
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-024-05152-x
Commun. Math. Phys.         (2024) 405:279 Communications in

Mathematical
Physics

Diffusive Limit of the Boltzmann Equation in Bounded
Domains

Zhimeng Ouyang1, Lei Wu2

1 Department of Mathematics, University of Chicago, Chicago, IL 60637, USA.
E-mail: ouyangzm9386@uchicago.edu

2 Department of Mathematics, Lehigh University, Bethlehem, PA 18015, USA. E-mail: lew218@lehigh.edu

Received: 15 September 2023 / Accepted: 20 September 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract: The investigation of rigorous justification of the hydrodynamic limits in
bounded domains has seen significant progress in recent years. While some headway has
been made for the diffuse-reflection boundary case (Esposito et al. in Ann PDE 4:1–119,
2018; Ghost effect from Boltzmann theory. arXiv:2301.09427, 2023; Jang and Kim in
Ann PDE 7:103, 2021), the more intricate in-flow boundary case, where the leading-
order boundary layer effect cannot be neglected, still poses an unresolved challenge. In
this study, we tackle the stationary and evolutionary Boltzmann equations, considering
the in-flow boundary conditions within both convex and non-convex bounded domains,
and demonstrate their diffusive limits in L2. Our approach hinges on a groundbreaking

insight: a remarkable gain of ε
1
2 in the kernel estimate, which arises from a meticulous

selection of test functions and the careful application of conservation laws. Additionally,
we introduce a boundary layer with a grazing-set cutoff and investigate its BV regularity
estimates to effectively control the source terms in the remainder equation with the help
of the Hardy’s inequality.
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1. Introduction

Hydrodynamic limits concern the derivation of fluid equations, such as the Euler equa-
tions or the Navier–Stokes equations, from the kinetic equations such as the Boltzmann
equation or the Landau equation. Hydrodynamic limits in non-convex domains (includ-
ing the so-called exterior domains) play a significant role in the science and engineering
problems: e.g. gas dynamics around airplane wings or high-rise buildings, water dynam-
ics near ships or bridge pier, plasma dynamics inside the Tokamak, etc. However, due
to the intrinsic singularity of kinetic equations in non-convex domains [28,60,82], the
rigorous justification of hydrodynamic limits remains largely open so far.

In this work, we will study the diffusive limits of both the stationary and evolutionary
Boltzmann equations in general (convex or non-convex) smooth bounded domains in
the presence of boundary layer corrections. We will show that the solutions to the Boltz-
mann equations converge to a global Maxwellian plus a small perturbation given by the
incompressible Navier–Stokes–Fourier system. Due to the complexity of the problems,
we will put most of the notation in the Appendix for the convenience of the reader.

1.1. Stationary problem. We consider the stationary Boltzmann equation in a three-
dimensional smooth bounded domain � � x = (x1, x2, x3) and velocity domain R

3 �
v = (v1, v2, v3). The stationary density function F(x, v) satisfies

{
v · ∇xF = ε−1Q [F,F] in � × R

3,

F(x0, v) = Fb(x0, v) for x0 ∈ ∂� and v · n < 0,
(1.1)

where n(x0) is the unit outward normal vector at x0 ∈ ∂�, and the Knudsen number
0 < ε � 1 characterizes the average distance a particle might travel between two
collisions.

Here Q is the hard-sphere collision operator

Q[F,G] :=
∫

R3

∫
S2
q(ω, |u − v|)

[
F(u∗)G(v∗) − F(u)G(v)

]
dωdu, (1.2)
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with u∗ := u + ω
(
(v − u) · ω)

, v∗ := v − ω
(
(v − u) · ω)

, and the hard-sphere collision
kernel q(ω, |u − v|) := q0 |ω · (v − u)| for a positive constant q0.

We intend to study the asymptotic limit of F(x, v) as ε → 0.

1.1.1. Setup and assumptions The function spaces and norms used in this paper are
introduced in “Appendix B”. Assume the in-flow boundary data

Fb(x0, v) := μ(v) + εμ
1
2 (v)fb(x0, v) ≥ 0, (1.3)

where μ denotes the global Maxwellian

μ(v) := (2π)−
3
2 e− |v|2

2 , (1.4)

and fb(x0, v) is a small perturbation satisfying

|fb|W 3,∞W 1,∞
γ−,�,ϑ

= o(1). (1.5)

Here the subscript γ− which denotes the in-flow boundary is also defined in “Ap-
pendix B”.

1.1.2. Normal chart near boundary We follow the approach in [79] to define the geo-
metric quantities.

For smooth manifold ∂�, there exists an orthogonal curvilinear coordinates system
(ι1, ι2) such that the coordinate lines coincide with the principal directions at any x0 ∈ ∂�

(at least locally). Assume ∂� is parameterized by r = r(ι1, ι2). Let the vector length be
Li = ∣∣∂ιi r∣∣ and unit vector ςi = L−1

i ∂ιi r.
Consider the corresponding new coordinate system (ι1, ι2, n), where n denotes the

normal distance to boundary surface ∂�, i.e. x = r − nn. Define the scaled variable
η = ε−1n, which implies ∂

∂n = 1
ε

∂
∂η

. Denote x := (η, ι1, ι2). Finally, we define the
orthogonal velocity substitution for v := (vη, vι1 , vι2) as

−v · n := vη, −v · ς1 := vι1 , −v · ς2 := vι2 . (1.6)

1.1.3. Asymptotic expansion We seek a solution to (1.1) in the form

F(x, v) = μ + f + f B + εμ
1
2 R = μ + μ

1
2

(
ε f1 + ε2 f2

)
+ μ

1
2

(
ε f B1

)
+ εμ

1
2 R, (1.7)

where the interior solution is

f (x, v) := μ
1
2 (v)

(
ε f1(x, v) + ε2 f2(x, v)

)
, (1.8)

and the boundary layer is

f B(x, v) := μ
1
2 (v)

(
ε f B1 (x, v)

)
. (1.9)

Here f and f B are defined in Sect. 3.1 and R(x, v) is the remainder satisfying
{
v · ∇x R + ε−1L[R] = S in � × R

3,

R(x0, v) = h(x0, v) for v · n < 0 and x0 ∈ ∂�,
(1.10)
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where the linearized Boltzmann operator L is defined in (A.2), h and S are defined in
(3.71)–(3.78).

Let P[R] be the projection of R onto the null space N of L as introduced in Section
A. Then we split for some p(x),b(x), c(x):

R = P[R] + (I − P)[R] := μ
1
2 (v)

(
p(x) + v · b(x) +

|v|2 − 5

2
c(x)

)
+ (I − P)[R].

(1.11)

Define the working space equipped with the norm

‖R‖X := ε− 1
2 ‖P[R]‖L2 + ε−1 ‖(I − P)[R]‖L2

ν
+ ‖R‖L6 + ε− 1

2 |R|L2
γ+

+
∣∣∣μ 1

4 R
∣∣∣
L4
γ+

+ ε
1
2 ‖R‖L∞

�,ϑ
+ ε

1
2 |R|L∞

γ,�,ϑ
. (1.12)

1.1.4. Main result Let oT be a sufficiently small constant depending on fb satisfying

oT → 0 as |fb|W 3,∞W 1,∞
γ−,�,ϑ

→ 0. (1.13)

Theorem 1.1 (Stationary Problem). Assume that � is a bounded C3 domain and (1.5)
holds. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0), there exists a nonnegative
solution F(x, v) to the equation (1.1) represented by (1.7) satisfying

‖R‖X � oT , (1.14)

where the X norm is defined in (1.12). Such a solution is unique among all solutions
satisfying (1.40). This further yields

∥∥∥∥∥μ− 1
2 F − μ

1
2 − εμ

1
2

(
ρ1 + v · u1 +

|v|2 − 3

2
T1

)∥∥∥∥∥
L2

� oT ε
3
2 , (1.15)

where
(
ρ1(x),u1(x), T1(x), p1(x)

)
satisfies the steady Navier–Stokes–Fourier system

⎧⎪⎨
⎪⎩

∇x (ρ1 + T1) = 0,
u1 · ∇xu1 − γ1�xu1 + ∇xp1 = 0,
∇x · u1 = 0,
u1 · ∇x T1 − γ2�x T1 = 0,

(1.16)

for constants γ1 > 0 and γ2 > 0. The boundary condition
(
ρ1(x0),u1(x0), T1(x0)

)
=

(
ρB(x0),uB(x0), T

B(x0)
)

(1.17)

is given by

�∞(x0, v) = �∞(ι1, ι2, v) := μ
1
2

(
ρB(ι1, ι2) + v · uB(ι1, ι2) +

|v|2 − 3

2
T B(ι1, ι2)

)
∈ N ,

(1.18)
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which is solved from the Milne problem for �(x, v):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vη
∂�

∂η
+ L[�] = 0,

�(0, ι1, ι2, v) = fb(ι1, ι2, v) for vη > 0,∫
R3

vημ
1
2 (v)�(0, ι1, ι2, v)dv = M f ,

lim
η→∞�(η, ι1, ι2, v) = �∞(ι1, ι2, v).

(1.19)

Here M f (ι1, ι2) is chosen such that ρB + T B = constant and
∫
∂�

(
uB · n)dSx = 0.

Remark 1.2. In the fluid system (1.16), ρ1 denotes the density, u1 the velocity, and T1
the temperature. From (1.15), they are related to the perturbation around the global
Maxwellian μ. p1 represents the pressure in the Navier–Stokes equations and can be
determined as a byproduct of solving (1.16). Further expansion to O(ε2) as in Sect. 3.1
reveals that p1 = ρ2 + T2 + ρ1T1, where ρ2, T2 represent the next-order density and
temperature.

Remark 1.3. From (1.40) and Theorem 3.9 (which provide the bounds of f1, f2 and f B1 ),
we may deduce that for oT ε small enough

∥∥∥μ− 1
2 F − μ

1
2

∥∥∥
L2

� oT ε,
∥∥∥μ− 1

2 F − μ
1
2

∥∥∥
L∞
�,ϑ

� oT ε
1
2 . (1.20)

For fixed ε > 0, we know that the solution F belongs to the desired function space
L2 ∩ L∞

�,ϑ so that the well-posedness of the Boltzmann equation is guaranteed (see [41]
and [26]). In particular, [41] merely requires a polynomial weight since a contradiction
argument is employed in the proof of the L∞ estimate. Unfortunately, such an approach
is inapplicable to the asymptotic problems and thus we have to resort to the argument in
[26] which requires a Gaussian-type weight.

Remark 1.4. The assumption that the domain � is bounded and C3 is mainly used in
the construction of the asymptotic expansion and remainder estimates (see Sect. 3.1 and
3.2). In detail, in order to define the radius of curvature as in (3.9) and the boundary layer
f B1 , we need at least C2. Further, in the remainder estimates, the bound of S2 in Lemma
3.16 relies on ∂ι1 f

B
1 , ∂ι2 f

B
1 , ∂vη f

B
1 , ∂vι1 f B1 , ∂vι2 f B1 , which requires one more order of

regularity and thus calls forC3 domains. In addition,C3 domain is a natural requirement
to make sense of (1.5), which is crucial for Theorem 3.9 to justify the well-posedness
of the asymptotic expansion. The assumption that � is bounded is also crucial in the
proof of Proposition 3.34. The justification of (3.267) requires the finiteness of domain
volume.

Remark 1.5. The similar result as Theorem 1.1 also holds in two dimensions. Actually,
most of the proofs are analogous or even easier (e.g. in (3.177), the assumption 2 ≤ r ≤ 6
is necessary for 3D, but it may be relaxed to 2 ≤ r < ∞ for 2D). We also refer the
reader to the discussion on this dimension issue in [76,80,81].

1.2. Evolutionary problem. We consider the evolutionary Boltzmann equation in a
three-dimensional smooth bounded domain � � x = (x1, x2, x3) and velocity domain
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R
3 � v = (v1, v2, v3) with time t ∈ R+. The evolutionary density function F(t, x, v)

satisfies⎧⎨
⎩
ε∂tF + v · ∇xF = ε−1Q [F,F] in R+ × � × R

3,

F(0, x, v) = Fi (x, v) in � × R
3,

F(t, x0, v) = Fb(t, x0, v) for t ∈ R+, x0 ∈ ∂� and v · n(x0) < 0.
(1.21)

We intend to study the asymptotic limit of F(t, x, v) as ε → 0.

1.2.1. Setup and assumptions Assume the in-flow boundary data

Fb(t, x0, v) := μ(v) + εμ
1
2 (v)fb(t, x0, v) ≥ 0, (1.22)

where fb(t, x0, v) is a small perturbation satisfying

‖fb‖W 1,∞W 3,∞W 1,∞
γ−,�,ϑ

= o(1). (1.23)

Assume the initial data

Fi (x, v) := μ(v) + εμ
1
2 (v)fi (x, v) = μ(v) +

4∑
k=1

εkμ
1
2 (v)f

[k]
i (x, v) ≥ 0 (1.24)

where for some
(
ρ I (x),uI (x), T I (x)

)
satisfying ρ I + T I = constant, ∇x · uI = 0 and

∇x × (
uI · ∇xuI − γ1�xuI

) = 0:

f
[1]
i (x, v) := μ

1
2 (v)

(
ρ I (x) + v · uI (x) +

|v|2 − 3

2
T I (x)

)
, (1.25)

f
[2]
i (x, v) := L−1

[
− v · ∇x f

[1]
i + Γ

[
f
[1]
i , f

[1]
i

]]
, (1.26)

f
[3]
i (x, v) := L−1

[
− v · ∇x f

[2]
i + 2Γ

[
f
[1]
i , f

[2]
i

]]
, (1.27)

and f
[4]
i (x, v) ∈ L2

ν ∩C1 can be an arbitrary function. We assume that fi (x, v) is a small
perturbation term satisfying

‖fi‖W 1,∞L∞
�,ϑ

≤
4∑

k=1

∥∥∥f[k]i

∥∥∥
W 1,∞L∞

�,ϑ

= o(1). (1.28)

Remark 1.6. Solving ∂tF from (1.21), our definition of fi and (1.28) guarantee that∥∥∥ε−1μ− 1
2 ∂tF

∣∣
t=0

∥∥∥
L∞
�,ϑ

= o(1)ε,
∥∥∂t f1∣∣t=0

∥∥
L∞
�,ϑ

= 0, (1.29)

which will play a significant role in the remainder estimates. As a matter of fact, our
proof still holds with even weaker assumptions: for f1, f2 introduced in (1.7)∥∥∥ε−1μ− 1

2 ∂tF
∣∣
t=0 − ∂t f1

∣∣
t=0 − ε∂t f2

∣∣
t=0

∥∥∥
L∞
�,ϑ

= o(1)ε
1
2 . (1.30)

Based on the analysis in [27], this weaker requirement is very sharp to guarantee that

the initial time derivative of the remainder
∥∥∂t R∣∣t=0

∥∥
L∞
�,ϑ

� oT ε
1
2 .
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In addition, assume that fb and fi satisfy the compatibility condition at t = 0, x0 ∈ ∂�

and v · n < 0:

fb(0, x0, v) = fi (x0, v) = 0, ∂t fb(0, x0, v) = 0. (1.31)

Remark 1.7. The compatibility condition (1.31) guarantees that there will be no boundary
layer at t = 0.

