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Abstract

Genome-wide association studies (GWAS) have mapped over 90% of disease- and quantitative-trait-associated variants within the non-
coding genome. Non-coding regulatoryDNA (e.g., promoters and enhancers) and RNA (e.g., 5′ and 3′ UTRs and splice sites) are essential
in regulating temporal and tissue-specific gene expressions. Non-coding variants can potentially impact the phenotype of an organism
by altering the molecular recognition of the cis-regulatory elements, leading to gene dysregulation. However, determining causality
between non-coding variants, gene regulation, and human disease has remained challenging. Experimental and computational methods
have been developed to understand the molecular mechanism involved in non-coding variant interference at the transcriptional and post-
transcriptional levels. This review discusses recent approaches to evaluating disease-associated single-nucleotide variants (SNVs) and
determines their impact on transcription factor (TF) binding, gene expression, chromatin conformation, post-transcriptional regulation,
and translation.
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1. Non-coding Genetic Variants in Human
Diseases

The haploid human genome is ~3.2 billion base pairs,
with about 98% comprising non-protein-coding DNA [1–
4]. Genome-wide association studies (GWAS) have re-
vealed that over 90% of disease- and trait-associated vari-
ants have been mapped within the non-coding genome [5–
9]. This raises the question: How do single-nucleotide mu-
tations outside the protein-coding genome impact cellular
and organismal phenotype? A possible reason is that the
non-coding genome potentially regulates gene expression
[9,10]. Cis-regulatory elements (CREs) are non-coding
DNA sequences that regulate gene expression, including
promoters, enhancers, insulators, and silencers. Promoters
are near the transcription start site (TSS), where the tran-
scriptional machinery is recruited to form the pre-initiation
complex [11–13]. Enhancers are one of the most abun-
dant CREs responsible for enhancing transcription and reg-
ulating the spatial and temporal expression of genes in a
tissue-specific manner [14]. They can be located as far as
megabases upstream or downstream from the target gene
and have been shown to physically interact with the pro-
moters of the target genes through protein-mediated DNA
looping [12,15].

An early example of a non-coding single-nucleotide
variant/polymorphism (SNV/SNP) associated with a hu-
man disease was reported in 1982 in the β-globin gene
(HBB) promoter and was linked to β-thalassemia [16]. In
2005, it was reported that this non-coding mutation re-
sulted in the loss of a binding site for GATA1, which inter-

acts with other transcription factors (TFs), such as CCAAT-
enhancer-binding proteins (C/EBPs) and Krueppel-like fac-
tor 1 (KLF1), to modulate HBB expression [7,17,18]. Ad-
vances in DNA sequencing and functional genomics as-
says have propelled studies on the role of non-coding vari-
ants in regulatory regions of the genome to understand hu-
man pathophysiology, genetic diagnosis, and treatments.
Non-coding variants can impact cellular and organismal
phenotypes by altering the molecular recognition of CREs
and disrupting transcriptional and post-transcriptional reg-
ulation of gene expression [19]. This review discusses
advances in identifying functional non-coding SNVs and
quantifying their impact on gene regulation. We mostly fo-
cus on research in GWAS SNVs but will also highlight ex-
amples of work on non-GWAS variants and their role in
human diseases.

2. Non-coding Variants in Transcription
Factor-DNA Binding

SNVs can modulate genomic binding by regula-
tory proteins, such as transcription factors (TFs), which
are sequence-specific DNA-binding proteins that bind to
CREs (e.g., promoters and enhancers) and recruit the tran-
scriptional machinery needed to regulate gene expression
(Fig. 1A) [20–23]. TFs target their specific binding sites
through their DNA binding domains (DBDs), which in
eukaryotes recognize short sequences of 6–12 bp [24–
26]. Non-coding SNVs have been shown to alter TF-
DNA recognition, leading to gene dysregulation (Fig. 1B)
[6,27,28]. These variants can increase or decrease the affin-
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ity of TFs for a specific DNA sequence through the creation
or disruption of TF-binding motifs [29–31].

Previous studies have determined changes in TF affin-
ity through its binding site with in vitro assays, such as elec-
trophoretic mobility shift assays (EMSA) [32]. Recently,
Peña-Martínez et al. [33] identified five cardiovascu-
lar disease/trait-associated SNPs (rs7350789, rs61216514,
rs7719885, rs747334, and rs3892630) predicted to alter the
cardiac TF NKX2-5 DNA binding affinity and validated
these predictions through EMSA. Although EMSA can be
implemented to evaluate how non-coding SNPs can im-
pact the formation of the TF-DNA complex and quantify
changes in dissociation constant (Kd), it is a low through-
put method [34,35]. High-throughputmethods to determine
TF-DNA binding preferences [36], such as protein binding
microarrays (PBMs) [37], mechanically induced trapping
of molecular interactions (MITOMI) [38], systematic evo-
lution of ligands by exponential enrichment followed by
sequencing (SELEX-seq) [39,40], and bacterial and yeast
one-hybrid (B1H) [41,42], have contributed a wealth of in-
formation on the intrinsic TF DNA-binding specificity.

The Fordyce lab developed microfluidic-based high-
throughput approaches to determine differences in TF
affinities through Binding Energy Topography by sequenc-
ing (BET-seq) [43] and simultaneous transcription fac-
tor affinity measurements via microfluidic protein arrays
(STAMMP) [44]. BET-seq can estimate Gibbs free en-
ergy of binding (∆G) for over one million DNA sequences
in parallel at high energetic resolution by determining the
DNA sequencing count at a TF concentration. Using
BET-seq, they measured changes in binding energy for all
possible combinations of 10 nucleotide flanking regions
(NNNNNCACGTGNNNNN) in the yeast TFs Pho4 and
Cbf1 [43]. They were able to quantify changes in bind-
ing energies as small as ~0.5 kcal/mol between flanking re-
gions, equivalent to mutating the core motif of Pho4 and
Cbf1. Using STAMMP, they can express and purify over
1500 TFswhilemeasuring affinities in parallel by determin-
ing the occupancy of fluorescently labeled DNA (Alexa-
647) and TF (GFP). Through this approach, they expressed
~210 Pho4 missense mutants and measured binding affini-
ties for DNA sequences with substitutions along the core
binding motif and the 5′/3′ flanking regions, resulting in
>1800 Kd measurements in a single experiment [44].

Jung et al. [45] developed high-performance fluo-
rescence anisotropy (HiP-FA), a microscopy-based fluores-
cence polarization method using fluorophore-labeled DNA.
TF–DNA complexes have a larger molecular weight than
the unbound DNA, resulting in a decreased rotational speed
and increased FA. Using HiP-FA, Jung et al. [45] de-
termined the DNA-binding specificity for 26 purified TF
DBDs from Drosophila and changes in affinity for all 33
possible 1-mismatch variants in the homeobox protein Bi-
coid (Bcd) 11-mer consensus sequence. Bray et al. [46]
developed the Customizable Approach to Survey Complex

Assembly at DNA Elements (CASCADE), a PBM-based
method to profile cofactor recruitment by TFs through an-
tibody labeling. They used CASCADE to profile cofactor
recruitment at 1712 SNPs associated with eQTLs and chro-
matin accessibility (caQTLs) changes that altered binding
motifs for multiple ETS–family TF–cofactor complexes in
myeloid cells. Through this approach, Bray et al. [46]
found that non-coding variants also impact cofactor recruit-
ment, which is essential in regulating gene expression. Yan
et al. [47] developed SNP-SELEX, a high-throughput mul-
tiplexed TF–DNA binding assay, and evaluated the differ-
ential binding of 270 human TFs on 95,886 type-2 diabetes-
associated SNPs (permutated to all four bases and included
SNPs in linkage disequilibrium). An oligo pool was syn-
thesized with 40 bp genomic DNA centered on the SNP and
flanking regions for polymerase chain reaction (PCR) am-
plification and barcoding for sequencing. Using full-length
TFs and DBDs, they performed six rounds of enrichment
and measured 828 million TF–DNA interactions [47].

