
Synthetic Networks That Preserve Edge
Connectivity

Lahari Anne , The-Anh Vu-Le , Minhyuk Park , Tandy Warnow ,
and George Chacko(B)

Siebel School of Computing and Data Science, Grainger College of Engineering,
University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

{warnow,chackoge}@cs.illinois.edu

Abstract. Since true communities within real-world networks are rarely
known, synthetic networks with planted ground truths are an alterna-
tive for evaluating community detection methods. Of several available
synthetic network generators, Stochastic Block Models (SBMs) produce
networks with ground truth clusters that well approximate input param-
eters from real-world networks and clusterings. However, SBMs can pro-
duce disconnected ground truth clusters, even when provided parameters
from clusterings where all clusters are connected. Here we describe the
REalistic Cluster Connectivity Simulator (RECCS), a technique that
creates and then modifies an SBM synthetic network to improve the fit
to a given clustered real-world network. Using real-world networks up
to 13.9 million nodes in size, we show that RECCS results in synthetic
networks that have a better fit to cluster edge connectivity than their
starting SBMs, while providing roughly the same quality fit for other
network and clustering parameters as unmodified SBMs.

Keywords: synthetic networks · community detection

1 Introduction

Community detection methods resolve networks at the meso-scale by identifying
clusters of nodes that exhibit desired properties, such as density, edge connec-
tivity, and separability from the remainder of the network [3–5,7,13,18]. An
understanding of when a method produces clusters of good quality is of some
importance given the diverse applications of community detection (clustering)
methods.

Since ground truth communities are not reliably known in real-world net-
works, evaluation using synthetically generated networks with planted ground
truth communities provides a useful alternative [14]. Several synthetic network
generators are in use, including Stochastic Block Models (SBM) [15,16], the

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-82435-7 14.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2024, SCI 1189, pp. 166–177, 2025.
https://doi.org/10.1007/978-3-031-82435-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-82435-7_14&domain=pdf
http://orcid.org/0009-0007-5708-2405
http://orcid.org/0000-0002-4480-5535
http://orcid.org/0000-0002-8676-7565
http://orcid.org/0000-0001-7717-3514
http://orcid.org/0000-0002-2127-1892
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14
https://doi.org/10.1007/978-3-031-82435-7_14

Improving SBM Network Generation 167

LFR (Lancichinetti-Fortunato-Radicchi) generator [10], ABCD and ABCD+o
(Artificial Benchmark for Community Detection) [8,9], and nPSO (nonuniform
popularity similarity optimization) [12].

Synthetic network generators should produce networks with ground truth
clusterings with properties similar to those of real-world networks [12,19]. It
has been shown that SBMs produced using graph-tool [15] have a good fit to
many real-world network properties, such as degree sequence, local and global
clustering coefficients, and diameter [19]. However, whether the ground-truth
clusterings in the synthetic networks resembled the clusterings of the real-world
networks and the fit between outlier nodes in the clustered real-world networks
and the outlier nodes in the synthetic network was not examined. However, in
[20], the importance of having ground truth clusters that are at least connected
is recognized, along with an approach to modify a synthetic network with ground
truth clustering to ensure connectedness.

Here, we present RECCS, the REalistic Cluster Connectivity Simulator,
which addresses the goal of approximating the edge connectivity of clusters in a
given clustered real-world network, while not worsening the fit with respect to
other network and clustering properties. The input to RECCS is a real-world net-
work and a set of parameters obtained from clustering it. RECCS first computes
and then modifies an SBM for the clustered subnetwork in order to improve the
fit to the edge connectivity in the real-world clustering. In the second step the
remaining “outlier” nodes are added. We show that, compared to SBM alone,
this two-step approach produces synthetic networks that have excellent fit for
the edge connectivity of the real-world clustered network, while maintaining the
fit for other empirical statistics of the clustered real-world network.

