»

computer programs

g JOURNAL OF
; APPLIED
g CRYSTALLOGRAPHY

ISSN 1600-5767

Received 30 November 2023
Accepted 3 January 2024

Edited by S. Moggach, The University of
Western Australia, Australia

Keywords: machine learning; serial
crystallography; image classification; X-ray free
electron lasers; graphical user interfaces; X-ray
diffraction patterns; data analysis; experimental
artefacts.

OPEN @& ACCESS

Published under a CC BY 4.0 licence

The Pixel Anomaly Detection Tool: a user-friendly
GUI for classifying detector frames using machine-
learning approaches

Gihan Ketawala,*® Caitlin M. Reiter,® Petra Fromme®® and Sabine Botha®%*

*Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA, bSchool of
Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA, °“NSF BioXFEL Science and Technology
Center Summer Internship Program, NY 14203, USA, and dDepartment of Physics, Arizona State University, Tempe, AZ
85287-1504, USA. *Correspondence e-mail: sbotha@asu.edu

Data collection at X-ray free electron lasers has particular experimental chal-
lenges, such as continuous sample delivery or the use of novel ultrafast high-
dynamic-range gain-switching X-ray detectors. This can result in a multitude of
data artefacts, which can be detrimental to accurately determining structure-
factor amplitudes for serial crystallography or single-particle imaging experi-
ments. Here, a new data-classification tool is reported that offers a variety of
machine-learning algorithms to sort data trained either on manual data sorting
by the user or by profile fitting the intensity distribution on the detector based
on the experiment. This is integrated into an easy-to-use graphical user inter-
face, specifically designed to support the detectors, file formats and software
available at most X-ray free electron laser facilities. The highly modular design
makes the tool easily expandable to comply with other X-ray sources and
detectors, and the supervised learning approach enables even the novice user to
sort data containing unwanted artefacts or perform routine data-analysis tasks
such as hit finding during an experiment, without needing to write code.

1. Introduction

Over a decade ago, scientists first recognized the potential of
exploiting the unique capabilities of X-ray free electron lasers
(XFELs) for the structure solution of biological macro-
molecules (Chapman et al.,2011; Boutet et al.,2012). Using the
ultrashort ultrabright X-ray pulses generated by these novel
sources, the diffraction pattern of micrometre-sized crystals, or
even single biological particles, can be recorded before the
sample is ultimately plasmarized by the interacting X-ray
beam, in an approach termed ‘diffraction before destruction’
(Neutze et al., 2000; Barty et al., 2012). Using a variety of
sample-delivery techniques [see e.g. Barends et al (2022)],
millions of single crystals or particles are streamed across the
X-ray path in random orientations, where they interact with
the ultrashort ultrabright X-ray pulses. While the brilliance of
a single X-ray pulse obliterates the sample, the femtosecond
pulse duration enables the diffraction pattern to be collected
before structure-altering radiation damage can manifest. The
reduced radiation dose reflected in the diffraction patterns
during this data-collection approach therefore enables the
study of micro- and nanometre-sized protein crystals at room
temperature under physiological conditions, and has broa-
dened the realm of time-resolved crystallography experiments
where reactions can be triggered by light or rapid mixing
(Stagno et al., 2016; Kupitz et al., 2017, Botha & Fromme,
2023). The femtosecond X-ray pulses further enable the study

J. Appl. Cryst. (2024). 57, 529-538

https://doi.org/10.1107/51600576724000116 529

https://doi.org/10.1107/S1600576724000116
https://journals.iucr.org/j
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=serial%20crystallography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=serial%20crystallography&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=image%20classification&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free%20electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20free%20electron%20lasers&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=graphical%20user%20interfaces&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction%20patterns&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=X-ray%20diffraction%20patterns&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=data%20analysis&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=experimental%20artefacts&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=experimental%20artefacts&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
mailto:sbotha@asu.edu
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600576724000116&domain=pdf&date_stamp=2024-02-12

computer programs

of radiation-sensitive systems (Barty et al.,2012). In a standard
serial femtosecond crystallography (SFX) experiment, the
millions of individual crystals are streamed through the X-ray
beam in a liquid jet (Weierstall ef al., 2012), while a data frame
is collected synchronously with every XFEL pulse arriving at
the interaction region. The first-generation detectors featured
only one gain setting and their repetition rates were limited to
30 Hz, e.g. the Rayonix detector. The first custom-design
multiple gain mode detector for use at an XFEL was the
Cornell-SLAC Pixel Array Detector (CSPAD) operating at
120 Hz (Blaj et al., 2015).

As X-ray flux and repetition rates increased, a new
generation of detectors was developed (Henrich et al., 2011;
van Driel et al., 2020) to accommodate higher repetition rates
and feature new pixel-by-pixel gain-switching modes, thereby
dramatically increasing the dynamic range of the detector.
However, these segmented dynamic gain-switching detectors
are custom designed by/for their respective X-ray facilities and
can pose a challenge for data-analysis personnel in a variety of
ways, including but not limited to non-linearity of the inten-
sities in the gain-switching mode, delays in the recording of the
per-pixel gain switching and challenges of the per-pixel
background correction in the different gain modes; correctly
calibrating the detectors is a research project in itself. Mis-
calibration of pedestal values or gain-switching regions and
parameters can result in pixels or detector panels recording
unreliable intensity values, which affects the accuracy of
downstream data analysis for both SFX and single-particle
imaging experiments. Furthermore, no two SFX experiments
are alike since the scattering background on the detector
varies depending on how the sample is introduced into the
X-ray beam, the X-ray energy, and various unwanted experi-
mental artefacts such as salt deposits on the nozzle, phase
changes of the sample carrier medium efc. In addition,
depending on the scientific case, the signal of interest may vary
from single-particle-diffraction large-unit-cell protein crystals
to small-unit-cell metallic organic frameworks or even solu-
tion scattering. Data analysis during an XFEL experiment
therefore usually requires experienced data scientists to flex-
ibly implement hit-finding algorithms or eliminate frames with
unwanted artefacts on the fly. To address this challenge, we
developed the Pixel Anomaly Detector Tool (PADT), a user-
friendly graphical user interface (GUI) to assist even the
novice student with these tasks, improving the accuracy and
reliability of diffraction intensity measurements without
needing to write custom code. Using machine-learning (ML)
algorithms from the scikit-learn toolbox (Pedregosa et al.,
2011), such as logistic regression, K-nearest neighbours, and
decision-tree and random-forest classifiers, PADT allows the
user to test and train models by classifying detector images
according to the problem or task at hand. The tool is written in
Python (van Rossum & Drake, 2011), is highly modular, and
can easily be expanded to support other X-ray detectors and
file formats to enhance the reliability of XFEL data and
streamline the data-analysis process.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016)
has become a powerful tool for ML to leverage existing