Despite the advancements in high-throughput assays
to measure changes in binding affinity, the number of TF
(>1600 in humans) and GWAS SNP (>500,000) combi-
nations greatly exceeds the capacity of these techniques
[8,48,49]. Many computational approaches have imple-
mented position weight matrices (PWMs) and position fre-
quencymatrices (PFMs), which describe TF binding prefer-
ences, to identify SNVs that alter TF bindingmotifs. PWMs
and PFMs are typically generated from in vitro experimen-
tal data, such as mechanically induced trapping of molec-
ular interactions (MITOMI) [50], PBMs [37], SELEX-seq
[39], and B1H [41] and from chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) [51–53]. The de-
velopment of these in vitromethods has led to the develop-
ment of motif-based predictive models, such as SNP2TFBS
[54] and atSNP [55], which use PWMs from the JASPAR
[56] database to predict the impact of non-coding variants
in TF binding. These predictive models can integrate vari-
ants from databases, such as the 1000 Genomes Project
[57] and dbSNP [48], to make in silico calculations that
determine the disruption or formation of a TF binding site
(TFBS) compared to a reference genome [54,55]. Exam-
ples of other bioinformatics resources that aid in identify-
ing SNPs altering TFBS are sTRAP [58], motifbreakR [59],
Raven [60], rSNP-MAPPER [61], OncoCis [62], and Hap-
loReg [63]. However, models that rely solely on PWMs
may not be sufficient to predict changes in affinity accu-
rately.

Predictions using PWMs assume nucleotides con-
tribute to binding in an additive and independentmanner but
ignore sequence features such as dinucleotides, DNA shape,
and complex intracellular patterns [64–66]. Nishizaki
et al. [67] developed an SNP effect matrix pipeline
(SEMpl), a computational approach that considers data of
TF endogenous binding (ChIP-seq), chromatin accessibil-
ity (DNase-seq), and TF-binding patterns (PWMs) to pre-
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dict intracellular-binding patterns more accurately. SEMpl
significantly outperforms the traditional PWM models at
predicting changes in affinity by non-coding SNPs using in
vitro validation through EMSA [67]. However, the previ-
ously mentioned techniques are less effective at predicting
tissue-specific binding events altered by non-coding vari-
ants. Boytsov et al. [68] recently developed ANANAS-
TRA, an upgraded version of ADASTRA [69], a web server
that can accurately predict allele-specific binding events
of TFs in different cell types [68]. This program requires
inputs from four databases: allele-specific binding events
from GTRD (ChIP-seq data) [70], binding patterns from
HOCOMOCO (TF motif predictions) [71], a list of vari-
ants from dbSNP (rs-IDs) [48], and tissue-specific context
from the GTEx project (eQTL) [72].

Machine learning models, such as support vector ma-
chine (SVM) and deep learning-based convolutional neural
networks (CNN), have been widely used to predict changes
in TF binding due to SVMs [73–75]. VandenBosch et al.
[76] used ATAC-seq data to train a gapped k-mer SVM
(gkm-SVM) model to predict changes in TF binding to
all possible SNPs on 3773 human retinal CREs. Alterna-
tively, CNNs, such as DeepFun [77] and AgentBind [78],
are deep learning-based frameworks trained with ChIP-seq
and DNase-seq to accurately predict tissue and cell type-
specific TF differential binding because of non-coding vari-
ants. To further predict the functionality of non-coding
SNPs, Wang et al. [79] developed DeFine, a CNN that also
implements Hi-C data to map genes affected by risk vari-
ants while quantifying real-valued TF binding intensities.

3. Non-coding Variants in Gene Expression
Non-coding variants can impact cellular/organismal

phenotypes as a downstream effect of altering TF–DNA
binding by changing gene expression and the dysregula-
tion of gene regulatory networks (GRNs) (Fig. 1B). Gene
reporter assays are a popular method for quantifying the
impact of regulatory variants by measuring the promoter
and enhancer activity on a reporter gene [80,81]. Jiang
et al. [82] identified three novel regulatory SNVs from
195 conotruncal heart defect patients that impaired GATA6
binding at the promoter of TBX1, resulting in decreased ex-
pression as determined by a dual-luciferase reporter assay.
Many of the traditional enzyme-mediated gene reporter as-
says, such as luciferase [83] and β-galactosidase [84], are
effective at evaluating changes in expression caused by
non-coding variants but with a low-to-medium throughput.

Massively parallel reporter assays (MPRA) are an
emerging high-throughput technique that substitutes stan-
dard enzyme assays with mRNA expression detection [85].
A library of thousands of regulatory elements or genomic-
variant candidates is cloned into an expression vector with
unique barcodes that can be quantified through DNA and
RNA sequencing to determine the gene expression fold
change or through flow cytometry in the case of fluores-

cent proteins. Lu et al. [86] used MPRA to evaluate 3073
GWAS systemic lupus erythematosus (SLE)-risk variants
and observed allele-dependent enhancer activity in 16% of
the risk variants. Through this approach, they nominated
51 causal variants in 27 SLE-risk loci with allelic impact
on gene regulation. Another high-throughput assay to mea-
sure regulatory element activity is self-transcribing active
regulatory region sequencing (STARR-seq). In STARR-
seq, candidate CREs are cloned downstream of a minimal
promoter and an open reading frame, removing the need
to use barcodes by directly sequencing the transcribed ele-
ment [87]. Toropainen et al. [88] used a multiplex STARR-
seq assay to evaluate the enhancer activity of 34,344 vas-
cular disease trait GWAS variants and observed allele-
specific enhancer activity for 5711 SNPs. For example,
rs17293632:C>T was nominated as a causal variant in
smoothmuscle cells by creating anAP-1motif and reducing
the expression of SMAD3, a TF that has been extensively
characterized in smooth muscle cells of the vascular wall
[88]. Going a step further to evaluate regulatory SNVs in a
developing animal has occurred through the development of
a high-throughput enhancer-insertion mouse reporter assay
named enSERT, which uses CRISPR/Cas9-directed muta-
genesis to quantify the enhancer activity of multiple vari-
ants in developing mouse embryos through β-galactosidase
staining. Kvon et al. [89] developed this method and eval-
uated mutations on all nucleotides of ZRS (789 bp), a limp-
specific enhancer. They observed abnormal enhancer ac-
tivity from 71% of previously reported polydactyly-causal
variants, providing further insight into causality and molec-
ular mechanisms [89].

Experimental MPRA datasets have been implemented
to train predictive models to enhance the prediction of func-
tional non-coding variants. Yang et al. [90] developed
presence-only with an elastic net penalty (PO-EN), a semi-
supervised model that integrates MPRA data with epige-
netic features (chromatin accessibility, methylation, histone
modifications, etc.) to predict the regulatory effects of ge-
netic variants. The developers of PO-EN reported greater
accuracy at identifying GWAS SNPs with differential en-
hancer activity in a tissue- and cell-specific manner than
other deep-learning models. Dong et al. [91] developed
Score of Unified Regulatory Feature (SURF), a computa-
tional model that incorporatesMPRA data to Regulome DB
[92] functional genomics features (e.g., chromatin accessi-
bility, histone variants, and TFBS) to predict the effect of
variants on gene expression. SURF was tested in the Fifth
Critical Assessment of Genome Interpretation (CAGI5)
regulation saturation challenge. SURF outperformed other
models in predicting the effect of 17,500 SNPs in disease-
associated promoters and enhancers [91]. Movva et al. [93]
developed a CNN-based method that utilizes MPRA data to
predict and interpret the transcriptional regulatory activity
of non-coding variants, Deep RegulAtory GenOmic Neural
Network (MPRA-DragoNN). MPRA-DragoNN success-
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Fig. 1. Non-coding variants can alter transcription factor (TF)–DNA binding activity, transcriptional machinery recruitment,
and gene expression. (A) TFs bind to regulatory DNA (e.g., promoters and enhancers) and recruit transcriptional machinery to initiate
gene expression. (B) Non-coding variants can change TF–DNA binding affinities, altering transcriptional complex recruitment and gene
expression. Changes in TF–DNA binding affinities are represented by equilibrium arrows. Changes in gene expression are represented
by a black (decrease) and orange (increase) arrow.

fully predicted patterns in TF activity and gene expres-
sion events affected by reduced LDL cholesterol level-
associated variants from GWAS [93].