2 Materials and Methods

2.1 New Synthetic Network Generation Pipelines

High-Level Description. The input is a real-world network G and its clustering.
Note that the clustering may include clusters containing only a single node (sin-
gleton clusters). We refer to nodes in singleton clusters as being “unclustered”
or “outliers”, and all other nodes are considered“clustered”. The subnetwork of
G induced by the non-singleton clusters is called the “clustered subnetwork”
and is denoted by Gc. From this network and clustering, we extract the param-
eters required for degree-corrected SBM network generation, which includes the
assignment of nodes to clusters, number of edges within each cluster and between
each pair of clusters, and the node degree sequence. We also calculate the edge
connectivity of each of the clusters, which we now define. For a given non-
singleton cluster C, an edge cut is a set of edges such that deleting those edges,
but not the endpoints, disconnects the cluster C. The size of the smallest edge
cut for C is its edge connectivity, and is denoted k(C).

We then produce a synthetic network N using the degree-corrected SBM
network generation methods in graph-tool to model the clustered subnetwork
Gc. If G has any unclustered nodes, then the clustered subnetwork Gc will not be

168 L. Anne et al.

the entire network. Next, we make the SBM network a simple graph by removing
self-loops and replacing each set of parallel edges with a single edge.

We call this modified network Nc, noting that it is a reduced version of
the original SBM network N , and may have fewer edges than in the real-world
network Gc; this provides us the opportunity to strategically add edges to ensure
the required edge connectivity within the clusters while maintaining the integrity
of other network properties. This is Step 1 of the network generation procedure.

We also add outlier nodes back into the network, and determine the edges
that are incident with these outlier nodes; this is Step 2 of the network generation
process, which produces a network only containing edges involving at least one
outlier node. Finally, the two synthetic networks are merged into one synthetic
network. For additional details, see the Supplementary Materials [1].

Step 1: Improving Edge Connectivity. We refer to the set of parameters we
calculate from the real-world network Gc and its clustering C as Param(Gc, C).
The problem we seek to solve can be described as follows:

– Input: Simple graph Nc with clustering C and Param(Gc, C), where C does
not have singleton clusters

– Output: Network N with the same clustering C formed by adding edges to
Nc, with the objective of having a good fit to Param(Gc, C).

The set Param(Gc, C) includes the edge connectivity values k(C) for every clus-
ter in C. Since SBMs in general provide a good fit to many network parameters
but not to edge connectivity in clusters, we seek to improve the fit to the k(C)
values without hurting the fit to the other parameters.

In our experiments, we explored techniques to solve this problem that operate
in two phases. In the first phase, we add edges to ensure that every cluster has
edge connectivity at least k(C), where {k(C) : C ∈ C} is part of part of the
input parameter set. In the second phase we add additional edges to improve
the fit with respect to the degree sequence. The following two-phase approach
comprises Step 1 of the “RECCS” workflow, shown in Fig. 1.

Step 2: Adding in Outliers. Given the network G and its clustering C, we
now focus on creating a synthetic version of the subnetwork G∗ of G containing
the same nodes but only those edges where at least one endpoint is an outlier
node, i.e., the “outlier edges”, which can connect two outlier nodes or one outlier
node and one clustered node. Note that G∗ includes clustered nodes as well as
outlier nodes, and has the same set of clusters as in C; however, there are no edges
within any non-singleton cluster, and no edges between any two non-singleton
clusters.

We propose three strategies for this problem, ranging from Strategy 1, which
has the least randomness, to Strategy 3, which has the most randomness. Each
takes the input parameters computed from G∗ and C and then returns a synthetic
network N∗ consisting of outlier edges.

Improving SBM Network Generation 169

Fig. 1. RECCS Workflow. The input to RECCS is a collection of parameters com-
puted on a real-world network N and an estimated clustering. Step 1 of RECCS
produces a synthetic network corresponding to the clustered subnetwork of N , and
Step 2 adds in the “outlier” nodes. Phase 1 of Step 1 computes an initial synthetic
network using the graph-tool SBM software, and then adds edges within the clusters
and between clusters to achieve a good fit to the input parameters, focusing on achiev-
ing the cluster connectivity (Stages 1, 2, and 3); Phase 2 then modifies the network to
improve the fit with respect to the degree sequence. See Sect. 3 for additional details.

