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Triboelectric nanogenerators (TENGs) have received considerable attention as flexible and stretchable 
systems capable of harvesting energy and converting mechanical into electrical energy. This paper 
reports on Forcespinning-synthesized poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane 
(TPU) nanofiber (NF) membranes based TENG. To improve the TENG, the TPU NFs were decorated with 
multi-walled carbon nanotubes (MWCNT) functionalized with fluoride, amide, and carboxylic groups. 
The NF demonstrated a stronger interaction with the carboxylic-functionalized MWCNT (c-MWCNT). 
Furthermore, the c-MWCNT functionalized TPU/PVDF TENGs were evaluated by applying compressive 
force (30 psi) utilizing a pneumatic cylinder. The maximum alternating voltage, and current outputs 
were 158 V and 170 µA respectively. The TENG charging capacity for the samples dipped for 12 h in the 
c-MWCNT showed an ability to charge a 1 µF capacitor up to 3.03 V in 25 s of hand tapping, suggesting 
that the fabricated TENG has the capability to function as a self-charging flexible energy harvester.

Introduction
In recent years, the world has seen significant usage of portable 
electronic devices, these have become an integral part of daily life, 
not only as communication systems but also in the use of sensors 
and actuators that monitor and assist technical operations in the 
transportation, manufacturing, and biomedical fields, to mention 
just a few [1–4]. These devices need an external power source, 
usually a battery. Powering micro/nano scale devices, using con-
ventional batteries that lack flexibility and have a short lifetime, 
presents obstacles to the development of further miniaturization 
of electronic devices [5, 6]. As an alternative, harvesting energy 
from the environment with the help of nanogenerators (NGs), 
has been recently explored to convert abundant natural energy 
into free electricity through a variety of mechanisms such as 
piezoelectric, pyroelectric, and photoelectric, electromagnetic 
phenomenon [7–11]. However, these devices offer lower power 
output for their respective electrical application, endure less time 
with continuous mechanical stretching or vibration, and lack 
adequate flexibility and biocompatibility [12–15].

With this incessant growth and demand for energy, in 
2012, Dr. Wang’s group introduced triboelectric nanogenera-
tors (TENG) [16]. TENG have been proposed as a new form of 
energy harvester that can convert frictional force into electrical 
energy [17, 18]. TENG are promising alternative energy sources 
and have been named “the energy for the new era” [19–21]. The 
mechanical contact of two dissimilar materials can exhibit tribo-
electric effects, and with the abundant choice of combination of 
materials and their respective structures, there are ample oppor-
tunities to evaluate different arrangements of TENG devices and 
their resultant electrical properties [22–24]. TENGs are classi-
fied into four different modes: vertical contact-separation (CS) 
mode, lateral sliding (LS) mode, single electrode (SE) mode, and 
freestanding triboelectric (FT) mode. All of them are based on 
the working principle of the combination of contact electrifica-
tion and electrostatic effects [25–27].

The output of the TENG greatly depends on the active con-
tact area between the two layers, triboelectric materials [28], and 
effective TENG structure [29]. The selection of the triboelectric 
material is the most crucial aspect since the nature of the material 
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dictates the ease of charge ejection and acceptance between the 
electrodes [30, 31]. Polymers have been widely used in the dif-
ferent layers of the TENGs due to their mechanical flexibility 
and corrosion resistance [32], as well as their convenience to 
manufacture films [33–35], aerogels [36], nanowires [37], and, 
most recently, nanofibers [38, 39]. Furthermore, surface modi-
fication through addition of low-dimension carbon allotropes, 
such as fullerene, graphene, carbon nanotubes, and multi-walled 
carbon nanotubes into a TENG, can result in a combination that 
improves electrical output and creates superior multifunction-
ality of the device [29, 40, 41]. Multi-walled carbon nanotubes 
(MWCNT) are beneficial to TENGs due to their excellent electri-
cal, thermal, and mechanical properties alongside with their high 
surface area and high chemical stability [42, 43].