4. Non-coding Variants in CRE Interactions
For over 30 years, DNA looping has been used to

model how distal regulatory elements, such as enhancers,
are brought near promoters to regulate gene expression
(Fig. 2A) [94]. Advances in chromosome conformation
capture (3C) technologies, such as circular 3C (4C) and
3C carbon copy (5C), have led to a better understanding
of genome conformation, dynamics, and physical proxim-
ity between genomic elements [95–97]. These methods
rely on restriction enzyme digestion of crosslinked chro-
matin and ligation of proximal elements to determine spa-
tial proximity between genomic regions [98]. Coupled with

massively parallel DNA sequencing, 3C assays have fu-
eled widespread adoption and increased understanding of
the genome structure on varying scales [97]. The human
genome is organized in topologically associating domains
(TADs), which provide an additional level of gene regula-
tion by allowing distal CREs to interact with target promot-
ers [99]. Understanding long-range genomic interactions
is necessary to understand the potentially disruptive role of
CRE variants in human diseases (Fig. 2B). High-throughput
chromosome conformation capture (Hi-C) methods have
proven more effective at identifying functional variants
than mapping the nearest gene of GWAS single nucleotide
polymorphisms (SNPs) [100]. CREs are capable of long-
range interactions over one megabase (Mb) through DNA
looping, skipping several genes [15,101].
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Promoter-capture Hi-C (PCHi-C) measures the fre-
quency of genome-wide promoter interactions [102]. Or-
lando et al. [103] screened 19,023 promoter fragments to
identify non-coding driver SNVs that alter the colorectal
cancer (CRC) cell regulatory landscape. They identified a
recurrently mutated CRE that resulted in increased interac-
tions with theETV1 promoter and a significant upregulation
of ETV1, commonly overexpressed in CRC. Selvarajan et
al. [104] used PCHi-C to determine the effect of genome-
wide coronary artery disease (CAD)-associated non-coding
SNPs within liver-specific enhancers. They identified 1277
potential CAD-causal SNPs with allele-specific regulatory
activity and 621 target genes that may contribute to CAD
phenotypes (compared to only 138 with eQTL analysis).
They found PCHi-C to be a powerful technique for identi-
fying target genes affected by non-coding variants, outper-
forming previous methods such as expression quantitative
trait loci (eQTL) analysis.

Contrary to promoters, some enhancers have been
shown to regulate the expression of multiple genes [105].
As such, PCHi-C has been adapted to understand how the
enhancer-to-enhancer interactome is affected by genomic
variations. Madsen et al. [106] used an enhancer-capture
Hi-C (ECHi-C) capture array (library of 76,846 121nt RNA
probes) to study the effects of genomic variants on hu-
man mesenchymal stem cells (hMSC) differentiation to
adipocytes. Through this approach, they captured 17,235
putative active enhancers at 0, 1, and 10 days of adipocyte
differentiation and observed that most eQTL variants in-
crease enhancer interactomes. They found that the variant
rs41281051: T>C is associated with increased interactions
with the LAMB1 locus and decreased LAMB1 expression
in subcutaneous adipose tissue [106]. Hi-C library prepara-
tion followed by chromatin immunoprecipitation (HiChIP)
provides an additional layer of regulatory information than
PCHi-C by effectively mapping tissue-specific promoter–
enhancer interactions in different cell types [107]. Chan-
dra et al. [101] used H3K27ac (marks active enhancers)
HiChIP to evaluate cell-specific and genotype-dependent
effects of SNPs on various immune cell types. Most of
the variants had a tissue-specific impact on the promoter–
enhancer interactions, such as CD4+ T cells (rs8087912)
and natural killer cells (rs13379920), which exhibited a sig-
nificant decrease when compared tomonocytes, resulting in
a decreased expression of EPB41L3 and TM6SF1, respec-
tively.

There have been significant advances in experimental
approaches to understanding non-coding variant effects on
phenotypes. However, due to the overwhelming number of
identified GWAS SNPs in the human genome (>500,000),
prioritizing the variants to evaluate remains a challenge
[48]. Computational approaches, such as predictive models
and machine learning, can address this challenge and prior-
itize functional non-coding variants for validation. Meng
et al. [108] used Hi-C data from human embryonic stem

cells (hESC) to develop a deep learning model (Deep-
HiC) to predict the impact of SNPs on long-range chro-
matin interactions. Using ~8 million non-coding SNPs
from the 1000 Genomes Project [57], they were able to suc-
cessfully identify five osteoporosis-associated functional
variants (rs9533090, rs9594738, rs8001611, rs9533094,
and rs9533095) in an eQTL of TNSFS11 [108]. Com-
putational approaches have also been developed to iden-
tify cell-specific functions of non-coding variants. Yu et
al. [109] developed a Single-Nucleus Analysis Pipeline
for Hi-C (SnapHiC) to analyze 3471 neuropsychiatric
disorder-associated SNPs. They observed different inter-
actions for the same variants in different prefrontal cortical
cells. For example, two enhancers containing Alzheimer’s-
associated SNPs (rs112481437 and rs138137383) resulted
in astrocyte-specific loops to the APOE gene TSS [109].
Other computational approaches have constructed gene reg-
ulatory networks (GRNs) of GWAS SNPs from 3C tech-
niques (i.e., Hi-C andChIA-PET) to predict causal risk vari-
ants [110]. Gao et al. [111] developed the Annotation of
Regulatory Variants using Integrated Networks (ARVIN)
and identified over 1000 risk variants for seven autoimmune
diseases using disease-relevant GRNs for known causal
SNPs. Using ARVIN, they successfully predicted an aver-
age of 160 risk SNPs with a significant overlap of the eQTL
analysis [111].

5. Non-coding Variants in
Post-transcriptional Regulation

Non-coding variants can occur within the 5′ and 3′
untranslated regions (UTRs) and introns, impeding poten-
tially altering mRNA processing (e.g., splicing, polyadeny-
lation and cleavage, and ribosome binding and assem-
bly) (Fig. 3A,B). Non-coding SNVs can change the
binding affinity between RNA-binding proteins (RBPs)
and pre-mRNA, impacting on phenotypes through post-
transcriptional dysregulation [112]. Krooss et al. [113] de-
scribed the pathomechanism of a non-GWAS SNP found in
four families with moderate to severe hemophilia B. The
variant created a U1snRNP binding site in the 3′ UTR re-
gion of the coagulation factor 9 (F9) mRNA (c.2545A>G).
The binding of U1snRNP inhibited polyadenylation and
proper 3′-end processing, which resulted in mRNA degra-
dation and reduced expression of F9 [113]. Bauwens et
al. [114] identified eight non-GWAS variants in a group
of German and Belgian patients diagnosed with ABCA4-
associated diseases. The variants that occurred within
ABCA4 introns 2, 7, 21, 30, and 36 resulted in eight
pathogenic splice variants determined by minigene splic-
ing assays, a method that clones variant sequences into ex-
pression vectors and identifies them through reverse tran-
scription polymerase chain reaction (RT-PCR) [114]. How-
ever, both gene expression and splicing present tissue-
and cell-specific patterns, making it challenging to detect
functional variants. Bronstein et al. [115] implemented
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Fig. 2. Non-coding variants can alter Cis-regulatory element (CRE) interactome. (A) TFs facilitate promoter–enhancer interactions
by forming topologically associating domains (TADs) to regulate gene expression. (B) Non-coding variants can alter TAD boundaries and
CRE interactions that regulate gene expression. Changes in gene expression are represented by an orange (increase) and black (decrease)
arrow.

whole-genome sequencing (WGS) and RNA-seq alongside
patient-induced pluripotent stem cell (iPSC) transcriptome
analysis to detect tissue-specific splicing patterns caused
by non-coding variants. They cultured iPSC-derived reti-
nal organoids from a family with inherited retinal degen-
erations and used RNA-seq to identify a novel pathogenic
splice variant (chr8:g.87618576G>A) in the CNGB3 gene
caused by an intronic SNV [115]. WGS and iPSC from
pedigrees provided an innovative alternative for the func-
tional analysis of genomic variants where no prior knowl-
edge or association had been established.

Variants within the 5′ UTR of a gene can affect pro-
tein translation by interfering with ribosome scanning and
assembly. Zhou et al. [116] screened 14 genetically undiag-
nosed Saethre–Chotzen syndrome (SCS) patients and iden-
tified the first (non-GWAS) SCS-associated non-coding
SNV (c.-263C>A and c.-255G>A) within TWIST1. These
variants created translation start sites within the 5′ UTR
of the TWIST1 mRNA, which decreased translation of the
main open reading frame (mORF), causing a more than
75% reduction in TWIST1, as determined by gene reporter

assays [116]. Lim et al. [117] developed Pooled full-length
UTR Multiplex Assay on Gene Expression (PLUMAGE),
a high-throughput method that clones a luciferase gene
and barcode downstream of the 5′ UTR variant to quan-
tify mRNA transcription and translation efficiency in par-
allel. Using PLUMAGE on tissues from prostate cancer
patients, they identified 326 mutations within the 5′ UTRs,
of which 35% (114/326) was associated with altered tran-
scription and translation [117]. Griesemer et al. [118] de-
veloped aMassively Parallel Reporter Assay for the 3′ UTR
(MPRAu), a high throughput approach to quantify allelic
expression imbalances in 3′ UTR variants in a cell-specific
manner [118]. Through this approach, they tested 12,173
3′ UTR variants and identified 2368 variants that altered
transcription levels across six cell types (HEK293, HEPG2,
HMEC, K562, GM12878, and SK-N-SH).

