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Abstract. Community detection approaches resolve complex networks
into smaller groups (communities) that are expected to be relatively
edge-dense and well-connected. The stochastic block model (SBM) is one
of several approaches used to uncover community structure in graphs. In
this study, we demonstrate that SBM software applied to various real-
world and synthetic networks produces poorly-connected to disconnected
clusters. We present simple modifications to improve the connectivity of
SBM clusters, and show that the modifications improve accuracy using
simulated LFR networks.

Keywords: Connectivity * Stochastic Block Model - Clustering

1 Introduction

Community detection is a task in which nodes of a network are partitioned into
subsets, each called a community or a cluster (the terms are interchangeable in
this manuscript) [2,12]. Communities do not have to cover an entire network
[11], and may also be overlapping [5,9,23].

Many community detection methods are based on optimization criteria that
reflect one or more of the following properties: preference for clusters that are
dense and so have many intra-cluster edges; that are separated from the rest
of the network and so have relatively fewer inter-cluster edges; and finally are
well-connected, meaning that they do not have small edge cuts (i.e., sets of edges
where deleting the edges but not the endpoints separates the cluster into two
pieces) [15,21].

Despite the natural expectation that clusters should be well-connected, this
property does not result from some clustering methods [21,25]. We have pre-
viously reported that the Leiden algorithm [21], Infomap [19], Iterative-K-core
Clustering (IKC) [22] and Markov Clustering (MCL) [1] community detection
algorithms produce clusters that are not well connected [15]. Moreover, [21] doc-
umented that the Louvain algorithm can produce disconnected clusters, i.e.,
clusters that have two or more connected components.
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Modifying such clusters to improve connectivity is a logical remediation,
and the Connectivity Modifier [15] is one such method that recursively modifies
an input clustering to ensure that all final clusters meet a user-provided well-
connectedness criterion that depends on the size of the smallest edge cut for the
cluster. For the default setting for this criterion, [15] said that a cluster would
be considered “well-connected” if the number of edges in the smallest edge cut
was strictly greater than log,y(n), where n is the number of nodes in the cluster,
and otherwise it was considered poorly connected. While other thresholds can be
considered, we use the same setting in this study since it is a very slow-growing
function, and thus provides a very mild constraint.

Here, we report on a study examining clustering using Stochastic Block Mod-
els (SBMs) [10] on both real-world and synthetic networks. On a collection of
more than 100 real-world networks, we find that the SBM clustering methods in
graph-tool [17] frequently produce disconnected clusters. We explore three tech-
niques for modifying the clustering to improve the connectivity: simply returning
the connected components (CC), repeatedly finding and removing small edge
cuts until all clusters meet the default criterion to be considered well-connected
(WCCQ), or applying the recursive Connectivity Modifier method to the cluster-
ing. We show that these modifications improve accuracy on LFR networks, with
the greatest improvement obtained using WCC.

The rest of this manuscript is as follows. In Sect. 2, we describe the experimen-
tal study. We present the results of our experiments on real-world and synthetic
LFR networks [8] in Sect. 3. We discuss these results in Sect. 4 and conclude in
Sect. 5.

2 Materials and Methods

Due to space constraints, full details are provided in the Supplementary Mate-
rials [14].

2.1 Networks

Real-World Networks. We collected a set of 122 real-world networks that
range in size from 11 to 13,989,436 nodes. Of these, 120 are from the Net-
zschleuder network catalogue [18] and we also include the Orkut network
(3,072,441 nodes) and the Curated Exosome Network (13,989,436 nodes) [15].
The Netzschleuder network set includes 10 small networks with at most 1000
nodes, 103 medium-sized networks between 1000 and 1,000,000 nodes, and 7
networks with at least 1,000,000 nodes (see Supplementary Materials) [14] for
the full list of networks). All real-world networks used in this study were pre-
processed to remove self-loops and parallel edges and were treated as unweighted
and undirected.

Synthetic Networks. We used synthetic networks that were generated using
the LFR [8] software for a previous study [15]. These networks were generated
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based on parameters obtained from clusterings computed on five real-world net-
works using the Leiden algorithm [20] optimizing either the modularity criterion
[13] or the Constant Potts Model criterion [21] with five different resolution val-
ues (0.0001, 0.001, 0.01, 0.1, 0.5). These LFR networks range in size from 34,546
nodes to 3,774,768 nodes. As reported in [15], a few of these LFR networks had
a high incidence of disconnected ground-truth clusters and were not suitable for
analysis in this study.