Strategy 1: This approach has each outlier in its own cluster, and then passes
all the parameters computed for G∗ to degree-corrected SBM to generate a
network.

Note that this approach reproduces exactly the edges between outlier nodes
as well as the number of edges between each outlier node and non-singleton
cluster. However, there is still randomness in the assignment of edges between
outlier nodes and clustered nodes.

Strategy 2: All the outliers are placed in a single cluster. The set of parame-
ters restricted to the outlier cluster (i.e., the within-cluster degree sequence and
number of edges) is used to generate the edges for the outlier cluster.

The remaining edges, between outliers and clustered nodes, are added at
random for each outlier node and non-singleton cluster from C in turn. This
strategy is more random than Strategy 1 for how it places edges between outlier
nodes, but handles edges between outliers and clustered nodes identically as
Strategy 1.

Strategy 3: All the outliers are placed in a single cluster, and the parameters
from G∗ are used to generate a degree-corrected SBM.

Postprocessing: We postprocess N∗ as follows: (1) if any self-loops or parallel
edges have been created, the excess edges are removed so that the network
becomes a simple graph, and (2) if the outlier nodes had been placed in a single
cluster during the generation process (Strategies 2 and 3), then this artificial

170 L. Anne et al.

treatment is ignored, and the outlier nodes are each considered to be singleton
clusters.

Merging: Finally, the random networks generated in Step 1 and Step 2 are
merged together; this is straightforward, since the node labelings for each random
network are drawn from G.

2.2 Datasets

The datasets used comprise clustered networks, with some specifically used for
the algorithm design (training) phase, and others used for the evaluation (test-
ing) phase.

Real-world networks: We used 110 real-world networks that ranged from 1,000
to 13.9 million nodes that were taken from Netzschleuder [17] and the SNAP
[11] repositories; see Supplementary Materials [1] for the list of datasets.

Clustering Methods: We clustered all the real-world networks by using a
standard clustering method followed by the Connectivity Modifier (CM) [13].
For clustering, we used the Leiden algorithm [18] optimizing either the Constant
Potts Model (CPM) with a range of resolution parameters or modularity, and
the Iterative k-core method [21].

The Connectivity Modifier operates as follows. First, it removes clusters
below size 11. Then, for all clusters that are considered to be poorly connected
(because the size of its minimum edge cut is at most log10(n) where n is the
number of nodes in the cluster), CM removes the edge cut (thus breaking the
cluster into two pieces), reclusters each piece, and repeats, until all clusters are
well-connected. Finally, the clusters below the minimum size (11 by default) are
removed. This last step was omitted in this study.

Training Data: We clustered all 110 networks using Leiden optimizing the
Constant Potts Model (CPM) with resolution parameter r = 0.001, followed CM
as described above.

Testing Data: We selected six large real-world networks from the set of
110 networks—Cit hepph, Cit patents, the Curated Exosome Network (CEN),
Orkut, Wiki talk, and Wiki topcats—and clustered these networks using Leiden
optimizing CPM at two different resolutions (r = 0.01 and r = 0.1), Leiden opti-
mizing modularity, and Iterative k-Core (IKC) with k = 10, each followed by
CM. Because the clusterings are different, these testing data are disjoint from
the training data. Additional results for these 110 networks using a different
clustering pipeline are included in the Supplementary Materials [1].

2.3 Evaluation Criteria

We evaluate the similarity between synthetic and real-world networks using var-
ious network properties. The key network properties include the edge connectiv-
ity of the clusters (minimum cuts), network diameter, mixing parameter, degree
sequence, ratio of disconnected clusters, and clustering coefficients (both global
and local). We use (1) a simple difference, calculated as (s − s′), where s is

Improving SBM Network Generation 171

the statistic value of the real-world network and s′ is the statistic value of the
synthetic network, for scalar properties bounded between 0 and 1, (2) relative
difference calculated as (s - s′)/s for unbounded scalar statistics, and (3) Root

Mean Square Error (RMSE), where RMSE =
√

1
n

∑n
i=1(si − s′

i)2, for compar-
ing sequences. For outlier modeling strategies, we examine the outlier degree
sequence and the number of edges involving outlier nodes. Finally, we report
the normalized edit distance between the synthetic network and the real-world
network, given the bijection between the node sets.