With the overwhelming number of non-coding vari-
ants, computational approaches have been developed to
identify and prioritize functional variants that occur in
mRNA untranslated regions. Chen et al. [119] developed
a computational pipeline coupled with experimental val-
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Fig. 3. Non-coding variants can disrupt mRNA processing and translation initiation. (A) mRNA interactions with RNA-binding
proteins and ribosomes are needed for processing (e.g., splicing and adenylation) and translation initiation, respectively. (B) Non-coding
variants can alter splice and polyadenylation sites needed for stable mRNA processing and expression of functional protein isoforms.
mRNA variants can create translation sites that compete with the main open reading frame (mORF). PAS, polyadenylation sites.

idation to identify functional variants within polyadeny-
lation sites (PAS). By implementing four resources of
human polyadenylation maps and two disease-associated
databases, they identified 68 pathogenic variants within
PAS that were validated using amodified luciferase reporter
vector (mpCHECK2) designed to evaluate polyadenylation
in gene expression [119]. Paggi et al. [120] developed
a deep learning-based computational method to predict
mRNA splicing points known as the Long Short-termmem-
ory network Branchpoint Retriever (LaBranchoR). LaBran-
choR predictions identified 106 pathogenic variants af-
fecting mRNA splicing, showing a substantial overlap of
pathogenic variants fromClinVar and the HumanGeneMu-
tation Database (HGMD) [120]. In contrast, Sample et al.
[121] developed Optimus 5-Prime, a CNN trained on data
from polysome profiling and RNA-seq, to predict the ef-
fect of 5′ UTR variants on ribosomal loading. They were
able to predict ribosome loading for over 40,000 variants
and were able to identify 45 functional disease-associated
SNPs in the 5′ UTR [121].

6. Future Directions and Author
Recommendations

Technological advances and reduced costs in DNA
sequencing have resulted in an ever-increasing number of
disease/trait-associated variants. This has resulted in a
need to develop innovative computational and experimen-
tal strategies to determine the role and causal mechanisms
of non-coding variants in human diseases and quantita-
tive traits. The first challenge is to select or prioritize
from the existing GWAS variants (>500,000). Our group
and others have implemented computational approaches to
prioritize variants based on a particular disease, gene tar-
get, or protein of interest (TFs or RBPs) [33,47,86,103].
We recommend incorporating multi-omics and functional
genomics datasets (genomic, transcriptomic, epigenomic,
etc.), which can improve the predictive power of the com-
putational models to identify variants with a temporal- or
tissue-specific impact [68,91,111,121,122]. In our previ-
ous work on cardiac TFs, we implemented predictive mod-
els (PWM- and SVM-based) to prioritize cardiovascular
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Table 1. Summary of experimental methods to identify non-coding functional variants.
Method Throughput Detection Cell- and

tissue-
specific

Experiment Ref

CRE-
interactome

PCHi-C High Promoter-CRE interactome, target gene Yes In vivo (cell line) [103,104]
ECHi-C High Enhancer-CRE interactome Yes In vivo (cell line) [106]
HiChIP High Cell-type CRE interactome Yes In vivo (cell line) [101]

TF–DNA
binding

BET-seq High Binding free energy No In vitro [43]
STAMMP High Binding affinity No In vitro [44]
HiP-FA High Binding affinity and specificity No In vitro [45]

CASCADE High Cofactor recruitment by TFs Yes In vivo (cell line) [46]
SNP-SELEX High Binding affinity No In vitro [47]

Gene expres-
sion

Luciferase reporter assay Low Bioluminescence Yes In vivo (cell line) [82]
MPRA High RNA-seq/flow cytometry Yes In vivo (cell line) [86]

STARR-seq High RNA-seq Yes In vitro (cell) [88]
enSERT High lacZ staining Yes In vivo [89]

Post-trans-
criptional
regulation

Luciferase reporter assay
Low Bioluminescence No In vivo [116]
Low Bioluminescence No In vitro [113]

Minigene splicing assays Low RNA-seq No In vitro (from patients) [114]
Patient iPSC WGS High RNA-seq Yes In vivo [115]

MPRAu High RNA-seq Yes In vitro (cells) [118]
Plumage High RNA-seq and bioluminescence Yes In vitro [117]

PCHi-C, promoter-capture Hi-C; ECHi-C, enhancer-capture Hi-C; HiChIP, Hi-C library preparation followed by chromatin immunoprecipita-
tion; BET-seq, Binding Energy Topography by sequencing; STAMMP, simultaneous transcription factor affinity measurements via microflu-
idic protein arrays; HiP-FA, high-performance fluorescence anisotropy; CASCADE, Customizable Approach to Survey Complex Assembly at
DNA Elements; MPRA, massively parallel reporter assays; STARR-seq, self-transcribing active regulatory region sequencing; iPSC, induced
pluripotent stem cell; WGS, whole-genome sequencing; MPRAu, Massively Parallel Reporter Assay for 3′ UTR.

disease (CVD)-associated SNVs from the GWAS catalog
[33,75]. Since our work has focused on CVD-associated
SNVs, we have trained our predictive models with cardiac
TF ChIP-seq data from human-induced cardiomyocytes
(hiPSC-CM). We have also prioritized genomic variants
mapped in regions active in cardiac tissue or during heart
development by incorporating ChIP-seq and DNase I hy-
persensitivity genomic footprints (DGF) from cardiac tis-
sue. Our recommendation and most strategies reviewed
here rely on mining public databases or previous knowl-
edge. When these options are unavailable, pedigree WGS
combined with patient-derived iPSCs and transcriptomics
of differentiated cells provides an alternative to identify de
novo variants in specific cases [113–115,123–126].

This manuscript aimed to discuss the vast advance-
ments in functional assays to identify causal variants for
multiple human diseases and propel collaborations to de-
scribe their complete genetic mechanisms. In the future, we
believe that these computational and experimental methods
will be combined to achieve a genome-wide understanding
of the role of SNV in human diseases. For instance, 97%
of congenital heart disease (CHD)-associated variants have
been mapped within the non-coding genome, including in-
tronic, intergenic, UTRs, and regulatory regions [127–132].
Elucidating the genome-wide impact of these non-coding
variants in complex biological systems, from human car-

diomyocytes to CHD patients, will require a combination
of methods to assay all levels of genetic regulation. Thus,
a combined analysis of high-throughput technology is re-
quired to understand the impact of CHD-associated SNVs
on chromatin structure (e.g., HiChIP [101]), TF–DNA
and TF–cofactor interactions (e.g., CASCADE [46] and
SNP-SELEX [47]), gene expression (e.g., MPRA [86] and
STARR-seq [88]), RNA processing (e.g., MPRAu [118]),
and translation (e.g., PLUMAGE [117]). The findings gen-
erated by such an integrative approach can produce crucial
data needed to train effective models, which prioritize the
functional impact of genomic variants that can be scaled
to multiple diseases. Going further, knowing the causal
mechanism of pathogenic SNVs is crucial for treating or
even curing diseases through gene editing by CRISPR-
based methods [133–135].

7. Concluding Remarks
Recent advancements have allowed us to understand

and identify functional non-coding variants that can play
a role in human diseases. Although these mutations oc-
cur outside the protein-coding genome, they can impact on
phenotype by altering how regulatory proteins, such as TFs
and RBP, interact with CREs and dysregulate gene expres-
sion. Non-coding variants can impact different stages of
gene regulation by affecting (i) chromatin interactions (pro-
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Table 2. Summary of computational methods to predict non-coding functional variants.
Program Type Training data Prediction Cell- and tissue-specific Ref

CRE interactions DeepHiC Deep learning Hi-C Long-range chromatin interactions Yes [108]
SnapHiC Computational pipeline Hi-C CRE interactions Yes [109]
Arvin Network-based predictive model Hi-C, ChIA-PET GRNs Yes [111]

TF–DNA binding atSNP Motif-based predictive model PWMs TF binding No [55]
SEMpl Computational pipeline ChIP-seq, DNase-seq, PWMs TF binding No [67]

ANANASTRA Computational pipeline ChIP-seq, PWMs, rs-IDs, eQTL TF binding Yes [68]
deltaSVM SVM ATAC-seq TF binding Yes [74]

DeepFun/AgentBind Deep neural networks ChIP-seq, DNase-seq TF binding Yes [77,78]
DeFine CNN ChIP-seq, Hi-C TF binding, mapped gene Yes [79]

Gene expression PO-EN Semi-supervised model MPRA Enhancer activity Yes [90]
SURF Deep learning DNase-seq, ChIP-seq, MPRA Gene expression, TF binding Yes [91]

MPRA-DragoNN CNN MPRA Gene expression Yes [93]
Post-transcriptional regulation Variant PAS Pipeline Computational pipeline Polyadenylation maps PAS variants No [119]

LaBranchoR Deep learning Splicing branchpoints mRNA splicing points No [120]
Optimus 5-prime CNN Polysome profiling, RNA-seq Ribosome loading, gene expression No [121]

SnapHiC, Single-NucleusAnalysis Pipeline for Hi-C; SEMpl, SNP effect matrix pipeline; PO-EN, presence-onlywith elastic net penalty; SURF, Score of Unified Regulatory Feature; PAS, polyadenylation
sites; SVM, support vector machine; CNN, convolutional neural networks; PWMs, position weight matrices.
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moter and enhancer interactomes), (ii) TF affinity for their
binding sites, (iii) transcriptional activity of target genes,
(iv) post-transcriptional regulation (mRNA stability and
splicing), and (v) translation initiation (ribosome recogni-
tion).