In this study, we developed a nanofiber-based TENG device 
using a contact and separation mechanism consisting of two 
distinct layers. The nanofiber-based mats were developed 
using the Forcespinning technique. The first layer was made of 
poly(vinylidene fluoride) (PVDF), whilst the second layer was 
made of polyurethane (TPU) nanofibers coated with function-
alized multi-walled carbon nanotubes (MWCNT). The PVDF 
layer acted as the negative layer, while the TPU functionalized 
with MWCNT acted as positive layer, due to the difference in 
charge density [44, 45]. PVDF has been extensively studied for 
its TENG potential due its piezoelectric nature, flexibility, and 
promising mechanical properties [46–50]. PVDF possesses α, 
β, γ, δ, and ε phases. However, only the β and γ phases exhibit 
a polar response [51, 52]. In the case of nanofibers, the dis-
tinguishable β phase can be observed when the polymer mol-
ecule is stretched by the strong centrifugal force, yielding high 
electroactive characteristics such as polarizability and dielec-
tric properties, which can offer upgraded triboelectric perfor-
mance. Compared to other tribo-positive polymers, TPU NF 
have shown promising mechanical properties, breathability, 
stretchability and high frictional surface area, making these NF 
suitable candidates for TENG components [44, 53–55] TPU 
has been previously used in TENG in combination with other 
polymers such as polypropylene [56], polyethylene glycol, and 
polytetrafluoroethylene [57], as well as other materials like silver 
nanowires and reduced graphene oxide [58].

Here, both TPU and PVDF nanofiber mats were prepared 
using the Forcespinning (FS) technique [59, 60]. The TPU 
nanofibers were then dipped into amino, fluorine and carboxyl 
functional MWCNT (c-MWCNT) solutions, varying the con-
centration and dipping period to modify the structural and 
electrical properties. The c-MWCNT dipped for 12 h showed 
the most promising interaction with the TPU nanofibers. Con-
sequently c-MWCNT functionalized TPU/PVDF-based tri-
boelectric nanogenerators were further investigated for their 
triboelectric performance. Additionally, morphological and 

structural investigations were conducted to assess the uniform-
ity and continuity of the forcespun fibers. The prepared TENG 
were also assessed to examine their charging capability. The 
developed TENG showed desired flexibility and biocompatibil-
ity with promising potential to be used in wearable devices, such 
as artificial neural networks (ANN) [61, 62].

Results and discussions
Characterization of the fibers

Figure 1 shows the synthetic process for the production and 
dipping of the TPU nanofiber mats. Figure 2 exhibits the field 
emission scanning electron microscopy (FESEM) micrographs 
of the unmodified TPU and PVDF mats, along with their 
respective histograms of fiber diameter. Figure 2(a and b) illus-
trate long, continuous, and uniform fibers for both TPU and 
PVDF nanofiber mats. The average fiber diameter of TPU and 
PVDF nanofibers is shown to be 393 and 203 nm, respectively.

The FESEM micrographs in Fig. 3 show the morphology of 
the bare TPU nanofibers and those coated with functionalized 
multiwall carbon nanotubes (f-MWCNT). Figure 3(a) shows 
the untreated TPU nanofiber. Figure 3(b) illustrates the TPU 
fibers coated with the -NH2 f-MWCNT it can be observed that 
the carbon nanotubes are unevenly distributed on the nanofib-
ers, substantial clusters of multi-walled carbon nanotubes are 
present on the surface of the fibers. Additionally, TPU fibers 
were also coated with the –F functionalized MWCNT and the 
resulting micrograph [Fig. 3(c)] reveals clean TPU nanofibers 
with no trace of MWCNT, indicating that fluorine f-MWCNTs 
were not successfully dispersed and integrated along the TPU 
fiber surface. The poor interaction between the TPU fibers and 
–NH2 and –F functionalized MWCNT [Fig. 3(b and c)] led to no 
further development in this study regarding FTIR spectroscopy, 
XPS and electrical performance testing. Figure 3(d–f) display 
micrographs of TPU fibers coated with –COOH functionalized 
MWCNT at different dipping times (6, 12 and 24 h, respec-
tively). It can be elucidated that the dispersion and distribution 
of c-MWCNT vary over dipping time. For the 6 h dipping time 
[Fig. 3(d)], the c-MWCNT are more agglomerated in certain 
areas along the TPU fiber, indicating attachment of MWCNT 
to the fibers, but poor dispersion and distribution throughout 
the fiber mat. Upon increasing dipping time to 12 h [Fig. 3(e)], 
a more uniform dispersion is observed throughout the fiber 
structure. However, with a 24 h. dipping time [Fig. 3(f)], a det-
rimental effect was produced as not all areas exhibit the same 
concentration of f-MWCNT, suggesting that the dispersion in 
the solution was not constant over time. Consequently, samples 
with 12 h. dipping with c-MWCNT were selected for the devel-
opment of the TENG.
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Figure 1:   Scheme of NF production and 3D drawing of the mat holder and dipping process.

