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This article proposes a neural network hybrid modeling framework for dynamics learning
to promote an interpretable, computationally efficient method of dynamics learning and
system identification. First, a low-level model is trained to learn the system dynamics,
which utilizes multiple simple neural networks to approximate the local dynamics generated
from data-driven partitions. Then, based on the low-level model, a high-level model is
trained to abstract the low-level neural hybrid system model into a transition system that
allows computational tree logic (CTL) verification to promote model’s ability to handle
human interaction and verification efficiency. [DOI: 10.1115/1.4066516]
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1 Introduction
In recent years, the development of neural networks has received

particular attention in various fields, including natural language pro-
cessing [1], computer vision [2], etc. The applications of neural net-
works in system identification hold significant promise for they
provide a precise approximation of the dynamics while requiring
no prior knowledge of the system’s mechanism. Neural networks
serve as a predominant approach in machine learning, renowned
for their exceptional ability to model complex phenomena with
limited prior knowledge. Their proficiency in capturing intricate
patterns in data offers valuable insights for dynamical system mod-
eling, verification, and control.
However, neural networks are opaque, limiting our ability to val-

idate them solely from an input–output perspective. This opacity
also renders neural network models vulnerable to perturbations
[3,4]. When it comes to applications in safety-critical scenarios, it
requires time-consuming reachability analysis of the specific trajec-
tories for verification, which poses challenges to real-time applica-
tions. According to Ref. [5], the computational efficiency is highly
related to the scale of the neural network model. To promote com-
putational efficiency, Ref. [6] proposed a computationally efficient
distributive learning structure for dynamics learning, Ref. [7]
proposed a fast reachable set estimation method with a compromise
in conservatism, and Ref. [8] proposed an efficient bound

propagation. However, when it comes to reachability analysis, spe-
cific time-consuming trajectory generations are necessary when
applying these methods for the lack of model interpretability.
This article aims to promote neural networks” interpretability and

computational efficiency in dynamical system modeling by intro-
ducing a novel dual-level modeling framework. Specifically, our
proposed approach will divide dynamical system modeling into
two essential levels: the low-level neural hybrid system model and
its high-level transition system abstraction. The low-level model is
employed to precisely capture the system’s local behavior and
enhance the computational efficiency with a parallel set of shallow
neural networks to approximate the local dynamics. Then the high-
level transitionmodel, an abstraction based onneural hybrid systems,
can be obtained based on reachability analysis designed to capture
relationships and transition patterns among system subspaces.
Compared with the conventional neural network modeling

method, the advantages of our proposed dual-level modeling frame-
work can be summarized as follows:

• A novel data-driven partitioning method: maximum entropy
(ME) partitioning is applied to partition the system state
space into multiple local subspaces, which allows analysis of
the dynamics within local subspaces.

• A computationally efficient low-level model: A concept of
neural hybrid systems is proposed for distributed training
and verification of a set of shallow neural networks, thereby
enhancing computational efficiency.

• Promoting the learning model’s interpretability: A novel tran-
sition system abstraction method is proposed to investigate the
transition relationships between local partitions, further
enhancing model interpretability.
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This article is organized as follows: Preliminaries and problem
formulations are given in Sec. 2. The main result, the dual-level
modeling framework, is given in Sec. 3. In Sec. 4, modeling of
the LASA datasets is given to illustrate the effectiveness of our pro-
posed framework.3 Conclusions are given in Sec. 5.

2 Preliminaries and Problem Formulation
In this article, the modeling problems for the discrete-time system

are discussed, i.e., we aim to model the system in the form of

x(k + 1) = f (x(k), u(k)) (1)

where x ∈ Rnx is the system state, u ∈ Rnu is the external input, and
f :Rnx+nu � Rnx is the ideal mapping that precisely describes the
system patterns. Due to dimensions and nonlinearity, obtaining f
could be challenging, and therefore, we aim to approximate f
with neural network Φ :Rnx+nu � Rnx in

x(k + 1) =Φ(x(k), u(k)) (2)

In the training of Φ, approximating f means adjusting the weight
and bias ofΦ to minimize the error between its output and the given
dataset. In this article, the given dataset consisting of input–output
pairs is in the form of

D = {(z(i), y(i)) ∣ z(i) ∈ Rnx+nu , y(i) ∈ Rnx} (3)

However, neural networks face challenges as they typically
require extensive data for training and often lack an intuitive under-
standing of the system’s behavior. To unveil the black-box model
usually requires a reachability analysis of the neural network dyna-
mical system.

2.1 Reachability Analysis for Neural Network Dynamical
System. The reachability analysis of neural networks is useful in
the neural network dynamical system verification for it can deter-
mine the range of outputs based on the interplay between the
input sets and the structure of the neural network, and according
to Refs. [8–10], simple neural network structure, i.e., Φ, that con-
tains fewer layers and neurons has advantages in reachable
computation.
Taking a L-layer feed-forward neural network Φ :Rn0 � RnL as

an example, its inter-layer propagation can be denoted as follows:

xi,k+1 = σ
∑
j

wij,k+1x j,k + bi,k+1

( )
(4)

where xi,k+1 is the ith neuron output from the k + 1th layer com-
puted by applying the activation function σ to the weighted sum
of the activations from the previous layer, plus a bias bi,k+1 and
wij,k+1 are the ith line and the jth row values of the weight bias
Wk ∈ Rnk×nk+1 , respectively.
Reachability analysis of neural networks goes through the inter-

propagation of the neural network in Eq. (4), namely, for neural
network model in Eq. (2) output reachable set computation when
given the kth time-step state input set X (k) ⊂ Rnx and external
input set U ⊂ Rnu can be denoted as follows:

X (k+1) =Φ∗(X (k), U) (5)

whereX (k+1) is the reachable set output ofΦ at the k + 1th time-step
computed by reachable set computation method Φ∗ such as those
presented in Refs. [7,11,12]. Reachable sets in given Kth time-steps

require propagation of Eq. (5):

R(K) =
⋃K
k=0

X (k) (6)

where R(K) is the reachable sets in K time-steps.
Due to the opacity of neural networks, the verification of Eq. (2)

usually necessitates reachability computations of different trajecto-
ries to verify specific properties and can be heavily influenced by
the neural network structure, posing a computational burden that
challenges its application.

2.2 Maximum Entropy Partitioning. ME partitioning pro-
posed in Ref. [13] utilizes the Shannon entropy to partition the
state space according to the data, which can be very useful in obtain-
ing subspaces for distributed learning and prediction in neural
networks.
Given a set of N ∈ N subspaces P = {Pi}

N
i=1, where Pi ⊂ Rnx ,

the Shannon entropy of P can be denoted by

H(P) = −
∑N
i=1

p(Pi) log p(Pi) (7)

where p(P) denotes the probability of Pi occurrence in Pi. In this
data-driven process, p(Pi) is extrapolated by the sample set in the
form of

p(Pi) =
|Di|
|D| (8)

where |D| is the number of samples of D, and Di is defined by

Di = {(z(j), y(j)) ∈ D ∣ x ∈ Pi, ∀[x⊤, u⊤]⊤ = z(i)} (9)

The ME partitioning employs the variation in Shannon entropy
from system partitions to ascertain if the current set of partitions
maximized the system’s entropy after a bisecting method. Explic-
itly, the variation of Shannon entropy is in the form of

ΔH = H(P̂) − H(P) (10)

where P̂ is the postbisecting set of partitions.
By setting a threshold ε ≥ 0 as a stop condition, namely, the

bisection process stops if ΔH < ε, a proper set of partitions can
be obtained.

2.3 Problem Formulation. This article aims to promote the
efficiency of learning and prediction of the neural network dynami-
cal system in solving the following problem.
Problem 1. Given the dataset D in the form of Eq. (3), how do we
model the dynamical system distributively with multiple simple
neural networks?
To promote the interpretability of the learning model, the follow-

ing problem will be the main concern after a distributed neural
network model is obtained.
Problem 2. Given a neural network-based approximation Φ of f ,
how do we abstract Φ into an interpretable model that avoids real-
time reachable set computation in Eq. (5)?
Solving Problem 1 allows parallel training and verification of

multiple simple neural networks, which enhances the efficiency of
neural network modeling while providing an accurate low-level
model. On the basis of the low-level model, we can enhance the
interpretability by abstracting the low-level model into a high-level
model by solving Problem 2.

3 Dual-Level Modeling Framework
Before presenting the dual-level modeling framework, we make

the assumption that the system training set (3) provides adequate
information in the working zone for dynamical learning as follows:

3The developed modeling tool and code for experiments are publicly available
online at: https://github.com/aicpslab/Dual-Level-Dynamic-System-Modeling
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ASSUMPTION 1. The working zone of ideal system dynamical
description f in Eq. (1) is within the localized state space x ∈ X ,
given the external input bound where u ∈ [u, u].
In most cases of neural network dynamical system modeling, Φ

in Eq. (2) has a high accuracy in approximating the dynamics based
on a sample set D. On the basis of D, we assume that the learning
model applies only to a working zone with Assumption 1.

3.1 Neural Hybrid System Model and Transition System
Abstraction. To solve Problem 1, we proposed the neural hybrid
system model, which allows precise learning of the dynamical
system through multiple small-scale neural networks. The neural
hybrid system model is defined as follows:
DEFINITION 1. A neural hybrid system model is a tuple

H = 〈P, Ω, δ, Φ̃〉, where

• Ω ⊂ Rd: Working zone, with states x(k) ∈ Ω.
• P = {P1, P2, . . . , PNp}: Finite set of nonoverlapping

partitions in the working zone, where: (1) Pi ⊆ Ω; (2)⋃N
i=1 Pi = Ω; (3) Pi ∩ Pj =∅, ∀i ≠ j.

• δ :Ω � {1, 2, . . . , Np}: Function mapping states to partitions
δ(x(k)) = i, implies x(k) ∈ Pi.

• Φ̃ = {Φ1, Φ2, . . . , ΦNp}: Set of neural networks, each Φi

models dynamics in Pi.

Definition 1 introduces a distributed structure of the neural net-
works that allow local approximations of the subspaces of state
space called partitions. The dynamics of low-level model H is
denoted as follows:

x(k + 1) =Φδ(x(k))(x(k), u(k)) (11)

The trajectory generation process in Eq. (11) is given in Fig. 1.
This distributed structure aids in reducing the scale of the neural
network approximation, thereby enhancing computational effi-
ciency in both training and verification.
Compared with the conventional model, the neural hybrid system

modeling has the advantages of real-time computation and verifica-
tion. However, to gain insights from the neural hybrid system mod-
eling and enhance interactivity between the learning model and
human users, we can abstract the neural hybrid system into a tran-
sition system defined as follows:
DEFINITION 2. A transition system abstraction is a tuple T ≜

Ω, Q, E〈 〉, where its elements are given as follows:

• Ω ⊂ Rnx : Working zone, where this abstraction is applying to.
• Q = {Q1, . . . , QNq}: The finite set of subspaces called cells,

where (1) Qi ⊆ Ω; (2) Ω =
⋃Nq

i=1 Qi; and (3) Qi
⋂

Qj =∅.
With an index function idx :Q � N≤Nq for idx(Qi) = i.

• R :N≤Nq ×N≤Nq � B: Transition rules, if there exist a prob-
able transition from Qi to Qj, then R(i, j) = 1, else R(i, j) = 0.

Illustrated by Fig. 2, a transition system abstraction unveils the
interconnection of subspaces with transition rules T through
abstracting the neural hybrid system H. In this process, the data
in the form of traces are generated by the neural hybrid system H
by giving it randomized initial states, and randomized or
user-specified external input for the nonautonomous dynamical
systems.

3.2 Efficient Dynamics Learning via Low-Level Modeling.
In this article, efficient dynamics learning is achieved through our
proposed low-level model, termed neural hybrid system modeling.
To begin with, ME partitioning proposed in Ref. [13] is applied to
bisecting the working zone Ω based on the dataset D. In
this process, Ω and P are in the form of the interval, e.g., Pi =

[ p
i,1
, pi,1] × [ p

i,2
× pi,2] . . . in which Pi = { pi,1, pi,2, . . . , pi,nx} ∈

Rnx , etc. Specifically, we locates the jth dimension of the ith parti-
tion to bisect via

(i, j) = argmax
i,j

Di,j (12)

where

Di,j = pi,j − p
i,j

(13)

We can keep bisecting the P until ΔH ≤ ε. After the ME parti-
tioning, the set of partitions P with Np partitions can be obtained,
which subsequently defines the segmented dataset {D1, . . . , DNp}.
With the segmented dataset, we can train the set of neural networks
once given a neural network structure, namely, the layers, neurons,
activation function, etc., of neural networks.
To further optimize the ME partitioning and simplify the learning

model, we merge the redundant partitions based on the training per-
formance of the neural network. Merging redundant partitions is
based on the mean-square error (MSE) performance of the neural
network. Given D and a trained neural network Φ, the MSE perfor-
mance of Φ is expressed as follows:

MSE(Φ, D) =
1
|D|

∑|D|

i=1

Φ(z(i)) − y(i)
∥∥ ∥∥ (14)

By setting a threshold based on MSE performance γ ≥ 0, we are
able to identify the redundant partitions that are considered to have
similar performance under the same neural network structure,
namely, if

MSE(Φ, Di ∪ Dj) ≤ γ (15)

for a trained Φ, the corresponding partitions Pi and Pj are consid-
ered redundant partitions, and hence, they will be merged.
Merging the redundant partitions subsequently defines the

switching logic δ and the set of neural networks Φ̃ for the neural
hybrid system H. The low-level neural hybrid system modeling
can be summarized in pseudo-code given in Algorithm 1.

Fig. 1 Distributive low-level model H, where |Φ|= 6, and the
dynamics within each partition Pi is iterated with subneural
network Φ̃i

Fig. 2 High-level transition system abstraction T based on the
low-level model H, where the set of cells |Q|= 6, and the transi-
tion rules R are denoted by arrows

ASME Letters in Dynamic Systems and Control JANUARY 2025, Vol. 5 / 011001-3



Algorithm 1 Low-level neural hybrid system modeling

⊳ Maximum entropy partitioning
1: procedure ME partitioning Ω,D, ε
Input: Ω;D; ε.
Output: P; ∪ {Di}.

2: Psave ← ∅; Dsave ← ∅;
3: P1 ← Ω;
4: while ∃ΔHi ≥ ε, ∀Pi do
5: [i, j,Distance] ← max(Di,j)
6: Obtain Ptemp1 and Ptemp2 under (12)
7: Obtain Dtemp1 and Dtemp2

8: if ΔHi ≥ entropy then ⊳ Using (7)
9: Pi ← {Ptemp1,Ptemp2}
10: Di ← {Dtemp1,Dtemp2}
11: else
12: Add Pi to Psave and delete Pi

13: Add Di to Dsave and delete Di

14: end if
15: end while
16: return P ∪ Psave; D ∪ Dsave

17: end procedure
⊳ Merging and dynamics learning

18: procedure Merge and Learn P,∪ {Di},Φ
Input: P,∪ {Di},Φ
Output: P, Φ̃

19: ℓ ← |P|, N ← 1; ⊳ Segmented partitions merge
20: while N < ℓ do
21: n ← 1;
22: while n ≤ ℓ do
23: n ← n+ 1;
24: ΦN,n ← Φ, DN,n ← DN ∪ Dn

25: ΦN,n ← argminΦN.n MSE(ΦN,n,DN,n)
26: if MSE(ΦN,n,DN,n) ≤ γ then
27: PN ← {PN ∪ Pn}
28: Delete Pn

29: ℓ ← ℓ− 1
30: end if
31: end while
32: N ← N + 1;
33: end while
34: ⊳ Generate neural network approximations
35: i ← 1;
36: while i ≤ N do
37: Φi ← argminΦi MSE(Φi,Di)
38: end while
39: return P = {P1 . . . ,PN}; Φ = {Φ1, . . . ,ΦN}
40: end procedure

The low-level neural hybrid system can model the dynamical
system through a distributive and computationally efficient frame-
work, which makes it possible for parallel training in the merge
and learning procedure, and distributive verification in Ref. [6].
To further exploit this distributive structure and promote the inter-
pretability of the low-level learning model, we proposed a transition
system abstraction method as the high-level model.

3.3 Interpretable Abstraction via High-Level Model. In
high-level model abstraction, we intend to abstract the neural
hybrid system model in Definition 1 into a transition system in
Definition 2 with the help of the data generated by H called the
set of samples, defined by
DEFINITION 3. Set of samples W = {w1, w2, . . . , wL} of neural

hybrid system (11) is a collection of sampled L traces obtained by
given H different initial condition and randomized external input
u ∈ U, where for each trace wi, i = 1, . . . , L, is a finite sequence
of time-steps and data (k0,i, d0,i), (k1,i, d1,i), . . . , (kMi ,i, dMi ,i), where

• k0,i ∈ (0, ∞) and kℓ+1,i = kℓ,i + 1, ∀ℓ ∈ N≤Mi , ∀ i ∈ N≤L.
• zℓ,i = [x⊤i (kℓ,i), u⊤i (kℓ,i)]

⊤ ∈ Rnx+nu , ∀ ℓ = 0, 1, . . . , Mi,
∀i ∈ N≤L, where xi(kℓ,i), ui(kℓ,i) denote the state and input of
the system at ℓth step for ith trace, respectively.

Remark 1. It should be noted that the abstraction of the
neural hybrid system is specific, meaning that different transi-
tion system abstractions can be obtained based on different
control strategies. This specificity aids system designers in imple-
menting and validating control strategies tailored to specific
partitions.
After obtaining the set of samples, the set of cells Q is obtained

via the ME partitioning method as in procedure ME partitioning in
Algorithm 1 based onW. Then, the transition relationships between
cells are computed via reachability analysis in

Q′
i =

⋃Np

j=1

Φ∗
j (Qi ∩ Pj, U) (16)

where Φ∗
j indicates a reachable set computation method using the

subneural network. Intuitively, based on Definition 2, the transition
rule R(i, j) is

R(i, j) =
1, Q′

i ∩ Qj ≠ ∅
0, Q′

i ∩ Qj =∅

{
(17)

The process of transition computation can be summarized in
pseudo-code given in Algorithm 1.

Algorithm 2 Transition computation via H

Input: P,Q,Φ,U
Output: R

1: Np ← |P|, Nq ← |Q|
2: i ← 1; j ← 1;
3: while i ≤ n do
4: Q′

i ←
⋃Np

l=1 Φ
∗
l (Qi ∩ Pl,U) ⊳ Using (16)

5: j ← 1
6: while j ≤ n do
7: if Q′

i ∩ Qj ≠ ∅, then
8: R(i, j) ← 1
9: else
10: R(i, j) ← 0
11: end if
12: j ← j+ 1
13: end while
14: i ← i+ 1
15: end while
16: return R

The proposed dual-level modeling framework can be summa-
rized as follows:

• The localized working zone of Ω, i.e., P can be obtained
based on an ME partitioning process, which is completely
data driven and can be easily tuned by adjusting the
threshold.

• Partitions can be further optimized based on the MSE perfor-
mance of the trained neural network to simplify the low-level
model.

• The low-level model has a distributive structure consisting of
simple neural networks that allow parallel training and verifi-
cation, which is computationally efficient.

• The low-level model can be further abstracted into a high-level
transition system, and this process can be specifically designed
and allow system designers to develop and test control strate-
gies that are specifically tailored for each distinct localized
cell.

• The transitions can be of-line computed by reachability
analysis and can be transferred into a transition graph, which
enhances the learning model’s interpretability and enables
the feasibility of verifications based on logical descriptions.

011001-4 / Vol. 5, JANUARY 2025 Transactions of the ASME



4 Applications to Dynamical System Modeling
Regarding the modeling of complex dynamical systems like

human behaviors, learning-based methodologies have garnered sig-
nificant attention for their efficacy in Refs. [14,15]. However, while
learning-based approaches offer advantages over mechanistic mod-
eling, they present numerous challenges in practical applications.
For instance, typical issues include:

• The limited availability of sample data may result in a deep
neural network-based dynamical system model that is not ade-
quately trained, thereby hindering its ability to capture the full
spectrum of human behavioral complexities.

• The inherent nature of human demonstrations, characterized
by sudden shifts, suggests that a trained neural network-based
dynamical system model might exhibit discrepancies in its
behavior, especially in localized regions of the operational
space.

• The interpretability deficit in neural network-based dynamical
system models poses a significant challenge in real-time appli-
cations for limited, and computationally intensive verification
methods.

The aforementioned issues are exemplified in the LASA dataset
[16] modeling, which encompasses a diverse range of handwriting
motions demonstrated by human users across 30 distinct shapes.
This article addresses these issues through our proposed dual-level
dynamical system modeling framework. The dual-level modeling
process can be summarized as follows:

• Extreme learning machines (ELMs) are employed, each com-
prising 20 ReLU-activated neurons. These ELMs feature a
randomized input weight matrix and bias vector, forming the
core structure of the model. To highlight the efficacy of our
modeling approach, an ELM with a solitary hidden layer con-
taining 200 ReLU-activated neurons is trained to serve as a
single-neural network reference model.

• A threshold of ε = 4 × 10−2 is set for ME partitioning variation
in Algorithm 1. This setting led to the generation of the set of
partitions in ME partitioning for the low-level model of all

Table 1 Training time and MSE of the low-level model

Shape name Training time (ms) MSE (10−5)

Khamesh 0.7147 0.3466
LShape 0.7784 0.3745
MultiModels1 0.5603 0.2858
MultiModels2 0.6225 0.2892
· · · · · · · · ·

Table 2 Training time and MSE for ELM model

Shape name Training time (ms) MSE (10−5)

Khamesh 14.8098 0.0923
LShape 38.4118 0.0842
MultiModels1 20.8079 0.0551
MultiModels2 26.6117 0.0753
· · · · · · · · ·

Fig. 3 Partitions, cells, and transition map abstraction of dual-level models forMultiModels2 from LASA
dataset: (a)MultiModels2 handwriting human demonstration and 37 partitions obtained, (b) 12 partitions
obtained where redundant ones are given in the same color, (c) 11 cells abstraction for H of
MultiModels2, and (d) transition map based on T of MultiModels2

ASME Letters in Dynamic Systems and Control JANUARY 2025, Vol. 5 / 011001-5



30 shapes, some results are given in Tables 1 and 2, and an
illustration of MutiModels2

4 is given in Fig. 3(a).
• By setting a threshold γ = 1.5 × 10−5 in merging, we simplify

the low-level model by training fewer neural networks while
maintaining accuracy.

• We obtain the abstraction data from randomly generated tra-
jectories in the working zone Ω, where ∀Mi = 400, ∀ i ∈
N≤400 under Definition 3. By applying the threshold
ε = 4 × 10−2, a set of cells is then generated, as shown in
Fig. 3(c).

• On the basis of the set of cells, we employ the Algorithm 2 to
compute the transition relationships of the high-level model
abstraction. The transition from Fig. 3(c) to Fig. 3(d ) allows
for the interpretation of transition relationships between local
working zones.

• We verify the transition system abstraction via computation
tree logic (CTL) formulae [17], where ∃ or ∀ denote the for
some or all traces, and © denotes the next step. The formulae
and results of MultiModel2 are given in Table 3 as examples,
ϕ1 indicates the possibility of the neural hybrid system
model being in Q2, ϕ2 specifies that for every possible next
step, the system is in Q4, and ϕ3 signifies whether there
exists a trajectory that reaches Q7 immediately after passing
through Q6, given the initial condition is Q9.

4.1 Discussion. As observed in Tables 1 and 2, our proposed
low-level modeling process can maintain the same level of the train-
ing error with smaller-scale neural networks, and the training time
can be reduced due to parallel training of simple subneural net-
works. For example, in the modeling ofMutiModels2, our low-level
model can be trained in only 0.6225 ms with multiple
20-ReLu-activated ELM, while the MSE is 0.2892 × 10−5, where
baseline conventional ELM model takes 26.6117ms in training,
with an MSE being 0.0753 × 10−5.
The ME partitioning demonstrated in Figs. 3(a) and 3(b) shows

that information-rich areas are allocated more partitions, indicating
that this process can efficiently partition the state space based on
Entropy.
Figure 3(d ) and Table 3 show that our high-level transition

system abstraction can unveil the transition between cells via the
transition map. On the basis of high-level transition system
abstraction, we can verify the system’s properties against CTL for-
mulae, and the verification results can be found in the modeling
processes.

5 Conclusion and Future Works
In this article, a dual-level dynamical system learning framework

is proposed to promote computational efficiency and interpretability
in system identification. This framework utilizes a data-driven ME
partitioning process to bisect the working zone, which makes paral-
lel training and local analysis possible. Merging the partitions based
on the training performance is proposed to simplify the learning
model. The low-level model can then learn the dynamics precisely

while only consisting of simple neural networks. A high-level
model is proposed to promote interpretability through reachability
analysis. This high-level model provides valuable insights into
the transition relationship within the working zone with the transi-
tion map and allows user-specified verification against CTL
formulae.
While the proposed framework shows promise, several limita-

tions to our approach must be acknowledged. First, the data-driven
ME partitioning process may result in an excessive number of par-
titions in high-dimensional state spaces, which may lead to a tran-
sition map that is too complex to be described using LTL
language. Second, the abstraction process relies on the data-driven
partitioning results rather than being guided by verification consid-
erations, which suggests that the resulting partitions often do not
align with the user’s ideal verification regions. Additionally, the
transition system we generate is nondeterministic, meaning that
transitions cannot be quantified probabilistically. This means we
cannot perform quantitative analysis on the probability of meeting
target conditions, nor can we design control strategies to maximize
the likelihood of achieving these conditions.
To address these limitations and further enhance the framework,

several avenues for future research are identified. One potential
direction is to develop model reduction techniques to reduce the
dimension of the state space. Another area of improvement is apply-
ing the counterexample-guided abstraction refinement approach
such as proposed in Ref. [18] to promote the partitioning process
in high-level transition system abstraction. Furthermore, probability
estimation for each transition will make the high-level model appli-
cable in control synthesis. Finally, extending the framework to
include more comprehensive verification tools and exploring its
application to real-world industrial systems could provide valuable
insights and validate its practical utility.
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Nomenclature
B = the set of Boolean variables
N = the set of natural number sets
R = the set of real numbers

N≤n = the set of natural numbers less than or equal to n
Rn = the vector space of n-tuples of real numbers
X = the lower bound of an interval X
X = the upper bound of an interval X
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