New methods have been developed to perform high-
throughput functional evaluations of variants to determine
causal mechanisms linked to human diseases (Table 1, Ref.
[43–47,82,86,88,89,101,103,104,106,113–118]). Changes
in chromatin interaction maps, TF–DNA binding affinity,
gene expression, and translation efficiency provide evi-
dence to support the role of many disease-associated vari-
ants. However, with the overwhelming and increasing
number of variants in the non-coding genome, identify-
ing functional variants remains challenging. Experimen-
tal data has been implemented to design computational ap-
proaches to predict and identify functional pathogenic vari-
ants. Computational pipelines and machine learning tools
(SVMs and CNNs) can decipher tissue- and cell-specific
patterns to predict variants with functional activity and pri-
oritize in vitro validation (Table 2, Ref. [55,67,68,74,77–
79,90,91,93,108,109,111,119–121]).

Despite all the progress in understanding the role
of disease-associated variants within the non-coding reg-
ulatory genome, determining causality remains challeng-
ing. We hypothesize that the number of regulatory variants
will continue to increase significantly while the molecu-
lar mechanisms of most reported variants remain unknown.
The increased throughput and ability to functionally vali-
date disease-associated non-coding variants will contribute
to the rapid development of diagnostic methods and treat-
ments for these diseases.

Author Contributions
EGPM conceptualized the work, wrote of the origi-

nal draft, and reviewed the final manuscript. JARM con-
ceptualized the work and reviewed and edited the final
manuscript. Both authors have participated sufficiently in
the work to take public responsibility for appropriate por-
tions of the content and agreed to be accountable for all
aspects of the work in ensuring that questions related to
its accuracy or integrity. Both authors read and approved
the final manuscript. Both authors contributed to editorial
changes in the manuscript.

Ethics Approval and Consent to Participate
Not applicable.

Acknowledgment
We would like to give special thanks to Yamil

Miranda-Negron for his support during the prepara-
tion of the manuscript and revisions. We also thank
Diego Pomales-Matos, Leandro Sanabria-Alberto, Ale-
jandro Rivera-Madera, Jean L. Messon-Bird, Adriana C.

Barreiro-Rosario, and Jeancarlos Rivera-Del Valle for their
support during the preparation of the manuscript.

Funding
This project was supported by NIH-SC1GM127231.

EGPM was funded by the NIH RISE Fellowship
(5R25GM061151-20) and the NSF BioXFEL Fellow-
ship (STC-1231306).

Conflict of Interest
The authors declare no conflict of interest.

References
[1] Saenko VA, Rogounovitch TI. Genetic Polymorphism Predis-

posing to Differentiated Thyroid Cancer: A Review of Major
Findings of the Genome-Wide Association Studies. Endocrinol-
ogy and Metabolism (Seoul, Korea). 2018; 33: 164–174.

[2] Taft RJ, Pheasant M, Mattick JS. The relationship between non-
protein-coding DNA and eukaryotic complexity. BioEssays:
News and Reviews in Molecular, Cellular and Developmental
Biology. 2007; 29: 288–299.

[3] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC,
Baldwin J, et al. Initial sequencing and analysis of the human
genome International HumanGenome Sequencing Consortium*
The Sanger Centre: Beijing Genomics Institute/Human Genome
Center. Nature. 2001; 409, 860–921.

[4] Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV,
Mikheenko A, et al. The complete sequence of a human genome.
Science (New York, N.Y.). 2022; 376: 44–53.

[5] Lee PH, Lee C, Li X, Wee B, Dwivedi T, Daly M. Principles
and methods of in-silico prioritization of non-coding regulatory
variants. Human Genetics. 2018; 137: 15–30.

[6] Zhang F, Lupski JR. Non-coding genetic variants in human dis-
ease. Human Molecular Genetics. 2015; 24: R102–R110.

[7] Deplancke B, Alpern D, Gardeux V. The Genetics of Transcrip-
tion Factor DNA Binding Variation. Cell, 2016; 166: 538–554.

[8] Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst
J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of
published genome-wide association studies, targeted arrays and
summary statistics 2019. Nucleic Acids Research. 2019; 47:
D1005–D1012.

[9] Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E,
Wang H, et al. Systematic localization of common disease-
associated variation in regulatory DNA. Science (New York,
N.Y.). 2012; 337: 1190–1195.

[10] Vierstra J, Lazar J, Sandstrom R, Halow J, Lee K, Bates D, et al.
Global reference mapping of human transcription factor foot-
prints. Nature. 2020; 583: 729–736.

[11] Elkon R, Agami R. Characterization of noncoding regulatory
DNA in the human genome. Nature Biotechnology. 2017; 35:
732–746.

[12] Cremer M, Cremer T. Nuclear compartmentalization, dynam-
ics, and function of regulatory DNA sequences. Genes, Chro-
mosomes & Cancer. 2019; 58: 427–436.

[13] Haberle V, Stark A. Eukaryotic core promoters and the func-
tional basis of transcription initiation. Nature Reviews. Molecu-
lar Cell Biology. 2018; 19: 621–637.

[14] Jindal GA, Farley EK. Enhancer grammar in development, evo-
lution, and disease: dependencies and interplay. Developmental
Cell. 2021; 56: 575–587.

[15] Meddens CA, van der List ACJ, Nieuwenhuis EES, Mokry M.
Non-coding DNA in IBD: from sequence variation in DNA reg-

10

https://www.imrpress.com


ulatory elements to novel therapeutic potential. Gut. 2019; 68:
928–941.

[16] Orkin SH, Kazazian HH, Jr, Antonarakis SE, Goff SC, Boehm
CD, Sexton JP, et al. Linkage of beta-thalassaemiamutations and
beta-globin gene polymorphisms with DNA polymorphisms in
human beta-globin gene cluster. Nature. 1982; 296: 627–631.

[17] Al Zadjali S, Wali Y, Al Lawatiya F, Gravell D, Alkindi S, Al
Falahi K, et al. The β-globin promoter -71 C>T mutation is a
β+ thalassemic allele. European Journal of Haematology. 2011;
87: 457–460.

[18] Gordon CT, Fox VJ, Najdovska S, Perkins AC. C/EBPdelta and
C/EBPgamma bind the CCAAT-box in the human beta-globin
promoter and modulate the activity of the CACC-box binding
protein, EKLF. Biochimica et Biophysica Acta. 2005; 1729: 74–
80.

[19] van der Lee R, Correard S, Wasserman WW. Deregulated Reg-
ulators: Disease-Causing cis Variants in Transcription Factor
Genes. Trends in Genetics: TIG. 2020; 36: 523–539.

[20] Inukai S, Kock KH, Bulyk ML. Transcription factor-DNA bind-
ing: beyond binding site motifs. Current Opinion in Genetics &
Development. 2017; 43: 110–119.

[21] Song W, Kir S, Hong S, Hu Y, Wang X, Binari R, et al. Tumor-
Derived Ligands Trigger Tumor Growth and Host Wasting via
Differential MEK Activation. Developmental Cell. 2019; 48:
277–286.e6.

[22] Lee D, Kapoor A, Safi A, Song L, Halushka MK, Crawford
GE, et al. Human cardiac cis-regulatory elements, their cog-
nate transcription factors, and regulatory DNA sequence vari-
ants. Genome Research. 2018; 28: 1577–1588.

[23] Rodríguez-Martínez JA, Reinke AW, Bhimsaria D, Keating AE,
Ansari AZ. Combinatorial bZIP dimers display complex DNA-
binding specificity landscapes. eLife. 2017; 6: e19272.

[24] Geertz M, Maerkl SJ. Experimental strategies for studying tran-
scription factor-DNA binding specificities. Briefings in Func-
tional Genomics. 2010; 9: 362–373.

[25] Wang Z, HeW, Tang J, Guo F. Identification of Highest-Affinity
Binding Sites of Yeast Transcription Factor Families. Journal of
Chemical Information and Modeling. 2020; 60: 1876–1883.