2.4 Experiments

Experiment 1 - Preliminary analysis of SBM: We compute synthetic net-
works using SBM given parameters on the training dataset. The parameters
that are given include the node-to-cluster assignment, number of edges within
each cluster and between each pair of clusters, and the degree of every node in
the network. The main focus is evaluating the frequency of disconnected ground
truth clusters.

Experiment 2 - Algorithm Design and Development: We explore the
algorithm design for the two steps of the synthetic network generation strategy,
where the first step modifies the starting network with respect to edge connec-
tivity within clusters and the second step focuses on outlier modeling. We use
training data for this experiment, and compare our algorithms to SBM genera-
tion in graph-tool, post-processed to remove excess edges.

Experiment 3 - Evaluation on Test Data: We evaluate the pipelines we
pick in Experiment 2 on testing datasets, in comparison to the generation of
SBMs in graph-tool, post-processed to remove excess edges.

Fig. 2. Proportion of disconnected clusters in SBM generated networks. The
x-axis shows 110 SBM networks generated using parameters from real world networks
clustered with the Leiden+CM (Connectivity Modifier) pipeline (training data). The
SBM method failed to reproduce the guaranteed connectivity of Leiden+CM clusters.

172 L. Anne et al.

3 Results and Discussion

3.1 Experiment 1 Results: Preliminary Evaluation of SBM

Figure 2 shows the proportion of disconnected clusters in the 110 synthetic net-
works generated by SBM with inputs from training data as detailed in Sect. 2.
Note that approximately half the networks have more than 40% of their clusters
disconnected. Since the input clusterings were based on Leiden+CM and these
are guaranteed to be connected, the input clustering parameters given to the
SBM generation method in graph-tool are achievable with connected clusters,
showing that SBM fails to recover this basic feature of the input clustering. This
trend motivates our study.

3.2 Experiment 2 Results: Design of RECCS

The algorithmic structure of RECCS, provided in Fig. 1, is the result of a
sequence of experiments on training data that we now describe. RECCS begins
by computing a synthetic network Nc based on the set Param(Gc, C) of param-
eter values computed from the clustered subnetwork Gc of a given real-world
network G and its clustering C, as described in Sect. 2.1. Recall that Nc is pro-
duced by removing excess edges from the SBM network, but it has the same
ground truth clustering. RECCS operates by adding edges to Nc in two phases.
Phase 1 adds edges to ensure that every cluster C has at least the target edge
connectivity k(C) (given in the input), and Phase 2 adds edges to improve the
fit of the resultant degree sequence.

In our design of RECCS we initially explored techniques that omitted the
second phase. These approaches had excellent fit for the edge connectivity but
did not do as well for degree sequence. We then modified the design of first phase
to also consider the degree of the nodes when adding edges to the network.
However, these modifications did not fully address the edge deficit. We then
introduced the second phase, which adds more edges to improve the degree
sequence fit, but noticed that it slightly worsened the mixing parameter fit. To
counter this effect, we developed a second version of the second phase. This
resulted in two versions of RECCS that differ only in Phase 2, which is when
edges are added to improve the fit of the degree sequence. RECCS operates in
two phases, as follows.

– Phase 1 (Ensure Edge Connectivity): Edges are added to each cluster
C to ensure edge connectivity at least k(C), as follows:
• Stage 1: Enforce minimum degree: Here we add edges to ensure that

every node has at least k(C) neighbors in the cluster. Therefore, if a node
v has d < k(C) neighbors in the cluster, we add k(C) − d edges between
v and other nodes in the cluster to which it is not adjacent.

• Stage 2: Ensure connected clusters. If a cluster C is disconnected,
we add k(C) edges at random between its largest component and each of
the other components.

Improving SBM Network Generation 173

• Stage 3: Ensure edge connectivity. This stage is an iterative method
that ensures that the cluster C has edge connectivity at least k(C). Specif-
ically, we use VieCut [6] to calculate the size of a minimum edge cut; if
this size is at least k(C), then the cluster meets the desired minimum
connectivity. Otherwise, the edge cut defines a partition of the cluster
into two parts, and we add the required number of edges between the two
parts. We repeat the process until the mincut of the cluster is at least
k(C).

– Phase 2 (Correct vertex degrees): We add edges to increase the degree
of nodes with available degree (i.e., nodes whose current degree is below their
target values) using two different techniques:
• v1: for each node with available degree, we add edges to other nodes with

available degree, following Algorithm 1 in the Supplementary Materials
[1].

• v2: edges are strategically added to nodes with available degrees, taking
into account the number of inter-cluster and intra-cluster edges in the
input subgraph Gc. This approach, detailed in Algorithm 2 in the Sup-
plementary Materials [1], restricts the addition of edges to not exceed the
expected number of inter-cluster edges.

Adding Edges. Recall that we are given a target degree for every node from Gc,
but the synthetic network N may not achieve this degree for some nodes. Those
nodes whose current degree is less than the target degree are said to be “nodes
with available degree”. At each stage of Phase 1 of the algorithm, when adding
an edge, we first randomly select nodes within the cluster with available degrees
and update their available degree status accordingly. If no suitable nodes with
available degree are found, we then randomly choose other nodes within the
cluster, even if they have no available degree, to add the edge. We do not add
parallel edges and self-loops.

3.3 Experiment 3 Results: Evaluation on Test Data

Here we show results of the two-step pipelines on the test data. There are six
versions of the two-step pipeline, each formed by using RECCSv1 or RECCSv2
for the first step, and then followed by adding in the outlier nodes in three
different ways in the second step. A comparison between all six pipelines on
the full set of test networks and clusterings is shown in the Supplementary
Materials [1], and reveals that Strategy 1 for Step 2 has the best accuracy. Due
to space limitations, we present results here just for the two pipelines using
outlier Strategy 1.

We begin with the results when clustering using Leiden-CPM with r = 0.01
followed by CM, in each case using Strategy 1 for outlier modeling. Both
RECCSv1 and RECCSv2 improve the fit for the minimum edge cut size com-
pared to SBM (Fig. 3, top panel). We also see an improvement in fit for both
versions for degree sequence compared to SBM (with a larger improvement for

174 L. Anne et al.

Fig. 3. Comparing SBM to the RECCS pipelines on the test networks using
Leiden-CPM(0.01)+CM. We compare SBM networks to networks produced using
the two pipelines, RECCSv1+Strategy 1 and RECCSv2+Strategy 1, for different net-
work and clustering statistics. The y-axis shows different distance metrics for vari-
ous network properties. Error is reported using RMSE for degree sequence, outlier
degree sequence, and minimum edge cuts sequence; scalar difference for clustering coef-
ficients and mixing parameter; and relative difference for the diameter, number of edges
between outliers, and between outliers and clustered nodes. The test networks contain
six real-world networks, each clustered using Leiden-CPM with r = 0.01 followed by
CM.

RECCSv1). For diameter, RECCSv2 improves on the fit compared to SBM,
but RECCSv1 is slightly worse. For the other criteria, the new pipelines have
approximately the same accuracy as SBM.

Thus, the two pipelines—RECCSv1+Strategy 1 and RECCSv2+Strategy
1—both improve on SBM for edge cut sizes, with one clearly better suited for
degree sequence and the other clearly better suited for diameter, and are nearly
indistinguishable for the other properties. Results for the other test datasets
(Fig. 4) show the same trends.