2.2 Stochastic Block Models

We used SBM implemented in graph-tool [17] as a clustering method with
the option of three different models: degree-corrected [7], non degree-corrected
[4], and planted partition [24]. For each network we clustered using SBMs, we
selected the model that had the best fit—i.e., the one with the lowest description
length—as our preferred SBM model. We refer to that model as the “selected
SBM”, and use it in subsequent post-processing treatments.

2.3 Post-processing Treatments to Improve Connectivity

The Connectivity Modifier (CM) [15] pipeline is designed to modify clusterings
in order to ensure that all clusters are well-connected and that no cluster is too
small. In prior work [15], we found that the CM pipeline typically improved
Leiden clustering accuracy on synthetic networks, and that when it reduced
accuracy this was due to removing small clusters. Hence, in this study, we have
eliminated the filtering of small clusters, and restricted the CM pipeline to mod-
ifying clusterings in order to ensure edge-connectivity.

We evaluate the use of this simplified CM approach as well as two other post-
processing treatments, each of which takes as input a clustering C of a network
N, and modifies it, if necessary, to ensure some standard for edge-connectivity.
The three treatments we study are:

— CC (Connected Components): If a cluster is disconnected, we return each
of its connected components as a cluster.

- WCC (Well-Connected Clusters): We modify clusters by repeatedly
removing small edge cuts of size at most log;,(n) until each cluster is well-
connected. To find small edge cuts, we use VieCut [3]. Each of these pieces is
then examined for well-connectedness and further processed, if needed.

— CM (Connectivity Modifier): We apply the inner loop of the Connectivity
Modifier pipeline [15]. If a cluster C' has a small edge cut, then removal of the
edge cut divides C' into two subsets, and each of these is then “re-clustered”
using the same clustering method used to produce the input clustering C.
These clusters are then added back into the iterative algorithm, which checks
each cluster for being well-connected. Each iteration finds and removes small
edges cuts, and then reclusters the two sets. The iteration stops when the
cluster satisfies the edge-connectivity criterion.
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2.4 Evaluation

We report cluster statistics, including percent of clusters that are connected, per-
cent well-connected, and percent poorly connected. We also report cluster size
distributions and node coverage after restriction to clusters of size at least two.
For synthetic networks, we report accuracy, measured using three standard crite-
ria: Normalized Mutual Info (NMI), Adjusted Rand Index (ARI), and Adjusted
Mutual Info (AMI). For all three accuracy criteria, we used the implementation
provided by the Scikit-learn library [16].

3 Performance Study and Results

Here we describe the experiments we performed and the results we obtained.
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Fig. 1. Experiment 1: Cluster Connectivity of SBM on 120 Real-World Net-
works. Percentage of disconnected, poorly connected, and well-connected clusters are
shown for the selected SBM clustering of 120 real world networks. Each colored bar rep-
resents a single network, white bars separate the network groups into small, medium,
and large. This figure does not include results for two networks from the initial set
of 122 networks, as the selected SBM model returned no non-singleton clusters. The
networks are sorted by the number n of nodes

3.1 Experiments
We conducted three experiments:

— Experiment 1: We evaluate the connectivity profile of SBM clusterings on
real-world networks.
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— Experiment 2: We evaluate the impact of returning the connected components
of the clusters of SBM clusterings on real-world networks.

— Experiment 3: We evaluate the impact of our three treatments on clustering
accuracy on synthetic networks.

All experiments were performed on the Illinois Campus Cluster with maxi-
mum computational resources limit set to 72 h of runtime, 256 GB of RAM, and
16 cores of parallelism.

3.2 Experiment 1: Connectivity of SBMs

In this experiment, we examined the connectivity profile of clusters generated
by SBM. Figure 1 shows the cluster connectivity status for the selected SBM
model (Sect.2.2) on each of the networks, which are sorted from left to right
by the number of nodes, which range in size from 11 to 13,989,436 nodes. Here,
red indicates that the cluster is disconnected, blue indicates poorly connected,
and green indicates well-connected. For networks with at most 1000 nodes, clus-
ters are connected, and often well-connected. Above 1000 nodes, however, the
clusters in the selected SBM are very often disconnected, and most clusters are
disconnected for most of the networks in the upper half of the size range.

3.3 Experiment 2: Impact of Treatments on Real-World Networks

Table 1. Impact of Treatment on Node Coverage on Real-World Networks
For small, medium, and large network groups, the node coverage (i.e., percentage of
nodes in non-singleton clusters) is shown for the selected SBM before and after treat-
ment. On one of the medium networks, WCC ran into a memory error with 256GB of
RAM, hence the results for that network are omitted from this calculation

clustering Node Coverage

small medium|large
Selected SBM 62% |100%  |100%
Selected SBM - CC |62% [48%  |45%
Selected SBM - WCC|55% 36%  |26%
Selected SBM - CM  55% (25% 17%

The three post-clustering treatments we apply operate by breaking an input
clustering into sub-clusters, and so will change the cluster size distribution, the
number of clusters, and even node coverage (i.e., the percentage of nodes in non-
singleton clusters). Specifically, if in the process singleton clusters are created,
then the node coverage, which is calculated based on non-singleton clusters, can
also reduce.
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We first examine node coverage (Table 1). Reductions in node coverage are
relatively small on the small networks, but all three treatments produce large
reductions on the medium and large networks. The largest reductions are for CM,
and the smallest are for CC, with WCC in between. However, even CC produces
a large reduction in node coverage. Since node coverage is the percentage of
nodes in non-singleton clusters, this reduction can only occur because enough
nodes are placed in clusters where they do not have any neighbors.
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Fig. 2. Experiment 2: Impact of Treatment on Cluster Sizes of Medium
and Large Real-World Networks. The distribution of non-singleton cluster sizes
is shown as a boxplot for the selected SBM and its treatments. The y-axis is plotted
on a log scale. The whiskers indicate the minimum and maximum cluster sizes in
all of the networks in the group. Both groups and treatments have minimum cluster
size of 2 for SBM clusterings whether treated or not, but differ in the medians and
maxes, as follows. Medium group median/max: SBM: 103/403801, SBM+CC: 2/38539,
SBM+WCC: 2/2966, SBM+CM: 6/2169. Large group median/max: SBM: 507 /777770,
SBM+CC: 3/337018, SBM+WCC: 3/4387, SBM+CM: 9/3258

We next examine the impact on cluster size distribution (Fig 2). For both
medium-sized networks (top) and large networks (bottom), the median cluster
size before treatment is much larger than the final median cluster size after
treatment, and this holds for all three treatments. Moreover, the majority of
clusters are dramatically reduced in size by the treatments. Even CC, which
only modifies the clusters to return connected components, produces a large
impact on the cluster size distribution. The cluster sizes seem to be impacted
slightly less when CM treatment is applied compared to CC or WCC, both of
which have similar impacts on the cluster sizes regardless of network size.

Finally, we examine the impact on the number of non-singleton clusters (Sup-
plementary Materials). All three treatments increase the number of such clusters,
and on average CM produced the smallest number of non-singleton clusters, CC
produced the next smallest, and then WCC, which produced the most non-
singleton clusters.
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3.4 Experiment 3: Impact of Treatment on Synthetic Networks

In order to assess the impact of these treatments beyond empirical properties
of clusterings, we use synthetic LFR networks with ground truth clusterings to
capture the effect treatment has on clustering accuracy. We evaluated NMI, ARI,
and AMI accuracies on the LFR networks tested. Recall that some LFR networks
had disconnected clusters (i.e., the LFR networks based on CEN clustered using
Leiden-CPM with » = 0.1 or r = 0.5, and the wiki_topcats clustered using
Leiden-CPM with » = 0.5). On the LFR network for cit_patents with r» = 0.5,
WCC treatment could not produce a clustering within our runtime limit of 72 h
when starting with the selected SBM clustering, and so had a “time-out”.
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Fig. 3. Experiment 3: Impact of Treatment on ARI Scores of Selected SBM
(heatmap). Each LFR network is based on a Leiden clustering of a real-world net-
work, with the column indicating the real-world network and the row specifying the
optimization problem (either modularity or CPM for a given resolution value). Blue
indicates that post-processing using the corresponding treatment improves ARI accu-
racy for the clustering method, orange and red indicate that treatment hurts ARI
accuracy, and yellow indicates neutral impact. We use “n.a.” to indicate that a net-
work was either not used because of too many disconnected ground-truth clusters or
that the LFR software failed to generate the network, and “t.0.” to indicate that WCC
failed to complete within 72h

Fig 3 shows that WCC and CC treatments range from neutral (yellow) to
beneficial (blue) with respect to the ARI accuracy of SBM clusterings, but WCC
improvements are both more frequent and larger than CC improvements. In
comparison, CM can even be detrimental. The relative benefit of WCC over CC
and CM holds as well for NMI and AMI (Supplementary Materials), but for
those criteria the impact is generally lessened. Overall, therefore, WCC is the
preferred treatment for SBM on these networks.

We explore the impact of WCC in greater detail, noting the ARI accuracy
for SBM and the final accuracy for SBM-WCC (Fig 4). Note that results are
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Fig. 4. Experiment 3: Impact of WCC Treatment on ARI Scores of Selected
SBM (bar chart). Boxes marked as “n.a.” are for conditions where the LFR networks
had too many disconnected ground truth clusters or failed to generate; “t.0.” indicates
a failure to complete within 72 h. On the LFR network for cit_hepph with » = 0.5, both
the selected SBM model and its follow-up WCC yielded 0.0 ARI accuracy

not shown (marked as “n.a.”) for some LFR networks (i.e., the 0.5 CEN, 0.1
CEN, and 0.5 wiki_topcats), because they have many disconnected ground truth
clusters or failed to generate, as reported in [15]. On the 0.5 cit_patents network,
WCC treatment could not produce a clustering within our runtime limit of 72h
when starting with the selected SBM clustering, and so is marked as a time-out
(“t.0.7).

In every case, SBM-WCC is at least as accurate as SBM. Moreover, there
are many cases where the benefit from WCC treatment is very large (e.g., Open
Citations with resolution value 0.5, the Curated Exosome Network with resolu-
tion value 0.001, wiki_topcats with resolution values 0.01 and 0.1). Finally, most
of the cases where WCC has at most a small positive impact are for the cases
where SBM is already highly accurate, with close to 1.00 ARI accuracy, so that
there is little room for improvement.

We also examined the models selected by SBM on the LFR networks. We
found that on the LFR networks, the non degree corrected SBM never yielded
the lowest description length, and that typically the planted partition model had
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the lowest description length (Supplementary Materials). We also saw that the
lowest description length model resulted in the best NMI/ARI accuracies on the
LFR networks tested.

4 Discussion

Summary of Trends. As seen in Figs. 3 and 4, both CC and WCC post-processing
treatments improve accuracy for SBM clusterings on simulated datasets, and
WCC is particularly beneficial for accuracy. CM sometimes improves accu-
racy but sometimes reduces accuracy, and so is not recommended. However,
the impact on cluster size and node coverage produced by even the simple CC
technique is noteworthy. Our prior work [15] showed that CM improved Leiden
clustering accuracy, which is different from what we observe here for SBM clus-
terings. While the reason for this is not clear, the tendency of SBM to produce
disconnected clusters may be part of the explanation.

Impact of the Description Length Formula. Given that the construction of SBMs
within graph-tool produces disconnected clusters, we now consider how the code
operates. Recall that this approach seeks to generate SBMs that optimize the
description length, and this is a minimization problem. Let

— A be the adjacency matrix,

— b be the cluster (block) assignment,

— k be the degree vector (induced by A),

— and e be the edge count matrix (induced by A and b).

In Eq. (1) we provide the formula for the description length of a clustering b
of a network given by its adjacency matrix A (i.e., DL(A,b)) under the Degree
Corrected (DC) model:

DL(A,b) = —logp(Alb, e, k) — log p(k[b, e) — log p(b) — log p(e) (1)

Note that the description length is calculated as the sum of various components:
the negative logarithm of the model likelihood (i.e., —logp(A|b, e, k)) and the
negative logarithm of each of the priors.

