5. Applying Lemma 8.5 in each case gives two new assembly sequences
represented on the bottom row. Applying it with W; yields a fearsome chimera, while its application to W, yields
an ibex with a horn so long it needs to bend in the third dimension to avoid piercing its spine, i.e. avoiding the
conflict that would arise were our attachment sequences not free.
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For k = 0, it suffices to pick a” = a. Assume that o satisfies the induction hypothesis. Then Lemma 8.5
applies, and the assembly sequence it yields, a**!, satisfies the induction hypothesis at rank k + 1.
For a pair (j,k) € N, if for all i < j, af € |J,., 7"(Near(B) N Far(A)), then the j first attachments are
. k

unchanging after rank k: for all m > k and 7 < j, of" = . Let a? be the sequence of such unchanging

attachments. Let m be the supremum of the j € N such that the j first attachments are unchanging after some
rank k. Define o as the sequence of length m with a§ = a;?, where k is such that the j first attachments are
unchanging.

It is easy to check that indeed, lim o” N Far(A) has period p: any attachment in o within Far(A) gets picked
up by subsequent applications of Lemma 8.5 which translate it by p. O

In this situation with a branch and two cuts with the same movie, it is also possible to cut assembly sequences
short, so that they can do their business in Near(A) without needing to mess with Far(B).

COROLLARY 8.2. Let « be an assembly sequence with two windows A and B satisfying the hypothesis of Lemma 8.5
and such that Far(B) C Far(A). Then there is an assembly sequence o which does the same attachments as «
within Near(A), but has no attachment in Far(B).

Proof. Let j be the last time that o does an attachment in Near(A) next to A, i.e. the date of the last frame in
the movie of A where a tile is attached on the near side of the window. By Remark 1, up to a reordering of «, j
is finite.

Let a® be the prefix of length j of . For each k, if o* has any attachment in Far(B), it is possible to use
Lemma 8.5 between B and A to obtain a sequence o**! with fewer attachments within Far(B). Hence, there is
a finite k such that o* has no attachments in Far(B), and lim o N Near(A) = lim a® N Near(A). Since by time

4, the movie on A is over, the rest of the attachments of o which take place in Near(A) can be replayed after a*.

|

8.5 The Tree Pump Theorem After all these considerations about the fantastic properties of Ordinal Free
Assembly Sequences, it is now time to come back to Earth, or rather Z2. The object is now to prove theorem 3.4,
for which an investigation of the properties of systems whose Z2?-assembly sequences do not circle large squares
is in order.

The statement of theorem 3.4 is given again, recall that it deals with the Z2-productions of the aTAM system
T, hence in its statement, Ag[T], Ci[T], By, ) 4lT] and P#T] are sets of Z2-assemblies.

THEOREM 8.2. (TREE Pump) For any aTAM system T = (S,0,7) with o finite and connected, define the
following sets of assemblies:
e for any integer m, Cp,[T] is the set of assemblies of T which encircle an m x m square;
e for any real k and vector J: Bkj[ﬂ is the set of assemblies of T which do mot cover any position p such
that 7~ d > k + |dom o
e for any vector cz PAT] is the set of ultimately periodic assemblies A of T such that there is a vector p with
D d>0 and a non-empty sub-assembly a © A such that a + p'C a.
Then, there is a function F : N x N — N such that for aTAM system T with n tile types and a 1-tile seed,
integer m and unit vector d of R?,

Aa[TIN (Cn[TIU B, ) gl TI U PAT)) # 2.

When considering the statement of theorem 3.4, the holes of the Z2-productions of 7 might as well be filled
in. Hence, the definition of their fill-in, illustrated on Figure 34.

DEFINITION 8.12. (FILL-IN) For a subgraph D C Z2, define the fill-in D® as the subgraph of Z? induced by the
positions p such that there is no infinite path from p in Z*\ D.

A 72 assembly A which does not circle any square larger than m x m looks like a tree, as expressed by the
notion of Connected Treewidth [9]. This tree is obtained by grouping the positions of A-support in connected sets
of size at most 2m, known as bags, organized in a tree in such a way that:
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Figure 34: The domain D of a production P, its fill-in D® and an associated connected tree decomposition of
TREE — DEC|D®]. The blue part of each bag b of TREE — DEC[D®] is its intersection W, with its parent, which
disconnects the vertices appearing in its subtree from the rest of D*®. The choice of the root of TREE — DEC[D*®]
is arbitrary and does not affect the sets W3, up to renaming.

e any arc of A-support is between two positions which appear in the same bag, and
e for any position z € A-support, the set of bags which contain z forms a subtree.

This decomposition is represented on Figure 34.

LEMMA 8.6. Let T an aTAM system, m an integer and A a Z* assembly of T such that A & C,,[T].
Then A-support has Connected Tree Width 2m.

Proof. Indeed, it has treewidth m: otherwise it would contain an m x m grid as a minor; that minor would have
to be realized in Z? as a subgraph which would encircle some m x m square. Moreover, since P® does not encircle
any empty position, it does not have any geodesic cycle of length more than 4. 0

The point of using Connected Treewidth rather than the usual treewidth is that thanks to the connectivity
of the bags of TREE — DEC[P*], the distances in TREE — DEC[P*®] reflect those in P*:

e there is a function r such that for any vertex v € P*, the subtree of bags of TREE — DEC[P*] containing v
has a size at most r(m),

e there are two increasing functions d,,, D,, such that for any vertices u,v at distance § in P°®, any bags
B, > uand B, v of TREE — DEC[P*] are at distance A with d,,,(0) < A < D, (0).

As a consequence, if two tiles are far enough in an assembly A and the path between them does not go through
the seed, there must be two windows cutting that path which satisfy the hypothesis of Corollary 8.1.
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LEMMA 8.7. Let T be an aTAM system with n tiles and m an integer.

Let a = (Ai)i<o € HY™°[T, Ag] be such that for alli < o, squash(4;) & C,,[T].

There is a constant F'(n,m) such that if z,z" € squash (lim ) support \ Ag- support are such that the distance
between z' and z is greater than F(n,m), then there are two windows A and B with z € Near(A) and 2z’ € Far(B)
which satisfy the hypothesis of Lemma 8.5.

Proof. let W(n,m) be the number of movies with n glues on a window of width 2m. Note that W (n,m) counts
the number of arrangements of the edges within the window, the perspective difference between the connected
components of the window, as well as the events on the frames of the movie. Let F(n,m) = d,;,}(W(n,m)).

Let P = lim «- support. By Lemma 8.6, pick a tree decomposition TREE — DEC[P®] with connected bags of
size at most 2m. Let J be the distance between z and z’. If § < F(n, m), by the pigeonhole principle, there must
be two windows A and B between z and 2’ with the same movie. ]

In the case where the assembly embeds into Z2, one actually controls the direction of the vector between the
two windows.

LEMMA 8.8. Let T be an aTAM system with n tiles, m an integer and d a unit vector.

Let o = (A;)i<o € HI™®[T, Ag] be such that for all i < o, A; embeds into Z>.

There is a constant F'(n,m) such that if z,z' € lim a- support \ Ag- support are such that the distance between
(z/ — z)-d > F(n,m), then there are two windows A and B with z € Near(A) and z' € Far(B) which satisfy the
hypothesis of Lemma 8.5, and such that the vector p’ of the translation between A and B satisfies p'- d>1.

Proof. Pick F'(n,m) = 2F(n,m)+1. If (z' — 2) -d > F’(n,m), then in TREE — DEC[lim ov- support®] there there
are two bags, one b containing z, the other ¥’ 3 2’ such that on the path between b, and b,/, there are 2F(n,m)+1
bags (b;); such that for all x € b;,y € b;, (x —y) d>i— j. Thus, there are i,j such j > i+ 1 and two windows,
A between b; and b;y1, and B between b; and b; 1 which have the same movie. Because the windows A and B
are separated by at least two elements of (b;), the translation vector p’ between them satisfies p'- d>1. O

Thus, there is a simple argument to prove theorem 3.4: pick a sequence of maximal fizziness which produces
a terminal assembly of 7" which is neither in By, ) #{7T] nor in Cp[T]. Lemma 8.8 yields two windows with
the same movie; by applying Corollary 8.1 between them, a production in P;{T] appears. Alas, the sequence on
which this argument is founded may simply fail to exist: the w-sequences of maximal fizziness may fail to reach
a terminal production. One could extend them in order to reach a terminal production, but there may not be a
sequence of maximal fizziness among these (ordinal) extensions.

Thus, it is necessary to prevent the pesky tendency ordinal sequences have to try and buy time by spacing
out their attachment so as to generate an infinite family of sequences with increasing fizziness. Straight sequences
are the answer: they do not have the wiggle room to misbehave.

DEFINITION 8.13. Let T be an aTAM system, and < an arbitrary total order on its sequences. A free, ordinal
assembly sequence a = (A;)i<, € HE®[T] is <-straight if for every pair of window N, F such that N and F have
the same movie and Ag-support C Near(N), « is the smallest sequence for < obtained by applying Corollary 8.1
to N and F in «.

The order < is henceforth fixed and left implicit.

LEMMA 8.9. Let T = (S,0,7) be an aTAM system and w an integer.

Let X C H¥®°[T] be a set of assembly sequences, and d an integer. If for any sequence o € X and any position
z € lim a- support at distance more than d from o, there are two windows A and B such that o-support C Near(A)
and z € Far(B), then there is a finite number of straight sequences in X.

Proof. In this case, each straight sequence in X is determined by what it does in a radius d around o. ]

LEMMA 8.10. let T = (S,0,7) be an aTAM system and « a straight assembly sequence of T. There is a straight
assembly sequence o which extends a such that lima' € Ag[T].
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Proof. Let P =lima. If P ¢ Ag[T], then there is an attachment ¢{@QZ which is possible in P.

Let o be a with tQZ appended at its end, and z the position of that last attachment in lim /- support.
Assume that Z is such that the distance between o- support and z is minimal.

If there are no pairs of windows (N, F) in o' such that Far(F) C Far(N), MOVIE(N) = MOVIE(F),
o-support C Near(N) and z € Far(N), then o’ is straight.

If there are two windows (N, F') in o’ such that Far(F') C Far(N), MOVIE(N) = MOVIE(F), o-support C
Near(N) and z € Far(F'), then by Corollary 8.2, there is a place closer to ¢ than z where an attachment was
possible.

Lastly, if there is a pair of windows (N, F') in o’ such that Far(F) C Far(N), MOVIE(N) = MOVIE(F),
o-support C Near(N) and z € Far(N) N Near(F), then the sequence o obtained by applying Corollary 8.1 in
o’ is straight and has « as a prefix, since the new attachments (the repetitions of t@QZ) are done last in each
repetition of the movie in Far(N) N Near(F').

This process yields a straight assembly sequence o’ which strictly extends a. It can be repeated until
limo’ € AQ[T]. O

LEMMA 8.11. Let T = (S,0,7) be an aTAM system and « a straight assembly sequence of T. Then squash(«)
is a prefix of a straight sequence o . Moreover, the connected treewidth of lim o/-support is no greater than that
of (lim squash («))- support.

Proof. If o embeds cleanly in Z?, there is nothing to prove since squash(a) = a.

Otherwise, squash(«) stops because one of its attachment ¢@Qz creates a hole which does not exist in .
Because « is straight, there cannot be a pair of windows with the same movie separating ¢ and z. Applying
Corollary 8.1 in squash(a) on each pair of windows with the same movie which are the closest to o yields a
straight sequence o’ extending squash (a).

Fix a tree decomposition of (lim squash(«))- support. Because « is straight, among all tree decompositions of
lim - support, there is one where each bag which lies in the far side of a pair of windows is a translation of some bag
close to the seed. This tree decomposition has the same width as the decomposition of (lim squash(«))- support.
d

At last, all the ingredients are there to prove theorem 3.4.

Proof. [Proof of theorem 3.4] Define a sequence («;) of straight assembly sequences as follows:
e Fix ag to be the assembly sequence with zero attachments: oy = (0);
e for i even, a1 is a straight extension of «; which reaches a terminal production;
e for i odd, a; 1 is obtained from «; by Lemma 8.11.

For every i, either a1 = a; or a1 >g, oy at the even steps, if a;+1 # «ay, then it is a proper extension
and is thus more fizzy; at the odd steps, if a; does not embed into Z2, then squash(a;) is more fizzy, and so is its
extension a;y1.

If AQ[T] N Cy[T] = @, then for each i odd, the Connected Tree-width of squash(«;) is at most 2m, hence
the Connected Tree-width of a; 41 is at most 2m. But then, by Lemma 8.9, a; can only take a finite number of
different values for 4 even.

Thus, the sequence («;) is eventually stationary, and its fixed point g is a straight sequence which embeds
into Z? and reaches a terminal production. If Ap[T] N B Flnm).d # @, this terminal production must

reach at least F(n,m) in direction d. Thus lim B-support has a branch with two windows A, B such that
MOVIE(A) = MOVIE(B) and the vector sending A to B verifies 7~ d > 1 (by Lemma 8.8). Because 3 is
straight, that branch is periodic, thus lim 8 € Ag[T] N Py O

9 From an aTAM Quine to a Self-Assembled Discrete Self-Similar Fractal

In this section, we present our first fractal construction, which is an aTAM system that performs an infinite series
of nested simulations of itself, at greater and greater scale factors. Importantly, unlike previous IU constructions
(e.g. [10, 23, 22]), this construction begins with a seed consisting of a single tile. That tile first grows into an
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m X m macrotile whose sides have a full definition of the system and the glues of the seed tile on its output sides,
using the construction of the proof for Theorem 3.2. Then, since that portion of the system has been designed so
that it meets the requirements of a standard TAS, the tile set that is IU for the class of standard aTAM systems
treats that macrotile as a scaled version of the seed tile, and simulates the growth of the original m x m macrotile
but with each tile represented by an m x m macrotiles, resulting in an m? x m? macrotile. By combining the
tilesets of the two results, we are able to cause this process of simulation at increasing scale factor to happen for
an infinite series of scale factors.

Then, to cause the resulting assembly to be a discrete self-similar fractal with (-dimension < 2, we make
slight modifications to the previous IU and quine constructions so that the macrotiles contain a specified amount
of empty space. Then, the repeated simulation at greater and greater scales yields a DSSF.

We prove Theorem 3.5 by construction. Given an arbitrary z,e € Q, where 1 < z < 2 and € < 1, we
demonstrate an aTAM system F, . = (7, 0, 2) that strictly self-assembles a DSSF whose ¢(-dimension is z+e. Our
construction utilizes the constructions from the proofs of Theorems 3.1 and 3.2 with slight modifications. Those
modifications and the proofs of their correctness, and thus the overall correctness of the proof of Theorem 3.5,
are included in subsections dedicated to each of the following;:

1. Modification to allow simulation to occur at greater and greater scales instead of stopping after first level.
2. Proof that simulation is correct at each level.

3. Modifications to the quine macrotile and the IU system’s macrotiles to add spacing for targeted fractal
dimensions.

4. Derivation of the resulting fractal dimension.

9.1 Nested self-simulation at an infinitely increasing series of scales The aTAM quine Q = (Q, 7, 2)
presented in the proof of Theorem 3.2 creates a finite terminal assembly, which we’ll call ag. As it is a quine with
respect to the tileset U (the tileset that is IU for the class of standard aTAM systems) and its representation and
seed generation functions R and S, aq is a macrotile mapping to ¢ under R (and having the same shape and
exterior glues as S(o)). This in turn means that, if ag is used as the seed for a system containing the tiles of U
(and 7 = 2 since both Q and U utilize 7 = 2), which we'll call 9 (i.e. QT = (U, aq,2)), then Q1 would simulate
Q under R (at some scale factor m) and its terminal assembly, ag+, would be ag scaled by m (as interpreted
under R). Additionally, there would be two macrotile locations that map to empty space under R but which
contain fuzz (which does not compromise the correctness of the simulation). Let ¢ be the dimensions of o, which
is a square. The macrotile locations in QT containing the fuzz would be those mapping to the locations along
the counter-clockwise-most encoding of the strength-2 glue being presented by the simulated macrotile. This is
purely a chosen convention though and there is no particular significance to this location over any other. Thus, in
the scaled simulation of QF, macrotile growth would be initiated in those locations (because strength-2 glues are
simulated there), but the growth by the tiles of U that attempts to find a match in the glue lookup table would
fail because the tiles of U are not encoded in it. This would result in terminal growth that is valid fuzz, mapping
only to empty space.

In order to create F,. so that the simulation continues indefinitely at all scales, we simply modify the
procedure used to create Q by including the tile types from U in Tr in the glue table. With the tile types of U
also encoded in the glue lookup table, the simulation will continue where QT terminated. The following section
details that the relation of intrinsic simulation is transitive and, consequently, this will result in the increasingly
higher order simulations of () at an infinite series of larger scales and thus a DSSF.

9.2 Correctness of nested self-simulation at infinitely increasing scales Here we prove that having
equivalent productions is transitive.

LEMMA 9.1. Let S, T, and U be TAS’s satisfying S < g, T and T < g, U, then S Sg,or, U.

Proof. By hypothesis A[T] = R;(A[S]) and A[U] = R3(A[T]). Thus R;(R;(A[S])) = R3(A[T]) = A[U]. The
same holds true for the sets of terminal assemblies.

It must also be the case that assemblies in S map cleanly to those in U since all fuzz locations in T-assemblies
Rs-mapping to U-assemblies are fuzz locations in the S-assemblies Ri-mapping to the T-assemblies. 0
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Figure 35: Without encoding the IU tileset in the glue table, QT will grow up to the point where the quine has
acted as the seed for a scaled copy of itself. Note that the large macrotile illustrated here is an order 2 structure
made from macrotiles itself. In other words, Q% simulates () using macrotiles. The zoomed-in views on the north
and east side depict the fuzz macrotile locations that will contain partial macrotiles. These correspond to the
positions along the side of @) where control is given to the IU tileset, however growth stops here because the glue
tables on the tiles in QT do not contain encodings for the individual tiles in the IU tileset U. These will not map
to tiles under the representation function since the glue table failed to find a match, so QT shows that ) acts as
a seed for itself.
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This result says that the follows relationship is transitive
LEMMA 9.2. IfS, T, and U are TAS’s satisfying T Ar, S and U Ar, T, then U 4r,or, S.

Proof. Let o, 8" € A[S] such that o' —S 3”. We know that R} (o) —7 R;(B"”) by hypothesis. Furthermore,
let o/ = Ri(a”) and let B’ = R;(B"). By hypothesis, since o/ —7 3, it must be the case that Rj(a’) =% R;(8').
Consequently, R3(R; (o)) =Y R3(R;(p")) and the lemma is proved. |

LEMMA 9.3. If S, T, and U are TAS’s satisfying S Er, T and T Er, U, then S Fr,or, U.

Proof. Let a € A[U] and let TIZ C A[T] be the stem set of o under Ry. For each element o’ € TI7, let TIS, be the
corresponding stem set of o’ under Ry in A[S]. Now we define II5 = (J, 7 115, to be the union of these stem

sets. We will now show that Hg is the stem set of o under Ry o R;.

By definition, if o/ € IIS, then o € IIS, for some o/ € II. Consequently, R}(a) € I/ and thus
R3(R; (")) = a. Now, let 8 € AlU] such that o =¥ 3. We will show that the two conditions in the definition of
models hold.

For the first condition, let o/’ € TIS. By definition, o € IS, for some o’ € II7. Furthermore, by definition,
there exists some ' € R3™'(B) such that o/ —7 ' and there exists some 8" € R:~'(f') such that o/ =5 B,
Since 8" € R} (') and B’ € R3~'(8), we may conclude that 8” € R; ' (R5™(8))

For the second condition, let o € Rf ' (R5™!(a)) and 8" € R{ ' (R5~(B)) with o” —S . We want to say
that II$ contains an assembly which S-produces o’. Because 7 models U we know that there exists an assembly
which T-produces R;(a”) in the corresponding stem set I18,. The conclusion then follows by condition 2 of S
modelling 7. |

THEOREM 9.1. If S intrinsically simulates T and T intrinsically simulates U, then S intrinsically simulates U.

This result follows from the previous lemmas. It is also clear that the scale factor of the intrinsic simulation
of U by § is the product of the component scale factors.

To see why F, . strictly assembles into a DSSF, we reiterate some properties of our construction. First, our
Quine tileset will grow from a single tile seed ¢ into a square ol which resembles a macrotile for our IU tileset.
This macrotile will have all of the information needed for our IU tileset to simulate the growth from o to al using
macrotiles instead of individual tiles. The result will be a larger assembly a2 whose shape consists each occupied
tile location in « substituted by the shape of a macrotile. Importantly, our IU tileset is configured to simulate
tiles using macrotiles so that each has a shape identical to that of o, and furthermore, without the need for fuzz
so long as all tiles are included in the glue table encoding. Consequently, since all of the IU tiles are encoded
into F, ¢ so that the glue table along al contain the IU tileset entries, there is nothing stopping the tileset from
growing from the individual seed o into a2. Since F, . intrinsically simulates itself at some scale, transitivity

implies that it simulates itself at all powers of that scale.

9.3 Adding space to macrotiles Since the quine assembly will act as the seed macrotile for the simulation
of itself by U, the exact shape of the square, will act as a generator for a DSSF and influence the (-dimension of
the resulting assembly. Here we present a scheme for “squaring” the result from our quine in such a way that the
(-dimension of the eventual DSSF may be effectively freely chosen.

Let W and H be the width and height respectively of the rectangle produced by the Quine tile set. Note that
both of these numbers depend on the number of tile types to be encoded in the representation produced by the
Quine. Specifically, if the Quine produces the representation of a tile set T" with ¢ distinct tile types, then both
W and H grow as O(tlog,t).

Each square frame is made from 4 binary counter gadgets which grow into a closed loop. The length of each
of these counters may be chosen arbitrarily in advance, so let X be the chosen length. Therefore, each counter
that makes up the frame will effectively grow into an X by [log, X| rectangle. The side length of each square
frame is therefore F' = X + [log, X'| and the entire macrotile square will therefore end up being 2F + W tiles on
each side.

Within each of the square frames, 4 solid square blocks of tiles grow from each interior corner to fill in some
of the space within each frame. The side length of these squares is precisely Y tiles where Y is some counter value
chosen in advance. The number of tiles within each of these blocks, its area, is therefore Y2. Furthermore, the
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tiled area of each square frame is therefore 4(X [logy X |+ Y?2). Since the area of the Quine is W - H and the area
of the rectangles propagating the Quine information to the north and east is W (X + [log, X|), we can compute
the tiled area of the entire square macrotile to be

A =16(XTlogy X+ Y?) +2W (X + [log, X]) + WH

It’s important to note that there’s a bit of an awkward dependency here; the width W depends on the number
of tile types to be encoded by the Quine, and in order to change the value of X or Y, the number of tile types
to be encoded must change. In other words, increasing X or Y will result in an increase to W as well. In order
to handle this, we may divide our overall tileset into two parts, one which has only those tiles that encode the
values of X and Y which we will call T'x y and all of the other tiles including those for the Quine, IU simulation,
and square frame which we will call T¢;s.. Both X and Y are encoded as binary numbers so the size of Tx y is
simply [log, X] - [logs Y'|. We can make a simplification here by noting that ¥ will never be larger than half of
X and so it’s bit representation will be no longer than that of X. Therefore, we can safely say that the number
of tiles in Txy is O(logy X). Since |Teise| is simply a constant, the size of W is therefore ©(log, X - log, log, X).
The same holds for H. Combining these results, we find that the side length of the resulting macrotile square is

S =2(X + [logy, X|) + ©(log, X - log, log, X)
while the area occupied by tiles in the square macrotile will be
A =16(X[logy X]+Y?) + O(X -log, X - log, log, X)

9.4 Derivation of the resulting fractal dimension As shown in [19], for a DSSF with a generator G which
has a minimum bounding box that is square with side length s, we know that the (-dimension of the DSSF will
be
log, |G|
log, s

In our construction the Quine macrotile square acts as the generator for our DSSF, so the side length of the
bounding box s is just S while the number of tile locations occupied in the generator |G| = A. Consequently, the
¢-dimension of our resulting DSSF will be

log,(A)
logz(s)

Attempting to plug in the previously deduced values of A and S, we could find a messy expression for the
exact (-dimension given our values of X and Y and the total number of tile types in the tile set to be simulated.
Instead, we note that something interesting happens when the limit is taken as X grows to infinity. We show that
we can make the (-dimension converge to any desired value d € (1,2] by choosing Y so that it grows according
to X /2. This provides us with a means of choosing our ¢-dimension to an arbitrary precision: simply choose Y’
so that its size is proportional to X%/? and increase the value of X until your ¢-dimension is within the desired
tolerance of d.

To see this, assume that Y = X %2 and note that this means that the dominant factor in the limit of A will
be 16Y2 = 16X ¢ and the dominant factor in the limit of S will be 2X. Therefore

. logy(A)) _ . log, (16X %)
d
~ m 4+ log, (X%)

X—o00 \ 14 logy(X)

, 4+ dlogy(X)
= lim —
X—oo \ 1+ logy(X)

=d
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For a fixed X, the maximum difference ¢ between the target (-dimension d and the (-dimension of the
construction is therefore on the order
o (bt )

1+ logy(X)

<4+d10g2(X) —d—dlog2(X))
e=0
1+ logy(X)

=0 (i)

We therefore find that X = O(2%¢) and noting that X is just under (less a logarithmic term) half the side length
of the generator G, we find that the generator, likewise, has a side length of O(2%/°).

10 A Self-Describing Embedded Circuit for the Sierpinski Cacarpet

Our second fractal construction relies on the self-describing circuit technique of Section 7.

THEOREM 10.1. There is an evaluable circuit Co with domain K and with an empty input bus which is self-
describing. Moreover, C has only one gate without inputs.

The remainder of this section is the description of C. This circuit is built from two sets of messages: layer
1 messages in X7 and layer 2 messages in Yo, and three fractal structures: a wiring layer W : K°° — W, and
two function layers, F} operating on X1 and F5 operating on 3.
The wiring layer C,, : K> — W is the fixed point of a substitution r,, : W — WX starting from a seed
wiring $,,:
Cw(0) = 54
Cw(Z) = kw(Cuw| 7)) (2 mod K)
The definition of the function layers is a bit more indirect: there are two sets of labels Ly and Ly respectively,
with two rules k1 : W — L{( and ko : W X Ly — Lé(. The rule ko takes the form of a substitution.

Their fixpoints, starting from two seed labels s; and so define two tiling of K with labels of L; and Lo
respectively: A; and As. On layer 1, A; is defined for each position according to the wiring of its parent:

A1(2) = k1 (Cu([ 2 ) (= mod K)

On layer 2, Ay is defined for each position according to the wiring and label of its parent in a substitutive

| {Ag(ﬁ) = $9
A2(2) = k2(Cu([%]), C2(l %)) (2 mod K)

Finally, the actual gate functions are defined from two functions, instantiate; on layer 1 and instantiates on
layer 2, which define a function on ¥; (respectively ¥s) from four elements, two wirings and two labels in L,
(respectively Ls), one each for the gate and its parent. Together with the substitutions x;, they define a circuit
pi(w, 1) with domain K known as the layer-i meta-gate obtained by w and I:

w1 (w,l) : K — Gates(X2)

w1 (w, 1) : 2+ {wiring : k., (w)(2), func : instantiate; (w, I, ky, (w)(2), k1 (w)(2))}
pa(w,l) : K — Gates(Xs)

pa(w,l) : Z+— { wiring : £, (w)(2), func : instantiates (w, [, £y, (w)(2), k2 (w,1)(2)) }.

In this circuit, the wiring of each gate is given by &, (w), and its function is given by instantiating the label
given by x;. When iterating this process, a gate g appearing at position Z in some parent meta-gate u;(l, w), the
child meta-gate u;(g) associated with g is defined as p;(g- wiring, x;(I,w)). The functions instantiate; are each
injective in their last argument, ensuring this does not create any ambiguity.
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Figure 36: k1(ws,seed), the first iteration of x; on the seed gate. The wirings are given graphically; all gates
have the notmal label, except the s at (0,0) which has label seed. For the wiring with two inputs, the fat arrow
represents the input number 0; all output wires have number 0: w- output-num(d) = 0

Finally, these meta-gates beget the two layers of circuits C; and Cy by:

{01(6) = {Wiringi Sw, func : s;}
Ci(%) = i (Ci(| %)) (Z mod K)

—

By this definition, the wirings of Ci(Z) and Cs(Z) are the same —they are given by C,, so Cg : Z —
C1(2) ® Co(Z) defines a circuit with alphabet X; x X5 and domain K*°.

The next subsections are the description of C,,, followed by those of Cy, then C5, and finally the proof of
that Cp is self-describing.

10.1 The wiring layer The seed wiring s,, is represented on the left of Figure 36. On the right of the same
figure is its image ., (s,).

For any wiring w, x1(w) will only contain wirings with at most two inputs sides, and these input sides are
adjacent. Thus, all gates in (', have at most two input sides and they are adjacent. Hence, x,, only needs to be
defined on wirings with that property.

The definition of k,, is isotropic: k, commutes with a rotation of 7/2 and with reflections. This property
will be upheld simply by giving the definition of k., up to rotation and reflection.

Lastly, for each input wire in w there are two wires in the input bus of &, (w), and for each output wire in w
there are two wires in the output bus of x,,(w). The position of these wires are as follows, up to rotation:

input of w input 4 of Ky (w)
w- Inputs direction | position  direction i- Inputs
(0,2) w (W)
) Vo ley ow (5.17)
v 00w (5.7
) 01y W (5. W)
| s | 0o s (5.
(1,0) S (S, W)
output of g output 0 of Ky (g)
w-outwires(d) direction d | position direction d’  i-outwires(d')
(5,2) E w
) i 5.3) (5,W)
(5,0) E (S, W)
5 Folen ok (5,17)
(0,5) N (S, W)
(5 ) N olas N (5. W)
Thus, if w has inputs w-Inputs = (W), w-Outputs = {N,E,S}, outputs w-outwires(N) = Sw,
w-outwires(E) = sW and w-outwires(S) = N, then k,(w) has the corresponding input and output busses
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Figure 37: Location of the input wires in x1(g) according to the input sides of w = wiring g. The output wires
mirror the input sides of the neighboring tiles.

and wires:

= < (—1,2) — (0,2)(with wire W) )

~ \(~1,3) = (0, 3)(with wire Ws))

(0,5) — (0, 6)(with wire Sw)

(1,5) — (0, 6)(with wire Sw)

G — (5,0) — (6,0)(with wire Ws)

(5,1) — (6,1)(with wire Ws)

(2,0) = (2, —1)(with wire N)
(3,0) — (3, —1)(with wire Nw))

Wirings with no inputs All wirings without input are sent by k,, to the array of wirings represented on
Figure 36. The seed wiring s,, is the only one to effectively appear when iterating k.,.

Wirings with one input A wiring with one input is cut according to Figure 38.

The wirings in k(g) depend on the input and outputs of w. Since w has only one input, it is sufficient, up
to rotation, to examine the case where w-Inputs = {W}. The black arrows of Figure 38 depict the case where
w- Outputs = @. For each d € w- Outputs, some extra wires are needed. The additional wires for an output in
the N direction depend on whether the directions appearing in w-outwires(N) are {S}, {S, E} or {S,W}. The
wires for the other output directions are derived from these by rotation. Figure 38 has one direction with each
case, showing the complete range of possibilities for the extra wires; they are represented in dotted lines on the
figure.

Wirings with two (adjacent) inputs The image of such a wiring w by &, is defined on Section 10.1,
which is rotated and reflected so that the S side of the figure is mapped to the 0 input of w, and the W side to
the 1 input of w.
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Figure 38: k1(w,() when w- Inputs = (). The wirings are given graphically; on layer 1, all gates have the notmal
label (black), except for the gate at (0,3) which has label input (red). Dotted segments are parts of the wiring

only if the corresponding element is in the outputs of w. For wirings with two inputs, the fat arrow represents
the first input. The { marks the potential position for label 22l on layer 2.

Figure 39: k1(w,l) when Inputsw = (S, W). The wirings are given graphically; all gates have the notmal label
except for the input gate at (0,0) which has label input. This configuration gets rotated and reflected according
to the inputs of the gate, so that the arrows on the outer ring form a path from the side with input 0 to the side
with input 1, “the long way around”. The "*’ marks the special position on layer 2, and the T marks the position
where label 02l may appear.
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LEMMA 10.1. For each gate w, ky(w) is the wiring of a normal circuit. Moreover, Cy, is the wiring of a normal,
closed circuit.

Proof. This follows from observation of the schemata describing each k., (w) and observing that for two wirings
w,w’, if an output side in direction d of w matches an input side in direction —d of w’, then the corresponding
sides of K (w) and K, (w’) also match.

Additionally, each iteration of k., on s, is without inputs, so C,, is closed. 0

10.2 Layer 1 The components of layer 1 are an alphabet 3, a finite set of labels L, a substitution
k1 @ W s L¥ and for each label [ € L;, and an instantiation function instantiate;. Layer 1 can then be
realized as described above into a circuit with the wirings of C,, and the functions given by instantiating the
fixpoint of k.

The set of labels is L1 = {s1, notmal, input}.

The elements of 31 are layer 1 messages.

DEFINITION 10.1. (LAYER 1 MESSAGE) A layer 1 message is a triple {pos = Z € K;, parent-wiring = w €
W, -parent =1 € L }.

The circuit C is going to be defined by iterating x,, and x; starting from s,, and s;, then instantiating the
labels.
Labels The label function x1 : W — LI assigns the label normal at all positions except:

. ﬁl(sw)(ﬁ) =5

e if w has at least one input, then k1(w)(2) = input for the position Z which receives the input wire 0 in
K (W).

The seed function The starting label is s1, it only ever appears at position (0,0) in £1(Sy, 51)-

Since s; has no inputs, its associated function f; = instantiate (s, %1, Sw,51) is a constant function with
value fs() = {pos: (0,0), parent-label : 51, parent-wiring : s, }.

Gate functions for layer 1 There are two types of functions for the gates output by x1(g) other than the
seed. They have a either an increment function incr[k, D] with k € {1,2} and D € {N, E,S,W} or a reparenting
function set-parent[k, D, w,c], with k € {1,2}, D € {N,E,S,W}, w a wiring and ¢ € C' a color. The versions
with k£ = 2 take two inputs but ignore the second one. The functions incr and set-parent are defined as follows:

incr[1, D](m) - parent = m - parent,
incr[l, D](m)-pos = posm+ D
set-parent[l, D, w, c|(m) - parent = (w,c)
set-parent[1l, D, w, c](m)-pos = m-pos+D
incr[2, D](m,m’) = incr[1, D](m)
set-parent[2, D, w, ¢|(m,m') = set-parent[l, D, w, c](m).

The function of each gate is fixed from its label and wiring, and those of its parent through instantiate; as
follows:
{instantiatel (wp, lp, w, normal) = incr(k, D]

instantiate; (wp, I, w, input) = set-parent[k, D, wy, l,],

where k is the number of inputs of w, and D is the direction of its first input.

Behavior and Self-Description of Layer 1 The circuit C'; obtained from ; is normal, by Lemma 10.1.
Let e = C1 : K® x {N,E,S,W} — X; be the evaluation function of Cy. That function e enjoys a simple
description, which reflects the fact that in C7, the different meta-gates do not actually communicate. On layer 2

however, there will be some communication between meta-gates, as described in the next section.
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LEMMA 10.2. Let w € W, 1 € Ly and a : p — p’ be an internal or outgoing arc in ky,(w). If w has no inputs,
assume | = 51.

For any input 7 of pi(w,l), let m = pi(w,l)(7,a) be the value of arc a on input 7. Then m-pos = p,
m- parent-wiring = w and m- parent-label = [.

Proof. By induction on the non-incoming arcs of the (acyclic) dependency graph D of K, (w).

If w is the seed wiring s,, then the root of D is also s; and its outputs satisfy ey(a)-pos = (0,0),
eq(a)- parent-wiring = s;- wiring and e, (a)- parent-label = s;.

Otherwise, k1 (w) has a unique position Z; with label input, corresponding to a gate in u (I, w) with function
set-parent(k, D, w,l], for some k and D. By definition of set-parent, its outputs satisfy eg(a)-pos = % ,
eq(a)- parent-wiring = w and e4(a)- parent-label = I.

In both cases, each other gate ¢’ at position Z of p;(l, w) has function incr[k, D], where k is the number of
inputs of ¢/, and D is the direction of its first input arc ¢ = Z — D 2z By induction, e4(i)-pos = z — D
and ey (i) - parent = (g-wiring,label(g)). By definition of incr[k, D], each of the output arcs o of ¢’ verify
eq(0)-pos = (Z— D) + D = 7 and e4(a)- parent-wiring = w and e, (a)- parent-label = [. d

Additionally, C; is “mostly self-describing”: the first input of a gate g is enough to recover g, except for the
value of w and ¢ in gates with a function of the form set-parent[k, D, w, c|.

LEMMA 10.3. For a position p € K, let € = Inputs Cy(p)- wiring be the input arcs of Ci(p); let d; be the
direction of e;.
There is a function dec-gate : ¥y x {N, E, S, W} — Gates(X1) U L such that for allp € K,

e if Cy(p)- func is incr[k, do], then dec-gate(Cy(eo), do) = Ci(p)
o if C1(p)- func s set-parent|k, dy, —, —| then dec—gate(a(eo), do) = L.

Proof. The function dec-gate is defined as follows: let m € ¥; be a local message, and d € {N, FE,S,W}. Let
p=m-pos, if p—d ¢ {0,...,5}2, then dec-gate(m,d) = L. Otherwise, dec-gate(m, d) is the gate at position p in
p1 (m- parent-wiring, m - parent).

By Lemma 10.2, dec-gate satisfies the lemma. 0

Moreover, when dec-gate(e(ep),dg) = L, g itself cannot be determined, but its label and wiring can, as well
as p1(g)-

COROLLARY 10.1. For a position p € K, let € = C1(p)- Inputs - wiring be the input arcs of C1(p); let d; be the
direction of e;,

e there is a function dec-gate,, : X1 x {N,E,S,W} — W such that for each position p € K,
dec-gate,, (C1(eg), dp) = C1(p)- wiring

e there is a function dec-gate; : ¥X; x {N,E, S, W} — W such that for each position p € K,
dec-gate; (Cy(eg),do) = A1(p)

Proof. For dec-gate,, and dec-gate;, it suffices to observe that whenever dec—gate(a(eo), dp) = L at some position
p, C1(p) has label input, and its wiring only depends on its position within its metagate. ]

10.3 Layer 2 A second layer is needed in order to get full self-description of the circuit on K°°. This layer
routes global information between the meta-gates so that the input gate of each meta-gate can be indentified by
its incoming global message. The construction needs to “tie the knot”, so it is not only needed to recover the
identity of the input gate on the layer 1, but also on layer 2 itself.

This layer is defined by a set Lo of labels, an alphabet X5, the label substitution ko and its instantiation
function. In contrast with layer 1, ko takes as input a wiring, as well as a label. This makes the definition of
As recursive. In contrast with layer 1, on layer 2, the two-step definition of gates using labels and the function
instantiate is actually needed because of a subtelty related to the tying of the knot. The functions of some gates
make use of ko. Thus k5 shall not directly manipulate the gates or their function, lest the definition of layer 2
becomes cyclical and possibly ill-founded.

The set of layer 2 labels is Ly = {s,1i,,1,,0£,02}.
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Layer 2 messages A message on layer 2 is an element of 3s; it is built from:
e m-parent-labely € Lo,
e m-global, itself consisting of:

— m-global-labely € L.

— m- global- ancestor-msg € ¥

These messages make Cy self-describing by completing the information available in layer 1 and used in
Lemma 10.3. A message ms output by a gate go in ko(p) identifies p through mgy- parent-labely if g2 is not the
input gate of k2(p), as in Lemma 10.3. The global part ms-global identifies some ancestor of go, on layer 1
through m- global- ancestor-msg and on layer 2 through m- global-labely. This global information will enable the
determination of the entry gate of each meta-gate, on both layers. From two messages m;, my € Y2, two messages
(m1,ma) = extract(m;, my) € 1 x g can be extracted by reading the local information from m;, and the global
information from my, as follows:

m1 = m;- global- ancestor-msg
ma- parent-labely = m;- global- labels
mq- global = my- global .

The converse operation, embedding, takes as input three messages, a payload (p1,p2) € (X1 x X3) and a
context ¢ € Yo, and yields two messages m; and my

my- parent-labely = mg- parent-label, = c- parent-label,
my- global- labely = po- parent-labels, .
my- global- ancestor-msg = p;

mg- global = py- global .
Extracting and embedding are dual operations, in the sense that

VCvplvav extract o embed(67p17p2) = (plva)'

The substitution x; Given a wiring w and a label [ € Lo, the substitution k4 yields a label for each position
in K;

e s, for the seed gate, i.e. for position (0,0) if w has no inputs;

e 0£ for the gate receiving the input number 0 of the meta-gate;

02 for the gate receiving the input number 1 of the meta-gate whenever [ = 0£;

when w has two inputs, there is a special position within the meta-gate where the value depends on [ as
follows:

— i2if I € {i2, 08},
— o if I =02

e otherwise, i, for gates with one input and i, for gates with two inputs.

The special position is marked on Figure 38 and Section 10.1 by a star.

The layer-2 seed gate The function f2 = instantiates (s, 52, Sw,52) of the seed gate is a constant function
with value f2() = { parent-labels : 5,, global : {labels : 5,, ancestor-msg : f1()}}. Recall that f!() is the message
output by the seed gate on layer 1.
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Gate functions for layer 2 The functions of the gates depend on their label and on the direction D of
their first input, as dictated by the function instantiate:

'8) =
i1):x—x
2

instantiate(D
(

instantiate( ) (2, y) = (2,y)
(
(

instantiate D i
D,i
instantiate(D, 0L) = decodey, [D] o incrg[D]

instantiate(D, d2l) = (m;, my) — decodea[D](incrg[D](my), mg),

where D is the direction of the first input of w,.

The gate with labels i1 or i2 are wires; their function is the identity function of arity 1 or 2 respectively.

Given m € Xy, the increment functions incrg[D] increments ancestor-msg global m- pos by the unit vector of
direction D.

The two decoding functions decode; and decodey are based on the same underlying function
decode : {N,E,S,W} x X1 x X3 — X; x Xy defined as follows: let m; € X;,mas € Xa, pose
Z = my-pos, z, = ma-global ancestor-msg-pos, a = my-global-ancestor-msg. Let [, be defined as
ko (a- parent-wiring, a- parent-label, mo- global- labels, p’) if z € K7, and 0£ otherwise. Then decode[D](mq,mz) is
the pair (mf,mb) with:

pos : zmod K
my = parent-wiring : dec-gate,,(a, D)
parent-label : dec-gate;(a, D)}
parent-label, P
global- labely : m- labels - global
my = parent-wiring : m-global- ancestor-msg- parent-wiring
global- ancestor-msg : parent-label :  m-global- ancestor-msg- parent-label
pos : zq mod K

For a direction D and a message mo € 3, take an arbitrary m; € X1 and let (m/}, m}) = decode[D](m1, ma);
the value of mf does not depend on mj, so decoder[D](mz) is defined to be the mj € X returned by
decode(my, msg) for any m;.

For a direction D and my, my € 3g, decode4[D](my, my) is defined as follows. Let (mq,msg) = extract(m;, mgy),
(m3, my) = decode[D](m1, mz). Then decode4[D](m;, m,) is the pair m;, m; with:

m;- parent-label, = m’g~ parent-labely = m;- parent-labely
m;- global- ancestor-msg = m/

m;- global-labely = mj- parent-labels

global mj = m/- global

The function decode4 is engineered in order to enjoy the following property, a kind of commutation between
decode and extract.

LEMMA 10.4. For any direction D € {N,E,S, W},
decode[D] o extract = extract o decode 4 [D]
Proof. By computation. 0

Properties of C'; The messages passing through the circuit Cs built above hold all the necessary information
for Cp to be self-describing: in other words, Cy carries all the information needed to determine the entry gate of
each meta-gate in C1, as well as the information needed to determine each of its gates.

The global - ancestor-msg part of the messages on input 0 each meta-gate simulate the gates of layer 1, as
long as each meta-gate simulating a gate with label input receives on input 1 the message of its parent meta-gate.
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LEMMA 10.5. let w € W with k inputs, ls € Lo, and M be the circuit ps(w,ls). Note that M has 2k inputs. Let
D be the direction of the first input of w.

Let 7 € ¥2, and let G be the output of M on input 7. Pose i, = ig-ancestor-msg - global and i, =
11- ancestor-msg - global.

Then, if g1 = dec-gate(iq, D) # L, then oy is the output of g1 on input i,; otherwise, if dec-gate(iq, D) = L,
then oy is the output of dec-gate,(ip, D)(iq- pos) on input i,.

Proof. By computation. 0
The rest of the global part of the messages allows Cs to simulate itself.

LEMMA 10.6. Let D € {N,E,S,W}, w € W with one input in direction D, lo € Ly. Let f = instantiate(D, ls)
and C' = pa(w,ls).

Let ¢ € ¥1,41 € X1,i2 € ¥o and (my,my) = embed(c,i1,72). Let (00,01) be the outputs of C on input
(mi,mg). Then extract(og,o01) = f(i2).

Proof. The proof proceeds by case on I, which can be either i, or 0£. If Is = 1i,, then f is the identity function,
and it suffices to follow the wirings to check the result.
If I; = 9L, then following the wirings reduces the desired equality to the definition of decoder[D].
a0

LEMMA 10.7. Let w € W with two inputs, lo € Lo. Let f = instantiate(lz) and C = pg(w,ls).
For k € {0,1}, let ¢* € ¥,ik € X1,ik € Sy and (mf,m,) = embed(c*, ik, ik). Let (03,09,04,01) be the

outputs of C on input (m{,mJ, my,m}). Then for k € {0,1} extract(of, of) is the k-th component of f(i3,i}).

Proof. The proof proceeds by case on lo. If I3 € {s,i2,02}, following the wirings in ko (w,l;,l2) confirms that the
lemma holds.
If I = 0L, the lemma follows from Lemma 10.4 by again following the wirings. O

Together, these properties entail a substitutive structure of the messages in C. Going up the hierarchy, the
message between two gates of C can be extracted from the messages between the corresponding meta-gates.

LEMMA 10.8. Let a = p — p' be a wire between two positions p,p’ of K> in direction D. Let a;,aq be the two
wires crossing the edges between pK and p'K in clockwise order looking in direction D (i.e., if D is E, a; is the
northernmost of the two; if D is S, the westernmost. .. ).

Let m = Cq(a), | = (I1,12) = Co(a) and g = (91,92) = Co(ay).

Then extract(la, g2) = m.

Proof. By induction on p, following the wires of Cpq. O

LEMMA 10.9. Let pe K. Let g1 = C1(p), g2 = Ca(P), 91 = Cu([ 1)), 95 = Ca(l &£ ])- Let g = 1 ® g2 = Ca(P),
and ¢ = g1 ® gh = CD(L%J). Let e be an output wire of g, and my X mg = Cg(e) its value in Cq.

Then my- parent-labely is the label of g, mq-parent-label is the label of ¢i, m1- parent-wiring is ¢'- wiring,
and my-pos is pmod K.

Proof. By the previous lemma, input 0 of each meta-gate pi(l1,w) ® po(la, w) encodes ly,l; and w. The gate
after that input has label 0£, so by definition of its function decodey,, its output satisfies the lemma. The other
gates in the meta-gate preserve the local part of the messages. ]

This local information is just what is needed to reconstruct each gate from its output, which is just short of
self-description.

COROLLARY 10.2. There are is a function dec—gate/ 12 X Mo = W x Ly X Ly x K such that for any position
p € K and any wire a : p — p' of Co,

dec-gate’ (Cri(a)) = (A1 (|p/K]), As(Lp/K]), Cu(p/ K ), p mod K).
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With a tiny bit of extra work, each gate g can be reconstructed from its input number 0, making Cy self-
descriptive.

THEOREM 10.2. The circuit Cr is self-descriptive.

Proof. Each gate g in position p can be reconstructed from its set of input directions and the message on its input
number 0.

If g has no inputs, then g = s1 ® s3.

Otherwise, let D be the direction of its first input wire, and m = (m,my) the message coming into its first
wire.

Let (w,l1,12,p") = dec-gate’(m). Note that p’ = (p— D) mod K. If p’ + D belongs to K, then | £ | = {%J,
so p belongs to the same meta-gate as its predecessor p — D, hence C(p) is p1(w,l1)(p’ + D) @ ua(w,l2)(p’ + D).

Otherwise, since p’ + D ¢ K, it must be the case that | &| = L%J + D: p and its predecessor p — D are

in neighboring meta-gates. Let a = L%J be the position of the parent gate. The position a mod k of a within its
meta-gate is the position where input 0 enters that meta-gate.

A close examination of the values of pq(w,l1) and ps(w,ls) for all w,ly,ls reveals that in each (non-seed)
meta-gate the label and wiring of the gate in the position where input 0 comes only depends on the input directions
of w. By Lemma 10.9, those directions are exactly those of ms- global- ancestor-msg- parent-wiring- outwires(D).
d

This concludes the proof of theorem 3.6. By theorem 3.3, this means that there is an aTAM system S which
strictly self-assembles K °°.

11 Admissible Generators for DSSF Strict Self-Assembly

One, two, infinity? We now want to characterize the generators G for which G*° is amenable to strict self-assembly.

11.1 Generalizing the Circuit Construction The circuit-based construction of Section 10 can be adaptated
to any self-similar discrete fractal within which the communication pattern used by C can be embedded. Whether
a particular fractal is amenable to hosting such a communication pattern depends on the ability of its generator
G to transport information to copies of itself around it.

DEFINITION 11.1. Let G be a finite subset of N2, the grid G¥ is the subset of 72 defined by:
G* ={peZpmod G e G}
The grid neighborhood graph G+ of G is the subgraph of G¥# induced by the distance 1 neighborhood of G:
Gt=GU{pecG#|F3dc {N,E,S,W},p+dcG}.

For a direction d € {N,E,S,W}, the d-port in Gt is Gt = {p € G#|p—d € G}.
For d,d" € {N,E,S, W}, the (d,d')-bandwidth of G is the number G[d <> d'| of vertex-disjoint paths from
Gt to G in GT.

In order to compare generators, the classical notions of subgraph and graph subdivision is useful, accounting
for marked vertices.

DEFINITION 11.2. (POINTED SUBGRAPH) Let G, H be two graph, each with marked vertices. The graph H is a
pointed subgraph of G if H is a subgraph of G in such a way that any marked vertex of H is mapped to a marked
vertex of G. The graph G may have extra marked vertices.

DEFINITION 11.3. (EDGE SUBDIVISION) Let G = (V, E) be a graph, with marked vertices (vg,...,vp_1) € VF.
The edge subdivision operation for an edge e = {u,v} € E is the deletion of e from G and the addition of a new
vertex w ¢ V and of the edges {u,w} and {w,v}.

This operation generates a new graph H, where the same vertices are marked as in G.

H =V Uufw}, (B\{u,v}) 0 {{u, w}, {w,v}})
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35 on

e e e Bl

Figure 40: A finite shape G, its grid neighborhood G+ and its grid graph G7#.

DEFINITION 11.4. (GRAPH SUBDIVISION) A graph with marked vertices which has been derived from G by a
sequence of edge subdivision operations is called a pointed subdivision of G.

DEFINITION 11.5. (SUBCONNECTOR) Let G, H be finite, connected shapes of N*, with (0,0) € GN H.
Then H is a subconnector of G, written H < G if Gt has a (pointed) subgraph which is a (pointed) subdivision
of HT.

The notion of subconnector is well-suited to the study of substitutions given the following properties.
REMARK 2. Let G, H, I be finite, connected shapes of N?, with G < H, then:

or(G) 2 or(H)
oc(I) 2ou(l)

LEMMA 3.1. Let G 2 (0,0) a finite, connected subgraph of N? such that for some finite k, K < G*. Then there
is a self-descriptive circuit with domain G°.

Proof. First, notice that k., can be completed to cover the case where w has two opposite input directions, as
represented on Figure 41 (modulo rotation and reflection).

Fix the vertices of G which represent the vertices of K™, the ones that sit in the middle of its edges, and
the ones which are pending leaves.

Then it is possible to define a substitution v, : W — W by using ,, to fix a subdivision of G, then adding
the extra vertices to 7, (w). This process may create vertices in 7, (w) with two opposite inputs, for which the
extra cases of Figure 41 are necessary.

The label substitutions x; and k9 can also be adaptated to G, defining 71 and ~y,. In 71, all vertices which
do not represent a vertex of K have label normal. For layer 2, each vertex of G representing a vertex of K keeps
its label, each new vertex gets a label i,.
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Figure 41: The value of k., (w) when w- Inputs = {E, W}. This case is not needed in Section 10, but it is necessary
to generalize k., to G when K7 is a subdivision of G*. No position needs to be provisionned for 92, since both
inputs must be in the same metagate.

Figure 42: The second iteration S of the Sierpinski Carpet (in the center) is a subconnector of K: ST contains a
subdivision of KT, in which the cells with a circle correspond to vertices of KT, and those with a bar are obtained
by dividing the edge of K the bar represents. Not all edges are subdivided: adjacent circles in GT are indeed
adjacent in K.
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Set ¢ = 3, except that pos takes values in G rather than K. Then X is ¥, except that ancestor-msg
takes values in X rather than 3.

Then a circuit Cg on ¢ x £§ can be defined from 7, 71 and v, like Cg. That circuit Cg has the same
properties as C and is also self-descriptive. When accounting for the local part of the messages, gates which are
upstream from all the K-vertices show the local message of the corresponding input meta-gate.

Thus Cg is self-descriptive. 0

The question is now which G are such that GT has a subdivision of K+ as a subgraph. This condition seems
constraining since K is a rather large graph with its 32 vertices. Yet, one can make any G larger by iterating the
substitution generated by G before trying to self-assemble G*°.

REMARK 3. Let G > (0,0) be a finite shape of N2. For any k > 0, G® = (G*)>.

By iterating o¢, it is quite easy to get an instance of K as a subconnector, as long as one starts with sufficient
vertical and horizontal bandwidth.

LEMMA 11.1. Let G > (0,0) be a finite shape of N2, If G[N <> S] > 2 and G[E — W] > 2, then K < G*

Proof. Let H = {0,1}%. If G[N > S] > 2 and G[E — W] > 2, then H < G: pick two disjoint North-South paths,
two disjoint East-West paths, their four intersections can act as the vertices of H.

By Remark 2, since H <X G, H? < G3 But H®is an 8 x 8 grid, so K < H3.

Hence, K < G3. 0

11.2 Limits to Strict Assembly of DSSFs in the ATAM model This characterization of generators for
which the associated fractal can be strictly self-assembled is tight, by a generalization of the impossibility result
of Hendricks et al. [25].

LEMMA 11.2. Let G 3 (0,0) a finite shape of N.
If for all k > 0, there is an x, such that there is only one y with (zx,y) € (GF)* and (zg,y + 1) € (GF)T,
then G cannot be strictly self-assembled in the aTAM model unless G = {0}.

Proof. Let w and h be the width and height of G. Assume that there is an aTAM G which self-assembles G at
temperature 7.

Let Cy be the set of all glues which appear on the eastern edge of position (z,y) for some value of y. Since
G assembles G, all the C} are non-empty, so let Coo = [,(U;» 5 Crr) be the set of glues appearing in infinitely
many Cf; Cs is also non-empty. Let Fj, C C), be the set of glues g such that there is a position Z'= (zy,y) and
a production IIj ; of G where:

o the eastern glue of I +(2) is ¢
e II; ; contains no tile right of x

Like Coo, Foo = (1, (Upr s Frr) is non-empty. The sets Cy and Fy are illustrated on Figure 43.

Now let ¢ be a glue of G, and s; be a (new) tile with ¢ on its eastern side, and e on all other sides. Let
G:lx > 1] be the set of productions of G, starting from the seed configuration with s; at 0 and attaching no tiles
at positions x < 1. Let u; = ming,eg,[>1) max{y|(z,y) € p} and d; = min,eg,[»>1) min{y|(z,y) € p}. These two
quantities are illustrated on Figure 44.

Since G>* C N2, it does not contain any infinite southward path. Therefore, for any k and t € Fy,
d; > —o0, otherwise from Il ; it would be possible to produce paths going arbitrarily far down, out of N2
Let doo = maxiep._ {di|t € G}, do is finite. On the other hand, us = max{u;|t € Fs} must be infinite. Indeed,
if it is finite, let s = Uy — dow + 1. Consider a maximal production IT* obtained by only placing tiles left of the
vertical line L* at z-coordinate zs. Starting from II*, the only attachable positions are isolated points on L*,
separated by a distance at least w®. From each of them, it is possible to grow an arm which reaches no higher
than s upwards, whence, as illustruted on Figure 45, the part right of L* of that production is contained within
a union of (e — doo)-width horizontal bands, so its domain cannot be G*°.
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To = T1 T2 z3

Figure 43: The set C}, is the set of all glues which attach across the vertical lines at coordinate xy. Ignoring any
tiles which are not visible in the picture, Co = Cy ={a-E,b-E,c-E}, Co = {a-E,b- E} and C3 = {c- E}. The
tiles marked with a 1 are the ones which appear in their column in some production without other tiles right of
the red line; the subset Fj, of C}, contains their east glues: , Fy = Fy = {a-E,b-E}, C3 = {a-E} and C5 = {c¢- E}

Figure 44: The definition of u; and d; given the two productions reachable from the glue ¢, without going left of
the seed.
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Figure 45: Faulty terminal productions which can be reached, left if some d; is infinite, right if all u; are finite:
ming(d;) = =1, up = 1, ug = 2.

For t such that u; = 400, all terminal productions on the right half-plane reach infinitely high. Thus, by
applying theorem 3.4 with increasing values of m, either one of these terminal productions contains a periodic
path going up, or there are productions P with arbitrarily large squares in their fill-in P®. In both cases, for each
k, there is a production Fy for which some k x k square is inaccessible from any point (0,y) with y > 0 without
crossing Fy, as illustrated on Figure 46.

For a large enough level of substitution, any glue ¢ for which u; is finite does not even grow one “meta-cell”
up. Let Fi = {g € Fx|ug = +00}, and s be such that max{uy|lg ¢ Fi} < h* and |doo| < ™.

Consider a vertical line L, at some position z between copies of G*' in G*°. Let P, be a maximal subproduction
of P which can be assembled without attaching any tile right of L,. In P, let Z, = (x,y) be the lowest position
on L, containing a tile T of F.

By the pigeonhole principle, there must be two vertical lines L,, and L,, between copies of G*' such that
Po(Z,) = Pyu(Zm). Let @ be the vector Z,, — Z,. By construction of P, and P,,, for any production P} obtained
from P,, there is a production P, obtained from P,, such that the part of P! above and to the right of Z, and
the part of P! above and to the right of Z,, are identically filled. Hence, there is a vector which preserves either
arbitrarily large cycles of G™ or its intersection with a quarter-plane, thus G must be trivial. a0

Still open is the case where in all the iterates (G*)*, there is a vertex which disconnects either the north and
south or the east and west, but no straight line which crosses (G*¥)* only once. A more precise variant of the
previous proof takes care of that case.

THEOREM 11.1. Let G 5 (0,0) a finite shape of N, and for k € N, G* = ¢£,({(0,0)}).
If supy, (G¥[N < S]) = 1 or sup,(GF[E < W]) = 1, then G cannot be strictly self-assembled in the a TAM
model unless G = N2,

Proof. Assume without loss of generality that sup(G*[E < W]) = 1.

The proof is the same as that of Lemma 11.2, except that instead of straight lines cutting the fractal only
once every h*, one needs to consider cuts which pass through the first occurence of each level of the east-west
bridges. These cuts are not necessarily straight, but each of them remains within a bounded vertical band, which
suffices for the remainder of the proof. ]

11.3 Deciding Bounded Bandwidth theorem 3.8 gives a dichotomy between generators for which the
associated fractal can be strictly self-assembled and those for which it cannot. There is a polynomial time
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Figure 46: The part of the production that sees the seed only through 2) contains cycles of G*° of arbitrary size.
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algorithm for determining which of Lemma 3.1 or theorem 3.8 applies.

THEOREM 11.2. There is a polynomial time algorithm which, on input G decides whether:

e there is a k such that GF[N < S] > 2 and G¥[E + W] > 2 and thus G™ can be strictly self-assembled in
the aTAM, or

o for all k, GF[N <+ S] < 2 and thus G™ cannot be strictly self-assembled in the aTAM, or
o for all k, GF[E <» W] < 2 and thus G cannot be strictly self-assembled in the a TAM.

Notice that the second and third case are not mutually exclusive.

Proof. Without loss of generality, assume G is connected.

First, use a max-flow algorithm to compute G[d < d'] for all directions d, d’. If both G[E «+ W] and
G[N + S] are 2 or more, then the first case applies.

Let D be a set of pairs of directions, v is a D-disconnector if v disconnects G4 from G+ for any (d,d") € D.
If G[E <» W] =1, then there is at least one { EW }-disconnector. For any D-disconnector, define Cause(v, D) as
the set of pair of directions (d,48") such that there are (d,d’) € D and a path from Gt? to Gt which enters v
from direction § and leaves it through direction ¢'.

Compute the disconnect causation graph A. It is a directed graph whose vertices are couples (v, D) where v
is a D-disconnector, and there is an arc from (v, D) to each vertex (v', Cause(v, D)). The causation graph A has
size at most 64|G| and the existence of each of its arcs can be tested in polynomial time.

The graph A contains a cycle reachable from (v, {EW}), if and only if for all k, G¥[E < W] < 2, likewise
for N and S. Indeed, for k > 0, a vertex v is a D-disconnector in G* if and only if:

e The vertex of |v/G*~!| of G corresponding to the copy of G*~! containing v is a D-disconnector, and

e the vertex (v mod G*~1) of G*~! corresponding to the position of v within that copy is a Cause(v, D)-
disconnector.

Hence, from A, it is possible to distinguish between the three cases. |

12 Open Questions

The tools we have introduced here —standard systems, quines, self-describing circuits— as well as our
characterization of the behavior of bounded-treewidth productions in the aTAM through theorem 3.4 have passed
the test of strict self-assembly of fractals, which has been an open question in self-assembly for more than a
decade.

We are curious to know what the landscape of fractal self-assembly is in 3D. In cellular automata, Tilings,
as well as in the aTAM, it is well-known that uncomputability can appear with the third dimension. While the
Tree-Pump Theorem certainly would work in 3D, as well as on any “reasonable grid”, in Z3, the periodic path
obtained from it does not isolate a large domain. Hence, the question of characterizing DSSFs which can be
strictly self-assembled in Z2 remains open.

The Tree Pump Theorem links bounded connected treewidth with having a periodic, and thus compuatble
behavior. This leads to the question of quantitative bounds: can an analogue of Complexity Theory be built on
treewidth for the aTAM? This also begs the question whether using connected treewidth is fundamental to this
pumping principle: are there bounded treewidth, aperiodic shapes which can be strictly self-assembled?
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