[26] Martha L. Bulyk AJ. Marian Walhout, Chapter 4 - Gene Reg-
ulatory Networks. In: Marian Walhout AJ, Marc Vidal, Job
Dekker, eds. Handbook of Systems Biology (pp. 65–88). Aca-
demic Press: Cambridge, MA, USA. 2013.

[27] Zhao J, Li D, Seo J, Allen AS, Gordân R. Quantifying the Impact
of Non-coding Variants on Transcription Factor-DNA Binding.
Research in Computational Molecular Biology. 2017; 10229:
336–352.

[28] Shrestha S, Sewell JA, Santoso CS, Forchielli E, Carrasco Pro
S, Martinez M, et al. Discovering human transcription factor
physical interactions with genetic variants, novel DNA motifs,
and repetitive elements using enhanced yeast one-hybrid assays.
Genome Research. 2019; 29: 1533–1544.

[29] WeirauchMT, Yang A, AlbuM, Cote AG,Montenegro-Montero
A, Drewe P, et al. Determination and inference of eukaryotic
transcription factor sequence specificity. Cell. 2014; 158: 1431–
1443.

[30] Khurana E, Fu Y, Chakravarty D, Demichelis F, Rubin MA,
GersteinM. Role of non-coding sequence variants in cancer. Na-
ture Reviews. Genetics. 2016; 17: 93–108.

[31] Le ATH, Krylova SM, Krylov SN. Determination of the Equi-
librium Constant and Rate Constant of Protein-Oligonucleotide
Complex Dissociation under the Conditions of Ideal-Filter Cap-
illary Electrophoresis. Analytical Chemistry. 2019; 91: 8532–
8539.

[32] Hellman LM, Fried MG. Electrophoretic mobility shift assay
(EMSA) for detecting protein-nucleic acid interactions. Nature
Protocols. 2007; 2: 1849–1861.

[33] Peña-Martínez EG, Rivera-Madera A, Pomales-Matos DA,
Sanabria-Alberto L, Rosario-Cañuelas BM, Rodríguez-Ríos JM,
et al. Disease-associated non-coding variants alter NKX2-5
DNA-binding affinity. Biochimica et Biophysica Acta. Gene
Regulatory Mechanisms. 2023; 1866: 194906.

[34] Hou G, Harley ITW, Lu X, Zhou T, Xu N, Yao C, et al. SLE non-
coding genetic risk variant determines the epigenetic dysfunc-
tion of an immune cell specific enhancer that controls disease-
critical microRNA expression. Nature Communications. 2021;
12: 135.

[35] Christensen AH, Andersen CB, Wassilew K, Svendsen JH,
Bundgaard H, Brand SM, et al. Rare non-coding Desmoglein-
2 variant contributes to Arrhythmogenic right ventricular car-
diomyopathy. Journal of Molecular and Cellular Cardiology.
2019; 131: 164–170.

[36] Stormo GD, Zhao Y. Determining the specificity of protein-
DNA interactions. Nature Reviews. Genetics. 2010; 11: 751–
760.

[37] Berger MF, Philippakis AA, Qureshi AM, He FS, Estep PW,
3rd, Bulyk ML. Compact, universal DNA microarrays to com-
prehensively determine transcription-factor binding site speci-
ficities. Nature Biotechnology. 2006; 24: 1429–1435.

[38] Fordyce PM, Gerber D, Tran D, Zheng J, Li H, DeRisi JL, et
al. De novo identification and biophysical characterization of
transcription-factor binding sites with microfluidic affinity anal-
ysis. Nature Biotechnology. 2010; 28: 970–975.

[39] Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I, et
al. Cofactor binding evokes latent differences in DNA binding
specificity between Hox proteins. Cell. 2011; 147: 1270–1282.

[40] Jolma A, Yan J, Whitington T, Toivonen J, Nitta KR, Rastas P,
et al. DNA-binding specificities of human transcription factors.
Cell. 2013; 152: 327–339.

[41] Noyes MB, Meng X, Wakabayashi A, Sinha S, Brodsky MH,
Wolfe SA. A systematic characterization of factors that regulate
Drosophila segmentation via a bacterial one-hybrid system. Nu-
cleic Acids Research. 2008; 36: 2547–2560.

[42] Berenson A, Fuxman Bass JI. Enhanced Yeast One-Hybrid As-
says to Study Protein-DNA Interactions. Methods in Molecular
Biology (Clifton, N.J.). 2023; 2599: 11–20.

[43] Le DD, Shimko TC, Aditham AK, Keys AM, Longwell SA,
Orenstein Y, et al. Comprehensive, high-resolution binding en-
ergy landscapes reveal context dependencies of transcription
factor binding. Proceedings of the National Academy of Sci-
ences of the United States of America. 2018; 115: E3702–
E3711.

[44] Aditham AK, Markin CJ, Mokhtari DA, DelRosso N, Fordyce
PM. High-Throughput Affinity Measurements of Transcription
Factor and DNA Mutations Reveal Affinity and Specificity De-
terminants. Cell Systems. 2021; 12: 112–127.e11.

[45] Jung C, Bandilla P, von Reutern M, Schnepf M, Rieder S, Un-
nerstall U, et al. True equilibrium measurement of transcription
factor-DNA binding affinities using automated polarization mi-
croscopy. Nature Communications. 2018; 9: 1605.

[46] Bray D, Hook H, Zhao R, Keenan JL, Penvose A, Osayame Y, et
al. CASCADE: high-throughput characterization of regulatory
complex binding altered by non-coding variants. Cell Genomics.
2022; 2: 100098.

[47] Yan J, Qiu Y, Ribeiro Dos Santos AM, Yin Y, Li YE, Vinckier
N, et al. Systematic analysis of binding of transcription factors
to noncoding variants. Nature. 2021; 591: 147–151.

[48] Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigiel-
ski EM, et al. dbSNP: the NCBI database of genetic variation.
Nucleic Acids Research. 2001; 29: 308–311.

[49] Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, AlbuM, et
al. The Human Transcription Factors. Cell. 2018; 172: 650–665.

[50] Maerkl SJ, Quake SR. A systems approach to measuring the

11

https://www.imrpress.com


binding energy landscapes of transcription factors. Science
(New York, N.Y.). 2007; 315: 233–237.

[51] Ambrosini G, Groux R, Bucher P. PWMScan: a fast tool for
scanning entire genomes with a position-specific weight matrix.
Bioinformatics (Oxford, England). 2018; 34: 2483–2484.

[52] Stormo GD. Modeling the specificity of protein-DNA interac-
tions. Quantitative Biology. 2013; 1: 115–130.

[53] Orenstein Y, Shamir R. A comparative analysis of transcription
factor binding models learned from PBM, HT-SELEX and ChIP
data. Nucleic Acids Research. 2014; 42: e63.

[54] Kumar S, Ambrosini G, Bucher P. SNP2TFBS - a database of
regulatory SNPs affecting predicted transcription factor binding
site affinity. Nucleic Acids Research. 2017; 45: D139–D144.

[55] Shin S, Hudson R, Harrison C, Craven M, Keleş S. atSNP
Search: a web resource for statistically evaluating influence of
human genetic variation on transcription factor binding. Bioin-
formatics (Oxford, England). 2019; 35: 2657–2659.

[56] Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang
X, Richmond PA, et al. JASPAR 2020: update of the open-
access database of transcription factor binding profiles. Nucleic
Acids Research. 2020; 48: D87–D92.

[57] Devuyst O. The 1000 Genomes Project: Welcome to a New
World. Peritoneal Dialysis International: Journal of the Inter-
national Society for Peritoneal Dialysis. 2015; 35: 676–677.

[58] Thomas-Chollier M, Hufton A, Heinig M, O’Keeffe S, Masri
NE, Roider HG, et al. Transcription factor binding predictions
using TRAP for the analysis of ChIP-seq data and regulatory
SNPs. Nature Protocols. 2011; 6: 1860–1869.

[59] Coetzee SG, Coetzee GA, Hazelett DJ. motifbreakR: an
R/Bioconductor package for predicting variant effects at tran-
scription factor binding sites. Bioinformatics (Oxford, England).
2015; 31: 3847–3849.

[60] Andersen MC, Engström PG, Lithwick S, Arenillas D, Eriksson
P, Lenhard B, et al. In silico detection of sequence variations
modifying transcriptional regulation. PLoS Computational Bi-
ology. 2008; 4: e5.

[61] Riva A. Large-scale computational identification of regulatory
SNPs with rSNP-MAPPER. BMC Genomics. 2012; 13: S7.