Figure 2:   FESEM images of (a) TPU and (b) PVDF; fiber diameter distribution histograms (c) TPU and (d) PVDF.
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Vibrational spectroscopy

The PVDF and TPU nanofibers were further analyzed using 
Fourier-transform infrared spectroscopy (FTIR) with the corre-
sponding spectra illustrated in Fig. 4. The characteristic β phase 
for PVDF nanofibers [Fig. 4(a)] was observed at the wavenum-
ber of 877 cm−1, 1172 cm−1 and 1401 cm−1, the stretching at 
877 cm−1 corresponds to the C–C skeletal vibration of β PVDF 
while the peaks at 1172 and 1401 cm−1 can be attributed to the 
C–F and C–H stretching vibrations, respectively [63, 64]. The 
β phase in PVDF significantly contributes to the triboelectric 

phenomena in the nanogenerator. Apart from these, the peaks at 
510 and 839 cm−1 resulted from the –CF2 bending and a mixed 
mode of –CH2– rocking and –CF2– asymmetric stretching 
vibration [64, 65]. From 4b, it can be observed that there are 
no new absorption peaks between the untreated TPU and the 
TPU modified with MWCNT with functional –COOH groups. 
However, differences in absorption intensity are noticeable 
in all these peaks consistent with comparable results by Arup 
et al. [66]. The peak observed near 3330 cm−1 is related to the 
N–H stretching vibration in the urethane group, while peaks 

Figure 3:   FESEM morphology of TPU nanofibers modified with (a) non-treated, (b) –NH2 f-MWCNT for 24 h (c) –F f-MWCNT for 24 h, (d) –COOH 
f-MWCNT for 6 h, (e) –COOH f-MWCNT for 12 h and (f ) –COOH f-MWCNT for 24 h.

Figure 4:   FTIR spectra for (a) PVDF nanofibers, (b) TPU nanofibers and TPU nanofibers coated with MWCNT- COOH.
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near 2941 cm−1 correspond to—CH2– asymmetric stretching 
vibration [67]. Sharp peaks near 1728 cm−1 and 1699 cm−1 were 
associated with stretching vibrations of the carbonyl group 
C=O in the amide, while the peak at 1596 cm−1 are attributed to 
N–H group flexural absorption [68]. The peak near 1411 cm−1 
is related to the CH2 asymmetric vibrations, and bands around 
1222 cm−1 and 1081 cm−1 are due to the C–O stretching [69].

X‑ray photoelectron spectroscopy

Since FTIR alone was insufficient to confirm the interaction 
with the c-MWCNT results were complemented with XPS 
analysis. Figure 5(a) presents the XPS fitting peaks for the 
Cs1 elements of the non-modified TPU. The distinctive peaks 
observed at 284.3, 285.5, 285.9 and 288.2, are related to C–C, 
C–N, C–O and C=O respectively. According to the quantita-
tive results obtained in Fig. 5(b), it was found that the C–C 

shifted to a lower energy level due to the isolation effect of 
TPU. Additionally, the C=O bond is much more intense in the 
modified TPU, attributed to the presence of carboxyl groups 
present in the c-MWCNT [70, 71].

In Fig. 5(c), XPS peaks from the Os1 elements in the non-
modified TPU are shown, with distinctive peaks observed 
at 531.2 and 532.8 eV related to the C=O and C–O bonds 
respectively, however in Fig. 5(d) a new peak appears around 
533.3 which can be related to O–C=O bond [72]. These results 
successfully demonstrate surface modification of the TPU NF 
through the c-MWCNT. This is evidenced by the changes pre-
sented in both the carbon and oxygen, elements peaks ana-
lyzed, specifically in the change of intensity in the 288.2 eV 
peak attributed to the C=O bond in Cs1, and the appearance 
of the 533.3 eV peak related to the O–C=O bond in the ele-
ment Os1, both of these peaks can be directly attributed to 
the presence of c-MWCNT on the surface of the TPU fibers.

Figure 5:   XPS peak fitting of (a) Cs1 non modify TPU NF, (b) Cs1 modified with c-MWCNT/TPU, (c) Os1 non modified TPU NF, (d) Os1 modified with 
c-MWCNT/TPU.
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Electrical performance

The detailed mechanism of PVDF and TPU nanofiber-based tri-
boelectric nanogenerator (vertical contact and separation based 
TENG) is illustrated in Fig. 6. Initially, the triboelectric pairs 
initiates in a fully separated mode, where both the TPU (posi-
tive electrode) coated with c-MWCNT and the PVDF (negative 
electrode) are fully separated, resulting in no charge generation 
and no potential difference between the triboelectric nanofiber 
layers. The two NF layers were then periodically pressed and 
separated [Fig. 6(d)], which resulted in the difference in elec-
tronegativity between the layers, which leads to charge ejection 
from the c-MWCNT coated TPU layer to the PVDF nanofiber 
layer [44]. The electron affinities of the triboelectric materials 
introduce an equivalent amount of opposite charges between 
the triboelectric interface, leading to the formation of an electric 
potential difference [15]. During the releasing mode, an electric 
potential difference is generated among the triboelectric layers, 
which urged the free electrons to flow from the PVDF nanofiber 
to the c-MWCNT coated TPU layer connected via an external 
load [40]. This results in an instantaneous flow of current, and 
as the external force is gradually released, the potential differ-
ence further increases until the NF layers are fully separated. This 
process balances the induced potential difference, and the open-
circuit voltage (Voc) becomes zero [41]. Once the external force 
is applied to the tribo-layers and brought closer to each other, the 
accumulated free charges flowed in the opposite direction, lead-
ing to a reversal in electricity flow [73]. Similar to the separated 
mode, once both layers are completely contacted, the potential 
difference becomes zero. The oscillating compression and release 
mechanism results in alternating voltage and current, eventually 
transforming the external mechanical energy into electricity.

The c-MWCNT embedded TPU/PVDF TENGs were 
tested using a vertical punch, applying pressures of 10, 15, 
20, and 30 psi at a constant frequency of 65 bpm. The results 
in Fig.  6(e–j) show highly uniform peaks for both open 
circuit voltage (Voc) and short circuit current (Isc). For the 
samples dipped for 6 h, the maximum Voc values were 51.2, 
72.8, 106 and 128 V and the Isc were 26, 36, 70 and 100 µA 
for the applied pressures. Similarly, the highest Voc values 
obtained for the sample dipped for 12 h. were 64, 86, 136, 
158 V, while for 24 h, the recorded results were 32, 50.8, 76, 
112 V. Additionally, the maximum Isc obtained for the 12 h. 
dipped c-MWCNT f-TPU/PVDF TENG were 48, 66, 114, and 
170 µA while for the samples dipped for 24 h., the results were 
36, 54, 96, and 118 µA. As the pressure increased, both Voc and 
Isc were increased [7, 44], though for each case (Voc and Isc), 
the maximum output was observed for the samples dipped 
for 12 h. As shown above, this dipping time showed the best 
dispersion and distribution of the functionalized c-MWCNT.

In summary, the increase in load on a TENG refers to 
either applying an external load or connecting the TENG to 
a circuit to extract power from it. When the load on a TENG 
increases, two main factors contribute to the increased open-
circuit voltage and short-circuit current: enhanced charge 
transfer and increased mechanical deformation with a higher 
load. As the load increases, the TENG experiences greater 
mechanical deformation and a larger contact area between the 
triboelectric materials, leading to enhanced charge transfer 
during the triboelectrification process. This results in a larger 
charge separation, leading to a higher open-circuit voltage, 
which is the voltage generated by the TENG when it is not 
connected to any external circuit.

Figure 6:   (a–d) Operating mechanism of NF based TENG Electrical performance of NF-TENG. (e–g) Open circuit voltage (Voc) and (h–j) Short circuit 
current (Isc) current of the TENG at different pressures for TPU nanofibers dipped in c-MWCNT for (e, h) 6 h, (f, i) 12 h, (g, j) 24 h, respectively.
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Improved transport charge was observed, as the load on the 
TENG increases, the extracted current also increases. This is 
because a higher load creates a lower impedance path for the 
flow of charge carriers (electrons) from the TENG. The lower 
impedance allows for improved charge transport, resulting in 
a higher short circuit current, which is the current generated 
when the TENG is connected to a short circuit.

From Fig. 7(a) it is evident that the peak-to-peak voltage 
output of NF-based TENGs was 69.6, 99.2, 138, and 164 V (for 
6 h. dipping); 106, 140, 206, and 242 V (for 12 h. dipping) and 
52.8, 84.8, 124, and 176 V (for 24 h. dipping) at 10, 15, 20, 30 psi, 
respectively. Similarly, the alternating peak-to-peak current out-
put shows similar trend, with recorded outputs of 44, 56, 96, 
and 130 µA (for 6 h. dipping); 74, 108, 172, and 266 µA (for 
12 h. dipping) and 56, 90, 142, and 180 µA (for 24 h. dipping) 
at 10, 15, 20, 30 psi, respectively. The maximum peak-to-peak 
value was obtained for each case at 30 Psi, with the highest value 
achieved for the 12 h. dipping condition [Fig. 7(b)]. However, 
after 12 h. dipping the maximum peak-to-peak voltage and cur-
rent output decreased. It is important to note that this peak-to-
peak data represents a load frequency of 65 for varied pressure 
from 10 to 30 psi, and the active area of the sample was the same 
for all cases at 0.7854 in2. Furthermore, three NF TENGs (TPU 
NF dipped at 6, 12, 24 h.) were tested, while connected with a 
1 µF capacitor, by hand tapping motion, yielding a charge of 
2.91, 3.03, and 2.49 V for the fibers dipped for 6, 12 and 24 h, 
respectively, with only 25 s of tapping at 240 bpm or 4 Hz load 
frequency. This charging capability demonstrates the potential 
application of the developed TENG as self-charging energy har-
vesters with sensor related applications.

Conclusions
In this study, triboelectric nanogenerators were proposed and 
fabricated using PVDF and TPU nanofibers synthesized via the 
forcespinning technique. Developed TPU nanofiber mats were 
coated with c-MWCNT through a dipping process to modify 
their surface. Fibers were dipped for 6, 12 and 24 h, with 12 h 
resulting in better dispersion of the c-MWCNT along the TPU 
fiber surface. The resulting nanofiber-based TENG exhibited 
a high alternating voltage signal, attributed to the increased 
beta phase of the PVDF and the surface modification of TPU. 
TENGs were evaluated using a cylindrical pneumatic punch 
machine with a range of pressure (10, 15, 20 and 30 psi) at a 
load frequency of 65 BPM (beats per minute) to obtain uni-
form electrical voltage and current output. The TENG with 
the TPU nanofiber dipped for 12 h demonstrated the most 
effectiveness, with the maximum open-circuit voltage and 
short-circuit current reported as 158 V and 170 µA, respec-
tively. The TENG charging capacity for the samples dipped 

for 12 h showed an ability to charge a 1 µF capacitor to 3.03 V 
in only 25 s of hand tapping. In summary, we fabricated fully 
NF based TENG and demonstrated a modification procedure 
of the triboelectric layer, which holds the potential for use in 
flexible and stretchable self-charging energy harvesting device.

Figure 7:   (a) Peak-to-peak voltage and current output of the TENG at 
different pressures, (b) Maximum peak-to-peak voltage and current 
output for TPU nanofibers dipped in c-MWCNT and (c) Charging ability 
of NF based TENG with 1 µF capacitor for 6, 12 and 24 h, respectively.
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Experimental section
Materials

Acetone (HPLC, ≥ 99.9%), COOH functionalized multi-walled 
carbon nanotubes, poly [4,4′-methylenebis (phenyl isocyanate)-
alt-1,4-butanediol/di(propylene glycol)/poly caprolactone], 
and methylene-diisocyanate (MDI) thermoplastic polyester/
polyether polyurethane (TPU), were all purchased from Sigma-
Aldrich. NH2 functionalized multi-walled carbon nanotubes and 
F functionalized multi-walled carbon nanotubes were obtained 
from Cheaptubes. The KYNAR 741 poly(vinylidene fluoride) 
(PVDF) powder was purchased from Arkema Inc. Ethyl alcohol, 
N,N-dimethylformamide (DMF, ≥ 99.7%), and dimethylaceta-
mide (DMA, C4H9NO) were all acquired from Fisher Scientific.

