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Abstract—In the expanding landscape of Al-enabled
robotics, robust gquantification of predictive uncertainties is of
great importance. Three-dimensional (3D) object detection, a
critical robotics operation, has seen significant advancements;
however, the majority of current works focus only on accuracy
and ignore uncertainty quantification. Addressing this gap, our
novel study integrates the principles of conformal inference (CI)
with information theoretic measures to perform lightweight,
Monte Carlo-free uncertainty estimation within a multimodal
framework. Through a multivariate Gaussian product of the
latent variables in a Variational Autoencoder (VAE), features
from RGEB camera and LiDAR sensor data are fused to improve
the prediction accuracy. Normalized mutual information (NMI)
is leveraged as a modulator for calibrating uncertainty bounds
derived from CI based on a weighted loss function. Our
simulation results show an inverse correlation between inher-
ent predictive uncertainty and NMI throughout the model’s
training. The framework demonstrates comparable or better
performance in KITTI 3D} object detection benchmarks to
similar methods that are not uncertainty-aware, making it
suitable for real-time edge robotics.

[. INTRODUCTION

The rapid development of artificial intelligence (Al) ca-
pabilities, as demonstrated with image recognition and large
language models (LLMs), has enabled its adoption across
various domains. However, concerns about its meliability
persist for safety-critical applications, including robotics.
Given that the accuracy of data-driven models cannot be
assured, it becomes essential not only to question whar if
the model is wrong?, but also to determine how wrong it
might be by assessing its predictive uncertainties. QQuan-
tifying uncertainty in deep learning has, therefore, gained
traction. Notably, data-driven models can suffer from two
main types of uncertainties: epistemic and aleatoric [1].
Epistemic uncertainty arises from inherent data variance
and can often be mitigated with additional training data.
Conversely, aleatoric uncertainty stems from random data
distortions, such as blurriness, occlusions, and overexposure
in images, and cannot be resolved merely by augmenting the
training data.

However, much of the current work has neglected con-
sidering platforms with time, cost, area, computing, and
power constraints. Consequently, those existing uncertainty
estimation methods, ofien reliant on distribution-based ap-
proximations, struggle under edge deployment due to their
need for iterative sampling. Therefore, uncovering true, sta-
tistically confident uncertainties in point (mean) predictions
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Fig. 1: Uncertainty-Aware Multimodal Inference at the Edge: In this
wm‘k we present a generalizable, multimodal conformal inference frame-
work for }rﬂmeighl uncertainty awareness and apply it to 3D object

detection. proposad methodology is deeply rooted in information and
statistical theory, allowing the framework to take full advantage of the
benefits of conformal prediction in guantifying uncertainty while under
considerable resource constraints.,

that are intuitive and visualizable under considerable resource
constraints remains challenging for critical edge robotics.

To tackle these challenges, we explore conformal inference
(CI) [2]-[4]. Rooted in information theory and probabilis-
tic prediction, CI has emerged as a prominent uncertainty
quantification method that is simple, generalizable, and scal-
able [5]. Unlike conventional statistical inference, which
depends on intimate knowledge of the data distribution for
uncertainty estimation and is vulnerable to modeling inac-
curacies, Cl produces reliable, uncertainty-aware prediction
intervals without distributional assumptions given a finite set
of training data. CI assesses the conformity of each incoming
data point to the existing dataset and formulates uncertainty
intervals based on a preset coverage rate. Importantly, CI is
compatible with any core model with an inherent uncertainty
notion, yielding both model-agnostic and statistically sound
estimations.

Despite these advantages, a key limitation of CI is its
tendency to provide overly cautious uncertainty estimates
that may prevent a prediction model from making meaning-
ful decisions. For example, overly conservative uncertainty
estimates in autonomous navigation can kead to suboptimal
path planning, such as taking longer routes than necessary.
While multimodal sensors have become prevalent in various
robotics tasks to enhance the robot’s perception and decision-
making capabilities, they present a unique opportunity for
CI to optimally calibrate the predicted uncertainty estimates
by exploiting mutual information (MI) of multimodal sensor
data streams. MI is an information-theoretic metric that mea-
sures the dependence between the marginal distributions of
two random variables through their joint distribution. In this
case, it can measure how much one sensor modality explains
the output and prediction from another while operating in
the same environment. Thus, leveraging MI to calibrate and
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tighten CI's predictive uncertainty bounds while maintaining
the guaranteed coverage rate is attractive.

Towards this goal, we consider 3D object detection a
driving application and present a systematic framework for
including MI in optimizing Cl-based uncertainty bounds. 3D
object detection is essential for many autonomous systems
to provide a semantic understanding of their environment
through identifying, localizing, and categorizing various ob-
jects. However, various propositions in our work are also
generalizable to other autonomy tasks. The framework is
overviewed in 1.

Our work makes the following key confributions:

« We introduce a 3D object detection framework that inte-
grates uncertainty-aware projections obtained through con-
formal prediction. Evaluated on the demanding 3D KITTI
vision benchmark suite [6], this framework surpasses state-
of-the-art models in inference runtime while achieving a
competitive accuracy. Given these attributes, our approach
is particularly suited for edge robotics platforms with
limited time and computational resources.

« We introduce a multitask loss function that can train a
model to simultaneously provide point predictions and
adaptive uncertainty confidence bounds that each take
the form of 3D bounding boxes. The uncertainty boxes
are demonstrated to enhance average precision and are
combined to be more visually intuitive. Furthermore, we
weight the loss function with an uncertainty-based distance
metric, averaged over every dimension of each output,
to influence the model to prioritize training samples that
introduce more uncertainty.

« Integrating conformal inference with information-theoretic
measures, specifically MI, we discuss a method to fuse
data from multimodal sensors using a multivariate Gaus-
sian product of latent variables in a variational autoencoder
{(VAE). The proposed VAE-based multimodal data fusion
captures salient features of each modality and enables us
to compute normalized mutual information (NMI). This,
in turn, allows us to optimally calibrate the uncertainty
bounds in a sample-adaptive manner.

In Sec. Il, we discuss the current art of 3D object de-
tection. In Sec. III, we present the proposed framework of
uncertainty-aware multimodal 3D object detection. Sec. IV
presents the simulation results and Sec. V concludes.

II. CURRENT ART ON 3D OBJECT DETECTION

In this study, we focus on 3D object detection as a
case study to demonsirate the efficacy of MI-based con-
formal feature fusion in achieving uncertainty awareness
in multimodal sensing, particularly at the edge. 3D object
detection is fundamental for existing and emerging robotic
platforms, such as robotaxis, to understand environments
comprehensively by detecting, localizing, and classifying
objects. While 2D object detection offers basic object lo-
calization and recognition, 3D detection further enriches
applications by adding depth and distance insights. This
necessitates a sophisticated perception system, integrating

diverse sensors like RGB cameras, LiDAR, and mmWave
radar, which mutually enhance their performance.

For deep learning-based 3D object detection, we specifi-
cally focus on RGB camera images and LiDAR. point cloud
data. Prior works have developed state-of-the-art 3D object
detection framework through early [7], [8], intermediate
[9]-[12], and late [13] information fusion of LiDAR and
camera sireams, as LIDAR featres are rightfully superior
to camera features in assessing depth for 3D tasks [14].
Early fusion improves data preprocessing and detection re-
sults, but often requires an additional network for initial
image data processing, which increases inference runtime.
Intermediate fusion offers deeper integration of multimodal
features, which enhances bounding box prediction accuracy,
but properly doing so remains an open problem due to the
considerable distinctions in feature information and view
points. Late fusion is more computationally efficient, but its
performance is limited due to the lack of capturing the deep
covariance between the modalities.

Notably, the above frameworks vary in their processing
of LiDAR as well, with three primary methods identified
as point-based [151[17], grid-based [18]-{20], and range-
based [21], [22] methods. Point-based methods involve direct
predictions based on downsampled points and extracted fea-
tures, which has influenced many subsequent state-of-the-art
works but makes it difficult to balance appropriate sampling
with efficiency. Grid-based methods rasterize point cloud
data into grid representations such as voxels (volumetric
pixels), pillars (vertically extended voxels), or bird's-eye
view (BEV) 2D feature maps, which can provide richer and
more organized 3D information, potentially leading to more
accurate predictions, but require more time and memory
to process. Range-based methods consist of processing 2D
range views (spherical projections of point clouds), which
inherently contain 3D distance as opposed to simple RGB
and can therefore be easily integrated with existing efficient
2D backbones but nonetheless suffer from common 2D
issues (e.g., occlusion and scale variation) that exacerbate
dleatoric uncertainty. Among these prior works, PointPil-
lars [19], introduced in 2018, remains the fastest inference
model on the 3D KITTI vision benchmark suite [6] with a
16 ms runtime. PointPillars is a LIDAR-only model that also
demonsirated comparable accuracy to other state-of-the-art
models published around the same time.

Most previous 3D object detection frameworks focus
primarily on accuracy; there are relatively few works that
have explored uncertainty quantification [23]-[28]. While
these works underscore the significance of uncertainty and
its potential to improve performance, their methodologies
largely hinge on Bayes' theorem, maximum likelihood, or
coarse statistics such as standard deviation. Such meth-
ods, deeply tied to data, model, and specific assumptions
{e.g., paussianity), can face numerical instability and might
not be optimal for resource-limited systems, such as edge
robotics. Addressing this critical need, in this paper, we
discuss an uncertainty-aware 3D object detection framework
comparable to PointPillars in speed and accuracy while
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Fig. = Model Architecture (Section 3): The network designed for this work ufilizes a variational autoencoder (VAE) featuring dual encoders for LIDAR
point cloud and RGBE camera image features. To extract the multimodal features, we rely on PointMet [15], YOLOv3s [29], and MobileNetV2 [30], keeping
the network modolar at a small expense of speed so that the featur extractors can be interchanged based on scene conditions. The information from the
data streams are fused through a multivariate Gaussian product of their artificial 4D latent variables to approximate a proper covariant joint distribution.
Mutual information between the multimodal features is computed using the joint mean and covariance, and a sample is extracted and concatenated with
2D bounding box proposals. Finally, a single decoder propagaies the fused data to output K mean 3D bounding boxes of size [8, 3] along with conformal
inference-based upper- and lower- bound uncertainty estimates. K represents any number of detected objects.

providing statistically rigorous and peneralizable uncertainty
estimations via conformal inference.

III. UNCERTAINTY-AWARE MULTIMODAL 3D OBIJECT
DETECTION BY CONFORMAL INFERENCE

This section provides an overview of the proposed
uncertainty-aware 3D object detection framework with RGB
camera and LiDAR sensors. The model architecture is shown
in Fig. 2 and consists of a variational autoencoder (VAE)
with parallel encoders for each sensor's extracted features
and a single decoder that propagates information fused latent
samples concatenated with 2D bounding box proposals to
produce 3D bounding boxes and uncertainty bounds. To
extract LIDAR features, the model relies on PointNet [15]. To
obtain 2D bounding box proposals and subsequently extract
camera features from cropped regions-of-interest (Rol), the
model uses YOLOv5s [29] and MobileNetV2 [30]. This
approach takes inspiration from PointFusion [9], as we opted
for poini-based LiDAR point cloud processing and intermedi-
ate LiDAR-camera fusion. These design choices were made
primarily in consideration of efficiency and providing a solid
information theoretic testbed for conformal inference.

A Feature Fusion by Multivariate Gaussian Product

To effectively merge features extracted from RGB camera
images and LiDAR point clouds, we adopt an approach
inspired by [31]. They showed that the univariate Gaussian
product of RGB and infrared image features optimally com-
bines information from both modalities, ensuring the network
remains resilient even when one data stream is suboptimal.
Leveraging the Variational Autoencoder’s (VAE) ability to
approximate Gaussian distributions through reparameteriza-
tion and Kullback-Leibler (KL) divergence of artificial latent
variables (e.p., mean and variance) [32], we extend this
statistical approach with a multivariate Gaussian product.
Shifting from univariate to multivariate variables requires
significant changes and optimizations.

Thus, our enhancement lies in operations on multivariate
mean and covariance, ensuring richer representations of
multimodal data. Instead of using the VAE's dual encoders
for camera and LiDAR data to output variance, we utilize

them to produce 4D Cholesky decompositions [33] of the
presumed covariance matrices for each encoded feature set.
A Cholesky decomposition (L) represents the square root
of a covariance matrix and ensures symmetry and positive
definiteness—two necessary criteria for subsequent matrix
operations. Moreover, it encapsulates off-diagonal relation-
ships of the latent variables, which often provide a truer
representation of the covariance matrix but are commonly
zeroed out in VAEs under the assumption of conditional
independence.

From the Cholesky decompositions, we derive symmeiric
4D covariance matrices for each set of encoded features
using the matrix product LLT = V. To fuse the feature
information, we utilize both latent means and covariances.
We refer to [34], which explains how to compute the mean
o and covariance V" of a joint Gaussian distribution, given by
equations in (1), from the product of n marginal distributions.
Importantly, the equations are generalizable, sugpesting that
our framework can, in principle, handle an arbitrary number
of sensor modalities.

T

piint = Vioine 3 _ V' (1a)
=1
" i
=2V (1b)

i=1

Additionally, since these matrix computations involve in-
version, we must address potential numerical instabilities
that can ruin the approximations and cause divergence.
To mitigate these concerns, we regularize the model with
identity covariance and perform an eigen decomposition,
denoted as QAQT = V, on the joint covariance matrix
whenever a Cholesky decomposition cannot be performed.
With the latter step, we can ensure positive definiteness and
avoidance of near-singularity by reconstructing the matrix
after we have set the non-positive eigenvalues to a small
positive constant (e.g., le-6). Finally, with the proper joint
mean and covariance, we can compute the mutual informa-
tion (see below) between camera and LiDAR features and
subsequently forward a sample from their fused distribution
to the decoder along with 2D bounding box proposals.
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B. Uncertainty Calibration by Mutual Information (MI)

Given the close relationship between conformal infer-
ence and information theory, we anticipate incorporating
MI should improve our uncertainty-aware framework. MI
quantifies the dependence between two random variables by
examining the relationship between their marginal distribu-
tions and their joint distribution [35]. Effectively, MI assesses
the uncertainty of one random variable in explaining the
information of another. Previous studies have demonstrated
that maximizing MI between the input feature space and
latent space enhances the model's ufilization of the latent
representations [36], [37].

In this study, we utilize MI as a criterion for calibrating
the conformal uncertainty intervals. To compute MI, we
determine the determinants (| - |) of the covariance matrices
constructed for both the camera and LiDAR data and the
covariance matrix of their combined joint distribution.

1 Vree||Viipar| )
Ml=-=-1lo _—_— (2)
3 82 ( Vyotne|
Afterward, we approximate the Shannon entropy [35] of
the two feature sets’ covariances with (3) and use them to
normalize the MI (i.e., compute NMI [38]) to be within the
range of [0,1] with (4).

1
H = 5 log; ((2me)*|V]) 3)

IMI
NMI = 4
Hpop + Huipan @

It is important to note that, in theory, MI is upper
bounded by the maximum of the the Shannon entropies of
the random variables involved. However, because the VAE's
latent random wvariables typically have unbounded support
{because activation functions such as ReLLU and others have
unbounded ranges), it is possible to run into stability issues
where a network could continue optimizing its parameters
leading to divergent MI estimates. To fix this, we add the
softsign() activation function shifted by +1 to bind the
latent variables to the range [0, 2] and stabilize the network.
This activation function resembles the hyperbolic tangent
but is less steep and therefore saturates slower. In the next
subsection, we discuss the placement of the NMI metric into
the loss function.

C. Uncertainty Weighted Loss by Conformal Inference (CI)

CI offers a model-agnostic method for uncertainty quan-
tification that seamlessly integrates with any foundational
model possessing intrinsic uncertainty measures, such as
quantile regression. The intervals guarantee marginal cover-
age of the truth based on a user-defined coverage rate [2]-[4].
Marginal coverage represents the average probability, taken
over all considered samples, that true values will fall within
the prediction intervals. It is analytically guaranteed by using
a portion of the training data as a calibration set to compute
conformity scores of new observations to prior information,
which are used to calibrate the uncertainty intervals.

The conformalized joint prediction (CIP) method pre-
sented in our prior work [39] demonstrated a unique form
of multivariate cross-conformal inference where a model
is jointly trained to output point (mean) predictions and
conditional quantiles that serve as upper and lower prediction
bounds, capturing true aleatoric and epistemic uncertainty.
To construct the prediction bounds, the method requires
calibration of the sample data during training so as to
zuide the model to center predictions and maintain marginal
coverage. Cross-conformal inference involves performing a
number of calibration steps over all of the training data,
striking a balance between the statistical efficiency of full-
conformal prediction and the speed of split-conformal predic-
tion. The method performs the calibrations dynamically over
the randomized training batches as part of a multi-task loss
function that simultaneously prioritizes reconstruction, KL
divergence, and uncertainty interval centeredness, tighiness,
and coverage. As a result, it is shown that the intervals are
highly tunable, flexible, and adaptive.

We make the following impactful modifications to the
loss function presented in our prior work. First, we weight
the reconstruction loss with a small uncertainty penalty to
guide the network to prioritize resolving higher uncertainty
in certain training batches. Secondly, we regularize the KL
divergence with 4D covariance instead of variance. Finally,
we dynamically tune the balance between interval sharpness
(i.e., uncertainty distance) and marginal coverage with nor-
malized mutual information (NMI). For completeness, the
loss function is provided as:

Lrotar = SmoothL1;ps:(y, &) x (1 + 0.01U)
+ KL aww (pig0mes Viome)

+ INTSCORE 55y, Qi, Qn, {o1, en})
+ COMCALjgs:(y, Pavg: Qus @n, NMI)

(3)

where

KLaw = 5 (Tr(V) + pyomept] pen, — 4 —10g(IV]))  (6)

B | =

INTSCORE s, = (@1 — Q) + 2(Q1 — 1){y < Q1)

+ 24— Qulty > Qu}

COMCALjges = (1-NMI)x CALgp; + NMT x SHARP
(8a)
and

CALgy =

N
1% < P % - D106~ Qualr) e > Qual] +
i=1

N
H{pavg > P} % %Z[(Qi,h{m} — y)H{y: < Qual]
=1 {Eh}
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N
SHARP,; = I{p < 0.5} x % > " Qulz) — Qnlxd)
=1 (8c)

N
+ I{p = 0.5} x % Z Qnlzs) — Qulzy)
i=1

In the equations, = represents input samples, y represents
3D bounding box labels, ¢ represents predictions, [/ rep-
resents a singular uncertainty distance metric calculated by
averaging the prediction interval length of each output di-
mension per training baich, )y, and (}; are each dimension's
upper and lower quantile estimates used to calculate U7, ay
and o are the 95 and 5" percentile coverage bounds that
assert (Jp and J;, p is the chosen marginal coverage rate
(v, —ay = 90%), I is the indicator function, T'r() is the trace
function, and pg7y is the estimated probability that the label
values lie within [y, Q). averaged over the randomized
training batches. €} n is meant to indicate that CAL.p, is
computed separately for both ¢} and (J; and then added
together.

Focusing on the two lesser-known loss components—
INTSCORE;;: is used to influence the model to maintain
centered quantile intervals while COMCAL;,.. is used to
control the balance between minimizing the uncertainty
intervals and increasing marginal coverage, as reflected in the
sub-objectives CALys; and SHARPs;. Notably, we insert
NMI from Section III-B, averaged in each training batch,
into COMCAL;;.; to dynamically control the calibration
balance during training as opposed to setting a static value.
Intuitively, the model is influenced to be less uncertain when
the MI between the RGB camera and LiDAR features is high.
Therefore, uncertainty and MI should be inversely correlated.

IV. RESULTS AND DISCUSSIONS

This section details our observations from applying the
framework presented in Section III to 3D object detection
involving RGB cameras and LiDAR point cloud inputs.
Towards this, the primary goal of the proposed framework is
to enable lightweight, conformalized uncertainty awareness
while including principles of entropy, MI, and feature fusion
based on a multivariate Gaussian product. This combination
of theories is used to improve the model’s uncertainty
estimates through CI while operating under edge device con-
straints. Notably, uncertainty estimation can become difficult
and unstable for a task such as 3D object detection, where
there is a varied number of multivariate objects to be assessed
per input sample. Therefore, taking an approach deeply
rooted in information and statistical theory is imperative.

As projected in Section III-B, it is shown in Fig. 3 that
the averape uncertainty and normalized mutual information
{NMI) obtained via conformalized feature fusion are in-
versely correlated over the duration of training the model
described in Fig. 2. It is important to note that while mutual
information is static given a discrete input feature space, here
we are deriving it from artificial latent representations that
are optimized during training. Hence, the value of NMI can
change during fraining as the embedded information is better
understood. While the estimated NMI increased between
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Fig. 3: Average Uncertainty and Normalized Mutual Information (NMI)
vs. Epoch: Explicit uncertainty and NMI obtained from performing confor-
mal inference and intermediale feature fusion are averaged across training
batches in each epoch. Uncertainty and NMI are imversely corelated,

influencing the model to be mom confident in predictions when mutual
information is high and vice versa.

the camera and LiDAR data, the overall uncertainty in the
predictions decreased. This uncertainty metric [T is used to
weight the Smoothl.1 reconstruction loss, while the NMI
is used to calibrate this uncertainty in (8a). To the best of
our knowledge, this is the first work demonstrating a stable
combination of explicitly translatable uncertainty weighting
and mutual information in a multitask loss function where
both influence each other.

Table I quantitatively compares our proposed framew ork
to similar works predicting 3D bounding boxes for cars in
the seminal KITTI 3D detection dataset. The easy, moderate,
and hard percentage scores are of average precision in
3D bounding box regression (APyp), which is based on
precision-recall calculations with an intersection-over-union
{Ioll) threshold of 0.7 in various scene conditions. Most
mefrics are taken directly from the KITTI source website,
where the various referenced models have been submitted for
result reproduction. Our model is approximately 38% faster
than PointPillars without suffering an equal accuracy loss,
making it suitable for edge robotics. The runtime metrics
we provide are adjusted for hardware differences amounting
to an approximate 3x performance gap, given PointPillars
used an NVIDIA GTX 1080 Ti desktop, and we used an
NVIDIA RTX 4090 laptop. For reference, the 1080 Ti is
only 3-5x faster than the latest NVIDIA Jetson AGX Orin
edge computing device in relevant tasks. Unlike the other
works, our model maintains a relatively consistent accuracy
across each benchmark case, a unique result of using a VAE
and conformal inference.

Furthermore, by factoring the marginal coverage of the
upper- and lower-bound uncertainty boxes calibrated with
NMI into the IoU calculations, the average precision in-
creased by at least 39%. Accordingly, we propose a new
evaluation metric, mean average uncertaingy (MAU), to track
the combined average uncertainty in predicting each corner
of K 3D bounding boxes (ie., %Ef{:l ug). A key obser-
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Table I: Comparison of Proposed 3D Object Detection Framework to Similar Work on KITTI Cars (AF:p)

untime

Reference Modality ~ LiDAR Rep. Fusion Type Uncertainty © ey Easy (%)  Mod. (%) Hard (%)
PointFusion [9] Cam+LiDAR Points Intermediate MNo - 7471 61.24 50.55
ContFuse [40] Cam+LiDAR Gnd (BEV) Intermediate MNo 60 #3.68 68.78 61.67
MVX-Net [10] Cam+LiDAR Grid (Voxels) Intermediate MNo - 83.2 T2.7 65.2

EPNet [41] Cam+LiDAR Points Intermediate MNo 100 #9.81 TO.28 T6.40

MMF [42] Cam+LiDAR  Grd (BEV) Intermediate MNo 100 #9.05 82.50 T1.59

MV3D [11] Cam+LiDAR Multiple Intermediate MNo 360 T4.97 63.63 54.00

ID-CVF [43] Cam+LiDAR  Grd (BEV) Intermediate MNo 60 #9.20 80.05 Tin
AVOD [12] Cam+LiDAR  Grd (BEV) Intermediate MNo 100 83.07 TL.76 65.73
CLOCs [13] Cam+LiDAR Multiple Late MNo 100 #9.16 82.28 T1.23
PointPillars [19] LiDAR Grid (Pillars) Intermediate MNo 16 #2.58 T4.31 68. 90
Ours Cam+LiDAR Points Interme diate Yes 987" 62.84 58.66 60.89

Ours w/ 87.64 §9.83 92.26
NMI-calibrated 14.82*

Un inty (MAU=3.52) (MAU=359) (MAU=3.62)

*These models were characterized on an NVIDIA RTX 4090 laptop; the metrics are adjusted for an NVIDIA GTX 1080 Ti desktop.

—

Fig. 4 Uncertainty in 3D Bounding Box Regression: Ground truth (black), predicted
in a sample KITTI image of & cars with various occlusion and truncation status. As descri

4 +1A A

reen), and uncertainty (purple) 3D bounding boxes are visualized
in Section IM1-C, the uncertainty boxes represent a combination

of upper- and lower-bound conditional quantiles obtained via conformal inference.

vation here is that, with uncertainty included, the average
precision slightly increased with more difficult predictions
while MAU also increased. This indicates that the model
appropriately prioritized predictions where uncertainty was
greater. However, it is worth noting that there are fewer
annotations in the moderate and hard cases, so the model
has fewer chances of being imprecise compared to the easy
case. Overall, we show that robust uncertainty-awareness can
improve the reliability of a model's predictions in making
critical decisions and considerably improve accuracy. By
maintaining a generalizable methodology, our work can be
integrated to improve metrics in other models for various
tasks.

Fig. 4 provides a qualitative assessment of the uncertainty
in predicting the 3D bounding boxes. We display the ground
truth box in black, the predicted box in green, and a
combined uncertainty box in purple that encompasses the
upper- and lower-bound boxes. This level of accuracy and
precision in estimating and visualizing uncertainty in 3D
object detection has not been demonstrated previously. A

primary benefit of such assessment is that even if the model
appears to be predicting well, a large uncertainty estimate
can direct it to assert caution appropriately, such as when the
sensors are not performing well or are impaired externally.

V. CONCLUSION

We presented a novel framework for quantifying, calibrat-
ing, and leveraging uncertainty in data-driven, multimodal
deep learning at the edge. The proposed methodology, ap-
plied to 3D object detection, includes conformal inference,
elements of information theory, and Gaussian feature fu-
sion. Our research demonstrates that integrating uncertainty
awareness not only increases reliability, but also improves
prediction accuracy and precision. The approach is both gen-
eralizable and scalable, allowing it to be adapted to any task
or dataset where uncertainty awareness should be considered,
especially when under considerable resource constraints such
as in edge robotics. The integration of information theory
and conformal inference offers benefits that extend beyond
individual results in the deep learning domain.
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