[62] Perera D, Chacon D, Thoms JAI, Poulos RC, Shlien A, Beck D,
et al. OncoCis: annotation of cis-regulatory mutations in cancer.
Genome Biology. 2014; 15: 485.

[63] Ward LD, KellisM. HaploReg v4: systematic mining of putative
causal variants, cell types, regulators and target genes for human
complex traits and disease. Nucleic Acids Research. 2016; 44:
D877–D881.

[64] Siddharthan R. Dinucleotide weight matrices for predicting tran-
scription factor binding sites: generalizing the position weight
matrix. PLoS ONE. 2010; 5: e9722.

[65] Tomovic A, Oakeley EJ. Position dependencies in transcription
factor binding sites. Bioinformatics (Oxford, England). 2007;
23: 933–941.

[66] Bulyk ML, Johnson PLF, Church GM. Nucleotides of transcrip-
tion factor binding sites exert interdependent effects on the bind-
ing affinities of transcription factors. Nucleic Acids Research.
2002; 30: 1255–1261.

[67] Nishizaki SS, Ng N, Dong S, Porter RS, Morterud C, Williams
C, et al. Predicting the effects of SNPs on transcription factor
binding affinity. Bioinformatics (Oxford, England). 2020; 36:
364–372.

[68] Boytsov A, Abramov S, Aiusheeva AZ, Kasianova AM, Baulin
E, Kuznetsov IA, et al. ANANASTRA: annotation and enrich-
ment analysis of allele-specific transcription factor binding at
SNPs. Nucleic Acids Research. 2022; 50: W51–W56.

[69] Abramov S, Boytsov A, Bykova D, Penzar DD, Yevshin I,
Kolmykov SK, et al. Landscape of allele-specific transcription
factor binding in the human genome. Nature Communications.

2021; 12: 2751.
[70] Kolmykov S, Yevshin I, Kulyashov M, Sharipov R, Kondrakhin

Y, Makeev VJ, et al. GTRD: an integrated view of transcription
regulation. Nucleic Acids Research. 2021; 49: D104–D111.

[71] Kulakovskiy IV, Vorontsov IE, Yevshin IS, Sharipov RN, Fe-
dorova AD, Rumynskiy EI, et al. HOCOMOCO: towards a com-
plete collection of transcription factor bindingmodels for human
and mouse via large-scale ChIP-Seq analysis. Nucleic Acids Re-
search. 2018; 46: D252–D259.

[72] GTEx Consortium. The Genotype-Tissue Expression (GTEx)
project. Nature Genetics. 2013; 45: 580–585.

[73] Quan L, Mei J, He R, Sun X, Nie L, Li K, et al. Quantifying
Intensities of Transcription Factor-DNA Binding by Learning
From an Ensemble of Protein Binding Microarrays. IEEE Jour-
nal of Biomedical andHealth Informatics. 2021; 25: 2811–2819.

[74] Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion
AS, et al. A method to predict the impact of regulatory variants
from DNA sequence. Nature Genetics. 2015; 47: 955–961.

[75] Peña-Martínez EG, Pomales-Matos DA, Rivera-Madera A,
Messon-Bird JL, Medina-Feliciano JG, Sanabria-Alberto L, et
al. Prioritizing cardiovascular disease-associated variants alter-
ing NKX2-5 and TBX5 binding through an integrative compu-
tational approach. The Journal of Biological Chemistry. 2023;
299: 105423.

[76] VandenBosch LS, Luu K, Timms AE, Challam S,WuY, Lee AY,
et al. Machine Learning Prediction of Non-Coding Variant Im-
pact in Human Retinal cis-Regulatory Elements. Translational
Vision Science & Technology. 2022; 11: 16.

[77] Pei G, Hu R, Jia P, Zhao Z. DeepFun: a deep learning sequence-
based model to decipher non-coding variant effect in a tissue-
and cell type-specific manner. Nucleic Acids Research. 2021;
49: W131–W139.

[78] Zheng A, Lamkin M, Zhao H, Wu C, Su H, Gymrek M. Deep
neural networks identify sequence context features predictive of
transcription factor binding. Nature Machine Intelligence. 2021;
3: 172–180.

[79] Wang M, Tai C, E W, Wei L. DeFine: deep convolutional neural
networks accurately quantify intensities of transcription factor-
DNA binding and facilitate evaluation of functional non-coding
variants. Nucleic Acids Research. 2018; 46: e69.

[80] Lenhard B, Sandelin A, Carninci P. Metazoan promoters:
emerging characteristics and insights into transcriptional regu-
lation. Nature Reviews. Genetics. 2012; 13: 233–245.

[81] Gasperini M, Tome JM, Shendure J. Towards a comprehensive
catalogue of validated and target-linked human enhancers. Na-
ture Reviews. Genetics. 2020; 21: 292–310.

[82] Jiang X, Li T, Liu S, Fu Q, Li F, Chen S, et al. Variants in a
cis-regulatory element of TBX1 in conotruncal heart defect pa-
tients impair GATA6-mediated transactivation. Orphanet Jour-
nal of Rare Diseases. 2021; 16: 334.

[83] Smale ST. Luciferase assay. Cold Spring Harbor Protocols.
2010; 2010: pdb.prot5421.

[84] Smale ST. Beta-galactosidase assay. Cold Spring Harbor Proto-
cols. 2010; 2010: pdb.prot5423.

[85] Melnikov A,Murugan A, Zhang X, Tesileanu T,Wang L, Rogov
P, et al. Systematic dissection and optimization of inducible en-
hancers in human cells using a massively parallel reporter assay.
Nature Biotechnology. 2012; 30: 271–277.

[86] Lu X, Chen X, Forney C, Donmez O, Miller D, Parameswaran
S, et al. Global discovery of lupus genetic risk variant allelic
enhancer activity. Nature Communications. 2021; 12: 1611.

[87] Lee D, Shi M, Moran J, Wall M, Zhang J, Liu J, et al. STAR-
RPeaker: uniform processing and accurate identification of
STARR-seq active regions. Genome Biology. 2020; 21: 298.

[88] Toropainen A, Stolze LK, Örd T, Whalen MB, Torrell PM, Link
VM, et al. Functional noncoding SNPs in human endothelial

12

https://www.imrpress.com


cells fine-map vascular trait associations. Genome Research.
2022; 32: 409–424.

[89] Kvon EZ, Zhu Y, Kelman G, Novak CS, Plajzer-Frick I, KatoM,
et al. Comprehensive In Vivo Interrogation Reveals Phenotypic
Impact of Human Enhancer Variants. Cell. 2020; 180: 1262–
1271.e15.

[90] Yang Z, Wang C, Erjavec S, Petukhova L, Christiano A, Ionita-
Laza I. A semi-supervised model to predict regulatory effects
of genetic variants at single nucleotide resolution using mas-
sively parallel reporter assays. Bioinformatics (Oxford, Eng-
land). 2021; 37: 1953–1962.

[91] Dong S, Boyle AP. Predicting functional variants in enhancer
and promoter elements using RegulomeDB. Human Mutation.
2019; 40: 1292–1298.

[92] Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA,
Kasowski M, et al. Annotation of functional variation in per-
sonal genomes using RegulomeDB. Genome Research. 2012;
22: 1790–1797.

[93] Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kun-
daje A. Deciphering regulatory DNA sequences and noncoding
genetic variants using neural network models of massively par-
allel reporter assays. PLoS ONE. 2019; 14: e0218073.

[94] Mossing MC, Record MT Jr. Upstream operators enhance re-
pression of the lac promoter. Science. 1986; 233: 889–892.

[95] Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P,
Wang S, et al. Circular chromosome conformation capture (4C)
uncovers extensive networks of epigenetically regulated intra-
and interchromosomal interactions. Nature Genetics. 2006; 38:
1341–1347.

[96] Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chro-
mosome conformation. Science (New York, N.Y.). 2002; 295:
1306–1311.

[97] Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Ho-
nan TA, et al. ChromosomeConformation Capture Carbon Copy
(5C): a massively parallel solution for mapping interactions be-
tween genomic elements. Genome Research. 2006; 16: 1299–
1309.

[98] McCord RP, Kaplan N, Giorgetti L. Chromosome Conformation
Capture and Beyond: Toward an Integrative View of Chromo-
some Structure and Function. Molecular Cell. 2020; 77: 688–
708.

[99] Tena JJ, Santos-Pereira JM. Topologically Associating Domains
and Regulatory Landscapes in Development, Evolution and Dis-
ease. Frontiers in Cell and Developmental Biology. 2021; 9:
702787.

[100] Tak YG, Farnham PJ. Making sense of GWAS: using epige-
nomics and genome engineering to understand the functional
relevance of SNPs in non-coding regions of the human genome.
Epigenetics & Chromatin. 2015; 8: 57.