knowledge to present previously annotated data (the ‘training
set’) and is therefore becoming increasingly popular across
various scientific disciplines. The possibility of performing a
wide variety of cognitive and inference tasks after being
‘trained’ successfully makes it particularly powerful in image-
processing applications (Géron, 2017). One of the first appli-
cations of deep learning to serial macromolecular crystal-
lographic data was implemented by Ke et al. (2018), where a
convolutional neural network to detect Bragg spots was
executed to classify crystal ‘hits’ from ‘misses’ and ‘maybes’
for a variety of different proteins and experimental conditions.
The authors concluded that a successful outcome is heavily
dependent on a strong training set for a particular protein and
set of experimental parameters, unfortunately thereby
hindering generalizations. A potential solution to this hurdle
was implemented by Souza et al. (2019), who introduced a
method for generating labelled (desirable and undesirable)
diffraction images. The technique produces and labels images
via a simulator that receives the properties of the incident
X-ray beam, the environment and the structure to be analysed
as its input. It thereby generates a synthetic training set of
diffraction images with an annotation that is 100% accurate, as
opposed to erroneous manually annotated real images. Using
their simulated dataset (termed DiffraNet), the authors
explored several computer-vision-approach off-the-shelf
AutoML optimization tools and found that the best model
achieved 98.5% accuracy on synthetic images compared with
94.51% accuracy on real images. A similar approach
employing neural networks was investigated by Sullivan et al.
(2019) for macromolecular neutron crystallography, a
complementary structure-determination technique to X-ray
crystallography for determining the positions of low-z
elements (usually hydrogen). They simulated 100 000 training
peaks and demonstrated how ML can be used to refine peak
locations and peak shapes, and ultimately yield more accurate
integrated intensities for Bragg spots. These ML approaches
employing neural networks are not only limited to macro-
molecular crystallography but also find use in small-molecule
crystallography (Oviedo et al., 2018). Although this field is still
in its infancy, the method has been successfully demonstrated
on simulated data, but still holds clear bottlenecks when
extrapolating to real data. Yet, it contains enormous potential
for standardizing serial crystallography data collection and
processing, as well as achieving higher accuracy for intensity
prediction of Bragg reflections.

Our tool is designed to work on real data, regardless of the
problem identified during the course of the experiment (i.e. hit
finding, background fluctuations, detector artefacts etc.), while
being executable without any programming knowledge or ML
expertise. In this article, we will outline the architecture and
principle of PADT, and then introduce a test case where the
tool was used to improve data-collection statistics of a dataset
containing detector-calibration artefacts. PADT is open
source for academic use through an MIT License. The
full package can be downloaded from https:/github.com/
gihankaushyal/PixelAnomalyDetectorTool, along with instal-
lation instructions, a user manual and tutorial data.

530

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

J. Appl. Cryst. (2024). 57, 529-538

https://github.com/gihankaushyal/PixelAnomalyDetectorTool
https://github.com/gihankaushyal/PixelAnomalyDetectorTool

computer programs

Manual Sorting

Data Classification

B Confusion
Profile Editing Matrix
PHASE 1
Define Task

Model Training & Testing

PHASE 2
Train & Test ML Model

ML Algorithm

Sort Data

Classification
Report

PHASE 3
Apply Model

Figure 1
A workflow diagram of the three phases of PADT.

2. The Pixel Anomaly Detection Tool (PADT)
2.1. Overview

PADT provides a user-friendly interface that enables users
to perform three key phases of image analysis, as shown in
Fig. 1: task definition, model training and testing, and image
sorting. All code is written in Python3 (van Rossum & Drake,
2011) and makes use of the packages h5py, matplotlib, numpy,
Pandas, plotly, psutil, pyqgtgraph, PyQt5, scikit-learn, seaborn
and tqdm. A full list of prerequisites, tested version numbers
and references can be found in Table 1.

During the first phase of PADT, the sorting criteria and
associated task are defined by the user. A subset of image files
are loaded into the GUI and inspected through an image
viewer. The user can define what constitutes a ‘good’ image
versus a ‘bad’ image depending on the task at hand, either by
manually clicking through images in the viewer and selecting
the appropriate check box depending on the displayed image
or by fitting an expected intensity profile to an area of the
detector. In addition to the test case presented in detail below,
further examples of good versus bad images that are applic-
able to PADT are shown in Fig. 2. The top panel shows
AGIPD detector frames collected at the European XFEL with
(bad) and without (good) an application-specific integrated

Table 1
A list of prerequisites and version numbers tested for functionality (in
alphabetical order).

Package Version Reference

Python 3.8 van Rossum & Drake (2011)
h5py 0.8.8 https://www.hSpy.org/

matplotlib 352 Hunter (2007)

numpy 1.233 Harris et al. (2020)

Pandas 144 Pandas Development Team (2020)
plotly 5.9.0 https://plot.ly

psutil 5.9.0 https://github.com/giampaolo/psutil#readme
pyqtgraph 0.12.3 https://www.pyqtgraph.org

PyQt5 5.15.16 PyQrt (2012)

seaborn 0.11.2 Waskom (2021)

scitkit-learn 1.1.3 Pedregosa et al. (2011)

tqdm 4.64.1 da Costa-Luis (2019)

circuit (ASIC) calibration artefact. The bottom panel of
images shows a good image collected using a fixed-target setup
and a bad image where the X-ray interaction region is mis-
aligned with the sample window, resulting in shadows and
parasitic scattering. Both scenarios are handled identically in
PADT, since it is trained on the fly by the user on the basis of
the data, without making any prior assumptions. A 1D vertical
projection is displayed alongside each image for the region of
interest (ROI) selected, which can aid the user when deter-
mining whether profile fitting may be appropriate for pre-
classification. When choosing to employ profile fitting, the user
can select the order of polynomial to fit, and the GUI will sort
training/test image sets according to the location of the

Figure 2

Examples of PADT usage cases. ASIC calibration artefacts visible in
some diffraction patterns (top). Fixed-target data collection where some
images were collected with sub-optimal alignment of the X-ray beam and
the sample window (bottom).

J. Appl. Cryst. (2024). 57, 529-538

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool 531

https://www.h5py.org/
https://plot.ly
https://github.com/giampaolo/psutil#readme
https://www.pyqtgraph.org

computer programs

1. Image Files
2. Detector Geometry
Description

Classified Data List

Main GUI

| MLMoc.ieI | Image
i for Sorting I Viewer

R e S e v GUI

} Manual
| Sorting
[in Image
1 Viewer

Profile
Fitting
GUI

D

of Classified
Images for !
Training !

Machine
Learning GUI

Figure 3

The PADT GUI layout. The black boxes refer to physical GUIs included
in PADT, whereas the dashed grey boxes refer to alternative GUI actions
and PADT outputs.

inflection points of the fit. The latter method for image clas-
sification is particularly useful when there are drastic intensity
changes caused by intermittent shadowing or gain-switching

© PixelAnomalyDetectorTool

HDFS5 File ${PATH}/tofimageFile.hS Browse

or
HDFS File List

Geometry File |{PATH}/to/GeometryDescription.geom| Browse

Load Model Reset

Order of Fit

Frame Number

artefacts and negates the effort associated with manually
clicking through hundreds of images to assemble a reasonably
sized training set for phase 2. In the second phase, users can
train and test an ML model to take over the large-scale sorting
of images. The annotated images from phase 1 are split into
training and testing subsets; the user can specify the split
fractions, but the default is 70/30 and the GUI will display an
error if the split does not equate to 100% (avoiding the
potential for unintentional model bias). A range of ML
models are supported, as some may perform better than
others depending on the task at hand. PADT currently
supports logistic regression (Cox, 1958), K-nearest neighbours
(Fix & Hodges, 1989; Bentley, 1975), decision-tree classifier
(Quinlan, 1986; Wu et al., 2008) and random-forest classifier
(Breiman, 2001; Ho, 1995). Regardless of the model selected, a
confusion matrix and classification reports will be displayed
after training and testing are completed, so that the quality of
the model can be gauged. In the final phase, the model is
applied to data to perform the task it has been trained to do.

2.2. The PADT GUI

The PADT GUI is designed to guide the user through the
process of assembling the training data, training and testing
the model, and then applying it to experimental data. The
general workflow is outlined in Fig. 3. The main GUI is the
starting point and successively launches other GUIs as
required. Each step is outlined in more detail below.

The main GUI is launched when starting PADT, with most
functionality greyed out and inactive (Fig. 4, left). As the user
traverses the different phases of PADT, the buttons succes-
sively become active, guiding the user through the process

o PixelAnomalyDetectorTool
HDFS File ${PATH)/tofimageFile.h5 Browse
or
HDFS File List
Geometry File |${PAT! yDescript 4 g Browse
View File Load Model Plot Peak Pixel Reset

Orderof Fit 4 Label Data Train a Model

Frame Number o Previous Next

Figure 4

Plot a Fit

The main window of the tool. When initially launched, the GUI allows limited operations with inactive buttons greyed out (left). As the user is guided
through the three phases of the PADT process, buttons progressively become active (right). Also displayed is a 1D vertical projection of the selected

ROI, along with a fourth-order polynomial fit.

532

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

J. Appl. Cryst. (2024). 57, 529-538

computer programs

(Fig. 4, right). PADT supports the input of multi-event HDF5
image files (Collette, 2013), currently the most common
format of detector image files at XFELSs, or a list of multiple
HDF5 files. Since many XFELs use segmented detectors,
PADT also requires a detector-geometry description in
CrystFEL (White et al., 2012) format to display the images in
the laboratory coordinate frame.

The image viewer is launched directly from the main GUI
(‘View File’) and is a modified and fully integrated version
of the Cheetah image viewer cxiview (Barty et al., 2014).
Interactively clicking the mouse on a detector panel in the
viewer (Fig. 5) will automatically select this panel as the ROI
for ongoing analysis. Additionally, a 1D vertical projection of
the pixel intensity values for the ROI can be displayed in the
main GUI (Fig. 4, right). Optional further functionality
includes fitting a polynomial to the 1D intensity profile and
using the location of the inflection points to automatically sort
the data. This is particularly useful when there is gross
intensity variation between good and bad images or when a
known scattering profile is desired (e.g. during solution scat-
tering experiments). Alternatively, and particularly useful for
the inexperienced scientist, images can also be directly tagged
through the image viewer.

This allows the user the utmost flexibility of classifying data
according to arbitrary criteria dictated by the task at hand
while using real data. The disadvantage of this approach is the

Found Peaks Fix Histogram Save for ML

Good Image Bad Image e Ignore Image

Figure 5

Manual sorting within the PADT image-viewer GUI. By selecting the
appropriate check box, an image can be added to the training dataset as
being good or bad, or if the user is unsure the image can be skipped. The
image loaded into the GUI shows a non-linearity particularly pertinent in
the ROI selected (yellow box). The viewer itself is adapted from the
Cheetah image viewer cxiview (Barty ef al., 2014), with all functionality,
along with the PADT sorting ability.

speed with which a human can tag sufficient data during an
ongoing experiment to assemble a large enough training set
for establishing a robust and reliable model. Regardless of the
chosen method for assembling the training data, PADT
outputs two text files containing lists of the image file names
(and event numbers for multi-event files, if applicable) for the
good and bad image files. Therefore, should an interruption
occur, the task can be resumed and does not need to be re-
started. Alternatively, multiple instances can be sorted in
parallel by multiple users to speed up the process of tagging
the training data, and then concatenated into a single folder
for input into the ML training and testing GUI. Good and bad
are simple descriptors and both datasets are handled identi-
cally (i.e. PADT will sort into two distinct datasets, either of
which can be subjected to downstream processing).

Once satisfied with the training dataset, the user can launch
the ML model training GUI (Fig. 6) from the main GUI via
the “Train a Model’ button. After pointing the application to
the folder containing the annotated data, the user has the
option to select from four different integrated ML algorithms,
which are detailed in the next section. The train/test data split
can be further adapted if required. The split is implemented
randomly across the pre-classified dataset and the test set is
excluded during model training to avoid bias.

The estimated model quality is displayed directly in the
GUI in the form of a confusion matrix and classification
report, the interpretation of which is elaborated on below.
Once a satisfactory model has been obtained, it can be saved
for future use. The trained and tested model can now flexibly
be loaded through the main GUI to sort a dataset at any point
in time. Selecting the ‘Sort Data’ button will launch the sorting
GUI (Fig. 7) with the model pre-loaded. PADT can now be
pointed towards a folder containing multi-event HDFS5 files

Train & Test Data Selection

Select the folder with traing data: ${PATH}/to/annotatedData/ Browse

Training & Testing

Model { lassifier $ Reset

Enter Train / Test split %: 70 /30

Save

Showing Model Quality

Confusion Matrix Classification Report

-0.900

Bad
,

0.875

0.850

Good

0.825

True label

0.800

0.775

Wt. Avg Avg
|

0.750

] g g
precision recall fl-score

Figure 6

The model training and testing GUI. Once training and testing are
completed on the training dataset, the confusion matrix and classification
report can be inspected.

J. Appl. Cryst. (2024). 57, 529-538

533

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

computer programs

[] [] Sort Data

Select a Folder | ${PATH}/to/imageFiles/ Browse

Available HDF5 (*h5, *cxi) files in the folder

r0484_9.cxi
r0484_8.cxi
r0484_3.cxi
r0484_2.cxi
r0484_11.cxi
r0484_5.cxi
r0484_4.cxi
r0484_10.cxi
r0484_6.cxi
r0484_7.cxi

Summary for the folder

File Name Good Events Bad Events

1 r0484_9.cxi 36 13

2 r0484_8.cxi 51 19

3 r0484_3.cxi 46 25

4 r0484_2.cxi 46 18

5 r0484_M.cxi 35 17

6 r0484_5.cxi 54 25
Figure 7

The data-sorting GUIL. PADT can now be pointed at any dataset and will
automatically use the most recently trained ML model to sort the data for
further analysis.

for sorting, and will write a list with good and bad events as
well as displaying a summary for each file in the GUL

2.3. Additional PADT features

While PADT is constantly being improved, some features
that are particularly beneficial towards the ‘user friendliness’
aspect already implemented are outlined below:

(a) Status bar: the PADT GUI is designed to provide an
exceptional user experience and effortless navigation. When-
ever users interact with the tool, they receive helpful messages
on the status bar that serve as navigational aids, providing
real-time feedback and guidance for optimal usage.

(b) Tooltip: to help users understand the tool’s functionality
and use it effectively, each interactive button on the PADT
GUI has a tooltip that provides a brief description of its
function and purpose. This ensures that users can harness the
full potential of the tool without any confusion.

(c) Error messages: if there are any operational issues or
user errors, the PADT GUI uses dialogue boxes to display
error messages promptly. This proactive approach ensures that
users are informed of any problems and can take corrective
measures with confidence.

(d) Parallelization: from a technical perspective, PADT is
highly adaptable. It is fully compatible with message passing
interface (MPI) parallelization systems. Furthermore, if a
system does not support MPIs, PADT can leverage multiple
processes through multi-threading. If neither MPI nor multi-
threading is feasible, the tool can still operate in a single-
threaded mode. This multi-tiered approach guarantees
optimal performance across different system architectures.

2.4. PADT ML algorithms

Machine-learning algorithms are a subset of artificial
intelligence that enable computers to learn and make
predictions or decisions without being explicitly programmed.

In the context of PADT, these algorithms are used to classify
and subsequently sort detector frames as good or bad
depending on the problem definition.

PADT currently supports several ML algorithms, including
logistic regression (Cox, 1958), K-nearest neighbours
(Bentley, 1975; Fix & Hodges, 1989), decision-tree classifier
(Quinlan, 1986; Wu et al., 2008) and random-forest classifier
(Ho, 1995; Breiman, 2001). All of the ML algorithms imple-
mented in PADT are part of the scikit-learn library (Pedre-
gosa et al., 2011). Here is a brief explanation of how each
algorithm works:

(i) Logistic regression: this is a binary classification algo-
rithm that uses a logistic function to model the probability of a
certain class. It tries to find the best decision boundary that
separates the classes in the input data (sklearn.liner_
model.LogisticRegression).

(ii) K-nearest neighbours: this is a non-parametric classifi-
cation algorithm that uses a distance metric to find the
K-nearest training examples to a given test example. The
class of the test example is then determined by a majority
vote of the K-nearest neighbours (sklearn.neighbours.
KNeighbors).

(iii) Decision-tree classifier: a decision tree is a hierarchical
model that uses a set of if-then rules to make decisions.
A decision-tree classifier works by recursively partitioning
the input space into subsets based on the values of dif-
ferent features in the input data. At each node in the tree,
a decision is made according to the value of a particular
feature, and the process continues until a leaf node is reached
that corresponds to a particular class (sklearn.tree.
DecisionTreeClassifier).

(iv) Random-forest classifier: random forest is an ensemble
learning method that combines multiple decision trees to
improve the accuracy of the classification. The algorithm
works by building a set of decision trees on random subsets of
the input data and random subsets of the features. The final
classification is then determined by a majority vote of the in-
dividual trees (sklearn.RandomForestClassifier).

In the context of PADT, the ML algorithms are trained on a
set of diffraction images with known labels of good or bad.
The input data for each algorithm consist of the pixel intensity
values for the ROI selected for each diffraction image. The
algorithms are then evaluated on a separate set of test images
to determine their accuracy in classifying the images into two
distinct datasets. The user can select the best-performing
algorithm for the task at hand before moving on to large-scale
image sorting.

Overall, the ML algorithms in PADT are a powerful tool for
automating the process of flexibly classifying diffraction
images, saving valuable time and effort for data-analysis
personnel.

2.5. Model quality diagnostics

In the realm of ML, evaluating the efficacy and precision of
a model is of paramount importance. Two pivotal evaluation
metrics that stand out in this context are the confusion matrix

534

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

J. Appl. Cryst. (2024). 57, 529-538

computer programs

and the classification report. Both serve as critical tools to
assess and refine the performance of ML models, albeit in
slightly different ways.

The confusion matrix, as its name implies, lays out a matrix-
form representation of a model’s predictions against the actual
class labels. Annotated data that were excluded from model
training (i.e. the ‘test’ fraction) are sorted by the model and
the outcome is compared with the assigned labels for
compliance. The visual representation is divided into four
main components: true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN). By presenting
these values, the matrix offers insights into the number of
correct predictions made for each class, as well as those that
were classified incorrectly from the assigned label. The power
of the confusion matrix lies not only in its ability to give an
overall view of the model’s prediction accuracy but also in
highlighting specific areas where the model might be faltering.
This makes it an invaluable tool for data scientists and ML
engineers, as it helps them recognize patterns, potential biases
and areas of improvement for their models. Equations (1) and
(2), shown below, allow calculation of the accuracy and mis-
classification rate to evaluate the performance of a classifica-
tion model, considering the TP, TN, FP and FN obtained from
the confusion matrix:

TP +TN
Accuracy = (1)
TP + TN + FP 4+ FN
and
FP + FN
Misclassification Rate = + .)
TP 4+ TN + FP + FN

The classification report, on the other hand, dives deeper,
offering a more granular view of the model’s performance.
Rather than just showing prediction outcomes, it calculates
and presents several vital metrics, giving a more rounded
perspective of the model’s efficacy. These metrics include the
following:

(a) Precision quantifies how many of the predicted positive
instances are actually positive:

. TP
Precision = ——. 3)
TP + FP

(b) Recall (or sensitivity) gauges the model’s capability to

identify all positive instances correctly:
TP

Recall = ——. €))
TP 4+ FN

(c) F1 score is the harmonic mean of precision and recall.
The F1 score provides a balance between the two metrics,
especially useful when the class distribution is uneven:

Precision x Recall

F1score =2 — . Q)
Precision + Recall

(d) Support represents the number of actual occurrences of
the class in the dataset, giving context to the other metrics:

Support, = Number of actual positive instances = TP + FN

(6)

and

Support_ = Number of actual negative instances = TN + FP.
™

The classification report therefore paints a detailed picture
of a model’s strengths and weaknesses. The presented metrics
elucidate the model’s efficiency in making correct predictions,

its rate of FP, the balance between precision and recall, and
more.

3. Example case

The efficacy of PADT was tested on a subset of SFX data that
has been published previously. This particular dataset was
chosen since it had necessitated elaborate data-analysis efforts
to mitigate the effects of a gain-switching artefact on the
detector prior to publication. Specifically, testing was
performed on SFX data from the SARS-CoV-2 NendoU
protein (Jernigan et al., 2023). The data were collected in 2021
using the ePix10k-2M detector (van Driel ez al., 2020) at the
macromolecular femtosecond crystallography instrument
(Sierra et al., 2019) at the Linac Coherent Light Source in
California. For more experimental data-collection details,
please refer to Jernigan er al. (2023), as they are not relevant
for demonstrating the functionality of PADT. Of importance,
and why this particular dataset was chosen, are the effects of
the gain-switching artefact resulting in miscalibrated inten-
sities when the diffuse scattering from the water ring falls into
a critical intensity range. An adversely affected panel is
selected as the ROI in Fig. 5, and preparing these data for
publication required extensive data-analysis efforts at the
time. In Fig. 9 it can be seen how the miscalibration features
extend for an entire g range for data collected at this critical
intensity threshold.

Thirty random multi-event HDFS files containing SFX
crystal diffraction patterns (post-hit finding) were selected
(2606 images in total) and annotated using both the profile-
fitting approach and manual sorting for the model training set.
An unanticipated hurdle encountered during the profile-
fitting approach was that PADT assumes that the majority of
image files constitute good data and therefore suggests that
the inflection points located within the dominant histograms
are good images. This may not always be the case depending
on the subset, so special attention needs to be paid whenever
concatenating the training dataset out of multiple separate
instances of PADT profile-fitting classification runs. To ensure
a trusted and verified training set, the 2606 images were sorted
manually using the viewer, with 790 images being classified as
good and 1816 as bad for the training dataset. In preliminary
tests it was determined that at least 2000 images are required
for reliable model training and testing for this particular case.
At this point, no attention was paid to the quality or potential
indexability of the crystal diffraction patterns.

The training dataset was applied to all four of the ML
algorithms and the respective models calculated and saved.
The default split of 70/30 training/testing ratio was used. The

J. Appl. Cryst. (2024). 57, 529-538

535

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

computer programs

Table 2

Performance comparison for ML algorithms for example data verified by
manually inspecting 2200 random images from the final sorted dataset
after applying the respective models.

Logistic K-nearest Decision Random

regression neighbour tree forest
True positive 91.5% 78.2% 91.4% 94.3%
False positive 8.5% 21.8% 8.6% 5.7%
True negative 97.5% 90.0% 97.4% 98.3%
False negative 2.5% 10.0% 2.6% 1.7%

saved models were then used on a larger portion of data
collected under the same experimental conditions (104 731
images in total), while special attention was paid to not include
any of the images used to train and test the model in the
datasets sorted with the trained models and reported below.
The sorting accuracy was evaluated for each sorting algorithm
by manually inspecting the sorted results for ~2200 random
images and verifying whether they had been correctly sorted
as good images (TP), bad images (TN) or neither (FP and FN).
The results from this assessment for the four supported ML
algorithms are presented in Table 2.

From this comparison, the random-forest model most
accurately identified good images (i.e. TP) as well as bad
images (i.e. TN), making it clearly superior to the other
models for this particular case (94.3 and 98.3%, respectively).
Since the random-forest model presented the lowest mis-
classifying rate overall (5.7 and 1.7% for good and bad data-
sets, respectively), the impact of applying the model for data
classification versus not applying the model (and benefiting
from higher data redundancy instead) was further investi-
gated.

General crystallography data-collection statistics were
calculated for the full unclassified dataset (104 709 apparent
crystal hits), referred to as the ‘control group’, as well as for
the 23979 crystal hits contained in the dataset classified as
good by the random-forest model. No new attempt was made
to optimize hit-finding or peak-finding parameters; the data
were reused as processed on the fly during the beam time. In

control_all.stream

10°
70000
60000 1 104
2z
@
£ 50000
£ -
& 40000
£
c
8
£ 30000 A 102
]
%
20000 -
10!
10000 4
10°

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1d (A™-1)
Figure 8

brief, datasets were submitted to indexing using CrystFEL
version 0.9.1 (White e al, 2012), with the following para-
meters and options: ~-peaks = cxi;-int-rad = 2,4, 6;
-multi and -check-peaks. Hence, indexing was
performed using the peaks stored in the HDFS files from the
previous processing and not optimized [as they had been by
Jernigan et al. (2023) where a second round of hit and peak
finding was performed under optimized conditions]. Succes-
sive indexing attempts were made using XDS (Kabsch, 2010),
Mosflm (Powell et al., 2013), Dirax (Duisenberg, 1992) and
Xgandalf (Gevorkov et al., 2019), in that order with unit-cell
parameters a = 154 A, b =154 A, c=117 A, a=90° B=90°
and y = 120°. The only pixel masks applied to the detector
images were the bad pixel mask from the beam time
(containing hot and dead pixels) and the panel edges; no
further mask refinement was implemented on the basis of
data-processing results. Under these conditions, 19 284 images
were successfully indexed for the all-encompassing control
dataset (18%) and 11269 images for the random-forest-
classified dataset (47%). Interestingly, the substantially higher
indexing rate for the random-forest dataset clearly indicates
that the hit and peak finding carried out during the experiment
were considerably hindered by the erroneous regions of
the detector. The maximum intensity integrated for every
reflection is plotted against resolution in Fig. 8 for the random-
forest good dataset (right) as well as the complete all-
encompassing dataset (left).

The higher occurrence of over-estimated intensity values,
particularly in the region most commonly effected by gain-
switching errors (0.2-0.4 A~';5.0-2.5 A), is evident, indicating
that many of the indexed hits from the control dataset still
contain images with miscalibrated pixel values. The indexing
results for both datasets were then merged into point group
622 using CrystFEL’s partialator program (White et al., 2012)
with the following settings: unity model, 1 iteration.

The signal-to-noise ratio (SNR) as well as CC*, a statistic
commonly reported for crystallography datasets that estimates
the correlation of an observed dataset with the underlying true
signal (Karplus & Diederichs, 2012), are plotted against

RandomForest.stream

70000 -

600004 . . :

ity

50000 -

40000 1 ~

PR ey

P Y e

30000 -

Reflection max intensi

20000

10000

0.1 0.2 0.3 0.4 0.5 0.6
1/d (A"-1)

Comparison of the maximum intensity measured for every reflection versus 1/resolution (A) Control dataset (19 284 indexed images) (left). Random-

forest-classified dataset (11269 indexed images) (right).

536

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

J. Appl. Cryst. (2024). 57, 529-538

computer programs

—-CC* Random Forest -+~ SNR Control -+~ SNR Random Forest

o
am 426 33 36 346 33 317305
d (A

Figure 9

A diffraction pattern with anomalous detector behaviour in the range
5.0-2.5 A. Inset: SNR and CC* calculated from the merged intensities in
different resolution shells for the control and random-forest datasets.

resolution for both merged datasets in Fig. 9. Interestingly, the
random-forest dataset has both lower SNR and marginally
lower CC* values at lower resolution. However, in the region
where the pixels display the anomalous behaviour, the
substantially smaller random-forest dataset notably outper-
forms the control dataset. This is reflective of the higher
redundancy of the control dataset beneficially impacting the
statistics at lower resolution, but the inclusion of bad data
results in inconsistent intensity measurements at higher reso-
lution that are outweighed by the inclusion of more data. This
example case demonstrates how PADT can easily aid in
improving crystallographic data statistics during an ongoing
experiment or after, without the need for writing a single line
of code.

4. Conclusions

Here we introduced a user-friendly GUI interface for image
classification, which is particularly amendable to data
collected at an XFEL. Based on ML algorithms and a super-
vised learning approach, PADT supports a wide range of data-
classification and -analysis tasks without the need to write
code for the specific task at hand. While PADT currently
supports the Epix2k-4M (van Driel ef al., 2020) detectors and
file formats at the LCLS as well as the AGIPD detector
(Henrich et al., 2011) at the European XFEL GmbH (Altarelli
et al., 2006), we are working on making it universally adap-
table to any X-ray detector. In particular, unsegmented
detectors, the norm at synchrotrons, will soon also be
supported. Currently, the specification of an ROI is necessary
to maintain reasonable processing speeds, but implementing
HPC support will make this requirement obsolete in the

future. Furthermore, an in-GUI peak finder to aid in on-the-fly
hit finding during training will make manual image selection
for hit finding obsolete. In summary, the applications that can
benefit from PADT extend far beyond XFEL data analysis.

Acknowledgements

This work was influenced by experiments at the European
XFEL. We acknowledge the European XFEL in Schenefeld,
Germany, for provision of XFEL beam time at the scientific
instrument SPB/SFX and thank the staff for their assistance.

Funding information

This work was supported by the National Science Foundation
by BioXFEL STC (award 1231306) and the Biodesign Center
for Applied Structural Discovery at Arizona State University.
We also acknowledge that the data presented in the test case
made use of the Linac Coherent Light Source (LCLS), SLAC
National Accelerator Laboratory, which is supported by the
US Department of Energy (DOE), Office of Science, Office of
Basic Energy Sciences under contract No. DE-AC02-
76SF00515.

References

Altarelli, M., Brinkmann, R., Chergui, M., Decking, W., Dobson, B.,
Diisterer, S., Griibel, G., Graeff, W., Graafsma, H., Hajdu, J. H,,
Marangos, J., Pfliiger, J., Redlin, H., Riley, D., Robinson, I., Ross-
bach, J., Schwarz, A., Tiedtke, K., Tschentscher, T., Vartaniant, I.,
Wabnitz, H., Weise, H. W., Wichmann, R., Witte, K., Wolf, A.,
Waulff, M. & Yurkov, M. (2006). XFEL: The European X-ray Free-
Electron Laser. Technical Design Report. DESY, Hamburg,
Germany. https://bib-pubdbl.desy.de/record/349107.

Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. (2022).
Nat. Rev. Methods Primers, 2, 59.

Barty, A., Caleman, C., Aquila, A., Timneanu, N., Lomb, L., White, T.,
Andreasson, J., Arnlund, D., Bajt, S., Barends, T., Barthelmess, M.,
Bogan, M., Bostedt, C., Bozek, J., Coffee, R., Coppola, N,
Davidsson, J., Deponte, D., Doak, R., Ekeberg, T., Elser, V., Epp, S.,
Erk, B., Fleckenstein, H., Foucar, L., Fromme, P., Graafsma, H.,
Gumprecht, L., Hajdu, J., Hampton, C., Hartmann, R., Hartmann,
A., Hauser, G., Hirsemann, H., Holl, P., Hunter, M., Johansson, L.,
Kassemeyer, S., Kimmel, N., Kirian, R., Liang, M., Maia, F,
Malmerberg, E., Marchesini, S., Martin, A., Nass, K., Neutze, R,
Reich, C., Rolles, D., Rudek, B., Rudenko, A., Scott, H.,
Schlichting, I., Schulz, J., Marvin Seibert, M., Shoeman, R., Sierra,
R., Soltau, H., Spence, J., Stellato, F, Stern, S., Striider, L., Ullrich,
J., Wang, X., Weidenspointner, G., Weierstall, U., Wunderer, C. &
Chapman, H. (2012). Nat. Photon. 6, 35-40.

Barty, A., Kirian, R. A., Maia, F. R. N. C,, Hantke, M., Yoon, C. H.,
White, T. A. & Chapman, H. (2014). J. Appl. Cryst. 47, 1118-1131.

Bentley, J. L. (1975). Commun. ACM, 18, 509-517.

Blaj, G., Caragiulo, P, Carini, G., Carron, S., Dragone, A., Freytag, D.,
Haller, G., Hart, P, Hasi, J., Herbst, R., Herrmann, S., Kenney, C.,
Markovic, B., Nishimura, K., Osier, S., Pines, J., Reese, B., Segal, J.,
Tomada, A. & Weaver, M. (2015). J. Synchrotron Rad. 22, 577-583.

Botha, S. & Fromme, P. (2023). Structure, 31, 1306-1319.

Boutet, S., Lomb, L., Williams, G. J., Barends, T. R. M., Aquila, A.,
Doak, R. B., Weierstall, U., DePonte, D. P, Steinbrener, J.,
Shoeman, R. L., Messerschmidt, M., Barty, A., White, T. A,
Kassemeyer, S., Kirian, R. A., Seibert, M. M., Montanez, P. A,,
Kenney, C., Herbst, R., Hart, P, Pines, J., Haller, G., Gruner, S. M.,

J. Appl. Cryst. (2024). 57, 529-538

537

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8

computer programs

Philipp, H. T, Tate, M. W., Hromalik, M., Koerner, L. J., van Bakel,
N., Morse, J., Ghonsalves, W., Arnlund, D., Bogan, M. J., Caleman,
C., Fromme, R., Hampton, C. Y., Hunter, M. S., Johansson, L. C.,
Katona, G., Kupitz, C., Liang, M., Martin, A. V., Nass, K., Redecke,
L., Stellato, F,, Timneanu, N., Wang, D., Zatsepin, N. A., Schafer, D.,
Defever, J., Neutze, R., Fromme, P, Spence, J. C. H., Chapman, H.
N. & Schlichting, I. (2012). Science, 337, 362-364.

Breiman, L. (2001). Mach. Learn. 45, 5-32.

Chapman, H. N., Fromme, P, Barty, A., White, T. A., Kirian, R. A.,
Aquila, A., Hunter, M. S., Schulz, J., DePonte, D. P., Weierstall, U.,
Doak, R. B,, Maia, F. R. N. C., Martin, A. V., Schlichting, I., Lomb,
L., Coppola, N., Shoeman, R. L., Epp, S. W., Hartmann, R., Rolles,
D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G.,
Holl, P, Liang, M., Barthelmess, M., Caleman, C., Boutet, S., Bogan,
M. J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B.,
Erk, B., Schmidt, C., Homke, A., Reich, C., Pietschner, D., Striider,
L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G.,
Schopper, E., Soltau, H., Kiithnel, K., Messerschmidt, M., Bozek, J.
D., Hau-Riege, S. P, Frank, M., Hampton, C. Y., Sierra, R. G,
Starodub, D., Williams, G. J., Hajdu, J., Timneanu, N., Seibert, M.
M., Andreasson, J., Rocker, A., Jonsson, O., Svenda, M., Stern, S.,
Nass, K., Andritschke, R., Schroter, C., Krasniqi, F., Bott, M.,
Schmidt, K. E., Wang, X., Grotjohann, 1., Holton, J. M., Barends, T.
R. M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D.,
Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H.,
Potdevin, G., Graafsma, H., Nilsson, B. & Spence, J. C. H. (2011).
Nature, 470, 73-77.

Collette, A. (2013). Python and HDF5. Sebastopol: O’Reilly.

Costa-Luis, C. O. da (2019). J. Open Source Software, 4, 1277.

Cox, D. R. (1958). J. Roy. Stat. Soc. Ser. B Stat. Methodol. 20,215-232.

Driel, T. B. van, Nelson, S., Armenta, R., Blaj, G., Boo, S., Boutet, S.,
Doering, D., Dragone, A., Hart, P,, Haller, G., Kenney, C., Kwai-
towski, M., Manger, L., McKelvey, M., Nakahara, K., Oriunno, M.,
Sato, T. & Weaver, M. (2020). J. Synchrotron Rad. 27, 608-615.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Fix, E. & Hodges, J. L. Jr. (1989). Int. Stat. Rev. 57, 238-247.

Géron, A. (2017). Hands-On Machine Learning with Scikit-Learn and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems. Sebastopol: O’Reilly Media.

Gevorkov, Y., Yefanov, O., Barty, A., White, T. A., Mariani, V.,
Brehm, W., Tolstikova, A., Grigat, R.-R. & Chapman, H. N. (2019).
Acta Cryst. AT5, 694-704.

Goodfellow, 1., Bengio, Y. & Courville, A. (2016). Deep Learning.
Cambridge: MIT Press.

Harris, C. R., Millman, K. J., van der Walt, S. J,, Gommers, R.,
Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N.J, Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M.,
Haldane, A., del Rio, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P, Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H.,
Gohlke, C. & Oliphant, T. E. (2020). Nature, 585, 357-362.

Henrich, B., Becker, J., Dinapoli, R., Goettlicher, P, Graafsma, H.,
Hirsemann, H., Klanner, R., Krueger, H., Mazzocco, R., Mozza-
nica, A., Perrey, H., Potdevin, G., Schmitt, B., Shi, X., Srivastava, A.,
Trunk, U. & Youngman, C. (2011). Nucl. Instrum. Methods Phys.
Res. A, 633, S11-S14.

Ho, T. K. (1995). Proceedings of the Third International Conference
on Document Analysis and Recognition, Vol. 1, pp. 278-282. IEEE.

Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90-95.

Jernigan, R. J., Logeswaran, D., Doppler, D., Nagaratnam, N., Sonker,
M., Yang, J. H., Ketawala, G., Martin-Garcia, J. M., Shelby, M. L.,
Grant, T. D., Mariani, V., Tolstikova, A., Sheikh, M. Z., Yung, M. C,,
Coleman, M. A., Zaare, S., Kaschner, E. K., Rabbani, M. T., Nazari,
R., Zacks, M. A., Hayes, B, Sierra, R. G., Hunter, M. S, Lisova, S.,
Batyuk, A., Kupitz, C., Boutet, S., Hansen, D. T., Kirian, R. A.,
Schmidt, M., Fromme, R., Frank, M., Ros, A., Chen, J. J., Botha, S.
& Fromme, P. (2023). Structure, 31, 138-151.e5

Kabsch, W. (2010). Acta Cryst. D66, 125-132.

Karplus, P. A. & Diederichs, K. (2012). Science, 336, 1030-1033.

Ke, T.-W., Brewster, A. S., Yu, S. X., Ushizima, D., Yang, C. & Sauter,
N. K. (2018). J. Synchrotron Rad. 25, 655-670.

Kupitz, C., Olmos, J. L., Holl, M., Tremblay, L., Pande, K., Pandey, S.,
Oberthiir, D., Hunter, M., Liang, M., Aquila, A., Tenboer, J.,
Calvey, G., Katz, A., Chen, Y., Wiedorn, M. O., Knoska, J., Meents,
A., Majriani, V., Norwood, T., Poudyal, I., Grant, T., Miller, M. D.,
Xu, W., Tolstikova, A., Morgan, A., Metz, M., Martin-Garcia, J. M.,
Zook, J. D., Roy-Chowdhury, S., Coe, J., Nagaratnam, N., Meza, D.,
Fromme, R., Basu, S., Frank, M., White, T., Barty, A., Bajt, S,,
Yefanov, O., Chapman, H. N., Zatsepin, N., Nelson, G., Weierstall,
U., Spence, J., Schwander, P, Pollack, L., Fromme, P., Ourmazd, A.,
Phillips, G. N. & Schmidt, M. (2017). Struct. Dyn. 4, 044003.

LeCun, Y., Bengio, Y. & Hinton, G. (2015). Nature, 521, 436-444.

Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. & Hajdu, J.
(2000). Nature, 406, 752-757.

Oviedo, F.,, Ren, Z., Sun, S., Settens, C., Liu, Z., Hartono, N. T. P,
Savitha, R., DeCost, B. L., Tian, S. I. P, Romano, G., Kusne, A. G. &
Buonassisi, T. (2018). arXiv:1811.08425[physics.data-an].

Pandas Development Team (2020). pandas-dev/pandas: Pandas,
https://doi.org/10.5281/zenodo.3509134.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., Blondel, M., Prettenhofer, P, Weiss, R., Dubourg, V.,
Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.
& Duchesnay, E. (2011). J. Mach. Learn. Res. 12, 2825-2830.

Powell, H. R., Johnson, O. & Leslie, A. G. W. (2013). Acta Cryst. D69,
1195-1203.

PyQr (2012). PyQt4 Reference Guide, https://www.riverbankcomputing.
com/static/Docs/PyQt4/.

Quinlan, J. R. (1986). Mach. Learn. 1, 81-106.

Rossum, G. van & Drake, F. L. (2011). The Python Language
Reference Manual. Network Theory Ltd.

Sierra, R. G., Batyuk, A., Sun, Z., Aquila, A., Hunter, M. S., Lane, T.
J., Liang, M., Yoon, C. H., Alonso-Mori, R., Armenta, R., Castagna,
J.-C., Hollenbeck, M., Osier, T. O., Hayes, M., Aldrich, J., Curtis, R.,
Koglin, J. E., Rendahl, T., Rodriguez, E., Carbajo, S., Guillet, S.,
Paul, R., Hart, P., Nakahara, K., Carini, G., DeMirci, H., Dao, E. H.,
Hayes, B. M., Rao, Y. P, Chollet, M., Feng, Y., Fuller, F. D., Kupitz,
C., Sato, T., Seaberg, M. H., Song, S., van Driel, T. B., Yavas, H.,
Zhu, D., Cohen, A. E., Wakatsuki, S. & Boutet, S. (2019). J.
Synchrotron Rad. 26, 346-357.

Souza, A., Oliveira, L. B., Hollatz, S., Feldman, M., Olukotun, K.,
Holton, J. M., Cohen, A. E. & Nardi, L. (2019). arXiv:1904.11834
[es.LG].

Stagno, J. R., Liu, Y., Bhandari, Y. R., Conrad, C. E., Panja, S., Swain,
M., Fan, L., Nelson, G., Li, C., Wendel, D. R., White, T. A., Coe, J.
D., Wiedorn, M. O,, Knoska, J., Oberthuer, D., Tuckey, R. A., Yu, P,
Dyba, M., Tarasov, S. G., Weierstall, U., Grant, T. D., Schwieters, C.
D., Zhang, J., Ferré-D’Amaré, A. R., Fromme, P, Draper, D. E.,
Liang, M., Hunter, M. S., Boutet, S., Tan, K., Zuo, X., Ji, X., Barty,
A., Zatsepin, N. A., Chapman, H. N., Spence, J. C. H., Woodson, S.
A. & Wang, Y. X. (2016). Nature, 541, 242-246.

Sullivan, B., Archibald, R., Azadmanesh, J., Vandavasi, V. G., Langan,
P. S., Coates, L., Lynch, V. & Langan, P. (2019). J. Appl. Cryst. 52,
854-863.

Waskom, M. L. (2021). J. Open Source Software, 6, 3021.

Weierstall, U., Spence, J. C. H. & Doak, R. B. (2012). Rev. Sci.
Instrum. 83, 035108.

White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,
A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335-341.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G. J., Ng, A., Liu, B, Yu, P. S., Zhou, Z., Steinbach, M.,
Hand, D. J. & Steinberg, D. (2008). Knowl. Inf. Syst. 14, 1-37.

538

Gihan Ketawala et al. + The Pixel Anomaly Detection Tool

J. Appl. Cryst. (2024). 57, 529-538

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB42
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB15
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB19
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB27
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB28
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB29
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB30
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB31
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB41
https://doi.org/10.5281/zenodo.3509134
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB32
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB33
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB34
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB35
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB36
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB37
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB38
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB39
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB40
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB43
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB44
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB45
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=oc5034&bbid=BB46

	Abstract
	1. Introduction
	2. The Pixel Anomaly Detection Tool (PADT)
	2.1. Overview
	2.2. The PADT GUI
	2.3. Additional PADT features
	2.4. PADT ML algorithms
	2.5. Model quality diagnostics

	3. Example case
	4. Conclusions
	Acknowledgements
	Funding information
	References