In our analyses (Supplementary Materials), we observed that the model like-
lihood without priors favors connected clusters returned by the CC treatment.
In contrast, certain priors heavily penalize having many clusters, leading to a
worse description length for the clustering returned by the CC treatment.

We provide an example of this phenomenon on a real-world network, linux,
in Table2; in the Supplementary Materials, we show that the trends observed
on this network are also observed in the other real-world networks. One cluster-
ing is from SBM(DC) (i.e., the degree corrected SBM output) and the second
clustering is from SBM(DC)-CC (i.e., the result of running the CC treatment
on the degree corrected SBM output). The SBM(DC) clustering has a lower
description length than SBM(DC)-CC, and hence the untreated SBM clustering
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Table 2. Breakdown of Description Lengths on the linux real-world network
The last row is the sum of the values in the first four rows. The ratio is SBM(DC)-CC
SBM(DC), so that values less than 1.0 favor SBM treated by CC and values greater
than 1.0 favor untreated SBM. Bold text indicates the preferred clustering.

Quantity SBM(DC) |[SBM(DC)-CCRatio
—log p(Alb, e, k)/699228.26 315644.88 0.45
—logp(klb,e) |95737.43 45066.47  0.47

—log p(b) 147018.92/256817.11 1.75
—logp(e) 50786.40 |1584554.98  |31.20
DL(A,b) 992771.012202083.44  2.22

is the preferable clustering with respect to the minimization of the description
length under the degree corrected model. However, although —logp(A|b, e, k)
and —logp(klb,e) for the SBM(DC)-CC clustering are lower, —logp(b) and
—logp(e) for SBM(DC)-CC clustering are higher, and by a larger magnitude,
and hence offset the first two quantities. Moreover, between these two priors, the
—log p(e) component has the bigger impact on this outcome. Furthermore, if this
component had not been included in the formula, then SBM(DC)-CC would have
a lower description length, and would have been favored.

We examined the other 102 networks that had selected DC as the model. For
all of these, the —logp(e) component strongly favored the untreated SBM over
the treated SBM. We then examined whether removing the — log p(e) component
of the summation of the description length for both treated and untreated SBM
models, to see which model would have been returned. We found that for 80
of the 103 networks in total, removing this component of the summation would
have resulted in the treated SBM model having a lower description length than
the untreated model. Thus, this specific component of the summation accounts
for 77.7% of the cases where the untreated SBM is favored over the treated SBM.

We examine the formula for the negative logarithm of the prior for the edge
count matrix, which is given by:

~logp(e) = log (B(B + 1){22 +E— 1)

(2)
where B and F are the number of blocks and edges, respectively. As B increases,
this value will increase, and does so quickly. This explains why clusterings with
a larger number of clusters (such as are produced by running CC, WCC, and
CM) have larger description lengths, and hence are less favored.

5 Conclusion

Our study demonstrates that clustering using SBMs is prone to producing dis-
connected clusters, with the frequency of disconnected clusters increasing as the
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network size grows. We show that two simple techniques—CC, which returns the
connected components of the clusters, and WCC, which repeatedly removes small
edge cuts (based on a mild criterion for “small” that depends on the size of the
cluster)—can be used to modify an SBM clustering and tends to improve cluster-
ing accuracy on synthetic networks. Moreover, WCC has the strongest improve-
ments in our simulation study. Interestingly, using the Connectivity Modifier
[15] under the same mild criterion had variable impact, sometimes improving
and sometimes reducing accuracy. Thus, our study provides two simple ways to
modify clustering using SBMs that lead to improvements in accuracy, without
requiring substantial computational resources.

This study focused on improving clustering quality for SBMs, but did so
through essentially ad hoc techniques. Future work should investigate how to
achieve these improvements and guarantees of connectivity within the model-
based framework of SBMs. Other future work includes evaluation using other
synthetic networks, such as ABCD [6], and exploring whether other post-
processing approaches can lead to larger improvements in accuracy while main-
taining scalability.

Funding Information. This work was supported in part by the Illinois-Insper part-
nership.

Software. See https://github.com/MinhyukPark/constrained-clustering for the CC
and WCC codes.
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