Preparation of PVDF and TPU nanofiber mats

Nanofibers were synthesized from polymer solutions. For the 
PVDF polymer solution, PVDF (1.1 g) was dissolved into a 
mixture of DMA (2.35 g) and acetone (1.96 g) in a 20 mL scin-
tillation vial. The PVDF polymer solution was then placed onto 
a silica oil bath at 60 °C and magnetically stirred at 800 rpm for 
24 h. Similarly, a 16 wt% TPU polymer solution was obtained 
by dissolving it in DMF solvent. The solution was placed in a 
silica oil bath at 105 °C and continuously stirred magnetically 
at 1000 rpm for 48 h. After complete homogenization, the solu-
tion was removed and allowed to cool at room temperature.

The Cyclone L-1000 system (Fiberio Technology Corp) 
utilizing Forcespinning technology was employed to produce 
nanofiber mats. Upon cooling the solution, 2 mL polymer 
solution was injected into a spinneret equipped with 30-gauge 
precision needles. An aluminum collector was utilized to 
retrieve the initial batch of non-woven nanofibers, and after 
five iterations, a nanofiber mat was collected for both cases.

Preparation of dipping solution

Three separated dipping solutions were prepared, one for each 
functionalized MWCNT (–COOH, –F, –NH2) These solutions 
were prepared in a beaker containing a 5 wt% of acetone and 
0.01 wt% of the respective MWCNT, using ethanol as the sol-
vent The dipping solutions were sonicated (Q700 Sonicator 
with Standard 4220 Probe) for 10 min with a three-second 
interval of sonication and non-sonication with an amplitude 
of 40. The solution was then kept under continuous magnetic 
stirring to ensure homogeneity.

Dipping process

Initially the mat holder was 3D printed which consisted of 
a top and bottom frame. The TPU fiber mat was placed in 
between these two frames and secured with a pair of zip ties 

to prevent crumpling and fix the mat in place. The mat holder 
was then submerged in the dipping solution. The solution with 
the mat holder was magnetically stirred at 60 rpm for 6, 12, 
24 h. Afterwards, the mats were washed with distilled water 
from both sides and left on the holder to air dry for 3 h and 
subsequently oven dried for 6 h at 60 °C to obtain functional-
ized MWCNT (f-MWCNT) coated TPU fiber mat.

Fabrication of triboelectric nanogenerator (TENG) 
device

Square mats of 1.5 × 1.5  in2 were cut from both the PVDF 
nanofibers and f-MWCNT coated TPU nanofibers to fabricate 
the TENG. Samples were adhered to copper tape (0.06 mm 
thick) of equivalent area. The two layers were separated with 
the inclusion of two PU spacers (1.5 × 0.2 in2). Cardboard was 
used as structural support and placed on top of the copper tape.

Characterization of morphology

The morphology of the f-MWCNT coated TPU nanofibers was 
characterized using a field emission scanning electron micro-
scope (FESEM) with parameters of acceleration voltage between 
2 and 3 kV, with different magnifications (Sigma VP, Carl Zeiss, 
Jena, Germany). The Fourier transform infrared spectra (FTIR) 
characterization of PVDF and -COOH functionalized MWCNT 
coated TPU nanofibers were performed using a 133 VERTEX 70v 
FTIR Spectrometer (Bruker) in attenuated total reflection (ATR) 
mode, and the transmittance data of the nanofibers recorded 
from 450 cm−1 to 4000 cm−1. The X-ray photoelectron spectra 
(XPS) characterization of the TPU –COOH MWCNT was con-
ducted using a K-Alpha Surface Analysis, advantage v5.9922.

Characterization of electrical properties

A Tektronix TDS1001B digital oscilloscope was used to charac-
terize the open-circuit output voltage of the TENG, this oscil-
loscope has a specified input resistance of 1 MΩ in parallel with 
approximately 18 pF of input capacitance, while the short-circuit 
current was measured by the connection of the oscilloscope to 
the Stanford Research Systems SR570 current preamplifier. For 
charging capacity tests, the output voltage was measured using 
a Versa STAT 3 potentiostat, while electrical connectors were 
attached to the nanogenerator electrodes.
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