Finally, we compared the two pipelines and unmodified SBMs with respect
to the normalized edit distance between the real-world network and the synthetic
network they produce. For this distance, we use the number of edges that need
to be added or removed from the real-world network, to produce the synthetic
network, then normalized by the number of edges in the real-world network.
Across the six networks in this test dataset, SBM and RECCSv2 are very close,
while RECCSv2 produced synthetic networks that had a smaller normalized
edit distance to the real-world network than RECCSv1 (Fig. 5). Furthermore,

Improving SBM Network Generation 175

Fig. 4. Accuracy of SBM and Two RECCS pipelines on Test Data, using
Three Additional Clusterings. The three additional clusterings are Leiden-CPM
with r = 0.1 (top row), Leiden-modularity (middle row), and the Iterative k-core (IKC)
method (bottom row). The y-axis shows different distance metrics for various network
properties. Error is reported using RMSE for degree sequence, outlier degree sequence,
and minimum edge cuts sequence; scalar difference is shown for clustering coefficients
and mixing parameter; relative difference is shown for the diameter, number of edges
between outliers, and between outliers and clustered nodes.

since the maximum normalized edit distance is 2.0, this shows that in all but one
network, all three synthetic networks have a large enough distance to the real-
world network to not simply replicate the real-world network. Thus, all three
strategies—unmodified SBM and the two ways of post-processing the SBM—
produce networks that are different from the real-world network and have good

Fig. 5. Comparing SBM, RECCSv1, and RECCSv2 with respect to the nor-
malized edit distance between synthetic and real world networks. The nor-
malized edit distance between the edge sets of the true network G and the synthetic
network N , i.e., |E(G)�E(N)|

|E(G)| , where � denotes the symmetric difference, and so the
maximum possible value is 2.0. Each real-world network is clustered using Leiden-
CPM, with r = 0.01. Here, RECCSv2+Strategy 1 produces synthetic networks that
are closer to the real-world network that RECCSv1+Strategy 1, and about as close as
SBM networks.

176 L. Anne et al.

fit for the network parameters we explored, while the two RECCS-pipelines also
have a good fit for the cluster edge connectivity values but SBM does not.

4 Conclusion

Motivated by the need for synthetic networks that reproduce features of clustered
real-world networks, we introduced the REalistic Cluster Connectivity Simula-
tor (RECCS), which allows for variants of its basic two-phase approach and
includes two strategies for adding in outlier nodes. We showed, using a diverse
set of clustered real-world networks, that the RECCS pipelines that use out-
lier Strategy 1 produce synthetic networks that match or improve on the fit to
empirical statistics of the clustered real-world networks compared to SBMs. Fur-
thermore, the two versions of RECCS that we explore have different strengths,
allowing for a range of synthetic networks to be developed.

In future work, we will explore a range of clustering methods on these syn-
thetic networks in order to better characterize the conditions under which each
method provides accuracy advantages over the other methods.

Funding Information. This work was supported in part by the Illinois-Insper Part-
nership.

Software. The software for the RECCS pipeline, including the different outlier strate-

gies we explore, are available from GitHub [2].

References

1. Anne, L., Le-Vu, T.A., Park, M., Warnow, T., Chacko, G.: Supplementary mate-
rials (2024). https://doi.org/10.5281/zenodo.13367965

2. Anne, L., Warnow, T., Chacko, G.: Github page for RECCS (2024). https://
github.com/illinois-or-research-analytics/lanne2 networks

3. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery
methods in complex networks. Stat. Anal. Data Min. ASA Data Sci. J. 4(5), 512–
546 (2011). https://doi.org/10.1002/sam.10133

4. El-Moussaoui, M., Agouti, T., Tikiniouine, A., Adnani, M.E.: A comprehensive
literature review on community detection: approaches and applications. Procedia
Comput. Sci. 151, 295–302 (2019). https://doi.org/10.1016/j.procs.2019.04.042

5. Fortunato, S., Newman, M.E.J.: 20 years of network community detection. Nat.
Phys. 18(8), 848–850 (2022). https://doi.org/10.1038/s41567-022-01716-7

6. Henzinger, M., Noe, A., Schulz, C., Strash, D.: Practical minimum cut algorithms.
J. Exp. Algorithmics (JEA) 23, 1–22 (2018)

7. Javed, M.A., Younis, M.S., Latif, S., Qadir, J., Baig, A.: Community detection in
networks: a multidisciplinary review. J. Netw. Comput. Appl. 108, 87–111 (2018).
https://doi.org/10.1016/j.jnca.2018.02.011

8. Kamiński, B., Pra�lat, P., Théberge, F.: Artificial benchmark for community detec-
tion (ABCD)-Fast random graph model with community structure. Netw. Sci. 9(2),
153–178 (2021)

https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://doi.org/10.5281/zenodo.13367965
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://github.com/illinois-or-research-analytics/lanne2_networks
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1002/sam.10133
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1016/j.procs.2019.04.042
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1038/s41567-022-01716-7
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011
https://doi.org/10.1016/j.jnca.2018.02.011

Improving SBM Network Generation 177

9. Kamiński, B., Pra�lat, P., Théberge, F.: Artificial benchmark for community detec-
tion with outliers (ABCD+ o). Appl. Netw. Sci. 8(1), 25 (2023)

10. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection algo-
rithms on directed and weighted graphs with overlapping communities. Phys. Rev.
E 80(1) (2009). https://doi.org/10.1103/physreve.80.016118

11. Leskovec, J., Sosič, R.: SNAP a general-purpose network analysis and graph-mining
library. ACM Trans. Intell. Syst. Technol. (TIST) 8(1), 1–20 (2016)

12. Muscoloni, A., Cannistraci, C.V.: A nonuniform popularity-similarity optimization
(nPSO) model to efficiently generate realistic complex networks with communities.
New J. Phys. 20(5), 052002 (2018). https://doi.org/10.1088/1367-2630/aac06f

13. Park, M., et al.: Identifying well-connected communities in real-world and synthetic
networks, pp. 3–14. Springer Nature Switzerland (2024). https://doi.org/10.1007/
978-3-031-53499-7 1

14. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and
community detection in networks. Sci. Adv. 3(5) (2017). https://doi.org/10.1126/
sciadv.1602548

15. Peixoto, T.P.: The graph-tool python library. Figshare (2014). https://doi.org/10.
6084/m9.figshare.1164194

16. Peixoto, T.P.: Bayesian stochastic blockmodeling. In: Doreian, P., Batagelj,
V., Ferligoj, A. (eds.) Advances in Network Clustering and Blockmodeling, pp.
289–332. Wiley Online Library (2019)

17. Peixoto, T.P.: The Netzschleuder network catalogue and repository (2020). https://
doi.org/10.5281/zenodo.7839980. Zenodo, 5201

18. Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing
well-connected communities. Sci. Rep. 9(1), 1–12 (2019)

19. Vaca-Ramı́rez, F., Peixoto, T.P.: Systematic assessment of the quality of fit of the
stochastic block model for empirical networks. Phys. Rev. E 105(5), 054311 (2022)

20. Viger, F., Latapy, M.: Efficient and simple generation of random simple connected
graphs with prescribed degree sequence. J. Complex Netw. 4(1), 15–37 (2016)

21. Wedell, E., Park, M., Korobskiy, D., Warnow, T., Chacko, G.: Center-periphery
structure in research communities. Quant. Sci. Stud. 3(1), 289–314 (2022)

https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1103/physreve.80.016118
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1088/1367-2630/aac06f
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1007/978-3-031-53499-7_1
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.1126/sciadv.1602548
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.6084/m9.figshare.1164194
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980
https://doi.org/10.5281/zenodo.7839980

	Synthetic Networks That Preserve Edge Connectivity
	1 Introduction
	2 Materials and Methods
	2.1 New Synthetic Network Generation Pipelines
	2.2 Datasets
	2.3 Evaluation Criteria
	2.4 Experiments

	3 Results and Discussion
	3.1 Experiment 1 Results: Preliminary Evaluation of SBM
	3.2 Experiment 2 Results: Design of RECCS
	3.3 Experiment 3 Results: Evaluation on Test Data

	4 Conclusion
	References