[101] Chandra V, Bhattacharyya S, Schmiedel BJ, Madrigal A,
Gonzalez-Colin C, Fotsing S, et al. Promoter-interacting expres-
sion quantitative trait loci are enriched for functional genetic
variants. Nature Genetics. 2021; 53: 110–119.

[102] Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW,
Fraser P. Promoter Capture Hi-C: High-resolution, Genome-
wide Profiling of Promoter Interactions. Journal of Visualized
Experiments: JoVE. 2018; 57320.

[103] Orlando G, Law PJ, Cornish AJ, Dobbins SE, Chubb D, Brod-
erick P, et al. Promoter capture Hi-C-based identification of re-
current noncoding mutations in colorectal cancer. Nature Genet-
ics. 2018; 50: 1375–1380.

[104] Selvarajan I, Toropainen A, Garske KM, López Rodríguez M,
Ko A, Miao Z, et al. Integrative analysis of liver-specific non-
coding regulatory SNPs associated with the risk of coronary
artery disease. American Journal of HumanGenetics. 2021; 108:
411–430.

[105] Karnuta JM, Scacheri PC. Enhancers: bridging the gap be-
tween gene control and human disease. Human Molecular Ge-
netics. 2018; 27: R219–R227.

[106] Madsen JGS, Madsen MS, Rauch A, Traynor S, Van Hauwaert
EL, Haakonsson AK, et al. Highly interconnected enhancer
communities control lineage-determining genes in human mes-
enchymal stem cells. Nature Genetics. 2020; 52: 1227–1238.

[107] Shi C, Rattray M, Orozco G. HiChIP-Peaks: a HiChIP peak
calling algorithm. Bioinformatics (Oxford, England). 2020; 36:
3625–3631.

[108] Meng XH, Xiao HM, Deng HW. Combining artificial intelli-
gence: deep learning with Hi-C data to predict the functional ef-
fects of non-coding variants. Bioinformatics (Oxford, England).
2021; 37: 1339–1344.

[109] Yu M, Abnousi A, Zhang Y, Li G, Lee L, Chen Z, et al.
SnapHiC: a computational pipeline to identify chromatin loops
from single-cell Hi-C data. Nature Methods. 2021; 18: 1056–
1059.

[110] He B, Chen C, Teng L, Tan K. Global view of enhancer-
promoter interactome in human cells. Proceedings of the Na-
tional Academy of Sciences of the United States of America.
2014; 111: E2191–E2199.

[111] Gao L, Uzun Y, Gao P, He B, Ma X, Wang J, et al. Identifying
noncoding risk variants using disease-relevant gene regulatory
networks. Nature Communications. 2018; 9: 702.

[112] Cohen OS, Weickert TW, Hess JL, Paish LM, McCoy SY,
Rothmond DA, et al. A splicing-regulatory polymorphism in
DRD2 disrupts ZRANB2 binding, impairs cognitive functioning
and increases risk for schizophrenia in six Han Chinese samples.
Molecular Psychiatry. 2016; 21: 975–982.

[113] Krooss S, Werwitzke S, Kopp J, Rovai A, Varnholt D,
Wachs AS, et al. Pathological mechanism and antisense
oligonucleotide-mediated rescue of a non-coding variant sup-
pressing factor 9 RNAbiogenesis leading to hemophilia B. PLoS
Genetics. 2020; 16: e1008690.

[114] Bauwens M, Garanto A, Sangermano R, Naessens S, Weiss-
chuh N, De Zaeytijd J, et al. ABCA4-associated disease as a
model for missing heritability in autosomal recessive disorders:
novel noncoding splice, cis-regulatory, structural, and recurrent
hypomorphic variants. Genetics in Medicine: Official Journal
of the American College of Medical Genetics. 2019; 21: 1761–
1771.

[115] Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-
Gomez D, Maher M, et al. A combined RNA-seq and whole
genome sequencing approach for identification of non-coding
pathogenic variants in single families. HumanMolecular Genet-
ics. 2020; 29: 967–979.

[116] Zhou Y, Koelling N, Fenwick AL, McGowan SJ, Calpena E,
Wall SA, et al. Disruption of TWIST1 translation by 5’ UTR
variants in Saethre-Chotzen syndrome. Human Mutation. 2018;
39: 1360–1365.

[117] Lim Y, Arora S, Schuster SL, Corey L, FitzgibbonM,Wladyka
CL, et al. Multiplexed functional genomic analysis of 5’ untrans-
lated region mutations across the spectrum of prostate cancer.
Nature Communications. 2021; 12: 4217.

[118] Griesemer D, Xue JR, Reilly SK, Ulirsch JC, Kukreja K, Davis
JR, et al. Genome-wide functional screen of 3’UTR variants un-
covers causal variants for human disease and evolution. Cell.
2021; 184: 5247–5260.e19.

[119] Chen M, Wei R, Wei G, Xu M, Su Z, Zhao C, et al. System-
atic evaluation of the effect of polyadenylation signal variants on
the expression of disease-associated genes. Genome Research.
2021; 31: 890–899.

[120] Paggi JM, Bejerano G. A sequence-based, deep learning model
accurately predicts RNA splicing branchpoints. RNA (New
York, N.Y.). 2018; 24: 1647–1658.

13

https://www.imrpress.com


[121] Sample PJ, Wang B, Reid DW, Presnyak V,McFadyen IJ, Mor-
ris DR, et al. Human 5’ UTR design and variant effect prediction
from a massively parallel translation assay. Nature Biotechnol-
ogy. 2019; 37: 803–809.

[122] Benaglio P, D’Antonio-Chronowska A, Ma W, Yang F, Young
Greenwald WW, Donovan MKR, et al. Allele-specific NKX2-5
binding underliesmultiple genetic associationswith human elec-
trocardiographic traits. Nature Genetics. 2019; 51: 1506–1517.

[123] Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki
A. Single-cell sequencing techniques from individual to multi-
omics analyses. Experimental &Molecular Medicine. 2020; 52:
1419–1427.

[124] Nawy T. Single-cell sequencing. Nature Methods. 2014; 11:
18.

[125] Park ST, Kim J. Trends in Next-Generation Sequencing and
a New Era for Whole Genome Sequencing. International Neu-
rourology Journal. 2016; 20: S76–S83.

[126] van El CG, Cornel MC, Borry P, Hastings RJ, Fellmann F,
Hodgson SV, et al. Whole-genome sequencing in health care:
recommendations of the European Society of Human Genetics.
European Journal of Human Genetics: EJHG. 2013; 21: 580–
584.

[127] Kathiresan S, Srivastava D. Genetics of human cardiovascular
disease. Cell. 2012; 148: 1242–1257.

[128] Lusis AJ. Genetic factors in cardiovascular disease. 10 ques-

tions. Trends in Cardiovascular Medicine. 2003; 13: 309–316.
[129] Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S,

Ashrafi N, et al. Role of non-coding variants in cardiovascular
disease. Journal of Cellular and Molecular Medicine. 2023; 27:
1621–1636.

[130] Villar D, Frost S, Deloukas P, Tinker A. The contribution of
non-coding regulatory elements to cardiovascular disease. Open
Biology. 2020; 10: 200088.

[131] Dallapiccola B, Mingarelli R, Digilio MC, Marino B, Novelli
G. Genetics of congenital heart diseases. Giornale Italiano Di
Cardiologia. 1994; 24: 155–166.

[132] Morton SU, Quiat D, Seidman JG, Seidman CE. Genomic fron-
tiers in congenital heart disease. Nature Reviews. Cardiology.
2022; 19: 26–42.

[133] Liao J, Chen S, Hsiao S, Jiang Y, Yang Y, Zhang Y, et al. Ther-
apeutic adenine base editing of human hematopoietic stem cells.
Nature Communications. 2023; 14: 207.

[134] Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM,
Migliardi G, et al. Prioritization of cancer therapeutic targets us-
ing CRISPR-Cas9 screens. Nature. 2019; 568: 511–516.

[135] Han R, Li L, Ugalde AP, Tal A, Manber Z, Barbera EP, et al.
Functional CRISPR screen identifies AP1-associated enhancer
regulating FOXF1 to modulate oncogene-induced senescence.
Genome Biology. 2018; 19: 118.

14

https://www.imrpress.com

	1. Non-coding Genetic Variants in Human Diseases
	2. Non-coding Variants in Transcription Factor-DNA Binding
	3. Non-coding Variants in Gene Expression
	4. Non-coding Variants in CRE Interactions
	5. Non-coding Variants in Post-transcriptional Regulation 
	6. Future Directions and Author Recommendations
	7. Concluding Remarks
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest



