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A B S T R A C T

The decomposition of non-stationary signals is an important and challenging task in the field of signal time–
frequency analysis. In the recent two decades, many decomposition methods have been proposed, inspired by
the empirical mode decomposition method, first published by Huang et al. in 1998. However, they still have
some limitations. For example, they are generally prone to boundary and mode mixing effects and are not very
robust to noise. Inspired by the successful applications of deep learning, and given the lack in the literature
of works in which deep learning techniques are used directly to decompose non-stationary signals into simple
oscillatory components, we use the convolutional neural network, residual structure and nonlinear activation
function to compute in an innovative way the local average of the signal, and study a new non-stationary
signal decomposition method under the framework of deep learning. We discuss the training process of the
proposed model and study the convergence analysis of the learning algorithm. In the experiments, we evaluate
the performance of the proposed model from two points of view: the calculation of the local average and the
signal decomposition. Furthermore, we study the mode mixing, noise interference, and orthogonality properties
of the decomposed components produced by the proposed method, and compare it with the state-of-the-art
ones. All results show that the proposed model allows for better handling boundary effect, mode mixing effect,
robustness, and the orthogonality of the decomposed components than existing methods.

1. Introduction

With the development of technology, many real-life signals that
exhibit nonlinearity and non-stationarity, such as human speech, radar
systems, and seismic waves, can be accurately captured. It is well
known that decomposing and exploring the features of this kind of
signal is quite challenging due to their nonlinear and non-stationary
characteristics.

In the past two decades, many studies have emerged for processing
non-stationary signals. One of the most representative works is the
empirical mode decomposition (EMD) algorithm along with the Hilbert
spectrum analysis proposed by Huang et al. in 1998 [1]. Because EMD
is fully data-driven, and can adaptively decompose a signal into several
intrinsic mode functions (IMFs), it has already shown its usefulness in a
wide range of applications, including semantic recognition, alcoholism
identification [2], and stock trend prediction. Despite its remarkable
success, it still lacks mathematical foundations and is sensitive to noise
and sampling. This sparked many efforts to improve the EMD. The
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improvements share the same feature: a signal is decomposed into sev-
eral simpler components, and then a time–frequency analysis method
is applied to each component separately. These signal decomposition
methods can be mainly achieved in two ways: by iteration or by
optimization.

Methods based on iteration include many techniques, such as mov-
ing average, partial differential equation (PDE) and filter. For instance,
Smith presented a new iteration method, based on the local average,
to decompose the non-stationary signals into a set of functions [3].
Deléchelle et al. proposed a new approach that resolves one major
problem in the EMD, that is, the mean envelope detection of a signal, in
virtue of a parabolic PDE [4]. Hadji et al. used the differential calculus
on envelopes, which makes them prove that iterations of the sifting
process are well approximated by the resolution of PDE [5]. Hong et al.
introduced a novel sifting method based on the concept of the local
integral mean of a signal [6]. And Cicone et al. studied the method
based on iterative filtering (IF) to compute the local average, which
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is utilized to replace the mean of the upper and lower envelopes in
the sifting procedure of the EMD [7]. Tu et al. proposed the iterative
nonlinear chirp mode decomposition (INCMD) [8] under the frame-
work of the variational nonlinear chirp mode decomposition. By ex-
tending the related concepts such as extreme point and intrinsic mode
function to R2, G. Xu et al. extended the EMD algorithm to decompose
image signals [9].

On the other hand, there are methods based on optimization. Peng
et al. designed an adaptive local linear operator-based optimization
model to decompose a signal into several local narrow band sig-
nals [10]. Oberlin et al. proposed an optimization model in computing
the mean envelope to replace the original one in EMD [11]. Inspired
by the compressed sensing theory, Hou et al. studied a new adap-
tive data analysis method, which can be seen as a nonlinear version
of compressed sensing and provides a mathematical foundation of
the EMD method [12]. Flandrin et al. proposed a convex optimiza-
tion procedure in order to replace the sifting process in the EMD,
which follows the idea of texture-geometry decomposition with further
specific EMD features such as quasi-orthogonality and extrema-based
constraints [13,14]. Dragomiretskiy et al. put forward the variational
mode decomposition (VMD), whose goal is to decompose a signal into
a discrete number of modes, that have specific sparsity properties while
reproducing the input [15]. Rehman et al. generalized the VMD method
to multivariate or multichannel data [16]. And Zhou et al. presented a
new mathematical framework by finding the local average based on the
local variational optimization model [17].

In addition, there are some methods that cannot be classified into
the above two categories. For instance, Daubechies et al. proposed
the method, called synchrosqueezed wavelet transforms, by combining
the wavelet analysis and reallocation method [18]. Gille presented the
approach, called empirical wavelet transform (EWT), to build adaptive
wavelets [19], whose main idea is to extract the different modes by
designing an appropriate wavelet filter bank. Singh et al. studied the
adaptive Fourier decomposition method (FDM) based on the Fourier
theory, which decomposes any data into a small number of ‘‘Fourier
intrinsic band functions’’ [20,21]. And Wang et. extended the adaptive
FDM to the multi-channel case [22].

According to the works described above, we find that whether the
method is based on iterative or optimization, calculating the local
average of a given signal is very critical. For example, in EMD [1],
the mean of the upper and lower envelopes are used to measure the
local average of the signal; the local variational optimization model is
constructed to compute the local average in [17]; and in the iterative
filtering method [7], the low-pass filter is employed to find the local
average. Although there exist many studies on the characterization of
the local average, it is basically impossible to find a method suitable
for all signals from a practical point of view. This makes the existing
methods prone to several problems including boundary effect and mode
mixing. Fig. 1 shows an example of these two issues produced by the
EMD method. It is easy to observe that the boundary effect tends to
spread the errors from the end point to the inner region to interfere
with other components, and the mode mixing affects other components
due to the errors in one component. It is clearly important to eliminate,
or at least minimize the impact of these two effects. Discussing the local
average customized according to the type of signal, it not only provides
a new research perspective, but also is likely to become the trend in the
near future in signal processing for non-stationary data.

In recent years, thanks to the remarkable results obtained in fields
of research like image and natural language processing, the usage
and application of deep learning methods have spread widely in an
ample variety of research fields, like image processing [23] and natural
language processing [24]. These different types of models are studied
and proposed mainly because of the differences in the types of data
or some particularities of data, such as data scarcity [25]. In signal
processing, deep learning models have been used, so far, to achieve

various goals, such as: noise removal [26], forecasting [27,28], nonlin-
ear control system [29,30], and detection [31]. However, to the best
of our knowledge, not a single method has been proposed so far in
the literature, which allows to decompose a given non-stationary signal
into simple oscillatory components, like the IMFs, which is solely based
on deep learning techniques.

Deep learning allows studying local averages and non-stationary
signal decompositions of different types of signals. It is noted that the IF
method, which is a typical signal decomposition algorithm, adopts the
convolution (or filtering) operation to approximate the local average
of the signal. However, the convolutional kernel needs to be given
in advance, which makes IF not flexible. Inspired by the personal-
ized expression ability of deep learning and the local average method
adopted by IF, this paper applies 1-dimensional (1-D) convolutional
neural network (CNN) to improve the local average characterization
of IF under the framework of deep learning, and proposes a new deep-
learning-based signal decomposition method, named iterative residual
convolutional neural network (IRCNN). Compared to IF, deep learn-
ing makes it possible for the proposed IRCNN model to depict the
local average of non-stationary signals more flexibly, thus avoiding
boundary effects and mode mixing issues. Overall, the contributions
and limitations of the IRCNN model can be summarized as follows:

(i) To our knowledge, IRCNN is the first deep learning-based ap-
proach in the field of non-stationary signal decomposition. The
introduction of deep learning will add many unique and effec-
tive tools to deal with the non-stationary signal decomposition
problem, such as the nonlinear activation function, the residue
network structure, and the customized loss function.

(ii) Unlike the moving average method and the filter operation in the
iterative filtering method, the convolutional kernel weights that
appear in the proposed IRCNN model, are not fixed in advance,
but are learnt adaptively in the training phase according to the
inputs. This makes IRCNN more flexible and adaptive in finding
the local average and achieving the decomposition for a given
signal.

(iii) Several artificial datasets are constructed to verify the perfor-
mance IRCNN in terms of local average characterization, noise
interference, mode mixing, and orthogonality. Furthermore, we
compare IRCNN with the state-of-the-art methods. In addition, we
also use the solution of the Duffing and Lorenz equations, and the
real data including the length of day (LOD) and the mean relative
humidity (MRH) to evaluate the approximation ability of IRCNN
to the existing models.

(iv) Generally speaking, IRCNN takes a certain amount of time in
the training phase, which is a commonality of deep learning-
based models. However, once the model training is completed,
the computational efficiency in the prediction stage is relatively
fast, especially it can use the parallelization mechanism to predict
multiple signals at the same time, which is not available in most
existing methods.

(v) IRCNN is essentially a supervised deep learning model, so it
inherits some of the limitations of supervised models, such as,
in the training phase, each input signal needs to have a label
associated in advance.

The rest of the paper is organized as follows. We review the IF
method and provide its algorithm in Section 2.1. And the concept of
�-smooth function and its properties are given in Section 2.2, which are
used for proving the convergence of the proposed model. In Section 3,
the new local average method and the derived signal decomposition
method, collectively called the IRCNN, are proposed. Moreover, the
training process and convergence analysis of IRCNN are given in this
section. In Section 4, we study a series of examples to evaluate the
performance of IRCNN compared with the existing methods. Finally,
we give the conclusion in Section 5.
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Fig. 1. Graphic illustration of the boundary effect and mode mixing issue in two EMD decompositions.

2. IF and �-smooth function

2.1. IF

The iterative filtering (IF) [7] is a recurrent algorithm that decom-
poses a nonlinear and non-stationary signal into a number of IMFs.
The main idea of IF is the subtraction of local moving averages from
the signal iteratively, where the local moving averages are calculated
through convolutions with low-pass filters. Alg. 1 shows the detailed
steps, where the parameter ln, called the filter length, is important in
the IF method, and is determined by the information contained in the
signal itself; wn(�) represents the low-pass filter function.
Algorithm 1: Iterative filtering (IF)

Data: Given a signal x(t)
Result: IMF

1 while the number of extrema of x g 2 do
2 n = 0;
3 x

1
(t) = x(t);

4 while the stopping criterion is not satisfied do
5 compute the filter length ln and filter weight function

wn for xn;
6 xn+1(t) = xn(t) * î ln

*ln
xn(t + y)wn(y)dy;

7 n = n + 1;
8 end
9 IMF = IMF ‰ {xn};
10 x(t) = x(t) * xn(t);
11 end
12 IMF = IMF ‰ {x}.

2.2. �-Smooth function and some of its properties

We first introduce the concepts of L-Lipschitz continuous and �-
smooth for a function from [32].

Definition 2.1. A function f is said to be L-Lipschitz continuous if for
all x, y À X , Òf (x) * f (y)Ò f LÒx * yÒ, where X denotes the convex
domain of f , and L is called the Lipschitz constant.

Definition 2.2. A continuously differentiable function f is �-smooth
if the gradient (f is �-Lipschitz, that is if for all x, y À X , Ò(f (x) *
(f (y)Ò f �Òx * yÒ, where X is the convex domain of f .

Then, for a unconstraint optimization problem, if its objective func-
tion is �-smooth, we can prove that the sequence generated by the
gradient descent algorithm converges to a stationary point when the
learning rate is small enough. The details can be found in Theorem 2.1.

Theorem 2.1. Let f be a �-smooth function and f
<
= min f (x) > *ÿ.

Then the gradient descent algorithm with a constant learning rate � <
2

�
,

i.e., x(k+1) = x
(k)

* �(f (x
(k)
), converges to a stationary point, i.e., the set

{x : (f (x) = 0}.

Proof. According to the gradient descent algorithm, i,e.,

x
(k+1)

= x
(k)

* �(f (x
(k)
), (1)

as f is �-smooth, we have

f (x
(k+1)

)

(a)f f (x
(k)
) + (f (x

(k)
)(x

(k+1)
* x

(k)
) +

�

2
Òx(k+1) * x

(k)Ò2

(b)

= f (x
(k)
) * �Ò(f (x(k))Ò2 + ��

2

2
Ò(f (x(k))Ò2

= f (x
(k)
) * �(1 *

��

2
)Ò(f (x(k))Ò2,

where the inequality (a) follows from Lemma 3.4 in [32], and the
equality (b) is obtained from Eq. (1). Due to � < 2_�, it becomes

Ò(f (x(k))Ò2 f f (x
(k)
) * f (x

(k+1)
)

�(1 *
��

2
)

.

Next, we have
K…
k=0

Ò(f (x(k))Ò2 f 1

�(1 *
��

2
)

K…
k=0

(f (x
(k)
) * f (x

(k+1)
))

=
f (x

(0)
) * f (x

(K+1))

�(1 *
��

2
)

f f (x
(0)
) * f (x

<
)

�(1 *
��

2
)

,

where x
< denotes the global optimization point. Taking the limit as

K ô +ÿ, we have
≥+ÿ

k=0
Ò(f (x(k))Ò2 f +ÿ. Hence, limkô+ÿ

(f (x
(k)
) =

0 is obtained.

3. IRCNN inner loop block and IRCNN

3.1. IRCNN inner loop block

The main operation in IF is the computation of moving average,
which is essentially realized by the convolution operation, where the
filter length depends on the given signal, and the filter weights are
mainly given by some empirical functions selected artificially a priori.
Therefore, it is very natural to convert the convolution operation into
a 1-D CNN model, where both the kernel length and the kernel weights
can be learnt adaptively according to the input signals given in ad-
vance. Furthermore, some ingenious mechanisms in deep learning, such
as the nonlinear activation function, the residue learning [33], etc., can
be adopted to make it more flexible. The structure we design to mimic
the inner ‘‘while’’ loop of Alg. 1, is graphically depicted in Fig. 2. Since
it mainly contains the iterative mechanism, the convolutional layer and
the subtraction operation, we call it the iterative residual convolutional
neural network (IRCNN) inner loop block.
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Fig. 2. Graphic illustration of the IRCNN inner loop block.

Algorithm 2: IRCNN inner loop block
Data: X À RN

Result: the local average of X
1 Initialize i = 0 and X

(0)
= X;

2 while i < S do
3 The input X(i) goes through the first 1-D convolutional

layer, i.e., XC1
:= Conv1D(X

(i)
,W

(i)

1
, padd-

ing = T rue, activation = tanh);
4 Transfer XC1

to the second convolutional layer, i.e.,
XC2

:= Conv1D (XC1
, ÉW

(i)

2
, padding = T rue), where

ÉW
(i)

2
:= softmax(W

(i)

2
);

5 X
(i+1)

= X
(i)

*XC2
;

6 i = i + 1;
7 end
8 ÇY = X

(S) and X * ÇY are the IMF and the local average
respectively.

As shown in Fig. 2, the inner loop mainly consists of a judgment-
loop structure and a residue operation, and the judgment-loop structure
is formed of two convolutional layers and a residual operation. Suppose
X À RN (the vectors in this article are column vectors by default unless
otherwise specified.) denote the input, the output of the IRCNN inner
loop block, called ÇY À RN , is computed as the following Alg. 2. And
X * ÇY is the local average of the input signal obtained by the IRCNN
inner loop block.

Mathematically, the output of the IRCNN inner loop block can be
expressed as: ÇY = F (X,W), whereW denotes the undetermined weights
in the IRCNN inner loop block, and the function F represents the struc-
ture of IRCNN inner loop block, which is composed of the operators
including convolution, nonlinear activation and subtraction. The de-
tailed process of F can be formulated as: F (X,W) = f (X

(S*1)
,W(S*1)

),
where S represents the number of iteration in the IRCNN inner loop
block, W(S*1) is the undetermined weights in the (S * 1)-th iteration,
and the function f and X

(S*1) are defined as:
T

f (X
(i)
,W(i)

) = tanh(X
(i)

< W
(i)

1
) < ÉW

(i)

2
,

X
(i+1)

= X
(i)

* f (X
(i)
,W(i)

),

(2)

where X
(0)

= X, W(i) is the undetermined weights in the ith iteration
that it includes the weights, denoted as W (i)

1
À RK1 and W

(i)

2
À RK2 ,

ÉW
(i)

2
:= softmax(W

(i)

2
) =

<
exp(W

(i)

2 l
)

≥
k
exp(W

(i)

2 k
)

=K2

l=1

, < is the 1-D convolution

operation, and i = 0, 1,… ,S * 2.
It is worth pointing out that: (1) S, K

1
and K

2
are the hyper-

parameters of IRCNN inner loop block. Their values can vary in differ-
ent iterations, depending on the performance of the validation dataset

during training. (2) the roles of the two 1-D convolutional layers in
each judgment-loop are different. The role of the first convolutional
layer, which is configured with a non-linear activation function (we
select tanh in this work), is to enhance the nonlinear expression ability
of the method. Whereas, the purpose of the second convolutional layer
is to make the result more reasonable to describe the local average of
the signal. Therefore, the non-negativity and normalization restrictions
of its weights are added; and there is no nonlinear activation function
configured with it. The use of padding in the two layers is to ensure
that the length of the output is consistent with the input. (3) In the ex-
isting methods, it is difficult to overcome the problems like ‘‘boundary
effect’’ and ‘‘mode mixing effect’’, one of the main reasons is that they
generally lack locality, resulting local errors at any given point that will
easily propagate in the sifting process. In IRCNN, the weights of the
convolutional kernels are adaptive learnt according to the information
of each position of the training data, which makes IRCNN to have a
stronger locality than the existing methods.

3.2. IRCNN

After the IRCNN inner loop block for the identification of the local
average of a given signal is constructed, we can cascade a finite number
of IRCNN inner loop blocks together to derive the signal decomposition,
which is called IRCNN, and is shown in Fig. 3. According to it, an
input signal X À RN (also denoted as X

0
) can be decomposed into

M IMFs ÇY := { ÇYi}
M

m=1
(each ÇYi À RN ) and a residue XM À RN . In

the execution process, the value of M needs to be given in advance, its
value is generally taken to be the largest number of true IMFs contained
by the signal in the training dataset. The detailed steps of IRCNN are
listed in Alg. 3.

The output of IRCNN can be formulated as:
T

ÇYm = F (Xm*1,Wm),

Xm = Xm*1 *
ÇYm,

(3)

where m = 1, 2,… ,M , X
0
= X, F (Xm*1,Wm) is the mth IRCNN inner

loop block whose purpose is to extract an IMF from Xm*1, and Wm

denotes the undetermined weights of the mth IRCNN inner loop block.
All the generated IMFs are concatenated as the outputs of the IRCNN

model. The errors between the outputs ÇY, and the labels Y À RNùM

that are composed of the M true IMFs (if some signals do not have M

true IMFs, they are filled with zero vectors), are computed by the loss
function. For example, the loss function can be expressed as:

L( ÇY,Y) = Ò ÇY * YÒ2
F
, (4)

where the errors are measured by mean square error (MSE), and Ò �
ÒF denotes the Frobenius norm. In the IRCNN model equipped with
the loss function as in Eq. (4), the computational complexity of the
forward process of IRCNN is mainly attributed to the computation of
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Fig. 3. Graphic illustration of the IRCNN.

Algorithm 3: IRCNN
Data: X À RN , and the number of IMFs M
Result: the IMFs and residue of X

1 Initialize m = 1, X
0
= X;

2 while m f M do
3 Compute the m-th IMF and the local average for the input

Xm*1, denoted as ÇYm and Xm respectively, according to the
IRCNN inner loop block;

4 m = m + 1;
5 end
6 ÇY = { ÇYm}

M

m=1
and XM are the resulting IMFs and residue of

IRCNN.

the convolutional layer, which is O(N �K), where N and K denote the
length of the signal and the size of the convolutional filter, respectively.

The loss can be customized according to the characteristic of the
decomposition task. For example, if the 3rd IMF are smooth, the
quadratic total variation term, expressed as

QTV ( ÇY⌦1
) :=

…
mÀ⌦1

N*1…
t=1

( ÇY
(t+1),m * ÇYt,m)

2
,

can be added to the loss function, where ⌦
1
represents the set of

subscripts of those smooth components (here ⌦
1
= {3}), i.e.,

L( ÇY,Y) = Ò ÇY * YÒ2
F
+ ⌘QTV ( ÇY⌦1

), (5)

where ⌘ g 0 is a penalty parameter, ÇY is the dependent variable of the
function F (�, �), and its independent variables are X andW respectively.

Moreover, if the 2nd and 3rd IMFs are orthogonal, an orthogonal
constraint can be added to the loss function to ensure the orthogonality
of the resulting components, i.e.,

L( ÇY,Y) =
…

iÀ Ç⌦
c

2

Ò ÇYi * YiÒ22 +
…

(i,j)À⌦2

ÒWoij ÇYi * YiÒ22 + ÒWoij ÇYj * YjÒ22,

s.t. WoijWoij Ò = I,
(6)

where Woij À RNùN stands for the orthogonal matrix to be determined
by min

{W,Woij }
L( ÇY , Y ), ⌦

2
(here ⌦

2
= {(2, 3)}) denotes the subscript

pairs of those orthogonal components, Ç⌦
2
(here Ç⌦

2
= {2, 3}) represents

the set consisting of all subscripts that appear in ⌦
2
, and Ç⌦

c

2
=

{1, 2,… ,M} * Ç⌦
2
. In specific execution process, the orthogonal trans-

formationWoij of ÇYi and ÇYj can be regarded as adding a fully connected
layer after the outputs of ÇYi and ÇYj . The two fully connected layers
share weights, i.e., Woij , and satisfy orthogonality, i.e., WoijWoij Ò = I.

In this case, the result of any IMF whose subscript meeting i À Ç⌦
2
is

updated from ÇYi to Woij ÇYi, and the results of other components remain
unchanged.

Compared with IF, IRCNN also contains two loops. The outer loop
successively acquires M IMFs and one residue. And the purpose of the
inner loop, i.e., the IRCNN inner loop block, is mainly to compute
the local average by several iterations, and finally get the IMF and
local average of the current input signal. On the other hand, these two
methods have important differences, which can be summed up as:

(i) In the IF method, the filter length that is a key parameter, is deter-
mined only by the signal under decomposition. However, its filter
weights lack of adaptability, and they are basically determined
by the filter length. For the IRCNN approach, the kernel length
in each convolutional layer is adaptive, and can be selected by
hyper-parameter optimization. Moreover, its kernel weights are
data-driven, which makes IRCNN flexible in the characterization
of the local average.

(ii) In addition to more flexibly computing the local average of the
signal, the proposed IRCNN method has all the advantages of
deep learning, such as: the non-linear expression ability, the cus-
tomized loss function according to specific decomposition tasks,
etc., which are missing in the traditional signal decomposition
methods.

(iii) Although the proposed IRCNN method is developed based on the
IF method, its ambition is not to replace IF, or even to replace
any existing signal decomposition method. IRCNN is essentially
a supervised deep learning model, so it has the limitations of
the supervised learning model. Such as the ground truth of each
training sample needs to be assigned before the training phase.
Compared with other methods, the generalization to handling real
signals is a challenge for IRCNN in its current form.

3.3. Training process and convergence analysis of IRCNN

In the training process of IRCNN, the gradient-based back-
propagation method is used to learn the kernel weights that appear
in the convolutional layers by using the training data. Since when the
parameter ⌘ in Eq. (5) is equal to 0, it degenerates to the case of Eq. (4),
we only discuss the training processes and convergences of the models
when their loss functions are given in Eqs. (5) and (6), respectively.

We first discuss the situation of the IRCNN model equipped with
the loss function (5). For convenience, we consider that the output
of the model only produces one IMF, and the number of iteration is
also limited to 1, that is, M = 1 and S

1
= 1 in Fig. 3. Suppose that

(X
j
, Y

j
)
J

j=1
œ RN

ù RN is a given set of training samples, where J
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t
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R
j

l
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j
< W

1
)l ,
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j
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) ÉW
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=

h
n
l
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exp(W2 i
+W2 l

)

(
≥

k
exp(W2k

))
2
, if l ë i;

exp(W2 i
)
≥

këi exp(W2k
)

(
≥

k
exp(W2k
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2

, otherwise,
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j

C2t

)X
j

C1l

=

T
ÉW
2(l*t+‚K1_2„), if 1 f l * t + ‚K

1
_2„ f K

1
;

0, otherwise.

Box I.

denotes the number of samples. The processes and the loss function
of IRCNN are as follows:

h
n
l
nj

X
j

C1
= �(X

j
< W

1
),

X
j

C2
= X

j

C1
< ÉW

2
,

ÇY
j
= X

j
*X

j

C2
,

(7)

L( ÇY , Y ) =

J…
j=1

Ò ÇY
j
* Y

jÒ2
2
+ ⌘QTV ( ÇY

j
), (8)

where ÉW
2
= softmax(W

2
), � = tanh in our model, ⌘ is a non-negative

parameter, W
1
À RK1 and W

2
À RK2 are the undetermined convolution

filters.
According to the gradient descent method and the chain rule of

derivation, W
1
and W

2
are learnt following the back propagation

method, that is, W (n+1)

h
= W

(n)

h
* �(Wh

L, (h = 1, 2), where � denotes
the learning rate, and please refer to Box I for the calculation of (Wh

L.

Next, we discuss the convergence of the training process of the
IRCNN model expressed in Eq. (7).

Theorem 3.1. For the IRCNN model defined in Eq. (7), the sequences
{W

(n)

1
} and {W

(n)

2
} are generated by the gradient descent algorithm. Then,

there exists a positive constant L independent of the input data, so that
when the learning rate � is less than L, {W (n)

1
} and {W

(n)

2
} converge to

their corresponding stationary points, i.e., the sets {W
1
: (W1

L = 0} and
{W

2
: (W2

L = 0}, respectively.

Proof. From the Lagrange’s mean value theorem, it is obvious to find
that the composition function composed by two functions, the �

1
- and

�
2
-smooth respectively, is still �-smooth (� f �

1
�
2
) under the condition

that it can be composited.
According to Eq. (3), the IRCNN model can be seen as a composition

function composed of a series of functions. Then, combining with Theo-
rem 2.1, we have that if the function of the i-layer in the IRCNN model
is �i-smooth, it can be proved that the weights sequences obtained by
the gradient descent method, converge under the condition that the
learning rate satisfies � f 2_⇧�i.

For the function ÉW
2
= softmax(W

2
) that is included in the IRCNN

model, the second partial derivative of each ÉW
2l
(l = 1,… ,K

2
) with

respect to its independent variable vector W
2
exists and satisfies:

ÛÛÛÛÛ
)
2 ÉW

2 l

)W
2 i
)W

2j

ÛÛÛÛÛ

=
exp(W

2 i
)

�≥
k
exp(W

2k
)
�3

h
n
n
l
n
nj

≥
këi exp(W2k

)≥
k
exp(W

2k
) * 2exp(W

2 i
), if l = i = j,

exp(W
2 l
)2exp(W

2 i
) *

≥
k
exp(W

2k
), if l ë i = j,

exp(W
2 i
+W

2 l
+W

2j
), if l ë i ë j,

f 2.

Hence, it states that each ÉW
2l
is �-smooth (and � f 2) according to the

Lagrange’s mean value theorem.
For the rest functions involved in IRCNN include quadratic function,

tanh, and 1-D convolution operation, these functions can be easily
proved to be �-smooth (� here is a general representation, and the
� value of each function may not be the same.) by judging that
their second derivative functions exist and bounded. Therefore, the
conclusion is proved.

For the case of the model with an orthogonal constraint in the
loss function L in Eq. (6), the orthogonal constraint is a new obstacle
compared to the previous model. However, in the field of optimization,
the study of optimization problems with orthogonal constraints has
become very common. And the gradient-based projection method can
be used to findWo with convergence guarantees [34,35]. Furthermore,
under the idea of back propagation used in updating the weights of
the neural networks, the solutions of problem (6) can be obtained
according to Alg. 4.
Algorithm 4: IRCNN with orthogonal constraint

1 i = 0, given the learning rates �
1
, �

2
, and initialize the Wo

,W;
2 while i < Max_Iter do
3 Wo } Wo

* �
1
(WoL;

4 Wo } PSp,q (Wo
), where PSp,q (Wo

) denotes the projection of
Wo

À Rpùq to the Stiefel manifold Sp,q , PSp,q (Wo
) = ÉU ÉVÒ,

and ÉU⌃ ÉVÒ is the reduced singular value decomposition of
Wo;

5 W } W * �
2
(WL according to the back propagation

method;
6 i } i + 1;
7 end

Since the convergence analysis of W calculated based on the gra-
dient descent method is consistent with Theorem 3.1, and that of Wo

calculated based on the gradient projection method has been discussed
in the literature [34,35], so the convergence of Alg. 4 can be obtained
intuitively.

Remark 1. Similar to the case with loss function in Eq. (5), we
assume that in the IRCNN model, there are only two IRCNN inner loop
blocks, i,e., M = 2 in Fig. 3. Furthermore, the IMFs obtained by the
two blocks satisfy orthogonality, i.e., ⌦

2
= {(1, 2)}, Ç⌦

2
= {1, 2} and

Ç⌦
c

2
= Á in Eq. (6). In this case, the IRCNN model can be reduced

to a simpler formula, which looks close to the expressions of some
orthogonal constraint algorithms, which reads:

min
W,Wo

ÒWo ÇY * YÒ2
F
, s.t. WoWoÒ

= I, (9)

where ÇY depends on W.
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4. Experiments

To evaluate the performance of the proposed IRCNN inner loop
block and IRCNN models, we test them against ten aspects, which are:
(1) Can IRCNN inner loop block be used to find the local average of the
non-stationary signal? (2) Is IRCNN inner loop block still effective on
noisy signal? (3) Can IRCNN be used to decompose the non-stationary
signals? (4) Can IRCNN be effective on noisy signals? (5) Can IRCNN
be effective on the signals composed of orthogonal mono-components?
(6) Can IRCNN be effective on solutions of differential equations? (7)
Is IRCNN capable of processing real signals? 8) Is IRCNN sensitive
to the hyper-parameters? (9) How does IRCNN perform in terms of
generalization? (10) How efficiently does IRCNN decompose signals?

In the experiments, we divide each of the constructed input data
into the training and validation datasets with ratio 7 : 3, where the
training dataset is used to learn the undetermined weights W, the
validation dataset is adopted to determine the hyper-parameters. For
the hyper-parameters in IRCNN, including the number of iterations S
per each IRCNN inner loop block, the sizes of convolutional kernels
K

1
, K

2
that occur in each iteration of the inner loop block, and the

numbers of neurons in the convolutional layers, Hyperopt1 is adopted
to select their values by using the validation data, which is a Python
library for serial and parallel optimization over awkward search spaces
for hyper-parameters.

Since the existing signal decomposition methods generally take a
long time to find a good combination of parameters for each signal,
the number of components generated varies, and many methods also
need to artificially find the components corresponding to the ground
truths from the results, these factors make it difficult to evaluate the
performance of the existing methods efficiently on the test set contain-
ing multiple signals. We will select some representative signals that are
not in both training and validation sets as test signals to evaluate the
decomposition performance of IRCNN.

Moreover, our proposed signal average method, i.e., the IRCNN
inner loop block, will be compared with the existing signal average
methods based on cubic spline envelopes (CSE) [1], optimization model
(OP), a segment power-function based envelopes (SPFE) [36] and
iterative filtering (IF) [7], respectively. For simplicity, we denote the
averages obtained from the CSE, OP, SPFE, and IF as CSA, OPA, SPFA,
and IF respectively. And the IRCNN2 method will be compared with the
state-of-the-art methods, including EMD, IF,3 VMD4[15], continuous
wavelet transform based synchrosqueezing (SYNSQ_CWT) [18], short
time Fourier transform based synchrosqueezing (SYNSQ_STFT5) [18],
INCMD6 [8], EWT7 [19], ESMD [37], CEEMD8[38], MEMD9 [39],
FDM10 [20], and its variant called DCT_GAS_FDM11 [21]. In addition, in
the experiments for verifying the robustness of noise interference, the
proposed IRCNN method is compared with the ensemble EMD (called

1 Github website of Hyperopt: https://github.com/hyperopt/hyperopt.
2 Code of IRCNN is available at https://github.com/zhoudafa08/RRCNN.
3 Code of IF: http://people.disim.univaq.it/~antonio.cicone/Software.html
4 Code of VMD: https://www.mathworks.com/help/wavelet/ref/vmd.html.
5 Codes of SYNSQ_CWT and SYNSQ_STFT: https://github.com/ebrevdo/

synchrosqueezing.
6 Code of INCMD: https://github.com/sheadan/IterativeNCMD.
7 Code of EWT: https://ww2.mathworks.cn/help/wavelet/ug/empirical-

wavelet-transform.html.
8 Code of CEEMD: https://rdrr.io/cran/hht/man/CEEMD.html.
9 Code of MEMD: https://it.mathworks.com/matlabcentral/fileexchange/

70566\protect\discretionary{\char\hyphenchar\font}{}{}multivariate\
protect\discretionary{\char\hyphenchar\font}{}{}signal\protect\
discretionary{\char\hyphenchar\font}{}{}denoisingtoolbox?s_tid=srchtitle.
10 Code of FDM: https://www.researchgate.net/publication/274570245_
Matlab_Code_Of_The_Fourier_Decomposition_Method_FDM.
11 Code of DCT_GAS_FDM: https://www.researchgate.net/publication/
326294577_MATLABCodeOfFDM_DCT_DFT_FIR_FSASJuly2018.

Table 1
Evaluation indices.
Metric MAE RMSE ⇢(c

1
, c

2
)

Expression 1

N

≥N

t=1
 ÇY

t
* Y

t


t
1

N

≥N

t=1
( ÇY

t
* Y

t
)2

Íc
1
,c
2
Î

ÒC
1
Ò
2
Òc

2
Ò
2

Table 2
Inputs and labels used in Section 4.1, where t À [0, 3].
x
1
(t) x

2
(t) Inputs Labels Notes

0.1kt
cos(3lt)

x
1
(t) + x

2
(t) x

2
(t)

k = 2, 3,… , 9
cos(3klt + t + cos(t))

0 cos(3lt)
l = 2, 4, 6, 8

cos(3klt + t + cos(t))

0.1k
sin(3klt)

x
1
(t) + x

2
(t) x

2
(t)

k = 1, 2,… , 10
sin(3klt + t

2
+ cos(t))

0 sin(3klt)
l = 2, 4,… , 28

sin(3klt + t
2
+ cos(t))

3 + 2 cos(0.5kt)
cos(0.5klt

2
)

x
1
(t)x

2
(t) x

1
(t)x

2
(t)

k = 2, 3,… , 6
cos(0.5lt

2
+ l cos(t))

1.0 cos(0.5klt
2
)

l = 4, 5,… , 9
cos(0.5lt

2
+ l cos(t))

EEMD12) model [40]; and it is compared with the M-LFBF13[13,14]
model to verify the orthogonality of the decomposed components. The
code of IRCNN is publicly available on Github https://github.com/
zhoudafa08/RRCNN.

The results are measured by the metrics listed in Table 1, where
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) are
used to measure the errors between the predicted results ÇY À RN

and the ground truth Y À RN , and ⇢(c
1
, c

2
) is used to evaluate the

orthogonality between the resulting components c
1
, c

2
À RN . All the

experiments are performed in Python 3.8.12, Matlab R2020b or R ver-
sion 4.3.3 on a Dell Precision 5820 tower with Intel(R) Xeon(R) W-2102
processor (2.90 GHz), 64G memory, and Ubuntu 18.04.3 operating
system.

4.1. Can IRCNN inner loop block be used to find the local average of the
non-stationary signal?

We first evaluate the performance of the proposed IRCNN inner loop
block in solving the local average of the non-stationary signal. Sev-
eral signals composed of the linear function and the mono-component
function, or just the mono-component function, are constructed as the
inputs, where the mono-component function can generally be expressed
as a(t) cos ✓(t), which meets a(t), ✓

®
(t) > 0 ≈t, and the changes in

time of a(t) and ✓
®
(t) are much slower than that of ✓(t). Ideally, the

average of the mono-component signal is zero. The input signals and
the corresponding labels we construct in this part are listed in Table 2.
It should be pointed out that the label here represents the first IMF of
the corresponding input signal, not the local average. The local average
can be computed by subtracting the label from the input signal.

After the IRCNN inner loop block is trained with the inputs in
Table 2, we select three mono-component signals with different instan-
taneous frequencies and instantaneous amplitudes, discussed in Exam-
ples 1–2, which are not included in the inputs, to test the performance
of the IRCNN inner loop block, respectively.

Example 1. x(t) = (3 + 2 cos(2t)) cos(2t
2
), t À [0, 3].

Example 2. x(t) = (2t + cos(2t
2
)) cos(12t + t

2
+ 2 cos(t)), t À [0, 3].

12 Code of EEMD: http://perso.ens-lyon.fr/patrick.flandrin/emd.html.
13 Code of M-LFBF: http://perso.ens-lyon.fr/nelly.pustelnik/.

https://github.com/hyperopt/hyperopt
https://github.com/zhoudafa08/RRCNN
http://people.disim.univaq.it/~antonio.cicone/Software.html
https://www.mathworks.com/help/wavelet/ref/vmd.html
https://github.com/ebrevdo/synchrosqueezing
https://github.com/ebrevdo/synchrosqueezing
https://github.com/sheadan/IterativeNCMD
https://ww2.mathworks.cn/help/wavelet/ug/empirical-wavelet-transform.html
https://ww2.mathworks.cn/help/wavelet/ug/empirical-wavelet-transform.html
https://rdrr.io/cran/hht/man/CEEMD.html
https://it.mathworks.com/matlabcentral/fileexchange/70566%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dmultivariate%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dsignal%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddenoisingtoolbox?s_tid=srchtitle
https://it.mathworks.com/matlabcentral/fileexchange/70566%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dmultivariate%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dsignal%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddenoisingtoolbox?s_tid=srchtitle
https://it.mathworks.com/matlabcentral/fileexchange/70566%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dmultivariate%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dsignal%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddenoisingtoolbox?s_tid=srchtitle
https://it.mathworks.com/matlabcentral/fileexchange/70566%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dmultivariate%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Dsignal%5Cprotect%2520%5Cdiscretionary%2520%7B%5Cchar%2520%5Chyphenchar%2520%5Cfont%2520%7D%7B%7D%7B%7Ddenoisingtoolbox?s_tid=srchtitle
https://www.researchgate.net/publication/274570245_Matlab_Code_Of_The_Fourier_Decomposition_Method_FDM
https://www.researchgate.net/publication/274570245_Matlab_Code_Of_The_Fourier_Decomposition_Method_FDM
https://www.researchgate.net/publication/326294577_MATLABCodeOfFDM_DCT_DFT_FIR_FSASJuly2018
https://www.researchgate.net/publication/326294577_MATLABCodeOfFDM_DCT_DFT_FIR_FSASJuly2018
https://github.com/zhoudafa08/RRCNN
https://github.com/zhoudafa08/RRCNN
https://github.com/zhoudafa08/RRCNN
http://perso.ens-lyon.fr/patrick.flandrin/emd.html
http://perso.ens-lyon.fr/nelly.pustelnik/
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Fig. 4. Moving averages by different methods of Examples 1–3.

Table 3
Metrics of the moving averages of the input in Example 1.
Metric CSA OPA SPFA IF IRCNN

MAE 0.4082 0.5296 0.6558 1.0977 0.1656
RMSE 0.6001 0.8763 0.8884 1.3829 0.2040

Table 4
Metrics of the moving averages of the input in Example 2.
Metric CSA OPA SPFA IF IRCNN

MAE 0.2544 0.2514 0.2943 0.2791 0.1442
RMSE 0.3267 0.3276 0.3662 0.3672 0.1718

Table 5
Metrics of the moving averages of the input in Example 3.
Metric CSA OPA SPFA IF IRCNN

MAE 0.2067 0.2448 0.3646 0.8624 0.1418
RMSE 0.4185 0.5427 0.6388 1.5833 0.1712

Example 3. x(t) = (3 + 2 cos(3t)) cos(5t
2
), t À [0, 3].

The moving averages of the signals in Examples 1–3 obtained from
different methods are shown in Fig. 4(a)–(c), respectively, and the
errors between the obtained moving averages and the true average
are listed in Tables 3–5, respectively. According to the results, we can
observe the following phenomena:

(i) The existing methods are prone to boundary effects, which can
be seen from the left boundaries of Fig. 4(a)–(c). However, the
IRCNN inner loop block method can avoid this problem to a
certain extent.

(ii) When the signal is in a situation where the amplitude changes
quickly and the frequency changes slowly, the IRCNN inner loop
block performs best among all models according to the left parts
of Fig. 4(a)–(c). When the amplitude change is reduced and the
frequency change is accelerated, its performance may even be
inferior to other models, which can be seen from the right half
of Fig. 4(c).

(iii) Even though the IRCNN inner loop block has some dazzling and
bleak performance compared with other local average methods,
it can be seen from Tables 3–5 that the MAE and RMSE of IRCNN
are significantly reduced compared to other models.

The reason for the phenomenon above can be attributed to:

(i) The averages obtained by the comparison methods are basically
determined by the local information of the signal, which makes
the results reasonable when the information is sufficient (e.g., the
part of the amplitude change is reduced and the frequency change
is accelerated); and the results differ greatly when the information
is insufficient (e.g., the part of the amplitude changes quickly and
the frequency changes slowly).

Table 6
Inputs disturbed by the Gaussian noise with the SNR set to 15dB, and the labels used
in Section 4.2, where t À [0, 3].
x
1
(t) x

2
(t) Inputs Labels Notes

0.1kt
cos(3lt)

x
1
(t) + x

2
(t) + "(t) x

2
(t)

k = 2, 3,… , 9
cos(3klt + t + cos(t))

0 cos(3lt)
l = 2, 4, 6, 8

cos(3klt + t + cos(t))

0.1k
sin(3klt)

x
1
(t) + x

2
(t) + "(t) x

2
(t)

k = 1, 2,… , 10
sin(3klt + t

2
+ cos(t))

0 sin(3klt)
l = 2, 4,… , 28

sin(3klt + t
2
+ cos(t))

3 + 2 cos(0.5kt)
cos(0.5klt

2
)

x
1
(t)x

2
(t) + "(t) x

1
(t)x

2
(t)

k = 2, 3,… , 6
cos(0.5lt

2
+ l cos(t))

1.0 cos(0.5klt
2
)

l = 4, 5,… , 9
cos(0.5lt

2
+ l cos(t))

Table 7
Metrics of the moving averages of the input in Example 4 obtained from different
methods.
Metric CSA OPA SPFA IF IRCNN

MAE 0.2023 0.1998 0.1936 0.2183 0.1190
RMSE 0.2529 0.2501 0.2420 0.2762 0.1500

(ii) The filter weights of each convolutional layer in the IRCNN are
shared, they are determined by all the information contained in
the whole signal. Therefore, the average obtained by the IRCNN
is relatively stable, and it is not easy to cause interference due to
the large difference in the changing of the signal amplitude and
frequency.

4.2. Is IRCNN inner loop block still effective on noisy signal?

In this part, we consider the robustness of the IRCNN inner loop
block model to noise based on the constructed inputs and labels in
Section 4.1. Specifically, each input signal is perturbed with additive
Gaussian noise with the signal-to-noise ratio (SNR) set to 15 dB, and the
corresponding label remains unchanged, as detailed in Table 6. Similar
to the section above, we select a noisy signal, which is essentially the
signal in Examples 2–3 with additive Gaussian noise, and is described
in Examples 4–5, to test the performance.

Example 4. x(t) = (2t+cos(2t
2
)) cos(20t+t

2
+2 cos(t))+"(t), where t À [0, 3]

and SNR = 15 dB.

Example 5. x(t) = (3 + 2 cos(3t)) cos(5t
2
) + "(t), where t À [0, 3] and

SNR = 15 dB.

The results of Examples 4–5 are shown in Fig. 5(a)–(b) and Ta-
bles 7–8. From the results, we can find that the IRCNN inner loop
block performs the most robust among all models for the signal with
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Fig. 5. Moving averages by different methods of Examples 4–5.

Table 8
Metrics of the moving averages of the input in Example 5.
Metric CSA OPA SPFA IF IRCNN

MAE 0.2141 0.2126 0.2004 0.2339 0.1290
RMSE 0.2676 0.2658 0.2520 0.2967 0.1623

additive Gaussian noise. Specifically, in Example 4, the IRCNN inner
loop block reduces the MAE and RMSE from 0.1936, 0.2420, for the
second the best method (i.e., SPFA), to 0.1190, 0.1500, respectively; and
in Example 5, the IRCNN inner loop block reduces the MAE and RMSE
from 0.2004, 0.2520, for the second the best method (i.e., SPFA), to
0.1290, 0.1623, respectively.

4.3. Can IRCNN be used to decompose the non-stationary signals?

To demonstrate the decomposition performance of IRCNN for non-
stationary signals, we only consider decomposing the signals consisting
of two components. The input signals in the part can be divided into
two categories: one is composed of a mono-component signal and a zero
signal, and the other is of two mono-components with close frequencies.
The former is to train IRCNN describe the zero local average of the
mono-component signal; and the latter is to enable IRCNN to decom-
pose signals with close frequencies, which is the main factor causing the
mode mixing effect. The inputs and labels are constructed as Dataset_1
and shown in Table 9. To challenge the proposed model, we hereby
choose the signal composed of two cosine signals with frequencies of
2.5 Hz and 3.4 Hz respectively, described in Example 6, that is more
prone to introduce the mode mixing effect in the existing methods.

Example 6. x(t) = cos(5⇡t) + cos(6.8⇡t), t À [0, 6].

In Example 6, the components predicted by the trained IRCNN
model are compared with those obtained from the state-of-the-art
methods in signal decomposition. The metrics of the errors between
the obtained components and the labels, measured by MAE and RMSE,
are shown in Table 10. In addition, to compare IRCNN and the existing
methods more intuitively, we select the top three methods with compre-
hensive performance from Table 10, i.e., IRCNN, EMD, and INCMD, and
plot their obtained components and the corresponding time–frequency–
energy (TFE) representations in Fig. 6(a), (b), respectively. It should
be noted that the identification of an optimal TFE representation is a
research topic on its own, and it is out of the scope of this work. Here,

we set as TFE representation the Fourier quadrature transforms that
was proposed in [21].

According to the results, we have the following conclusions:

(i) The mode mixing problem is indeed a big challenge for some of
the existing methods. For example, the maximum value of x(t)
is 2, but the MAEs of the components obtained by the CEEMD
and SYNSQ_STFT method are greater than 0.55, which basically
do not separate the cosine signals with frequencies of 2.5 Hz and
3.4 Hz from x(t).

(ii) Many methods achieve satisfactory decomposition for x(t). For
example, it can be seen from the left plots in the 2nd and 3rd
rows of Fig. 6(a) that the components obtained by the EMD,
INCMD, and IRCNN methods have relatively consistent oscillation
modes with the ground truths. This viewpoint can also be drawn
from Fig. 6(b), although there are some obvious fluctuations, the
TFE representations of the two components, obtained by EMD,
INCMD, and IRCNN methods, are basically separated just like the
those of the real components.

(iii) Nonetheless, a closer look at the right plots in the 2nd and 3rd
rows of Fig. 6(a) reveals the subtle advantage of the IRCNN model
at the boundaries. Due to the incompleteness of the waveform at
the boundary, many existing methods are deeply affected by it, as
are EMD and INCMD. However, the weights of the convolutional
kernels in the IRCNN model rely on the entire waveform of the
training data, containing the information at the endpoints and at
the internal points, which helps to reduce the boundary effect.

4.4. Can IRCNN be effective on noisy signals?

Similar to the IRCNN inner loop block, we verify the robustness of
IRCNN against additive Gaussian noise in this part. The constructed
inputs and labels form Dataset_2, which is listed in Table 11, where
the inputs are generated by introducing additive Gaussian noise with
the SNR set to 25 dB to the signals in Table 9. After the IRCNN model is
trained, we choose the signal consisting of two mono-components and
additive Gaussian noise with a SNR of 15 dB as the test data, which is
given in Example 7. Since the smaller SNR value, the greater the noise,
the noise of x(t) is larger than that in the training data.

Example 7. x(t) = cos(5⇡t) + sin(8⇡t + 2t
2
+ cos(t)) + "(t), t À [0, 6],

SNR=15 dB.



Pattern Recognition 155 (2024) 110670

10

F. Zhou et al.

Table 9
Dataset_1: Inputs and labels used in Section 4.3, where t À [0, 6].
x
1
(t) x

2
(t) Inputs Labels M (Number of IMFs) Notes

cos(k⇡t)
cos((k + 1.5)⇡t)

x
1
(t) + x

2
(t) [x

2
(t), x

1
(t)] 2 k = 5, 6,… , 14

cos((k + 1.5)⇡t + t
2
+ cos(t))

0 cos((k + 1.5)⇡t)

cos((k + 1.5)⇡t + t
2
+ cos(t))

cos(k⇡t)
cos(kl⇡t)

x
1
(t) + x

2
(t) [x

2
(t), x

1
(t)] 2

k = 5, 6,… , 14
cos(kl⇡t + t

2
+ cos(t))

0 cos(kl⇡t)
l = 2, 3,… , 19

cos(kl⇡t + t
2
+ cos(t))

Table 10
Metrics of the errors between the obtained components by different methods and the ground truth of Example 6.
Method c

1
c
2

Method c
1

c
2

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

EMD [1] 0.1049 0.2110 0.1132 0.2058 INCMD [8] 0.1144 0.1667 0.1160 0.1509
VMD [15] 0.2193 0.2479 0.2193 0.2479 SYNSQ_CWT [18] 0.2227 0.2496 0.2589 0.2965
EWT [19] 0.2145 0.2605 0.2145 0.2605 SYNSQ_STFT [18] 0.6620 0.7402 0.6778 0.7608
FDM [20] 0.2438 0.2947 0.2429 0.2893 DCT_GAS_FDM [21] 0.1608 0.2005 0.1605 0.2003
IF [7] 0.2253 0.2756 0.2060 0.2489 ESMD [37] 0.1317 0.1809 0.2075 0.2670
MEMD [39] 0.1503 0.2587 0.1707 0.2614 IRCNN 0.1013 0.1242 0.0331 0.0422
CEEMD [38] 0.5637 0.6410 0.5584 0.6265

Table 11
Dataset_2: Inputs disturbed by the Gaussian noise with the SNR set to 25dB, and the labels used in Section 4.4, where t À [0, 6].
x
1
(t) x

2
(t) Inputs Labels M (Number of IMFs) Notes

cos(k⇡t)
cos((k + 1.5)⇡t)

x
1
(t) + x

2
(t) + "(t) [x

2
(t), x

1
(t)] 2 k = 5, 6,… , 14

cos((k + 1.5)⇡t + t
2
+ cos(t))

0 cos((k + 1.5)⇡t)

cos((k + 1.5)⇡t + t
2
+ cos(t))

cos(k⇡t)
cos(kl⇡t)

x
1
(t) + x

2
(t) + "(t) [x

2
(t), x

1
(t)] 2

k = 5, 6,… , 14
cos(kl⇡t + t

2
+ cos(t))

0 cos(kl⇡t)
l = 2, 3,… , 19

cos(kl⇡t + t
2
+ cos(t))

The errors between the ground truths and the components obtained
by different methods, measured by MAE and RMSE, are reported in
Table 12. Furthermore, the components, errors, and TFE representa-
tions of the three best performing methods, i.e., FDM, DCT_GAS_FDM,
and IRCNN, are shown in Fig. 6(d), (e), respectively. According to the
results, we can find that IRCNN works for the signals with additive
Gaussian noise, although there is no overwhelming advantage, espe-
cially over FDM. Specifically, from the left plots in the 2nd-3rd rows
of Fig. 6(d), IRCNN basically separates the two mono-components, and
the resulting components are consistent with the ground truths in the
oscillation mode. Moreover, as shown in the right plots in the 2nd-3rd
rows of Fig. 6(d), the errors of IRCNN are relatively evenly dispersed
in the entire time period, while those of the FDM and DCT_GAS_FDM
methods are both small in the middle and large at the boundaries,
which is consistent with the observations in Section 4.3.

Since IRCNN is a method designed with the help of CNN in the time
domain, it can obtain an effect comparable to the existing methods
in the time domain. Due to the lack of a prior information of IRCNN
in the frequency domain, the effect of this method might be slightly
reduced from the time–frequency domain. According to the results in
Fig. 6(e), the TFE distributions of the two mono-components obtained
by the FDM, DCT_GAS_FDM, and IRCNN, are obviously spaced apart,
but the TFE distribution of the component c

1
obtained by IRCNN has a

much more severe jitter than the true component sin(8⇡t+2t
2
+cos(t)) in

the interval t À [2, 4]. However, from the TFE representations, we can
also observe that the IRCNN method is able to reduce boundary effect
compared to other methods.

We further investigate the decomposition robustness of the trained
IRCNN model in dealing with the signal in Example 7 for different
values of SNR, and also compare it with the decompositions produced
by other methods. All the results are listed in Table 13, the RMSEs

are also graphically shown in Fig. 7. From them, we can derive the
following conclusions:

(i) Although the two components obtained by IRCNN do not perform
best in all cases, the errors measured by both MAE and RMSE
of the second components are the smallest for the cases with
different SNRs, and the performance of the first component under
RMSE is basically in the top 4 among all models. Therefore,
IRCNN model has good robustness in general.

(ii) The IRCNN model is trained on the signals with additive Gaussian
noise with SNR of 25. When dealing with other noisy signals with
different SNRs, the errors measured by MAE and RMSE basically
increase as the SNR decreases (it means that the proportion
of noise increases). The other methods also mostly follow this
rule. For a few abnormal cases, we speculate that because these
methods rely heavily on some parameters, the values selected in
some experiments happen to be in their favor, while others they
are not.

4.5. Can IRCNN be effective on the signals composed of orthogonal mono-
components?

In this part, we test the proposed IRCNN model on the signal com-
posed of the orthogonal components. As discussed in Section 3.2, the
IRCNN model in this part should have been equipped with the loss func-
tion with an orthogonal constraint, we directly add an inner product
term to the loss function to control the orthogonality, i.e., � Íc1 ,c2Î

Òc1Ò2Òc2Ò2
,

where � denotes the positive penalty parameter, and c
1
and c

2
are two

components that are orthogonal. Then we train the model by the back
propagation method based on the loss function. Although there is no
guarantee of convergence in this case, it is simple, computationally
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Fig. 6. Results of Examples 6–8.

Table 12
Metrics of the errors between the results obtained by different methods and the ground truths of Example 7.
Method c

1
c
2

Method c
1

c
2

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

EMD [1] 0.1693 0.2961 0.2029 0.3485 INCMD [8] 0.2502 0.3724 0.2549 0.3704
VMD [15] 0.1440 0.2371 0.1363 0.2286 SYNSQ_CWT [18] 0.5817 0.6477 0.0915 0.1522
EWT [19] 0.1840 0.2945 0.1754 0.2884 SYNSQ_STFT [18] 0.4353 0.4992 0.2009 0.2463
FDM [20] 0.1039 0.1765 0.0857 0.1327 DCT_GAS_FDM [21] 0.1288 0.1801 0.0826 0.1252
IF [7] 0.1482 0.2267 0.1322 0.2143 EEMD [40] 0.1870 0.2308 0.1243 0.1925
ESMD [37] 0.2153 0.2989 0.2037 0.2786 MEMD [39] 0.3754 0.5680 0.3238 0.4869
CEEMD [38] 0.2024 0.2867 0.1757 0.2883 IRCNN 0.1556 0.1977 0.0805 0.1014

efficient, and basically meets the expectation of orthogonality from the
experimental results.

The Fourier basis is adopted for the construction of the inputs
of IRCNN because they are orthogonal. The constructed inputs and

labels constitutes Dataset_3, are given in Table 14. After the IRCNN is
trained, we use it to decompose the signal given in Example 8, which
is composed of two mono-components that are orthogonal and close in
frequency.
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Fig. 7. Graphic illustration of RMSE between the results by different methods and the true components for dealing with the signal in Example 7 by changing the value of SNR.

Table 13
Metrics of the errors (MAE, RMSE) of Example 7 by changing the value of SNR.

IMF Model SNR 25 20 15 10 5

c
1

EMD [1] (0.1544, 0.3184) (0.2111, 0.3783) (0.1693, 0.2961) (0.4273, 0.5368) (0.3683, 0.5354)
VMD [15] (0.1359, 0.2329) (0.1404, 0.2306) (0.1440, 0.2371) (0.1816, 0.2737) (0.2585, 0.3579)
EWT [19] (0.1888, 0.3343) (0.1888, 0.3343) (0.1840, 0.2945) (0.1690, 0.2623) (0.2353, 0.3319)
FDM [20] (0.1352, 0.1934) (0.1367, 0.1960) (0.1039, 0.1765) (0.1588, 0.2205) (0.1582, 0.2261)
IF [7] (0.2055, 0.3172) (0.0865, 0.1567) (0.1482, 0.2267) (0.1091, 0.1708) (0.1630, 0.2318)
ESMD [37] (0.3211, 0.4608) (0.3358, 0.5709) (0.2153, 0.2989) (0.2312, 0.3888) (0.2550, 0.3736)
CEEMD [38] (0.1368, 0.1930) (0.1476, 0.2033) (0.2024, 0.2867) (0.1745, 0.2480) (0.2858, 0.3930)
INCMD [8] (0.2502, 0.3723) (0.2501, 0.3726) (0.2502, 0.3724) (0.2520, 0.3724) (0.2617, 0.3780)
SYNSQ_CWT [18] (0.5852, 0.6514) (0.5865, 0.6526) (0.5817, 0.6477) (0.5856, 0.6518) (0.6461, 0.7276)
SYNSQ_STFT [18] (0.4442, 0.5539) (0.4067, 0.5176) (0.4353, 0.4922) (0.4839, 0.5923) (0.4955, 0.6084)
DCT_GAS_FDM [21] (0.1343, 0.1985) (0.1347, 0.1989) (0.1288, 0.1801) (0.1397, 0.2035) (0.1522, 0.2141)
EEMD [40] (0.1866, 0.2791) (0.1274, 0.1821) (0.1870, 0.2308) (0.2841, 0.3955) (0.2996, 0.4062)
MEMD [39] (0.2379, 0.4058) (0.3666, 0.6226) (0.3754, 0.5680) (0.3564, 0.4826) (0.3299, 0.4699)
IRCNN (0.1462, 0.1868) (0.1487, 0.1897) (0.1556, 0.1977) (0.1749, 0.2205) (0.2296, 0.2872)

c
2

EMD [1] (0.1862, 0.4150) (0.1995, 0.3943) (0.2029, 0.3485) (0.3276, 0.4589) (0.3009, 0.4117)
VMD [15] (0.1341, 0.2313) (0.1374, 0.2334) (0.1363, 0.2286) (0.1690, 0.2623) (0.2353, 0.3319)
EWT [19] (0.1801, 0.3246) (0.1818, 0.3247) (0.1754, 0.2884) (0.1955, 0.3302) (0.2111, 0.3338)
FDM [20] (0.1353, 0.1909) (0.1356, 0.1914) (0.0857, 0.1327) (0.1388, 0.1957) (0.1478, 0.2040)
IF [7] (0.1881, 0.2104) (0.0836, 0.1439) (0.1322, 0.2143) (0.0908, 0.1445) (0.1289, 0.1901)
ESMD [37] (0.4478, 0.6566) (0.2354, 0.4345) (0.2037, 0.2786) (0.2062, 0.3482) (0.3172, 0.4656)
CEEMD [38] (0.1085, 0.1912) (0.1041, 0.1385) (0.1757, 0.2683) (0.2144, 0.3578) (0.3499, 0.5132)
INCMD [8] (0.2546, 0.3723) (0.2545, 0.3715) (0.2549, 0.3704) (0.2567, 0.3692) (0.2630, 0.3696)
SYNSQ_CWT [18] (0.1157, 0.1752) (0.1155, 0.1750) (0.0915, 0.1522) (0.1171, 0.1766) (0.1218, 0.1820)
SYNSQ_STFT [18] (0.3651, 0.4381) (0.3641, 0.4369) (0.2009, 0.2463) (0.3597, 0.4314) (0.3549, 0.4256)
DCT_GAS_FDM [21] (0.1210, 0.1821) (0.1219, 0.1821) (0.0826, 0.1252) (0.1276, 0.1833) (0.1367, 0.1873)
EEMD [40] (0.1125, 0.2791) (0.1274, 0.1821) (0.1243, 0.1925) (0.2841, 0.3955) (0.2996, 0.4062)
MEMD [39] (0.2981, 0.5526) (0.3017, 0.4519) (0.3238, 0.4869) (0.3473, 0.4846) (0.2749, 0.4062)
IRCNN (0.0799, 0.1002) (0.0802, 0.1008) (0.0805, 0.1014) (0.0795, 0.1008) (0.0731, 0.0962)

Table 14
Dataset_3: Inputs and labels used in Section 4.5, where t À [0, 2⇡].
x
1
(t) x

2
(t) Inputs Labels M (Number of IMFs) Notes

cos kt sin(k + l)t x
1
(t) + x

2
(t) [x

2
(t), x

1
(t)] 2 k = 6, 7, 8, 9

l = 3, 5,… , 33

Example 8. x(t) = cos(7t) + sin(9t), t À [0, 2⇡].

The orthogonality and the errors between the resulting components
and the corresponding ground truths are reported in Table 15. Accord-
ing to the results, the EWT and DCT_GAS_FDM methods perform best in
terms of orthogonality, which is attributed to the fact that the former is
based on the wavelet transform and the latter is based on the discrete
cosine transform, both of which have strong orthogonal constraint on
the decomposition results. For IRCNN, its orthogonality is promoted
by minimizing the loss function. Therefore, on one hand, the results of
IRCNN tend to find a balance in each item of the loss function. On

the other hand, the limited iterative process cannot ensure that the
results are completely converges to the true solution. Combined with
orthogonality and error metrics, the overall performance of the IRCNN
model is still satisfactory. Specifically, it is not the best in terms of
orthogonality, but it is also very close to orthogonality, outperforming
the other models except EWT and DCT_GAS_FDM; in terms of error, its
two components are also the closest to the true components.

Moreover, we select the top three methods in terms of the error
metrics from Table 15, that is, FDM, DCT_GAS_FDM, and IRCNN, and
plot their obtained components, errors, and TFE representations in
Fig. 6(c), (f), respectively. From the plots, we can draw a conclusion
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Table 15
Metrics of the orthogonality, and errors of the obtained components by different methods in Example 8.
Method ⇢(c

1
, c

2
) c

1
c
2

Method ⇢(c
1
, c

2
) c

1
c
2

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

EMD [1] 0.1141 0.1796 0.2776 0.2615 0.3581 INCMD [8] 0.1785 0.1846 0.2485 0.6205 0.7004
VMD [15] 0.4351 0.5682 0.6303 0.5682 0.6303 SYNSQ_CWT [18] 0.6268 0.7697 0.9299 0.4094 0.4823
EWT [19] 0.0000 0.6364 0.7070 0.6364 0.7070 SYNSQ_STFT [18] 0.1561 0.3225 0.3880 0.3202 0.3835
IF [7] 0.6896 0.2262 0.2776 0.2519 0.3092 M-LFBF [14] 0.9543 0.3858 0.4721 0.3857 0.4720
FDM [20] 0.0939 0.1229 0.2047 0.1244 0.2035 DCT_GAS_FDM [21] 0.0000 0.1222 0.1898 0.1211 0.1824
ESMD [37] 0.0127 0.6058 0.6768 0.6083 0.6811 MEMD [39] 0.2715 0.2781 0.3448 0.2932 0.3452
CEEMD [38] 0.0518 0.5923 0.6677 0.5901 0.6631 IRCNN 0.0595 0.1195 0.1759 0.0639 0.0889

Fig. 8. (a) Components of Üx(t) of Duffing equation with ↵ = *0.85, � = 1.05, � = 0.045,w = 1.3 by EMD and IRCNN. First row: the original signal. The 2nd-3rd rows, left: component
obtained by EMD (blue solid curve) and IRCNN (red dotted curve); right: the error between the obtained components by EMD and IRCNN. (b) Components of x(t) of Lorenz
equation with � = 10.5, r = 20.5, b = 3.5 by EMD and IRCNN. First row: the original signal. The 2nd-3rd rows, left: component obtained by EMD (blue solid curve) and IRCNN (red
dotted curve); right: the error between the obtained components by EMD and IRCNN. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

similar to Example 6, that is, the IRCNN model can obtain the perfor-
mance that is comparable to the state-of-the-art methods in the time
domain, especially at the boundary, which can weaken the impact of
incomplete waveforms at the boundary to a certain extent. However,
due to the lack of a priori information in the frequency domain in the
design of IRCNN, its advantage in terms of TFE distribution might be
reduced when compared with other methods especially in the middle
of the signal. However its performance are overall better than existing
methods at the boundaries, also in the time–frequency domain.

4.6. Can IRCNN be effective on solutions of differential equations?

To address this question, and following what has been done in the
seminal work by Huang et al. [1], we test IRCNN against the solutions
of a Duffing and Lorenz equations. The labels are necessary in the
training process of the IRCNN model, however, they are not known in
this instance. Since the EMD method works well for these two types of
signals, we decided to use the results of EMD as the labels to verify the
learning and generalization capabilities of the IRCNN model.

Example 9. We consider the following Duffing equation: áx+↵x+�x
3
=

� cos(!t). We focus our attention on the decomposition of Üx(t). We first
construct the inputs by solving the equation using the Euler method
with the parameters set to ↵ À [*1, 0), � À [0.8, 1.2], ! À [1.0, 1.4] with
step size 0.1, and � À [0.04, 0.06] with step size 0.005, respectively,
where t À [0, 300] and the initial conditions: {x(0) = 1, Üx(0) = 1}. And
then, the first two IMFs of each input obtained by the EMD are collected
as the labels. We refer to the inputs and their corresponding labels as
Dataset_4

After the IRCNN is trained, we apply it to decompose the signal Üx(t)

with ↵ = *0.85, � = 1.05, � = 0.045,w = 1.3, which was not included
in the training data. The results are depicted in Fig. 8 (a) . Both the
resulting components produced by IRCNN are very close to those of
EMD.

Example 10. The Lorenz equation is mathematically expressed as:
Üx = *�(x*y), Üy = rx*y*xz, Üz = *bz+xy. We take into account the de-
composition of x(t). The inputs are the x(t) achieved by the ode45 (code:
https://www.mathwo rks.com/help/matlab/ref/ode45.html) method
by changing the parameters � À [9, 11] with step size 0.2, r À [19, 21]

with step size 0.2, and b À [2, 5] with step size 1, where t À [0, 50]

and initial conditions: {x(0) = *10, y(0) = 0, z(0) = 0}. Similarly to
Example 9, we treat the first two IMFs of each input produced by
the EMD as the labels. We call the inputs and labels Dataset_5. The
results for signal x(t) with parameters set to � = 10.5, r = 20.5, b = 3.5,
predicted by the trained IRCNN model are shown in Fig. 8 (b). The
results show that the IRCNN has good learning and generalization
capabilities for the solution to Lorenz equation, and can basically
achieve the performance of EMD.

4.7. Is IRCNN capable of processing real signals?

We hereby employ the IRCNN model to process the real data,
i.e., the length of day (LOD, data source: http://hpiers.obspm.fr/eoppc/
eop/eopc04/eopc04.62-now, start date: Jan. 1,1962, end date: May 24,
2022), and the daily mean relative humidity (MRH, data source: https:/
/data.gov.hk/en-data/dataset/hk-hko-rss-daily-mean-relative-humidity
, start date: June 1, 1997, end date: Feb. 29, 2024) monitored at Hong
Kong International Airport.

To generate the signals from LOD data for use as the inputs to
train the IRCNN model, we first split the LOD into a series of length
720 (about two years) segments with a stride of 180 (about half year).
And then, similar to the situation in which we were dealing with the
solutions of differential equations, the main challenge in training the
IRCNN model on real signals is the ground truth calibration. We use the
EWT method to produce the labels for each segment, because it can pro-
duce an artificially pre-set number of components. For another IRCNN
model built for the MRH data, its inputs and labels are constructed the

https://www.mathwo
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Fig. 9. Comparisons of the components obtained by EWT and IRCNN for LOD and MRH signals. (a-b) Top panel: the original LOD signals. The 2nd-6st panels: the obtained
components by EWT (blue solid curve) and IRCNN (red dotted curve). (c-d) Top panel: the original MRH signals. The 2nd-4st panels: three components with seasonal oscillations
by EWT (blue solid curve) and IRCNN (red dotted curve). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

same way as that for the LOD data. Compared with the LOD signal, for
each MRH signal, the decomposition results by EWT contain some high
frequency oscillations that can be interpreted as random perturbations,
so we only retain the last three seasonal oscillation components as the
labels here. The inputs and labels of LOD and MRH are referred to
Dataset_6 and Dataset_7, respectively.

Example 11. After the IRCNN model for LOD is trained on Dataset_6,
we apply it to the signal, which is the LOD data ranging from Dec. 12,
2018 to Nov. 30, 2020, and is excluded in the training dataset.

Example 12. We also apply the trained IRCNN model on Dataset_6 to
another signal, which is the LOD data ranging from Dec. 7, 2019 to
Nov. 25, 2021, and is also excluded in the training dataset.

Example 13. We first apply the IRCNN model trained on Dataset_7 to
decompose the MRH signal ranging from April 12, 2018 to April 1,
2020, which is excluded in the training dataset.

Example 14. We further employ the trained IRCNN model to decom-
pose another MRH signal ranging from Oct. 4, 2019 to Sep. 23, 2021,
which is also excluded in the training dataset.

The components obtained from EWT and IRCNN for the signals in
Examples 11–12, and three components with seasonal oscillations by
EWT and IRCNN for the signals in Examples 13–14 are depicted in
Fig. 9. In general, the plots prove that IRCNN can approximate EWT
well.

4.8. Is IRCNN sensitive to the hyper-parameters?

This work selects the values of the hyper-parameters in IRCNN
based on the performance on the validation set. To further explore
the effect of the hyper-parameters in IRCNN on signal decomposition
performance, we build different IRCNN models by changing the values
of S (the number of recursion in the IRCNN inner loop block), K

1
(the

kernel size of the first convolutional layer in the IRCNN inner loop
block) and K

2
(the kernel size of the second convolutional layer in the

IRCNN inner loop block), then train them on Dataset_1. To reduce the
complexity of analysis, we assume that all IRCNN inner loop blocks
have the same convolution kernel size.

The results measured by MAE and RMSE on the training and vali-
dation sets of Dataset_1 by setting S as 4, 8, 12, 16, 20 and K

1
, K

2
as

32, 48, 64, 80 obtained from IRCNN are given in Table 16 and Fig. 10.
According to them, we have the following findings:
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Table 16
Performance of IRCNN, measured by (MAE, RMSE), on the training and validation sets of Dataset_1 by setting different values of the
hyper-parameters S and K

1
, K

2
.

S
K

1
,K

2 32 48 64 80 Mean

Training

4 (0.0969, 0.1535) (0.0921, 0.1468) (0.0918, 0.1438) (0.0932, 0.1484) (0.0935, 0.1481)
8 (0.0740, 0.1256) (0.0730, 0.1259) (0.0682, 0.1190) (0.0737, 0.1246) (0.0722, 0.1238)
12 (0.0733, 0.1231) (0.0740, 0.1220) (0.0704, 0.1212) (0.0709, 0.1226) (0.0722, 0.1222)
16 (0.0673, 0.1203) (0.0675, 0.1199) (0.0686, 0.1218) (0.0696, 0.1208) (0.0683, 0.1207)
20 (0.0706, 0.1245) (0.0681, 0.1212) (0.0679, 0.1201) (0.0881, 0.1427) (0.0737, 0.1271)

Mean (0.0764,0.1294) (0.0749, 0.1272) (0.0734, 0.1252) (0.0791, 0.1318)

Validation

4 (0.0960, 0.1527) (0.0917, 0.1460) (0.0939, 0.1458) (0.0922, 0.1476) (0.0935, 0.1480)
8 (0.0782, 0.1335) (0.0795, 0.1364) (0.0775, 0.1329) (0.0828, 0.1380) (0.0795, 0.1352)
12 (0.0790, 0.1334) (0.0807, 0.1330) (0.0783, 0.1340) (0.0781, 0.1331) (0.0790, 0.1334)
16 (0.0747, 0.1319) (0.0750, 0.1314) (0.0763, 0.1339) (0.0780, 0.1346) (0.0760, 0.1330)
20 (0.0758, 0.1337) (0.0751, 0.1325) (0.0772, 0.1335) (0.0884, 0.1440) (0.0791, 0.1359)

Mean (0.0807, 0.1370) (0.0804, 0.1359) (0.0806, 0.1360) (0.0839, 0.1359)

Fig. 10. Graphically show the effect of changing the values of S and K
1
, K

2
on the

decomposition performance of IRCNN, where both the training set and the validation
set are derived from Dataset_1.

(i) The value of S has a relatively large influence on the decomposi-
tion performance, it states that IRCNN is sensitive to the number
of recursion in IRCNN inner loop block. Specifically, if the value
of S is too small, each IRCNN inner loop block cannot fully
extract the average of its processed signal, if S is too large, it
will also lead to poor decomposition due to excessive extraction.
For Dataset_1, 16 is the best value for S.

(ii) Compared with S, the performance of the proposed method is
not much influenced by the convolutional kernel sizes, i.e., K

1

and K
2
values. In particular, when the values of K

1
, K

2
are large,

it makes IRCNN adopt many parameters to extract the average
of the processed signal flexibly. When they take small values,
although the flexibility of IRCNN decreases with the reduction
of parameters, since each inner loop block contains multiple
convolutional layers, the receptive field can be increased to make
up for its shortcoming. For Dataset_1, IRCNN performs well with
K

1
, K

2
taking as 48 or 64.

4.9. How does IRCNN perform in terms of generalization?

Since the performance of traditional signal decomposition methods
generally depends on the parameters, the number of components ob-
tained by them cannot be determined in advance, and many methods
end up producing a bigger number of components compared to the
ground truth ones. This requires often a post processing of the decom-
position. In particular, some IMF components may contain purely noise

and some others may correspond to a single frequency ground truth
component that has been split into several IMFs. The comparison of
these decompositions with the ideal ground truth one often requires
manual handling. This makes the comparison of deep learn-based meth-
ods and classical signal processing decomposition methods performance
challenging, especially when we try to verify the generalization ability
of the trained model.

We plan to evaluate whether IRCNN is ‘‘overfitting’’ by comparing
the gap in decomposition performance between the training set and
the validation set. Generally speaking, if IRCNN is ‘‘overfitting’’, it will
seriously affect its generalization ability. For the IRCNN models trained
according to Dataset_1, Dataset_2, . . . , Dataset_7 in Sections 4.3–4.7,
respectively, their performance, measured by MAE and RMSE, on both
training and validation sets are given in Table 17, and the percentage
relative errors of MAE and RMSE on the training and test sets are
shown in the last column of Table 17. It can be seen from the results
that, except for Dataset_ 3 and Dataset_5, there is no obvious sign of
overfitting in the IRCNN models trained by the other datasets, and the
degree of overfitting in Dataset_5 is relatively slight.

4.10. How efficiently does IRCNN decompose signals?

Like other deep learning models, the IRCNN model is time-
consuming in the training phase. But once it is trained, it is efficient in
the test phase. Especially when processing multiple signals at the same
time, deep learning models do not process each signal individually, but
make predictions in parallel based on the size of the batch. This is, to
the best of our knowledge, a unique feature compared to any other
decomposition method available in the literature.

To compare the computational time of the proposed method with
other methods, we apply them to decompose the signal in Example 6,
and record the corresponding runtime for comparison. Moreover, we
compare the running time of these methods when decomposing mul-
tiple signals. In this case, we no longer construct new signals to be
decomposed, but just repeat the processing of the signal in Example 6,
which does not affect the comparison of running time.

We depict the running time of different methods when decomposing
different numbers of signals in Fig. 11. From it, we have the follow-
ing findings: When decomposing only one signal, the computational
efficiency of IRCNN ranks 6th out of the 14 methods. However, as
the number of signals increases to 10, the computational efficiency of
IRCNN begins to improve, and its ranking rises to 4th, surpassing the
IF and VMD methods; when the number increases to 100, its com-
putational efficiency ranks 2nd, beyond the EMD and DCT_GAS_FDM
methods. Although there is still a gap between IRCNN and the EWT
method that ranks 1st in computational efficiency, it can be seen that
as the number of signals increases, the gap between them shrinks
significantly.
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Table 17
Performance of IRCNN on the training and validation sets of different datasets.
Dataset Training (MAE, RMSE) Validation (MAE, RMSE) Percentage relative error

Dataset_1 (0.0522, 0.0919) (0.0403, 0.0705) (*22.8%, *23.3%)
Dataset_2 (0.1509, 0.2545) (0.1565, 0.2630) (3.7%, 3.3%)
Dataset_3 (0.0106, 0.0178) (0.0142, 0.0239) (35.8%, 34.3%)
Dataset_4 (0.0087, 0.0112) (0.0086, 0.0111) (*1.1%, *0.9%)
Dataset_5 (0.0234, 0.0627) (0.0265, 0.0729) (13.2%, 16.3%)
Dataset_6 (0.0944, 0.0681) (0.0900, 0.0675) (*4.7%, *0.9%)
Dataset_7 (0.0291, 0.0304) (0.0308, 0.0321) (5.8%, 5.6%)

Fig. 11. Comparison of computational time of different signal decomposition methods
when decomposing different numbers of signals.

5. Conclusion

In the paper, we use deep learning techniques to tackle the issue
of decomposing a non-stationary signal into oscillatory components.
Specifically, we first construct the IRCNN inner loop block for obtaining
the local average of a given signal, and then these blocks are cascaded
into a deeper network, called IRCNN, which is used to decompose a
given signal.

IRCNN is a supervised and deep-learning-based model, it has the
advantages of these two types of models. First, the convolutional kernel
weights of IRCNN are learnt according to the input signals, which
makes the proposed method more adaptive. Second, some common
tools in deep learning, like the residual structure and the nonlinear
activation function, can be added to increase the expressive ability
and flexibility of IRCNN. Third, IRCNN can be customized according
to the application. For example, when processing signals composed of
orthogonal components, an inner product term can be added to the
loss function to enhance the orthogonality of the derived components.
To verify the performance of the proposed model, we compare it with
other existing models from ten aspects. And the artificial and real data
are used in the experiments. All results show that IRCNN works better
in handling the boundaries, mode mixing effects and the orthogonality
of the decomposed components, and is more robust than the existing
methods.

However, IRCNN has the common limitations of supervised deep
learning models. Theoretically speaking, deep learning models gen-
erally have deficiencies such as immature mathematical theoretical
analysis and poor interpretability of models. From the technical point
of view, first, the labels must be given in advance in the training phase.
This makes it difficult for IRCNN to flexibly process real signals because
their labels are hard to obtain. Second, almost all structures in the IR-
CNN model are limited to the aggregation and extraction of information
in the signal time domain, and the frequency domain information is not
considered, which cannot be ignored in the time–frequency analysis
of non-stationary signals. In addition, in the field of non-stationary
signal decomposition, there is a lack of a publicly available dataset

to objectively evaluate the performance of decomposition methods so
far. Almost all of these methods are based on picking typical signals to
evaluate their effectiveness.

In the future, we will improve this work by working in the following
three directions. First, we will improve IRCNN by revising its net-
work to incorporate the time and frequency information of the signal.
Second, we will publish a dataset of orthogonal, noisy, and jumping
types of signals, as well as some signals from real-world applications,
to establish a set of data standards for the field of non-stationary
signal decomposition. Furthermore, given that the main limitation of
the IRCNN approach is that it requires other decomposition methods
to calibrate the ground truths before the training phase, we plan to
work in the future on the development of an unsupervised learning
method to produce a new technique with similar performance to the
IRCNN algorithm, but that does not require any training based on other
techniques.
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