1.2.2. Asymptotic expansions We seek a solution to (1.21) in the form

F(t, x, v) = μ + f + f B + εμ
1
2 R = μ + μ

1
2

(
ε f1 + ε2 f2

)
+ μ

1
2

(
ε f B1

)
+ εμ

1
2 R,

(1.32)

where the interior solution is

f (t, x, v) := μ
1
2 (v)

(
ε f1(t, x, v) + ε2 f2(t, x, v)

)
, (1.33)

and the boundary layer is

f B(t, x, v) := μ
1
2 (v)

(
ε f B1 (t, x, v)

)
. (1.34)

Here f and f B are defined in Sect. 4.1 and R(t, x, v) is the remainder satisfying

⎧⎨
⎩
ε∂t R + v · ∇x R + ε−1L[R] = S in R+ × � × R

3,

R(0, x, v) = z(x, v) in � × R
3,

R(t, x0, v) = h(t, x0, v) for v · n < 0 and x0 ∈ ∂�,

(1.35)

where z, h and S are defined in (4.25)–(4.33).
As for (1.11), we split

R = P[R] + (I − P)[R] = μ
1
2 (v)

(
p(t, x) + v · b(t, x) +

|v|2 − 5

2
c(t, x)

)
+ (I − P)[R].

(1.36)

Define the working space equipped with the norm

|||R|||X := |||R|||L∞
t L2

x,v
+ ε− 1

2 ‖R‖L2
γ+

+ ε− 1
2 |||P[R]|||L2 + ε−1 |||(I − P)[R]|||L2

ν

|||∂t R|||L∞
t L2

x,v
+ ε− 1

2 ‖∂t R‖L2
γ+

+ ε− 1
2 |||∂tP[R]|||L2 + ε−1 |||∂t (I − P)[R]|||L2

ν

+ ε− 1
2 ‖R‖L∞

t L2
γ+

+
∥∥∥μ 1

4 R
∥∥∥
L∞
t L4

γ+

+ ε−1 |||(I − P)[R]|||L∞
t L2

ν
+ |||R|||L∞

t L6
x,v

+ ε
1
2 |||R|||L∞

�,ϑ
+ ε

1
2 ‖R‖L∞

γ+,�,ϑ
. (1.37)
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1.2.3. Main result Let oT be a sufficiently small constant depending on fi and fb satis-
fying

oT → 0 as ‖fi‖W 1,∞L∞
�,ϑ

+ ‖fb‖W 1,∞W 3,∞W 1,∞
γ−,�,ϑ

→ 0. (1.38)

Theorem 1.8 (Evolutionary Problem). Assume that � is a bounded C3 domain and
(1.23), (1.28), (1.31) hold. Then there exists ε0 > 0 such that for any ε ∈ (0, ε0) and
any prescribed constant T > 0, there exists a nonnegative solution F(t, x, v) defined on
(t, x, v) ∈ [0,T] × � × R

3 to the equation (1.21) represented by (1.32) satisfying

|||R|||X � oT , (1.39)

where the X norm is defined in (1.37). Such a solution is unique among all solutions
satisfying (1.39). This further yields∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣μ− 1

2 F − μ
1
2 − εμ

1
2

(
ρ1 + v · u1 +

|v|2 − 3

2
T1

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

� oT ε
3
2 , (1.40)

where
(
ρ1(t, x),u1(t, x), T1(t, x), p1(t, x)

)
satisfies theunsteadyNavier–Stokes–Fourier

system ⎧⎪⎨
⎪⎩

∇x (ρ1 + T1) = 0,
∂tu1 + u1 · ∇xu1 − γ1�xu1 + ∇xp1 = 0,
∇x · u1 = 0,
∂t T1 + u1 · ∇x T1 − γ2�x T1 = 0.

(1.41)

The initial condition(
ρ1(0, x),u1(0, x), T1(0, x)

)
=

(
ρ I (x),uI (x), T I (x)

)
(1.42)

is given by (1.25), and the boundary condition(
ρ1(t, x0),u1(t, x0), T1(t, x0)

)
=

(
ρB(t, x0),uB(t, x0), T

B(t, x0)
)

(1.43)

is given by (1.18) solved from the Milne problem (1.19) for �(t, x, v).

Remark 1.9. The implicit constants in the estimates (1.39) and (1.40) may depend on T.

Remark 1.10. If we strengthen the boundary data assumption (1.23) such that for some
constant K0 > 0 ∥∥∥eK0t fb

∥∥∥
W 1,∞W 3,∞W 1,∞

γ−,�,ϑ

= o(1), (1.44)

then by a similar argument, Theorem 1.8 still holds withT = ∞ and the improved (1.40)
states that for some constant K ∈ (0, K0)∣∣∣

∣∣∣
∣∣∣eKt R

∣∣∣
∣∣∣
∣∣∣
X

� oT , (1.45)

and ∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣eKt

{
μ− 1

2 F − μ
1
2 − εμ

1
2

(
ρ1 + v · u1 +

|v|2 − 3

2
T1

)}∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
L2

� oT ε
3
2 . (1.46)

Particularly, the constants in the estimates (1.45) and (1.46) are independent of T.
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2. Background and Methodology

2.1. Literature review. The hydrodynamic limit of the Boltzmann equation is a key
ingredient to tackle Hilbert’s famous sixth problem [48] on the axiomization of physics,
which has attracted a lot of attention since the pioneering work [49,50]. Most of the
important fluid models can be derived by asymptotic expansion with respect to the
Knudsen number ε (the so-called Hilbert expansion) at least formally. The rigorous
justification of this asymptotic convergence has been well studied in many different
settings (domains, scalings, notions of solutions) and it is almost impossible for us to
provide an extensive literature review.

The classical dimensionless Boltzmann equation is given by:

δ∂tF + v · ∇xF = ε−1Q [F,F] , (2.1)

where the Strouhal number δ quantifies the rate at which the particle system undergoes
variation (relaxation time), while the Knudsen number ε measures the relative distance
a particle can travel between two collisions (scattering strength). These dimensionless
quantities play a crucial role in characterizing the scales of the problem. The fundamental
problem in hydrodynamic limits is to study the asymptotic behavior of F(t, x, v) in (2.1)
as ε → 0 and/or δ → 0.

Notably, the well-known von Kármán relation [71] provides a useful guideline for
understanding the expected hydrodynamic limits in the context of kinetic theory. The
von Kármán relation states that the Knudsen number (Kn) is proportional to the ratio of
the Mach number (Ma) to the Reynolds number (Re). Depending on the different com-
binations of Kn, Ma and Re, the solution to (2.1) may result in different fluid equations.

When Ma = O(1) and thus Re = O
(
ε−1

)
, the solution of the Boltzmann equation

will converge to a local Maxwellian which depends on solutions of the compressible
Euler equations. Such result was obtained by Caflisch [16] and Lachowicz [63], while
Nishida [68], Asano-Ukai [5] proved the similar results with a different approach. For
the convergence in the presence of singularities for the Euler equations, we refer to Yu
[83] and Huang-Wang-Yang [52,53]. The bounded domain case with boundary effects
was considered in Huang-Wang-Yang [54], Huang-Wang-Wang-Yang [51] and Guo-
Huang-Wang [42]. The relativistic Euler limit has been studied in Speck-Strain [73].

Notice that the local Maxwellian μ�(t, x, v) = ρ(t,x)

(2πT (t,x))
3
2

exp
(
−|v−u(t,x)|2

2T (t,x)

)
leads

to an additional term

[
(∂t + v · ∂x )μ

1
2
�

]
μ

− 1
2

� R in the remainder equation (compared

with (1.10) or (1.35)), which greatly distorts the energy-dissipation structure. Due to
this intrinsic difficulty from the local Maxwellian and the possible singularity from
solving the Euler equations, most of the results above are local in time. Also, due to the
inapplicability of almost all mature techniques in the whole space R

n or the periodic
domain T

n , the bounded domain case remains largely open.
When Ma = O(ε) and thus Re = O(1), the diffusion effects become significant,

and the solution of the Boltzmann equation will converge to a global Maxwellian plus
an O(ε) perturbation solving the incompressible Navier–Stokes equations. We refer
to Bardos-Ukai [11], DeMasi-Esposito-Lebowitz [23], Guo [40], Guo-Jang [43] for
smooth solutions, and Bardos-Golse-Levermore [7–10], Lions-Masmoudi [66], Jiang-
Masmoudi [57], Masmoudi-Saint-Raymond [67], Golse-Saint-Raymond [38] for renor-
malized solutions. For more references and related topics and developments, we refer
to Villani [74], Desvillettes-Villani [24,25], Carlen-Carvalho [18], Arkeryd-Nouri [4],
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Arkeryd-Esposito-Marra-Nouri [2,3], Esposito-Lebowitz-Marra [31,32]. We also refer
to the review and survey by Saint-Raymond [70], Golse [36], Esposito-Marra [33], and
the references therein.

When Ma = O(εα) for 0 < α < 1 and thus Re = O(εα−1), the solution of the
Boltzmann equation will converge to a global Maxwellian plus an O(ε) perturbation
solving the incompressible Euler equations. Besides the overlapped references as above,
we also refer to the recent development in Jang-Kim [56], Cao-Jang-Kim [17], Kim-La
[61].

There is a surprising new phenomenon arising from the hydrodynamic limits. When
Ma = O(ε) and thus Re = O(1), if the density/temperature is O(1) instead of O(ε),
as Sone [71,72] predicted, a new type of mixed fluid system (the so-called ghost-effect
equations) emerges as the hydrodynamic limit of the Boltzmann equation. We refer to
the recent development [29,30].

Notice that the von Kármán relation only dictates the behavior of Knudsen numbers.
The limiting fluid systems also depend on the scale of the Strouhal number δ (which is a
word borrowed from the fluid mechanics). Unfortunately, there is no a priori knowledge
of what the “correct” scaling δ = O (εκ) should be, but usually a properly chosen κ

would balance the particle collisions and time variation such that neither of them is
negligible. For example, in the diffusion regime Ma = O(ε) and thus Re = O(1), if
κ = 1, then the balance is achieved and the corresponding fluid system is the evolutionary
incompressible Navier–Stokes equations; if κ > 1, then the time varies too slowly and
the corresponding fluid system is the stationary incompressible Navier–Stokes equations.

In this paper, we will focus on the diffusive limit of the Boltzmann equation in bounded
domains, under both stationary and evolutionary settings with balanced Strouhal/Knudsen
numbers (i.e. Ma = O(ε), Re = O(1) and δ = O(ε)). Our work is closely related to
the recent development of L2 − L6 − L∞ framework and the kinetic boundary layer
with geometric effects. We refer to Esposito-Guo-Kim-Marra [26,27], and Wu [76],
Wu-Ouyang [79–81] for the diffuse-reflection boundary. In particular, [26,27] justify
the L2 convergence (for both convex and non-convex domains) relying on an improved
L2 − L6 − L∞ framework without boundary layer expansion, and [76,79–81] show the
L∞ convergence for convex domains with the boundary layer expansion. As [47,60,82]
reveal, the delicately designed boundary layer with geometric correction cannot attain
W 1,∞ regularity in non-convex domains, and thus the L∞ convergence for non-convex
domains is far from reach. The case of specular-reflection and bounce-back boundary
remain largely open (except on half-space or channel domains), mainly due to the lack
of explicit kernel estimate to track the ε dependence [14,41]. We also refer to the recent
development [22].

Boundary effect and grazing singularity play a more significant role for the in-flow
boundary, since this is the only case that the leading-order boundary layer does not
vanish. The L∞ convergence requires W 2,∞ regularity of the boundary layer, which
is way too far from reach at this stage. As a matter of fact, even for L2 convergence,
we cannot see any viable option to completely avoid the introduction of the boundary
layer expansion. As far as we are aware of, the best result for the in-flow case is the L∞
convergence for unit disk or unit ball domains [75], but there is no clear path to extend
the techniques to cover general smooth convex domains, let alone the non-convex ones.

In addition, we include some recent papers on the diffusive limit of the Boltzmann
equation and related models [14,15,55,58]. We also list some recent developments along
L2 − L p − L∞ framework [41,43–46,59,60,73,77,78].
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In this paper, we utilize a different approach and design a cutoff boundary layer
combined with a novel remainder estimates to obtain the L2 convergence in general
smooth bounded (including convex and non-convex) domains.

2.2. Major difficulty. In the following, we will utilize the stationary remainder equation
(1.10) to illustrate the key ideas. Rooted from the basic energy estimate (via multiplying
ε−1R on both sides of (1.10) and integrating over � × R

3 as in [27,75,79]) and the
coercivity of

〈L[R], R〉 in (A.5), we may bound ‖(I − P)[R]‖L2
ν
:

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
� o(1) ‖P[R]‖L2 + oT ε

− 1
2 . (2.2)

Then by testing (1.10) against functions ∇xϕ ·A with ϕ ∼ �−1
x p, �−1

x c and ∇xψ : B
with ψ ∼ �−1

x b for A ,B defined in (C.1) and (C.2), we may in turn bound P[R] in
terms of (I − P)[R]:

‖P[R]‖L2 � ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
+ oT ε

− 1
2 . (2.3)

Clearly, (2.2) and (2.3) lead to

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
+ ‖P[R]‖L2 � oT ε

− 1
2 . (2.4)

However, due to the negative power of ε on the RHS, (2.4) is insufficient to justify the
desired L2 convergence

lim
ε→0

‖R‖L2 = 0. (2.5)

For the diffuse-reflection boundary in convex domains [27,81], the general strategy to
overcome the above difficulty is to expand the interior solution and boundary layer to
sufficiently high order, i.e. compared with (1.7), we redefine

F(x, v) = μ + f + f B + εμ
1
2 R = μ + μ

1
2

(
ε f1 + ε2 f2 + ε3 f3

)
+ μ

1
2

(
ε f B1 + ε2 f B2

)
+ εμ

1
2 R.

(2.6)

The diffuse-reflection boundary condition implies that f B1 = 0 and thus there is no

difficulties caused by the regularity of the boundary layer [75]. The extra terms ε3 f3μ
1
2

and ε2 f B2 μ
1
2 help improve the bounds of S and h in (1.10). Eventually, this leads to the

improved version of (2.4):

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
+ ‖P[R]‖L2 � oT ε

α, (2.7)

for some α > 0 and thus (2.5) follows.
Unfortunately, this strategy does not work for the in-flow boundary, in which f B1 is

not necessarily zero and
∂ f B1
∂vη

/∈ L∞ [75]. Hence, we cannot expect to expand to f B2
which satisfies the Milne problem

vη
∂ f B2
∂η

+ L
[
f B2

]
≈ ∂ f B1

∂vη
. (2.8)
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The loss of f B1 regularity makes it impossible [75] to justify the well-posedness of (2.8),
and thus (2.5) is not attainable.

On the other hand, in non-convex domains, as illustrated in a similar scenario for the
neutron transport equation [82], the boundary layer f B1 is already problematic. Tradition-
ally, there are two approaches to design the boundary layer. If f B1 is defined satisfying
the flat Milne problem [12] (which is designed for flat domains)

vη
∂ f B1
∂η

+ L
[
f B1

]
≈ 0, (2.9)

then the remainder R estimates requires the control of
∂ f B1
∂vη

which is not in L∞ as the

previous paragraph stated. If f B1 is defined using the geometrically corrected Milne
problem [75,76,80,81] (which is designed for curved convex domains)

vη
∂ f B1
∂η

+
ε

R1 − εη

(
v2
ι1

∂ f B1
∂vη

)
+

ε

R2 − εη

(
v2
ι2

∂ f B1
∂vη

)
+ L

[
f B1

]
≈ 0, (2.10)

where Ri denotes the radii of principal curvatures, then the well-posedness of f B1 is not
attainable in non-convex domains. This adds additional difficulty in the construction of
asymptotic expansion. In this work, we will utilize the so-called cutoff Milne problem
to define f B1 as (3.51) which contains a crucial cutoff near the grazing set vη = 0. The
usage of this cutoff is explained in the next two subsections and Lemma 3.16, and the
rigorous well-posedness and regularity theory of f B1 is given in Sect. 3.1.2.

2.3. Methodology: stationary problem. As the above analysis reveals, with the expan-
sion (1.7) for the in-flow boundary, the bottleneck of (2.4) lies in the kernel bound
‖P[R]‖L2 and the source terms estimates for both (2.2) and (2.3). In this paper, we will
design several delicate test functions to obtain

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
� o(1)ε− 1

2 ‖P[R]‖L2 + oT , (2.11)

and

ε− 1
2 ‖P[R]‖L2 � ε− 1

2 |R|L2
γ+

+ ε−1 ‖(I − P)[R]‖L2
ν

+ oT , (2.12)

which introduce a crucial gain of half-order ε compared with (2.3):

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
+ ε− 1

2 ‖P[R]‖L2 � oT , (2.13)

and lead to (2.5).
Our key idea is a set of tricky combinations of weak formulations and conservation

laws to eliminate the worst term ε−1 |||(I − P)[R]|||L2 on the RHS of (2.3) and greatly
improve the source term estimates in (2.2) and (2.3). We will illustrate more precise
statement of the argument in the following.

Energy Estimate Testing (1.10) against ε−1R and utilizing the coercivity and orthog-
onality yield

ε−1 |R|2L2
γ+

+ ε−2 ‖(I − P)[R]‖2
L2
ν

�
∣∣∣ε−1〈S, R〉∣∣∣ . (2.14)
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Here, the most difficult term in S is the normal velocity derivative of f B1 :

∣∣∣∣∣ε−1

〈
∂ f B1
∂vη

,P[R]
〉∣∣∣∣∣ � ε−1

∣∣∣〈 f B1 ,P[R]
〉∣∣∣ � ε−1

∥∥∥ f B1

∥∥∥
L2
x L

1
v

‖P[R]‖L2
x L

∞
v

� oT ε
− 1

2 ‖P[R]‖L2 ,

(2.15)

which relies on a key integration by parts with respect to vη and taking the full advantage
of the rescaling η = ε−1n. Here the inner product 〈 ·, · 〉 is defined in “Appendix B”.

Therefore, we arrive at

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
� oT ε

− 1
2 ‖P[R]‖L2 + oT + nonlinear terms.

(2.16)

Estimate of p Test (1.10) against the smooth function ψ = μ
1
2
(
v · ∇xϕ

)
with ϕ ∼

�−1
x p yields

∫
γ

Rψ(v · n) − 〈
R, v · ∇xψ

〉 = 〈
S, ψ

〉
. (2.17)

By oddness and orthogonality, we eliminate the worst contribution ε−1
〈L[R], ψ 〉 = 0.

Then a straightforward estimate for the source term
〈
S, ψ

〉
reveals the ε

1
2 gain:

ε− 1
2 ‖p‖L2 � ε− 1

2 |R|L2
γ+

+ oT . (2.18)

Estimate of c For smooth function ϕ ∼ �−1
x c with ϕ

∣∣
∂�

= 0, we test (1.10) against

ϕ
( |v|2 − 5

)
μ

1
2 to obtain

−〈∇xϕ, ς
〉
x +

∫
∂�

ϕς · n =
〈
ϕ
(
|v|2 − 5

)
μ

1
2 , S

〉
, (2.19)

and against ∇xϕ · A to obtain

− κ
〈
�xϕ, c

〉
x + ε−1〈∇xϕ, ς

〉
= 〈∇xϕ · A , h

〉
γ− − 〈∇xϕ · A , R

〉
γ+

+
〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉
+
〈∇xϕ · A , S

〉
,

(2.20)

where ς :=
∫

R3
μ

1
2 v |v|2 (I − P)[R].

Therefore, adding ε−1×(2.19) and (2.20) exactly eliminates the troublesome terms

ε−1
〈∇xϕ, ς

〉
x and ε−1

∫
∂�

ϕς ·n whose presence leads to the worst ε−2 ‖(I − P)[R]‖2
L2
ν

contribution. These new conservation laws will be the backbone of c estimates. Hence,
we obtain the ε

1
2 gain:

ε− 1
2 ‖c‖L2 � ε− 1

2 |R|L2
γ+

+ oT ε
−1 ‖(I − P)[R]‖L2

ν
+ oT + nonlinear terms, (2.21)
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which relies on the careful estimates for the source terms ε−1
〈
ϕ
(|v|2 − 5

)
μ

1
2 , S

〉
and〈∇xϕ ·A , S

〉
. Here we will take full advantage of the cutoff boundary layer (see the key

bounds in Lemma 3.16) and Hardy’s inequality
∣∣∣∣∣ε−1

〈
ϕ
(
|v|2 − 5

)
μ

1
2 ,

∂ f B1
∂vη

〉∣∣∣∣∣ �
∣∣∣ε−1

〈
ϕ
(
|v|2 − 5

)
μ

1
2 , f B1

〉∣∣∣

=
∣∣∣∣
〈

1

n

∫ n

0

∂ϕ

∂n

(
|v|2 − 5

)
μ

1
2 , η f B1

〉∣∣∣∣
�

∥∥∥∥1

n

∫ n

0

∂ϕ

∂n

(
|v|2 − 5

)
μ

1
2

∥∥∥∥
L2

∥∥∥η f B1
∥∥∥
L2

� oT ε
1
2 ‖ϕ‖H1 � oT ε

1
2 ‖c‖L2 . (2.22)

Estimate ofb
For smooth function ψ ∼ �−1

x b with ∇x · ψ = 0 and ψ
∣∣
∂�

= 0 (solved from the

Stokes problem), we test (1.10) against ψ · vμ 1
2 to obtain

−〈∇x · ψ, p〉x − 〈∇xψ,�
〉
x +

∫
∂�

(
pψ + ψ · �

)
· n =

〈
ψ · vμ 1

2 , S
〉
, (2.23)

and against ∇xψ : B to obtain

− λ
〈
�xψ, b

〉
x + ε−1〈∇xψ,�

〉
= 〈∇xψ · B, h

〉
γ− − 〈∇xψ · B, R

〉
γ+

+
〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉
+
〈∇xψ : B, S

〉
,

(2.24)

where � :=
∫

R3
μ

1
2
(
v ⊗ v

)
(I − P)[R].

Therefore, adding ε−1×(2.23) and (2.24) exactly eliminates the worrisome terms

ε−1
〈∇xψ,�

〉
x , ε−1

〈∇x · ψ, p〉x and ε−1
∫
∂�

(
pψ + ψ · �

)
· n which yields the worst

ε−2 ‖(I − P)[R]‖2
L2
ν

contribution. Then similar to c estimates, after the careful estimates

for the source terms ε−1
〈
ψ · vμ 1

2 , S
〉

and
〈∇xψ : B, S

〉
, we obtain O(ε

1
2 ) gain of RHS:

ε− 1
2 ‖b‖L2 �ε− 1

2 |R|L2
γ+

+ oT ε
−1 ‖(I − P)[R]‖L2

ν
+ oT + nonlinear terms. (2.25)

These new conservation laws will sit at the center stage of b estimates.
L∞ Estimate Due to the presence of the nonlinear term Γ [R, R] in (1.10), we need

to bound L2 − L6 − L∞ norms for both P[R] and (I−P)[R]. After extending the above
techniques from L2 to L6, we will employ the L6 − L∞ framework to obtain

ε
1
2 ‖R‖L∞

�,ϑ
+ ε

1
2 |R|L∞

γ+,�,ϑ
� ‖P[R]‖L6 + ε−1 ‖(I − P)[R]‖L2

ν
+ oT . (2.26)

One crucial step in proving the result above is the estimate of contributions related to

the normal velocity derivative
∂ f B1
∂η

. In view of Lemma 3.16 and the grazing-set cutoff,

we may deduce
∂ f B1
∂η

≈ oT ε−1, which leads to the bound (3.250).
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2.4. Methodology: evolutionaryproblem. Besides the difficulties and methodology men-
tioned in the stationary problem, we have an additional obstacle in the evolutionary
settings for the remainder equation (1.35). The L∞ estimate

ε
1
2 |||R|||L∞

�,ϑ
+ ε

1
2 ‖R‖L∞

γ+,�,ϑ
� |||P[R]|||L∞

t L6
x,v

+ ε−1 |||(I − P)[R]|||L∞
t L2

x,v
+ oT ‖R‖X + ‖R‖2

X + oT (2.27)

calls for the control of the instantaneous bound |||P[R]|||L∞
t L6

x,v
, instead of the accu-

mulative bound |||P[R]|||L6 from the energy and kernel estimates. Hence, we have to
carefully study the interplay of the accumulative and instantaneous norms and estimate
both L2 − L6 versions of them.

Accumulative Estimates Based on a delicate choice of test functions and the analo-
gous cancellation with weak formulations and conservation laws, we obtain the energy
estimate

‖R(t)‖L2 + ε− 1
2 ‖R‖L2

γ+
+ ε−1 |||(I − P)[R]|||L2 � oT |||R|||X + |||R|||2X + oT ,

(2.28)

‖∂t R(t)‖L2 + ε− 1
2 ‖∂t R‖L2

γ+
+ ε−1 |||(I − P)[∂t R]|||L2 � oT |||R|||X + |||R|||2X + oT ,

(2.29)

and the kernel estimate

ε− 1
2 |||P[R]|||L2 � oT |||R|||X + |||R|||2X + oT , (2.30)

ε− 1
2 |||∂tP[R]|||L2 � oT |||R|||X + |||R|||2X + oT . (2.31)

Notice that we need to bound both R and its time derivative ∂t R for the convenience of
instantaneous estimates. Notably, the ∂t R estimates calls for ‖∂t R(0)‖L2 � ε

1
2 which

is the key reason that our argument only applies to the well-prepared initial data (1.24),
and cannot include the discussion of the initial layer (as opposed to the case of transport
equation [69]).

In the analysis of evolutionary conservation laws, we also need a careful bound of the
time-derivative terms which provide a favorable sign and separate estimates of ∂t∇xϕ

and ∂t∇xψ to close the proof.
Instantaneous Estimates We rewrite (1.35) by moving ∂t R to the RHS

v · ∇x R + ε−1L [R] = S − ε∂t R, (2.32)

where we regard ∂t R as a source term in the stationary remainder equation. Hence, by
a similar estimate as the stationary case, we obtain the energy estimate

ε− 1
2 |R(t)|L2

γ+
+ ε−1 ‖(I − P)[R](t)‖L2 � oT |||R|||X + |||R|||2X + oT , (2.33)

‖(I − P)[R](t)‖L6 +
∣∣∣μ 1

4 R(t)
∣∣∣
L4
γ+

� oT |||R|||X + |||R|||2X + oT , (2.34)

and the kernel estimate

‖P[R](t)‖L6 � oT |||R|||X + |||R|||2X + oT . (2.35)

Notice that these estimates heavily rely on the accumulative L2 bound of ∂t R in (2.29).
Then we may proceed to the L∞ estimate (2.27) and close the proof.
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3. Stationary Problem

3.1. Asymptotic analysis.

3.1.1. Interior solution The derivation of the interior solution is classical. We refer to
[36,71,72] and the references therein. By inserting (1.8) into (1.1) and equating the order
of ε, we require that

0 = 2μ− 1
2 Q∗[μ,μ 1

2 f1
]
, (3.1)

v · ∇x f1 = 2μ− 1
2 Q∗[μ,μ 1

2 f2
]

+ μ− 1
2 Q∗[μ 1

2 f1, μ
1
2 f1

]
, (3.2)

which are equivalent to

L [ f1] = 0, (3.3)

v · ∇x f1 + L [ f2] = Γ [ f1, f1] . (3.4)

Considering the further expansion, we additionally require

v · ∇x f2 ⊥ N . (3.5)

Hence, we conclude that

f1(x, v) = μ
1
2 (v)

(
ρ1(x) + v · u1(x) +

|v|2 − 3

2
T1(x)

)
, (3.6)

where (ρ1,u1, T1) satisfies the incompressible Navier–Stokes–Fourier system (1.16).
Also, we have

f2(x, v) = μ
1
2 (v)

(
ρ2(x) + v · u2(x) +

|v|2 − 3

2
T2(x)

)

+ μ
1
2 (v)

(
ρ1(v · u1) +

(
ρ1T1 +

|v|2 − 3

2
|u1|2

))
+ L−1

[
− v · ∇x f1 + Γ [ f1, f1]

]

(3.7)

where (ρ2,u2, T2) satisfies the fluid system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ2 + T2 + ρ1T1 = p1,

u1 · ∇xu2 + (ρ1u1 + u2) · ∇xu1 − γ1�xu2 + ∇xp2 = −γ2∇x · �x T1 − γ4∇x ·(
T1

(∇xu1 + (∇xu1)
T ))

,

∇x · u2 = −u1 · ∇xρ1,

u1 · ∇x T2 + (ρ1u1 + u2) · ∇x T1 − u1 · ∇xp1 = γ1

(
∇xu1 + (∇xu1)

T
)2

+ �x
(
γ2T2 + γ5T

2
1

)
,

(3.8)

for constants γ3, γ4, γ5. Here p1, p2 represent the pressures in the fluid equations and
they are related to the density and temperature in various levels of expansion. In the
equations above, we see that p1 = ρ2 + T2 + ρ1T1. If we further expand the interior
solution to O(ε3), then p2 will also be related to ρ3 and T3.
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3.1.2. Milne problem The normal chart defined in Sect. 1.1.2 was introduced in [29,30],
and was designed to split the normal and tangential variables for the convenience of
defining boundary layers. Under the substitution (x, v) → (x, v), we have (letting Ri
be the radii of principal curvatures)

v · ∇x =1

ε
vη

∂

∂η
− 1

R1 − εη

(
v2
ι1

∂

∂vη
− vηvι1

∂

∂vι1

)
− 1

R2 − εη

(
v2
ι2

∂

∂vη
− vηvι2

∂

∂vι2

)

+
1

L1L2

(R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vι1vι2 +
R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2
ι2

)
∂

∂vι1

+
1

L1L2

(R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vι1vι2 +
R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2
ι1

)
∂

∂vι2

+

( R1vι1
L1(R1 − εη)

∂

∂ι1
+

R2vι2
L2(R2 − εη)

∂

∂ι2

)
. (3.9)

Well-Posedness and Regularity Now we discuss the well-posedness and regularity
of the Milne problem for G(x, v) (for generality, we use the notation G here instead of
� in (1.19)):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vη
∂G
∂η

+ νG − K [G] = 0,

G(0, ι1, ι2, v) = h(ι1, ι2, v) for vη > 0,∫
R3

vημ
1
2 (v)G(0, ι1, ι2, v)dv = M f .

(3.10)

Here the function ν(v) and the operator K are defined via (A.2) and (A.3).

Remark 3.1. In the asymptotic problems, given h and M f , for fixed (ι1, ι2), we are mostly
concerned with the solution G that satisfies

G(η, v) → G∞(v) ∈ N as η → ∞, (3.11)

where G∞ can be determined from h and M f . Since η ∈ [0,∞), for nonzero G∞, it is
quite hard to define proper function spaces in (η, v) to describe G (e.g. the integral in η

may become infinity). Thus we will first confirm the existence and estimates of G∞, and
then investigate the estimates of the difference G − G∞. This is a well-known strategy
as illustrated in [6,21]. In addition, G∞ and G −G∞ play different roles in the matching
procedure.

The following result is a generalization of [29, Theorem 3.1] and [6,21,75,79] when
we consider nonzero mass flux M f :

Proposition 3.2. Assume the boundary data h ∈ Wk,∞
ι1,ι2

for some k ∈ N and the mass
flux M f ∈ Wk,∞

ι1,ι2
are given. Then there exists a unique solution G(x, v) ∈ L∞

�,ϑ to (3.10)
such that

G(x, v) = G∞(ι1, ι2, v) +
(
G(x, v) − G∞(ι1, ι2, v)

)
, (3.12)

where

G∞(ι1, ι2, v) = μ
1
2

(
ρ∞(ι1, ι2) + v · u∞(ι1, ι2) +

|v|2 − 3

2
T∞(ι1, ι2)

)
∈ N , (3.13)
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satisfies ∣∣∣G∞ − vημ
1
2 M f

∣∣∣
L∞
ι1,ι2

�
∣∣h∣∣L∞

γ−,�,ϑ
+
∣∣M f

∣∣
L∞
ι1,ι2

. (3.14)

Also, G := G − G∞ solves
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vη
∂G

∂η
+ νG − K [G] = 0,

G(0, ι1, ι2, v) = h(ι1, ι2, v) − G∞(ι1, ι2, v) := h(ι1, ι2, v) for vη > 0,∫
R3

vημ
1
2 (v)G(0, ι1, ι2, v)dv = 0,

(3.15)

and satisfies for some K0 > 0 and any 0 < s ≤ k∥∥∥eK0ηG
∥∥∥
L∞
�,ϑ

�
∣∣h∣∣L∞

γ−,�,ϑ
+
∣∣M f

∣∣
L∞
ι1,ι2

, (3.16)

and∥∥∥eK0ηvη∂ηG
∥∥∥
L∞
�,ϑ

+
∥∥∥eK0ηvη∂vηG

∥∥∥
L∞
�,ϑ

�
∣∣h∣∣L∞

γ−,�,ϑ
+
∣∣∇vh

∣∣
L∞
γ−,�,ϑ

+
∣∣M f

∣∣
L∞
ι1,ι2

,

(3.17)∥∥∥eK0η∂vι1G
∥∥∥
L∞
�,ϑ

+
∥∥∥eK0η∂vι2G

∥∥∥
L∞
�,ϑ

�
∣∣h∣∣L∞

γ−,�,ϑ
+
∣∣∇vh

∣∣
L∞
γ−,�,ϑ

+
∣∣M f

∣∣
L∞
ι1,ι2

, (3.18)

∥∥∥eK0η∂sι1G
∥∥∥
L∞
�,ϑ

+
∥∥∥eK0η∂sι2G

∥∥∥
L∞
�,ϑ

�
∣∣h∣∣L∞

γ−,�,ϑ
+

s∑
j=1

∣∣∣∂ j
ι1
h
∣∣∣
L∞
γ−,�,ϑ

+
s∑

j=1

∣∣∣∂ j
ι2
h
∣∣∣
L∞
γ−,�,ϑ

+
∣∣M f

∣∣
L∞
ι1,ι2

+
s∑

j=1

∣∣∣∂ j
ι1
M f

∣∣∣
L∞
ι1,ι2

+
s∑

j=1

∣∣∣∂ j
ι2
M f

∣∣∣
L∞
ι1,ι2

. (3.19)

Proof. The estimates (3.16)–(3.19) with M f = 0 have been obtained in [29, Theorem
2.1] and [6,75,79], so it suffices to consider the case M f �= 0. Directly integrating over
R

3 in (3.15), we obtain for any η ∈ [0,∞]

M f =
∫

R3
vημ

1
2 (v)G(0, v) =

∫
R3

vημ
1
2 (v)G(η, v). (3.20)

In other words, the mass flux M f is a conserved quantity for all η. Hence, G − vημ
1
2 M f

satisfies (3.10)-type equation with zero mass flux. Then we may directly apply the zero
mass-flux results from [29, Theorem 2.1] and [6,75,79] to obtain (3.16)–(3.19). ��
Remark 3.3. Suppose that h and M f are given as in Proposition 3.2. Following a similar
argument as the derivation of G∞ and the proofs of (3.14) and (3.19), we may easily
obtain that ρ∞, T∞ ∈ Wk,∞

ι1,ι2
. Denote u∞ = (

u∞
n ,u∞

ι1
,u∞

ι2

)
, for the normal component

and the two tangential components. From the proof of Proposition 3.2, we know

M f =
∫

R3
vημ

1
2 (v)G∞(v) = u∞

n , (3.21)

and thus from an analogous argument to derive (3.14), we deduce that u∞
ι1
,u∞

ι2
∈ Wk,∞

ι1,ι2
.
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BV Estimates For function f (η, v), denote the semi-norm

‖ f ‖B̃V := sup

{∫∫
η,v

f (∇η,v · ψ)dηdv : ψ ∈ C1
c and ‖ψ‖L∞ ≤ 1

}
, (3.22)

and thus the BV norm can be defined as

‖ f ‖BV := ‖ f ‖L1 + ‖ f ‖B̃V . (3.23)

It is classical that W 1,1 ↪→ BV. The following result comes from [29, Theorem 2.16]:

Proposition 3.4. Fixing (ι1, ι2), we have

‖νG‖BV � |h|L∞
γ−,�,ϑ

+
∫
vη>0

∣∣∂vηh∣∣ vηdv +
∫
vη>0

|h| dv +
∣∣M f

∣∣ . (3.24)

Particularly, the constant in the above estimate is uniform in (ι1, ι2).

Mass Flux In the hydrodynamic limit problems, usually the boundary data h is de-
termined a priori (see Sect. 3.1.4), but we still have the freedom of the mass flux M f to
manipulate. Next we plan to prove that the mass flux M f can be well chosen such that the
solution to (3.10) satisfies certain “desired properties” used in the matching procedure.
In particular, M f has an interesting interaction with ρ∞ + T∞ defined in the expression
of G∞ as (3.13):

Proposition 3.5. Suppose that h is given as in Proposition 3.2. For any given constant
P ∈ R, there exists a mass flux M f ∈ Wk,∞

ι1,ι2
such that G∞ in Proposition 3.2 satisfies

ρ∞(ι1, ι2) + T∞(ι1, ι2) = P. (3.25)

In addition, M f satisfies

∥∥M f
∥∥
Wk,∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
+ |P| . (3.26)

Proof. We first solve a zero-mass flux problem for G:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

vη
∂G
∂η

+ νG − K
[G] = 0,

G(0, ι1, ι2, v) = h(ι1, ι2, v) for vη > 0,∫
R3

vημ
1
2 (v)G(0, ι1, ι2, v)dv = 0.

(3.27)

Based on Proposition 3.2 and Remark 3.3, there exists a limit function

G∞(ι1, ι2, v) = μ
1
2

(
ρ∞ + v · u∞ +

|v|2 − 3

2
T

∞
)

∈ N . (3.28)

which satisfies
∥∥ρ∞∥∥

Wk,∞
ι1,ι2

+
∥∥∥T∞∥∥∥

Wk,∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
, (3.29)
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If we already have P = ρ∞ + T
∞

, then simply take M f = 0. Otherwise, we consider
the following auxiliary problem for G̃⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vη
∂G̃
∂η

+ νG̃ − K [G̃] = 0,

G̃(0, ι1, ι2, v) = 0 for vη > 0,∫
R3

vημ
1
2 (v)G̃(0, ι1, ι2, v)dv = M̃ f .

(3.30)

Based on Proposition 3.2, there exists a limit function

G̃∞(v) = μ
1
2

(
ρ̃∞ + v · ũ∞ +

|v|2 − 3

2
T̃∞

)
∈ N . (3.31)

Without loss of generality, we may consider (3.30) for fixed (ι1, ι2). Multiplying G̃ on
both sides of (3.30) and integrating over (η, v) ∈ R+ × R

3, we obtain∫
R3

vη
∣∣G̃∞

∣∣2dv −
∫

R3
vη

∣∣G̃(0)∣∣2dv +
∫ ∞

0

∫
R3

G̃
(
νG̃ − K [G̃]

)
dvdη = 0. (3.32)

When M f �= 0, direct computation reveals that G̃ cannot be in the kernel N . Then based
on the proof of Proposition 3.2, we know∫ ∞

0

∫
R3

G̃
(
νG̃ − K [G̃]

)
dvdη > 0 (3.33)

Clearly, from the boundary condition in (3.30), we know

−
∫

R3
vη

∣∣G̃(0)∣∣2 dv = −
∫
vη<0

vη
∣∣G̃(0)∣∣2 dv ≥ 0. (3.34)

Hence, we must have∫
R3

vη
∣∣G̃∞

∣∣2dv = 2̃u∞
n

(
ρ̃∞ + T̃∞) = 2M̃ f

(
ρ̃∞ + T̃∞)

< 0. (3.35)

Hence, when M̃ f �= 0, we must also have ρ̃∞ + T̃∞ �= 0. Since (3.30) is a linear
equation, we know that M̃ f is proportional to ρ̃∞ + T̃∞, i.e. there exists a nonzero
constant D such that

M̃ f = D
(
ρ̃∞ + T̃∞)

. (3.36)

Then consider the sum of (3.27) and
P − ρ∞ − T

∞

ρ̃∞ + T̃∞ ×(3.30), we know that the limit

function is

(
ρ∞ + T

∞)
+
P − ρ∞ − T

∞

ρ̃∞ + T̃∞ · (ρ̃∞ + T̃∞) = P (3.37)

which satisfies the requirement. In this case, the mass flux is

M f = P − ρ∞ − T
∞

ρ̃∞ + T̃∞ · M̃ f = D
(
P − ρ∞ − T

∞)
. (3.38)
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Hence, from (3.29), we know M f ∈ Wk,∞
ι1,ι2

satisfying

∥∥M f
∥∥
Wk,∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
+ |P| . (3.39)

��
Remark 3.6. Suppose that h is given as in Proposition 3.2. From Remark 3.3 and the
proof of Proposition 3.5, we know that u∞

n ∈ Wk,∞
ι1,ι2

. Further, based on Remark 3.3, we
have u∞ ∈ Wk,∞

ι1,ι2
.

The following corollary tells us what the “desired properties” are and confirms the
existence of M f .

Corollary 3.7. Suppose that h is given as in Proposition 3.2. There exists a constant
P ∈ R and a mass flux M f ∈ Wk,∞

ι1,ι2
such that G∞ in Proposition 3.2 satisfies

ρ∞(ι1, ι2) + T∞(ι1, ι2) = P, (3.40)

and
∫
∂�

M f dSx =
∫
∂�

u∞
n dSx = 0. (3.41)

In addition, M f and P satisfy

∥∥M f
∥∥
Wk,∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
, (3.42)

and

|P| = ∥∥ρ∞ + T∞∥∥
L∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
(3.43)

Proof. Based on the proof of Proposition 3.5, in order to guarantee that

∫
∂�

M f dSx =
∫
∂�

D
(
P − ρ∞ − T

∞)
dSx = 0, (3.44)

we must take

P = 1

|∂�|
∫
∂�

(
ρ∞ + T

∞)
dSx . (3.45)

Then the desired result follows from Proposition 3.5. ��
Remark 3.8. Suppose that h is given as in Proposition 3.2. From Remark 3.3 and Remark
3.6, we know that G∞ constructed in Corollary 3.7 satisfies

∥∥ρ∞∥∥
Wk,∞
ι1,ι2

+
∥∥u∞∥∥

Wk,∞
ι1,ι2

+
∥∥T∞∥∥

Wk,∞
ι1,ι2

�
∣∣h∣∣Wk,∞

ι1,ι2
. (3.46)
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3.1.3. Boundary layer Let � be solution to the Milne problem (1.19) with M f deter-
mined from Corollary 3.7 with h = fb. Based on Proposition 3.2, Remark 3.8 and (1.5),
we know that there exists

�∞(ι1, ι2, v) := μ
1
2

(
ρB(ι1, ι2) + v · uB(ι1, ι2) +

|v|2 − 3

2
T B(ι1, ι2)

)
∈ N , (3.47)

satisfying

∥∥∥uB
∥∥∥
L∞
ι1,ι2

� oT , |P| =
∥∥∥ρB + T B

∥∥∥
L∞
ι1,ι2

� oT , (3.48)

and for some K0 > 0, �(x, v) := �(x, v) − �∞(ι1, ι2, v) satisfies

|�∞|L∞
ι1,ι2

+
∥∥∥eK0η�

∥∥∥
L∞
�,ϑ

� |fb|L∞
γ−,�,ϑ

� oT . (3.49)

Let χ(y) ∈ C∞(R) be smooth cut-off functions satisfying

χ(y) =
{

1 if |y| ≤ 1,
0 if |y| ≥ 2, (3.50)

and χ(y) = 1 − χ(y). We define a cutoff boundary layer f B1 . Denote

f B1 (x, v) := χ
(
ε−1vη

)
χ(εη)�(x, v). (3.51)

We may verify that f B1 satisfies

vη
∂ f B1
∂η

+ L
[
f B1

]
= vηχ(ε

−1vη)
∂χ(εη)

∂η
� + χ(εη)

(
χ(ε−1vη)Kg[�] − K

[
χ(ε−1vη)�

])
,

(3.52)

with

f B1 (0, ι1, ι2, v) = χ
(
ε−1vη

) (
fb(ι1, ι2, v) − �∞(ι1, ι2, v)

)
for vη > 0. (3.53)

Also, based on (3.51) and Proposition 3.2 as well as (1.5), we know that for some K0 > 0
and any 0 < s ≤ 3

∥∥∥eK0η f B1

∥∥∥
L∞
�,ϑ

+

∥∥∥∥∥eK0η
∂s f B1
∂ιs1

∥∥∥∥∥
L∞
�,ϑ

+

∥∥∥∥∥eK0η
∂s f B1
∂ιs2

∥∥∥∥∥
L∞
�,ϑ

� oT . (3.54)
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3.1.4. Matching procedure Considering the boundary condition in (1.1) and the expan-
sion (1.7), we require the matching condition for x0 ∈ ∂� and v · n < 0:

μ
1
2

(
f1 + f B1

) ∣∣∣
v·n<0

= fb. (3.55)

Hence, it suffices to define

ρ1

∣∣∣
∂�

= ρB, u1

∣∣∣
∂�

= uB, T1

∣∣∣
∂�

= T B . (3.56)

Therefore, from (3.54) and (3.56), we know the boundary estimates

|ρ1|W 3,∞
x

+ |u1|W 3,∞
x

+ |T1|W 3,∞
x

� oT . (3.57)

In particular, we know

(
ρ1 + T1

)∣∣∣
∂�

= ρB + T B = P,
∫
�

(∇x · u1
) =

∫
∂�

(
u1 · n) =

∫
∂�

M f = 0. (3.58)

By standard fluid theory [13,19] for the steady Navier–Stokes equations (1.16), we have
for any s ∈ [2,∞)

‖ρ1‖W 3,s
x

+ ‖u1‖W 3,s
x

+ ‖T1‖W 3,s
x

� oT . (3.59)

Then for f2, there is no corresponding boundary layer, and thus we may simply take

ρ2

∣∣∣
∂�

= 0, u2

∣∣∣
∂�

= − 1

|∂�|
∫
�

(
u1 · ∇xρ1

)
, T2

∣∣∣
∂�

= 0. (3.60)

By standard fluid theory [13,19] for the linear steady Navier–Stokes equations (3.8), we
have for any s ∈ [2,∞)

‖ρ2‖W 2,s
x

+ ‖u2‖W 2,s
x

+ ‖T2‖W 2,s
x

� oT . (3.61)

Theorem 3.9. Under the assumption (1.5), there exists a unique solution (ρ1,u1, T1) to
the steady Navier–Stokes equations (1.16) and (ρ2,u2, T2) to (3.8) satisfying for any
s ∈ [2,∞)

‖ρ1‖W 3,s
x

+ ‖u1‖W 2,s
x

+ ‖T1‖W 3,s
x

� oT , (3.62)

‖ρ2‖W 2,s
x

+ ‖u2‖W 2,s
x

+ ‖T2‖W 2,s
x

� oT . (3.63)

Thus, we can construct f1, f2 and f B1 such that

‖ f1‖W 3,s
x L∞

v,�,ϑ
+ | f1|

W
3− 1

s ,s
x L∞

γ,�,ϑ

� oT , (3.64)

‖ f2‖W 2,s
x L∞

v,�,ϑ
+ | f2|

W
2− 1

s ,s
x L∞

γ,�,ϑ

� oT , (3.65)

and for some K0 > 0 and any 0 < s ≤ 3

∥∥∥eK0η f B1

∥∥∥
L∞
�,ϑ

+

∥∥∥∥∥eK0η
∂s f B1
∂ιs1

∥∥∥∥∥
L∞
�,ϑ

+

∥∥∥∥∥eK0η
∂s f B1
∂ιs2

∥∥∥∥∥
L∞
�,ϑ

� oT . (3.66)
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3.2. Remainder equation. Inserting (1.7) into (1.1), we have

v · ∇x

(
μ + f + f B + εμ

1
2 R

)
= ε−1Q∗ [

μ + f + f B + εμ
1
2 R, μ + f + f B + εμ

1
2 R

]
(3.67)

or equivalently

v · ∇x R − 2ε−1μ− 1
2 Q∗ [

μ,μ
1
2 R

]
= −ε−1μ− 1

2

(
v · ∇x

(
f + f B

) )
+ μ− 1

2 Q∗ [
μ

1
2 R, μ

1
2 R

]

+ 2ε−1μ− 1
2 Q∗ [

f + f B , μ
1
2 R

]
+ ε−2μ− 1

2 Q∗ [
μ + f + f B , μ + f + f B

]
. (3.68)

Also, we have the boundary condition(
μ + f + f B + εμ

1
2 R

) ∣∣∣
γ−

= μ + εμ
1
2 fb, (3.69)

which is equivalent to

R
∣∣
γ− = fb − ε−1μ− 1

2
(
f + f B

)
. (3.70)

Therefore, we need to consider the remainder equation (1.10). Here the boundary data
is given by

h =
(

− ε f2 + χ
(
ε−1vη

)
�
)∣∣∣

γ−
, (3.71)

and

S := S1 + S2 + S3 + S4 + S5 + S6, (3.72)

where

S1 := − εv · ∇x f2, (3.73)

S2 := 1

R1 − εη

(
v2
ι1

∂ f B1
∂vη

− vηvι1
∂ f B1
∂vι1

)
+

1

R2 − εη

(
v2
ι2

∂ f B1
∂vη

− vηvι2
∂ f B1
∂vι2

)
(3.74)

− 1

L1L2

(R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vι1vι2 +
R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2
ι2

)
∂ f B1
∂vι1

− 1

L1L2

(R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vι1vι2 +
R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2
ι1

)
∂ f B1
∂vι2

−
(

R1vι1

L1(R1 − εη)

∂ f B1
∂ι1

+
R2vι2

L2(R2 − εη)

∂ f B1
∂ι2

)

+ ε−1vηχ(ε
−1vη)

∂χ(εη)

∂η
� − ε−1

(
K

[
�
]
χ(ε−1vη)χ(εη) − K

[
�χ(ε−1vη)χ(εη)

])
,

S3 :=2μ− 1
2 Q∗ [

μ
1
2 f1 + εμ

1
2 f2, μ

1
2 R

]
= 2Γ [ f1 + ε f2, R], (3.75)

S4 :=2μ− 1
2 Q∗ [

μ
1
2 f B1 , μ

1
2 R

]
= 2Γ

[
f B1 , R

]
, (3.76)

S5 :=εμ− 1
2 Q∗ [

μ
1
2 f2, μ

1
2
(
2 f1 + ε f2

)]
+ 2μ− 1

2 Q∗ [
μ

1
2
(
2 f1 + 2ε f2 + f B1

)
, μ

1
2 f B1

]
(3.77)

=εΓ [ f2, 2 f1 + ε f2] + 2Γ
[
2 f1 + 2ε f2 + f B1 , f B1

]
,
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S6 :=μ− 1
2 Q∗ [

μ
1
2 R, μ

1
2 R

]
= Γ [R, R]. (3.78)

In particular, we may further split S2:

S2a := 1

R1 − εη

(
v2
ι1

∂ f B1
∂vη

)
+

1

R2 − εη

(
v2
ι2

∂ f B1
∂vη

)
, (3.79)

S2b := − 1

R1 − εη

(
vηvι1

∂ f B1
∂vι1

)
− 1

R2 − εη

(
vηvι2

∂ f B1
∂vι2

)
(3.80)

− 1

L1L2

(R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vι1vι2 +
R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2
ι2

)
∂ f B1
∂vι1

− 1

L1L2

(R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vι1vι2 +
R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2
ι1

)
∂ f B1
∂vι2

−
(

R1vι1

L1(R1 − εη)

∂ f B1
∂ι1

+
R2vι2

L2(R2 − εη)

∂ f B1
∂ι2

)
+ ε−1vηχ(ε

−1vη)
∂χ(εη)

∂η
�,

S2c := − ε−1
(
K

[
�
]
χ(ε−1vη)χ(εη) − K

[
�χ(ε−1vη)χ(εη)

])
. (3.81)

Here, S2a will be the most tricky term in the later analysis since it involves the normal
derivatives of the boundary layer f B1 . Additionally, the non-local term S2c needs some
special handling. Lemma 3.16 will be devoted to these issues.

Lemma 3.10 (Green’s Identity, Lemma2.2 of [26]). Assume f (x, v), g(x, v) ∈ L2(�×
R

3) and v · ∇x f, v · ∇x g ∈ L2(� × R
3) with f, g ∈ L2

γ . Then

〈
v · ∇x f, g

〉
+
〈
v · ∇x g, f

〉 =
∫
γ

f g
(
v · n). (3.82)

Using Lemma 3.10, we can derive the weak formulation of (1.10). For any test
function g(x, v) ∈ L2

ν(� × R
3) with v · ∇x g ∈ L2(� × R

3) with g ∈ L2
γ , we have

∫
γ

Rg
(
v · n) − 〈

v · ∇x g, R
〉
+ ε−1〈L[R], g〉 = 〈

S, g
〉
. (3.83)

3.2.1. Estimates of boundary and source terms The estimates below in Lemma 3.13
to Lemma 3.21 follow from analogous arguments as in [29, Section 4]. To keep this
article self-contained and avoid the notational confusions, we will include brief proofs
highlighting the key steps. Particularly, the bounds heavily rely on the estimates presented
in Sect. 3.1. In the following, assume that g is a given function and 2 ≤ r ≤ 6. In what
follows,

∫
R3 denotes integration with respect to the measure dv.

Preliminary Estimates Here we present some lemmas regarding Γ .

Lemma 3.11 (Lemma 2.3 of [39]). Let Γ [ f, g] be given by (A.6). We have

∣∣〈Γ [g1, g2], g3
〉
v

∣∣ �
{(∫

R3
ν |g1|2

) 1
2
(∫

R3
|g2|2

) 1
2

+

(∫
R3

ν |g2|2
) 1

2
(∫

R3
|g1|2

) 1
2
}(∫

R3
ν |g3|2

) 1
2

, (3.84)
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∥∥〈Γ [g1, g2], g3
〉
v

∥∥
L2
x

�
(

sup
x,v

∣∣∣ν3g3

∣∣∣ )min

{
sup
x

(∫
R3

|g1|2
) 1

2 ‖g2‖L2 ,

sup
x

(∫
R3

|g2|2
) 1

2 ‖g1‖L2

}
, (3.85)

‖Γ [g1, g2]g3‖L2 �
(

sup
x,v

|νg3|
)

min

{
sup
x

(∫
R3

|g1|2
) 1

2 ‖g2‖L2 ,

sup
x

(∫
R3

|g2|2
) 1

2 ‖g1‖L2

}
. (3.86)

Lemma 3.12 (Lemma 5 of [41]). Let Γ [ f, g] be given by (A.6). We have∥∥∥ν−1Γ [g1, g2]
∥∥∥
L∞
�,ϑ

� ‖g1‖L∞
�,ϑ

‖g2‖L∞
�,ϑ

. (3.87)

Estimates of/, h

Lemma 3.13. Under the assumption (1.5), for h defined in (3.71), we have

|h|L2
γ−

� oT ε, |h|
L

2r
3
γ−

� oT ε
3
r , |h|L∞

γ−,�,ϑ
� oT , sup

ι1,ι2

∫
v·n<0

|h| |v · n| dv � oT ε.

(3.88)

Proof. Note that from Theorem 3.9, it holds that | f2|L∞
γ,�,ϑ

� ‖ f2‖W 1,s L∞
�,ϑ

� oT . Then
we know

|ε f2|L∞
γ−,�,ϑ

� ε | f2|L∞
γ,�,ϑ

� oT ε. (3.89)

Then we obtain the similar estimates for L2
γ− and L

2r
3
γ− norms.

On the other hand, noticing that
∣∣�∣∣

L∞
γ,�,ϑ

� oT from (3.49) and Proposition 3.2, the

cutoff χ
(
ε−1vη

)
implies a restriction to the domain

∣∣vη∣∣ ≤ ε, and the γ norm has an
extra vη, we have

∣∣∣χ (
ε−1vη

)
�

∣∣∣
L

2r
3
γ−

� oT ε
3
r , (3.90)

and the L2
γ− estimate follows when r = 3, and

∫
v·n<0

∣∣∣χ (
ε−1vη

)
�

∣∣∣ ∣∣vη∣∣ dv � ε. (3.91)

Then our estimates follow. ��
Remark 3.14. We may directly compute that for x0 ∈ ∂�

b(x0) · n =
∫

R3
R(x0)μ

1
2 (v · n)dv =

∫
v·n<0

h(x0)μ
1
2 (v · n)dv +

∫
v·n>0

R(x0)μ
1
2 (v · n)dv.

(3.92)

Estimates of S1
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Lemma 3.15. Under the assumption (1.5), for S1 defined in (3.73), we have∥∥〈v〉2S1
∥∥
L2 � oT ε, ‖S1‖Lr � oT ε, ‖S1‖L∞

�,ϑ
� oT ε. (3.93)

Also, we have the orthogonality property

〈
μ

1
2 , S1

〉
v

= 0,
〈
μ

1
2 v, S1

〉
v

= 0,
〈
μ

1
2 |v|2 , S1

〉
v

= 0. (3.94)

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and

‖∇x f2‖L∞
�,ϑ

� ‖ f2‖W 2,s
x L∞

v,�,ϑ
� oT , (3.95)

which is derived from Theorem 3.9. Also, the orthogonality property follows from
(3.5). ��

Estimates of S2

Lemma 3.16. Under the assumption (1.5), for S2 defined in (3.74), we have

‖S2‖L1 + ‖η (S2b + S2c)‖L1 +
∥∥∥η2 (S2b + S2c)

∥∥∥
L1

� oT ε, (3.96)∥∥∥〈v〉2 S2

∥∥∥
L2

+ ‖η (S2b + S2c)‖L2 +
∥∥∥η2 (S2b + S2c)

∥∥∥
L2

� oT , (3.97)

‖S2‖Lr + ‖η (S2b + S2c)‖Lr +
∥∥∥η2 (S2b + S2c)

∥∥∥
Lr

� oT ε
2
r −1, (3.98)

‖S2‖Lrι1ι2 L1
nL1

v
+ ‖η (S2b + S2c)‖Lrι1ι2 L1

nL1
v

� oT ε, , (3.99)

and

‖S2b + S2c‖Lr
x L

1
v

+ ‖η (S2b + S2c)‖Lr
x L

1
v

� oT ε
1
r , (3.100)

|〈S2a, g〉| + |〈ηS2a, g〉| +
∣∣〈η2S2a, g

〉∣∣ �
∥∥∥〈v〉2 f B1

∥∥∥
L

r
r−1

‖∇vg‖Lr � oT ε
1− 1

r ‖∇vg‖Lr .

(3.101)

Also, we have

‖S2‖L∞
�,ϑ

� oT ε
−1. (3.102)

Proof. We start from the Lr estimate (3.98), and then (3.96) and (3.97) will naturally
follow. We first focus on S2a . Notice that

∂ f B1
∂vη

(η, v) = ε−1χ ′ (ε−1vη

)
χ(εη)�(η, v) + χ

(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη
. (3.103)

From Propositions 3.2 and 3.4, we have∥∥∥∥∥χ
(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη

∥∥∥∥∥
L∞
�,ϑ

� ε−1

∥∥∥∥∥vη
∂�(η, v)

∂vη

∥∥∥∥∥
L∞
�,ϑ

� ε−1,

∥∥∥∥∥χ
(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη

∥∥∥∥∥
L1

� 1. (3.104)
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Then by change of variable η = ε−1n, we have

∥∥ε−1χ ′ (ε−1vη
)
χ(εη)�(η, v)

∥∥
Lr =

(∫∫
�×R3

∣∣ε−1χ ′ (ε−1vη
)
χ(εη)�(η, v)

∣∣r)
1
r

� ε−1
(∫∫

�×R3

∣∣χ ′ (ε−1vη
)
χ(εη)�(η, v)

∣∣r)
1
r

� ε
2
r −1,

(3.105)

and
∥∥∥∥∥χ

(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη

∥∥∥∥∥
Lr

=
(∫∫

�×R3

∣∣∣∣∣χ
(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη

∣∣∣∣∣
r) 1

r

�

⎛
⎝
∥∥∥∥∥χ

(
ε−1vη

) ∂�(η, v)

∂vη

∥∥∥∥∥
r−1

L∞
�,ϑ

∫∫
�×R3

∣∣∣∣∣χ
(
ε−1vη

)
χ(εη)

∂�(η, v)

∂vη

∣∣∣∣∣
⎞
⎠

1
r

�
(
ε−(r−1)ε

) 1
r � ε

2
r −1. (3.106)

Hence, we know ‖S2a‖Lr � ε
2
r −1. Similarly S2b estimates follow from Proposition 3.2

and Proposition 3.4.
Noticing that

S2c = ε−1μ− 1
2 μ

1
2
wχ(εη)

(
χ(ε−1vη)K [�] − K

[
χ(ε−1vη)�

])
, (3.107)

which has one less ε-power but contains an ε-size cutoff χ(ε−1vη). Clearly, the term
χ(ε−1vη)K [�] can be estimated by a similar argument as (3.106). Then noticing that
by the change of variable wη = ε−1uη∫

R3

∣∣∣K[
χ(ε−1vη)�

]∣∣∣ dv =
∫

R3

∣∣∣∣
∫

R3
k(u, v)χ(ε−1uη)�(u)du

∣∣∣∣ dv

� sup
u

∫
R3

|k(u, v)| dv

∣∣∣∣
∫

R3
χ(ε−1uη)�(u)du

∣∣∣∣
�

∣∣∣∣
∫

R3
χ(ε−1uη)�(u)du

∣∣∣∣ � ε, (3.108)

we can bound K
[
χ(ε−1vη)�

]
by a similar argument as (3.106). Hence, we complete

the proof of (3.98).
Noting the rescaling η = ε−1n and the cutoff χ(ε−1vη), using Proposition 3.2 and

Proposition 3.4, (3.99) and (3.100) follow from substitution in the integral.

Then we turn to (3.101). The most difficult term in |〈S2a, g〉| is

∣∣∣∣
〈
∂ f B1
∂vη

, g

〉∣∣∣∣. Note that

∂ f B1
∂vη

= 0 for
∣∣vη∣∣ ≤ ε due to the cutoff in f B1 . Integration by parts with respect to vη

implies ∣∣∣∣∣
〈
∂ f B1
∂vη

, g

〉∣∣∣∣∣ �
∣∣∣∣
〈
f B1 ,

∂g

∂vη

〉∣∣∣∣ �
∥∥∥ f B1

∥∥∥
Lr

∥∥∥∥ ∂g

∂vη

∥∥∥∥
L

r
r−1

. (3.109)
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From (1.6) and
∂x

∂vη
≡ 0, we know the substitution (n, ι1, ι2, v) → (n, ι1, ι2, v) implies

− ∂v
∂vη

· n = 1, − ∂v
∂vη

· ς1 = 0, − ∂v
∂vη

· ς2 = 0. Hence, we know
∣∣∣ ∂v
∂vη

∣∣∣ � 1, and thus∣∣∣ ∂g
∂vη

∣∣∣ � |∇vg|
∣∣∣ ∂v
∂vη

∣∣∣ � |∇vg|. Hence, we know that

∣∣∣∣∣
〈
∂ f B1
∂vη

, g

〉∣∣∣∣∣ �
∥∥∥ f B1

∥∥∥
Lr

‖∇vg‖
L

r
r−1

� oT ε
1
r ‖∇vg‖

L
r

r−1
. (3.110)

Finally, (3.102) holds due to the cutoff χ . ��
Remark 3.17. Notice that the BV estimate in Proposition 3.4 does not contain exponential
decay in η, and thus we cannot directly bound ηS2a and η2S2a . Instead, we should first
integrate by parts with respect to vη as in (3.101) to study f B1 :

∥∥∥ f B1

∥∥∥
Lr

+
∥∥∥η f B1

∥∥∥
Lr

+
∥∥∥η2 f B1

∥∥∥
Lr

� oT ε
2
r −1, (3.111)∥∥∥ f B1

∥∥∥
Lrι1ι2 L

1
nL1

v

+
∥∥∥η f B1

∥∥∥
Lrι1ι2 L

1
nL1

v

� oT ε, , (3.112)

∥∥∥ f B1

∥∥∥
Lrx L

1
v

+
∥∥∥η f B1

∥∥∥
Lrx L

1
v

� oT ε
1
r . (3.113)

Estimates of S3

Lemma 3.18. Under the assumption (1.5), for S3 defined in (3.75), we have

∣∣〈S3, g〉v
∣∣ � oT

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν |R|2

) 1
2

, (3.114)

and thus

|〈S3, g〉| � oT ‖g‖L2
ν
‖R‖L2

ν
� oT ‖g‖L2

ν

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
. (3.115)

Also, we have

‖S3‖L2 � oT ‖R‖L2
ν
,

∥∥∥ν−1S3

∥∥∥
L∞
�,ϑ

� oT ‖R‖L∞
�,ϑ

. (3.116)

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and noting the
fact that

‖ f1‖L∞
�,ϑ

+ ‖ f2‖L∞
�,ϑ

� ‖ f1‖W 1,s
x L∞

v,�,ϑ
+ ‖ f2‖W 1,s

x L∞
v,�,ϑ

� oT , (3.117)

derived from Theorem 3.9. ��
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Estimates of S4

Lemma 3.19. Under the assumption (1.5), for S4 defined in (3.76), we have

∣∣〈S4, g〉v
∣∣ �

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν

∣∣∣ f B1
∣∣∣2
) 1

2
(∫

R3
ν |R|2

) 1
2

, (3.118)

and thus

|〈S4, g〉| �oT ‖g‖L2
ν
‖R‖L2

ν
� oT ‖g‖L2

ν

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
, (3.119)

|〈S4, g〉| �oT
∥∥∥ f B1

∥∥∥
L2
ν

‖g‖L∞
�,ϑ

‖R‖L2
ν

� oT ε
1
2 ‖g‖L∞

�,ϑ

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
.

(3.120)

Also, we have

‖S4‖L2 � oT ‖R‖L2
ν
,

∥∥∥ν−1S4

∥∥∥
L∞
�,ϑ

� oT ‖R‖L∞
�,ϑ

. (3.121)

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and the fact that
∥∥∥ f B1

∥∥∥
L∞
�,ϑ

�oT ,
∥∥∥ f B1

∥∥∥
L2
ν

� oT ε
1
2 , (3.122)

derived from Theorem 3.9. ��
Estimates of S5

Lemma 3.20. Under the assumption (1.5), for S5 defined in (3.77), we have

∣∣〈S5, g〉v
∣∣ � oT

(∫
R3

ν |g|2
) 1

2

, (3.123)

and thus

|〈S5, g〉| �oT ε
1
2 ‖g‖L2

ν
, |〈S5, g〉| � oT ε ‖g‖L∞

�,ϑ
. (3.124)

Also, we have

‖S5‖L2 � oT ε
1
2 ,

∥∥∥ν−1S5

∥∥∥
L∞
�,ϑ

� oT . (3.125)

Proof. Similar to the proof of Lemma 3.18 and Lemma 3.19, this follows from Lemma
3.11 and Lemma 3.12 with the help of Theorem 3.9. ��

Estimates of S6

Lemma 3.21. Under the assumption (1.5), for S6 defined in (3.78), we have

∣∣〈S6, g〉v
∣∣ �

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν |R|2

)
, (3.126)
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and thus

|〈S6, g〉| � ‖g‖L2
ν

(
‖(I − P)[R]‖L2

ν
‖R‖L∞

�,ϑ
+ ‖P[R]‖L3 ‖P[R]‖L6

)
� ‖g‖L2

ν
‖R‖2

X .

(3.127)

Also, we have

‖S6‖L2 �
(

‖(I − P)[R]‖L2
ν
‖R‖L∞

�,ϑ
+ ‖P[R]‖L3 ‖P[R]‖L6

)
� ‖R‖2

X ,

(3.128)∥∥∥ν−1S6

∥∥∥
L∞
�,ϑ

� ‖R‖2
L∞
�,ϑ

. (3.129)

Proof. The estimate (3.126) follows from Lemma 3.11. Then using Hölder’s inequality∣∣∣∣
∫

R3
νR(I − P)[R]

∣∣∣∣ � ‖(I − P)R‖L2
ν
‖R‖L∞

�,ϑ
, (3.130)

∫
R3

ν |P[R]|2 � ‖P[R]‖L3 ‖P[R]‖L6 , (3.131)

we obtain (3.127). Then (3.128) follows from duality. Finally, (3.129) holds due to
Lemma 3.12. ��

3.2.2. Conservation laws This section is dedicated to the proof of the crucial conserva-
tion laws via a delicate design of a family of test functions.

Classical Conservation Laws

Lemma 3.22. Let R be the solution to (1.10). Under the assumption (1.5), we have the
conservation laws

∇x · b =
〈
μ

1
2 , S

〉
v

=
〈
μ

1
2 , S2

〉
v
, (3.132)

∇x p + ∇x · � =
〈
vμ

1
2 , S

〉
v

=
〈
vμ

1
2 , S2

〉
v
, (3.133)

5∇x · b + ∇x · ς =
〈
|v|2 μ 1

2 , S
〉
v

=
〈
|v|2 μ 1

2 , S2

〉
v
, (3.134)

where � :=
∫

R3
μ

1
2
(
v ⊗ v

)
(I − P)[R] and ς :=

∫
R3

μ
1
2 v |v|2 (I − P)[R].

Proof. We multiply test functionsμ
1
2 , vμ

1
2 , |v|2 μ 1

2 on both sides of (1.10) and integrate
over v ∈ R

3. Using the orthogonality of L and Lemma 3.15 (which comes from (3.5)),
the results follow. ��

Conservation Law with Test Function ∇xϕ · A
Lemma 3.23. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ϕ(x), we have

− κ
〈
�xϕ, c

〉
x + ε−1〈∇xϕ, ς

〉
= 〈∇xϕ · A , h

〉
γ− − 〈∇xϕ · A , R

〉
γ+

+
〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉
+
〈∇xϕ · A , S

〉
.

(3.135)
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Proof. Taking test function g = ∇xϕ · A in (3.83), we obtain

∫
γ

(
∇xϕ · A

)
R
(
v · n) − 〈

v · ∇x

(
∇xϕ · A

)
, R

〉
+ ε−1〈L[R],∇xϕ · A 〉 = 〈∇xϕ · A , S

〉
.

(3.136)

Using the splitting (1.11), oddness and orthogonality of A , we deduce

− κ
〈
�xϕ, c

〉
x + ε−1〈∇xϕ, ς

〉
= −

∫
γ

(
∇xϕ · A

)
R(v · n) +

〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉
+
〈∇xϕ · A , S

〉
.

(3.137)

Notice that

R1γ = R1γ+ + h1γ− , (3.138)

we have (3.135). ��
Conservation Law with Test Function ∇xψ : B

Lemma 3.24. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ψ(x) satisfying ∇x · ψ = 0, we have

− λ
〈
�xψ,b

〉
x + ε−1〈∇xψ,�

〉
= 〈∇xψ · B, h

〉
γ− − 〈∇xψ · B, R

〉
γ+

+
〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉

+
〈∇xψ : B, S

〉
. (3.139)

Proof. Taking test function g = ∇xψ : B in (3.83), we obtain∫
γ

(
∇xψ : B

)
R
(
v · n) − 〈

v · ∇x

(
∇xψ : B

)
, R

〉
+ ε−1〈L[R],∇xψ : B〉

= 〈∇xψ : B, S
〉
. (3.140)

Using the splitting (1.11), oddness and orthogonality of B, we deduce

−
〈
v · ∇x

(
∇xψ : B

)
, vμ

1
2 · b

〉
+ ε−1〈∇xψ,�

〉

= −
∫
γ

(
∇xψ : B

)
R(v · n) +

〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉
+
〈∇xψ : B, S

〉
.

(3.141)

Here, we may further compute〈
v · ∇x

(
∇xψ : B

)
, vμ

1
2 · b

〉
= 〈

B · ∇x
(∇xψ : B)

,b
〉
, (3.142)

and use ∇x · ψ = 0 to obtain

∫
R3

B · ∇x
(∇xψ : B) =

⎛
⎝α∂11ψ1 + (α + λ)∂12ψ2 + (α + λ)∂13ψ3 + λ∂22ψ1 + λ∂33ψ1

α∂22ψ2 + (α + λ)∂12ψ1 + (α + λ)∂23ψ3 + λ∂11ψ2 + λ∂33ψ2

α∂33ψ3 + (α + λ)∂13ψ1 + (α + λ)∂23ψ2 + λ∂11ψ3 + λ∂22ψ3

⎞
⎠
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=
⎛
⎝(α − α − λ)∂11ψ1 + λ∂22ψ1 + λ∂33ψ1

(α − α − λ)∂22ψ2 + λ∂11ψ2 + λ∂33ψ2

(α − α − λ)∂33ψ3 + λ∂11ψ3 + λ∂22ψ3

⎞
⎠ = λ

⎛
⎝�xψ1

�xψ2

�xψ3

⎞
⎠ .

(3.143)

Here, we use the fact that B = ϒ
( |v| )B for some function ϒ that only depend on |v|

(see [37, Lemma 14]). The constants α, α and λ are defined in Section C. Then direct
computation shows that α − α = 2λ: for i �= j

α − α − 2λ =
∫

R3
ϒ
( |v| )

((
v2
i − 1

3
|v|2

)2

−
(
v2
i − 1

3
|v|2

)(
v2
j − 1

3
|v|2

)

− 2v2
i v

2
j

)
μ(v)dv

=
∫

R3
ϒ
( |v| )(v4

i − 3v2
i v

2
j

)
μ(v)dv. (3.144)

Then we use the spherical coordinates

vi = |v| sin θ sin ϕ, v j = |v| sin θ cosϕ, (3.145)

to estimate

α − α − 2λ =
∫ ∞

0
|v|2 ϒ( |v| )μ( |v| )d |v|

∫ π

0
sin5 θdθ

∫ 2π

0

(
sin4 ϕ − 3 sin2 ϕ cos2 ϕ

)
dϕ = 0. (3.146)

Using (3.138), we obtain (3.139). ��
Conservation Law with Test Function ∇xϕ · A + ε−1ϕ

( |v|2 − 5
)
μ

1
2

Lemma 3.25. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ϕ(x) satisfying ϕ

∣∣
∂�

= 0, we have

−κ
〈
�xϕ, c

〉
x = 〈∇xϕ · A , h

〉
γ− − 〈∇xϕ · A , R

〉
γ+

+
〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉

+ ε−1
〈
ϕ
(
|v|2 − 5

)
μ

1
2 , S

〉
+
〈∇xϕ · A , S

〉
. (3.147)

Proof. From (3.132) and (3.134), we have

∇x · ς =
〈(

|v|2 − 5
)
μ

1
2 , S

〉
v
. (3.148)

Multiplying ϕ(x) ∈ R on both sides of (3.148) and integrating over x ∈ �, we obtain

−〈∇xϕ, ς
〉
x +

∫
∂�

ϕς · n =
〈
ϕ
(
|v|2 − 5

)
μ

1
2 , S

〉
. (3.149)

Hence, adding ε−1×(3.149) and (3.135) to eliminate ε−1
〈∇xϕ, ς

〉
x yields

− κ
〈
�xϕ, c

〉
x + ε−1

∫
∂�

ϕς · n
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= 〈∇xϕ · A , h
〉
γ− − 〈∇xϕ · A , R

〉
γ+

+
〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉

+ ε−1
〈
ϕ
(
|v|2 − 5

)
μ

1
2 , S

〉
+
〈∇xϕ · A , S

〉
. (3.150)

The assumption ϕ
∣∣
∂�

= 0 completely eliminates the boundary term ε−1
∫
∂�

ϕς · n in
(3.150). Hence, we have (3.147). ��

Conservation Law with Test Function ∇xψ : B + ε−1ψ · vμ 1
2

Lemma 3.26. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ψ(x) satisfying ∇x · ψ = 0, ψ

∣∣
∂�

= 0, we have

−λ
〈
�xψ,b

〉
x = 〈∇xψ : B, h

〉
γ− − 〈∇xψ : B, R

〉
γ+

+
〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉

+ ε−1
〈
ψ · vμ 1

2 , S
〉

+
〈∇xψ : B, S

〉
. (3.151)

Proof. Multiplying ψ(x) ∈ R
3 on both sides of (3.133) and integrating over x ∈ �, we

obtain

−〈∇x · ψ, p〉x − 〈∇xψ,�
〉
x +

∫
∂�

(
pψ + ψ · �

)
· n =

〈
ψ · vμ 1

2 , S
〉
. (3.152)

Hence, adding ε−1×(3.152) and (3.139) to eliminate ε−1
〈∇xψ,�

〉
x yields

− λ
〈
�xψ,b

〉 − ε−1〈∇x · ψ, p〉x + ε−1
∫
∂�

(
pψ + ψ · �

)
· n

= 〈∇xψ : B, h
〉
γ− − 〈∇xψ : B, R

〉
γ+

+
〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉

+ ε−1
〈
ψ · vμ 1

2 , S
〉

+
〈∇xψ : B, S

〉
. (3.153)

The assumptions ∇x ·ψ = 0 andψ
∣∣
∂�

= 0 eliminate ε−1
〈∇x ·ψ, p〉x and ε−1

∫
∂�

(
pψ+

ψ · �
)

· n in (3.153). Hence, we have (3.151). ��

3.3. Energy estimate.

Proposition 3.27. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
� oT ‖R‖X + ‖R‖2

X + oT . (3.154)

Proof. It suffices to justify

ε− 1
2 |R|L2

γ+
+ ε−1 ‖(I − P)[R]‖L2

ν
� oT ε

− 1
2 ‖P[R]‖L2 + oT ‖R‖X + ‖R‖2

X + oT .

(3.155)

Weak Formulation Taking test function g = ε−1R in (3.83), we obtain

ε−1

2

∫
γ

R2(v · n) + ε−2〈L[R], R〉 = ε−1〈S, R〉. (3.156)
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Notice that ∫
γ

R2(v · n) = |R|2L2
γ+

− |R|2L2
γ−

= |R|2L2
γ+

− |h|2L2
γ
, (3.157)

and 〈L[R], R〉 � ‖(I − P)[R]‖2
L2
ν
. (3.158)

Then we know

ε−1 |R|2L2
γ+

+ ε−2 ‖(I − P)[R]‖2
L2
ν

�
∣∣∣ε−1〈S, R〉∣∣∣ + ε−1 |h|2L2

γ
. (3.159)

Using Lemma 3.13, we have

ε−1 |R|2L2
γ+

+ ε−2 ‖(I − P)[R]‖2
L2
ν

�
∣∣∣ε−1〈S, R〉∣∣∣ + oT ε. (3.160)

Source Term Estimates We split

ε−1〈S, R〉 = ε−1〈S,P[R]〉 + ε−1〈S, (I − P)[R]〉. (3.161)

We may directly bound using Lemmas 3.15–3.21∣∣∣ε−1〈S, (I − P)[R]〉∣∣∣ � ε−1 ‖S‖L2 ‖(I − P)[R]‖L2
ν

�
(
o(1) + oT

)
ε−2 ‖(I − P)[R]‖2

L2
ν

+ oT ‖R‖2
X + ‖R‖4

X + oT .

(3.162)

Using the orthogonality property of Γ , we have

ε−1〈S,P[R]〉 = ε−1〈S1 + S2,P[R]〉. (3.163)

From Lemma 3.15, we know∣∣∣ε−1〈S1,P[R]〉∣∣∣ � ε−1 ‖S1‖L2 ‖P[R]‖L2 � oT ‖P[R]‖2
L2 + oT . (3.164)

Also, from Lemma 3.16 and Remark 3.17, we have

ε−1〈S2,P[R]〉 = ε−1〈S2a,P[R]〉 + ε−1〈S2b + S2c,P[R]〉. (3.165)

After integrating by parts with respect to vη in the S2a term, we obtain∣∣∣ε−1〈S2,P[R]〉∣∣∣ � ε−1
( ∥∥∥ f B1

∥∥∥
L2
x L

1
v

+ ‖S2b + S2c‖L2
x L

1
v

)
‖P[R]‖L2

x L
∞
v

� oT ε
− 1

2 ‖P[R]‖L2 � oT ε
−1 ‖P[R]‖2

L2 + oT . (3.166)

In total, we have∣∣ε−1〈S, R〉∣∣ � oT ε
−1 ‖P[R]‖2

L2 +
(
o(1) + oT

)
ε−2 ‖(I − P)[R]‖2

L2
ν

+ oT ‖R‖2
X + ‖R‖4

X + oT .

(3.167)

Synthesis Inserting (3.167) into (3.160), we have

ε−1 |R|2L2
γ+

+ ε−2
∥∥(I − P)[R]∥∥2

L2 � oT ε
−1 ‖P[R]‖2

L2 + oT ‖R‖2
X + ‖R‖4

X + oT .

(3.168)

Then we have (3.155). ��
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Corollary 3.28. Let R be the solution to (1.10). Under the assumption (1.5), we have

‖(I − P)[R]‖L6 +
∣∣μ 1

4 R
∣∣
L4
γ+

� oT ‖R‖X + ‖R‖2
X + oT . (3.169)

Proof. By interpolation and Proposition 3.27, we obtain

∥∥(I − P)[R]∥∥L6 �
∥∥(I − P)[R]∥∥ 1

3
L2

∥∥(I − P)[R]∥∥ 2
3
L∞
�,ϑ

�
(
oT ‖R‖

1
3
X + ‖R‖

1
3
X + oT

) (
ε

1
2 ‖R‖L∞

�,ϑ

) 2
3 � oT ‖R‖X + ‖R‖2

X + oT ,

(3.170)
∣∣μ 1

4 R
∣∣
L4
γ+

� |R|
1
2
L2
γ+

|R|
1
2
L∞
γ+,�,ϑ

�
(
oT ‖R‖

1
2
X + ‖R‖

1
2
X + oT

)(
ε

1
2 |R|L∞

γ+,�,ϑ

) 1
2 � oT ‖R‖X + ‖R‖2

X + oT .

(3.171)

Then the desired result follows from (3.170), (3.171). ��

3.4. Kernel estimate.

3.4.1. Estimate of p

Proposition 3.29. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε− 1
2 ‖p‖L2 + ‖p‖L6 � oT ‖R‖X + ‖R‖2

X + oT . (3.172)

Proof. It suffices to show for 2 ≤ r ≤ 6

‖p‖Lr �
∣∣μ 1

4 R
∣∣
L

2r
3
γ+

+ oT ε
2
r . (3.173)

Weak Formulation Denote

ψ(x, v) := μ
1
2 (v)

(
v · ∇xϕ(x)

)
, (3.174)

where ϕ(x) is defined via solving the elliptic problem
{−�xϕ = p |p|r−2 in �,

ϕ = 0 on ∂�.
(3.175)

Based on standard elliptic estimates [62], there exists a solution ϕ satisfying

‖ψ‖
W

1, r
r−1 L∞

�,ϑ

� ‖ϕ‖
W

2, r
r−1

�
∥∥p |p|r−2

∥∥
L

r
r−1

� ‖p‖r−1
Lr . (3.176)

Based on Sobolev embedding and trace estimate, we have for 2 ≤ r ≤ 6

‖ψ‖L2 + |ψ |
L

2r
2r−3
γ

� ‖p‖r−1
Lr . (3.177)
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Taking test function g = ψ in (3.83), we obtain∫
γ

Rψdγ − 〈
R, v · ∇xψ

〉 = 〈
S, ψ

〉
. (3.178)

From Lemma 3.13, we know∣∣∣∣
∫
γ

Rψdγ

∣∣∣∣ ≤
∣∣∣∣
∫
γ+

Rψdγ

∣∣∣∣ +

∣∣∣∣
∫
γ−

hψdγ

∣∣∣∣ �
∣∣μ 1

4 R
∣∣
L

2r
3
γ+

|ψ |
L

2r
2r−3
γ+

+ |h|
L

2r
3
γ−

|ψ |
L

2r
2r−3
γ−

� o(1) |ψ |
r

r−1

L
2r

2r−3
γ

+
∣∣μ 1

4 R
∣∣r
L

2r
3
γ+

+ |h|r
L

2r
3
γ−

� o(1) ‖p‖rLr +
∣∣μ 1

4 R
∣∣r
L

2r
3
γ+

+ oT ε
3.

(3.179)

Due to oddness and orthogonality, we have〈
μ

1
2
(
v · b), v · ∇xψ

〉
= 〈

(I − P)[R], v · ∇xψ
〉 = 0. (3.180)

Due to orthogonality of A , we know〈
μ

1
2
|v|2 − 5

2
c, v · ∇xψ

〉
= 〈

c, μ
1
2 A · ∇xψ

〉 = 0. (3.181)

Also, we have

−
〈
μ

1
2 p, v · ∇xψ

〉
= −

〈
pμ, v · ∇x

(
v · ∇xϕ

)〉
= −1

3

∫
�

p
(
�xϕ

) ∫
R3

μ |v|2 = ‖p‖rLr .
(3.182)

In summary, we have shown that

‖p‖rLr �
∣∣∣μ 1

4 R
∣∣∣r
L

2r
3
γ+

+ oT ε
3 +

∣∣〈S, ψ 〉∣∣ . (3.183)

Source Term Estimates Due to the orthogonality property of Γ and Lemma 3.15, we
know 〈

S, ψ
〉 = 〈

S2, ψ
〉
. (3.184)

Using Hardy’s inequality and integrating by parts with respect to vη in S2a , based on
Lemma 3.16 and Remark 3.17, we have

∣∣〈S2, ψ
〉∣∣ ≤

∣∣∣〈S2, ψ

∣∣∣
n=0

〉∣∣∣ +

∣∣∣∣
〈
S2,

∫ n

0
∂nψ

〉∣∣∣∣ =
∣∣∣〈S2, ψ

∣∣∣
n=0

〉∣∣∣ +

∣∣∣∣ε
〈
ηS2,

1

n

∫ n

0
∂nψ

〉∣∣∣∣
�

∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|ψ |L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr

∥∥∥∥1

n

∫ n

0
∂nψ

∥∥∥∥
L

r
r−1

�
∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|ψ |L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr
‖∂nψ‖

L
r

r−1

� oT ε |ψ |L2
γ

+ oT ε
2
r ‖∂nψ‖

L
r

r−1
� oT ε

2
r ‖p‖r−1

Lr � oT ‖p‖rLr + oT ε
2. (3.185)

Inserting (3.185) into (3.183), we have shown

‖p‖rLr �
∣∣μ 1

4 R
∣∣r
L

2r
3
γ+

+ oT ε
2. (3.186)

Hence, we have (3.173). ��
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3.4.2. Estimate of c

Proposition 3.30. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε− 1
2 ‖c‖L2 + ‖c‖L6 �oT ‖R‖X + ‖R‖2

X + oT . (3.187)

Proof. It suffices to justify for 2 ≤ r ≤ 6

‖c‖Lr � ε
1
4r ‖R‖

1
r
X ‖c‖Lr +

∣∣∣μ 1
4 R

∣∣∣
L

2r
3
γ+

+ ‖(I − P)[R]‖Lr

+ oT ε
1
2 ‖R‖X + ε

1
2 ‖R‖2

X + oT
(
ε

1
2 + ε

2
r
)
. (3.188)

Weak Formulation We consider the conservation law (3.147) where the smooth test
function ϕ(x) satisfies

{−�xϕ = c |c|r−2 in �,

ϕ = 0 on ∂�.
(3.189)

Based on standard elliptic estimates [62], there exists a solution ϕ satisfying

‖ϕ‖
W

2, r
r−1

�
∥∥c |c|r−2

∥∥
L

r
r−1

� ‖c‖r−1
Lr . (3.190)

Based on Sobolev embedding and trace estimate, we have for 2 ≤ r ≤ 6

‖ϕ‖H1 + |∇xϕ|
L

2r
2r−3
∂�

� ‖c‖r−1
Lr . (3.191)

Hence, from (3.147), we have

κ ‖c‖rLr =〈∇xϕ · A , h
〉
γ− − 〈∇xϕ · A , R

〉
γ+

+
〈
v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉

+ ε−1
〈
ϕ
(
|v|2 − 5

)
μ

1
2 , S

〉
+
〈∇xϕ · A , S

〉
. (3.192)

From Lemma 3.13, we have∣∣∣〈∇xϕ · A , h
〉
γ−

∣∣∣ � |∇xϕ · A |
L

2r
2r−3
γ−

|h|
L

2r
3
γ−

� oT ‖c‖rLr + oT ε
3, (3.193)

∣∣∣〈∇xϕ · A , R
〉
γ+

∣∣∣ � |∇xϕ · A |
L

2r
2r−3
γ+

|R|
L

2r
3
γ+

� o(1) ‖c‖rLr +
∣∣∣μ 1

4 R
∣∣∣r
L

2r
3
γ+

, (3.194)

and ∣∣∣〈v · ∇x

(
∇xϕ · A

)
, (I − P)[R]

〉∣∣∣ �
∥∥∥v · ∇x

(
∇xϕ · A

)∥∥∥
L

r
r−1

‖(I − P)[R]‖Lr
� o(1) ‖c‖rLr + ‖(I − P)[R]‖rLr . (3.195)

In summary, we have shown that

‖c‖rLr �
∣∣∣μ 1

4 R
∣∣∣r
L

2r
3
γ+

+ ‖(I − P)[R]‖rLr + oT ε
3 +

∣∣∣ε−1
〈
ϕ
( |v|2 − 5

)
μ

1
2 , S

〉∣∣∣ +
∣∣〈∇xϕ · A , S

〉∣∣ .
(3.196)
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Source Term Estimates Due to the orthogonality of Γ and Lemma 3.15, we have

ε−1
〈
ϕ
( |v|2 − 5

)
μ

1
2 , S

〉
= ε−1

〈
ϕ
( |v|2 − 5

)
μ

1
2 , S2

〉
. (3.197)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

∣∣∣ε−1
〈
ϕ
( |v|2 − 5

)
μ

1
2 , S2

〉∣∣∣ � ε−1
∣∣∣∣
〈
S2,

∫ n

0
∂nϕ

〉∣∣∣∣
�

∣∣∣∣
〈
ηS2,

1

n

∫ n

0
∂nϕ

〉∣∣∣∣ �
∥∥∥η( f B1 + S2b + S2c

)∥∥∥
L2
x L

1
v

∥∥∥∥1

n

∫ n

0
∂nϕ

∥∥∥∥
L2

�
∥∥∥η( f B1 + S2b + S2c

)∥∥∥
L2
x L

1
v

‖∂nϕ‖L2 � oT ‖c‖rLr + oT ε
r
2 . (3.198)

From Lemma 3.15, we directly bound
∣∣〈∇xϕ · A , S1

〉∣∣ � ‖∇xϕ‖L2 ‖S1‖L2 � oT ‖c‖rLr + oT ε
r . (3.199)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

∣∣〈∇xϕ · A , S2
〉∣∣ ≤

∣∣∣〈S2,∇xϕ

∣∣∣
n=0

〉∣∣∣ +

∣∣∣∣ε
〈
ηS2,

1

n

∫ n

0
∂n∇xϕ

〉∣∣∣∣
�

∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|∇xϕ|L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr

∥∥∥∥1

n

∫ n

0
∂n∇xϕ

∥∥∥∥
L

r
r−1

�
∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|∇xϕ|L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr
‖∂n∇xϕ‖

L
r

r−1

� oT ε
2
r ‖c‖r−1

Lr � oT ‖c‖rLr + oT ε
2. (3.200)

Based on Lemma 3.18, Lemma 3.19, and Lemma 3.20, we have
∣∣〈∇xϕ · A , S3 + S4 + S5

〉∣∣ � ‖∇xϕ‖L2 ‖S3 + S4 + S5‖L2

� oT ‖c‖rLr + oT ‖R‖rL2 + oT ε
r
2 � oT ‖c‖rLr + oT ε

r
2 ‖R‖rX + oT ε

r
2 . (3.201)

Finally, based on Lemma 3.21, we have
∣∣〈∇xϕ · A , S6

〉∣∣ �
∣∣〈∇xϕ · A , Γ

[
P[R],P[R]]〉∣∣ +

∣∣〈∇xϕ · A , Γ
[
R, (I − P)[R]]〉∣∣ .

(3.202)

The oddness and orthogonality of the elements in (A.4), combined with the interpolation

‖b‖L3 � ‖b‖
1
2
L2 ‖b‖

1
2
L6 � ε

1
4 ‖R‖X , imply that

∣∣〈∇xϕ · A , Γ
[
P[R],P[R]]〉∣∣ �

∣∣∣∣∣
〈
∇xϕ · A , Γ

[
μ

1
2 (v · b) , μ 1

2

( |v|2 − 5

2
c

)]〉∣∣∣∣∣
� ‖∇xϕ‖

L
3r

2r−3
‖b‖L3 ‖c‖Lr � ‖ϕ‖

W
2, r

r−1
‖b‖L3 ‖c‖Lr

� ε
1
4 ‖R‖X ‖c‖rLr . (3.203)
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In addition, using the interpolation‖(I − P)[R]‖L3 � ‖(I − P)[R]‖
1
2
L2
ν
‖(I − P)[R]‖

1
2
L6 �

ε
1
2 ‖R‖X , we have∣∣∣〈∇xϕ · A , Γ

[
R, (I − P)[R]

]〉∣∣∣ � ‖∇xϕ‖L2 ‖R‖L6 ‖(I − P)[R]‖L3

� ε
1
2 ‖c‖r−1

Lr ‖R‖2
X � o(1) ‖c‖rLr + ε

r
2 ‖R‖2r

X .

(3.204)

Hence, we know
∣∣〈∇xϕ · A , S6

〉∣∣ � ε
1
4 ‖R‖X ‖c‖rLr + o(1) ‖c‖rLr + ε

r
2 ‖R‖2r

X . (3.205)

Summarizing, we have found that∣∣∣ε−1
〈
ϕ
( |v|2 − 5

)
μ

1
2 , S

〉∣∣∣ +
∣∣〈∇xϕ · A , S

〉∣∣
� ε

1
4 ‖R‖X ‖c‖rLr +

(
o(1) + oT

) ‖c‖rLr + oT ε
r
2 ‖R‖rX + ε

r
2 ‖R‖2r

X + oT
(
ε
r
2 + ε2

)
.

(3.206)

Inserting (3.206) into (3.196), we have

‖c‖rLr � ε
1
4 ‖R‖X ‖c‖rLr +

∣∣μ 1
4 R

∣∣r
L

2r
3
γ+

+ ‖(I − P)[R]‖rLr + oT ε
r
2 ‖R‖rX

+ ε
r
2 ‖R‖2r

X + oT
(
ε
r
2 + ε2

)
. (3.207)

Hence, (3.188) follows. ��

3.4.3. Estimate of b

Proposition 3.31. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε− 1
2 ‖b‖L2 + ‖b‖L6 � oT ‖R‖X + ‖R‖2

X + oT . (3.208)

Proof. It suffices to justify for 2 ≤ r ≤ 6

‖b‖Lr � ε
1
4r ‖R‖

1
r
X ‖b‖Lr +

∣∣μ 1
4 R

∣∣
L

2r
3
γ+

+ ‖(I − P)[R]‖Lr + oT ε
1
2 ‖R‖X + ε

1
2 ‖R‖2

X

+ oT
(
ε

1
2 + ε

2
r
)
. (3.209)

Weak Formulation Assume (ψ, q) : � → R
3 × R (where q has zero average) is the

unique strong solution to the Stokes problem⎧⎨
⎩

−λ�xψ + ∇xq = b |b|r−2 in �,

∇x · ψ = 0 in �,

ψ = 0 on ∂�.

(3.210)

We have the standard estimate [19]

‖ψ‖
W

2, r
r−1

+ ‖q‖
W

1, r
r−1

�
∥∥∥b |b|r−2

∥∥∥
L

r
r−1

� ‖b‖r−1
Lr . (3.211)
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Based on Sobolev embedding and trace estimate, we have for 2 ≤ r ≤ 6

‖ψ‖H1 + |∇xψ |
L

2r
2r−3
∂�

+ ‖q‖L2 + |q|
L

2r
2r−3
∂�

� ‖b‖r−1
Lr . (3.212)

Multiplying b on both sides of (3.210) and integrating by parts for
〈∇xq,b

〉
x , we have

−〈
λ�xψ,b

〉
x − 〈

q,∇x · b〉x +
∫
∂�

q(b · n) = ‖b‖rLr , (3.213)

which, by combining (3.132) and Remark 3.14, implies

−〈
λ�xψ,b

〉
x −

〈
qμ

1
2 , S

〉
+
〈
qμ

1
2 , R

〉
γ+

− 〈
qμ

1
2 , h

〉
γ− = ‖b‖rLr . (3.214)

Inserting (3.214) into (3.151) to replace −〈
λ�xψ,b

〉
x , we obtain

‖b‖rLr = − 〈
qμ

1
2 , h

〉
γ− +

〈
qμ

1
2 , R

〉
γ+

+
〈∇xψ : B, h

〉
γ− − 〈∇xψ : B, R

〉
γ+

+
〈
v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉
−

〈
qμ

1
2 , S

〉
+ ε−1

〈
ψ · vμ 1

2 , S
〉

+
〈∇xψ : B, S

〉
.

(3.215)

From Lemma 3.13, we have∣∣∣〈qμ 1
2 , h

〉
γ−

∣∣∣ +
∣∣∣〈∇xψ : B, h

〉
γ−

∣∣∣ �
(

|q|
L

2r
2r−3
∂�

+ |∇xψ |
L

2r
2r−3
∂�

)
|h|

L
2r
3
γ−

� oT ‖b‖rLr + oT ε
3, (3.216)∣∣∣〈qμ 1

2 , R
〉
γ+

∣∣∣ +
∣∣∣〈∇xψ : B, R

〉
γ+

∣∣∣ �
(

|q|
L

2r
2r−3
∂�

+ |∇xψ |
L

2r
2r−3
∂�

)
|R|

L
2r
3
γ+

� o(1) ‖b‖rLr +
∣∣∣μ 1

4 R
∣∣∣r
L

2r
3
γ+

, (3.217)

and ∣∣∣〈v · ∇x

(
∇xψ : B

)
, (I − P)[R]

〉∣∣∣ �
∥∥∥v · ∇x

(
∇xψ : B

)∥∥∥
L

r
r−1

‖(I − P)[R]‖Lr
� o(1) ‖b‖rLr + ‖(I − P)[R]‖rLr . (3.218)

In summary, we have shown that

‖b‖rLr �
∣∣∣μ 1

4 R
∣∣∣r
L

2r
3
γ+

+ ‖(I − P)[R]‖rLr + oT ε
3 +

∣∣∣〈qμ 1
2 , S

〉∣∣∣
+
∣∣∣ε−1

〈
ψ · vμ 1

2 , S
〉∣∣∣ +

∣∣〈∇xψ : B, S
〉∣∣ . (3.219)

Source Term Estimates Due to orthogonality of Γ and Lemma 3.15, we have∣∣∣〈qμ 1
2 , S

〉∣∣∣ +
∣∣∣ε−1

〈
ψ · vμ 1

2 , S
〉∣∣∣ =

∣∣∣〈q, μ 1
2 S2

〉∣∣∣ +
∣∣∣ε−1

〈
ψ · vμ 1

2 , S2

〉∣∣∣ . (3.220)

Using Lemma 3.16 and Remark 3.17, integrating by parts in vη for S2a , we obtain∣∣∣〈qμ 1
2 , S2

〉∣∣∣ � ‖q‖L2

∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
x L

1
v

� oT ε
1
2 ‖q‖L2 � oT ‖b‖rLr + oT ε

r
2 .

(3.221)
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Similar to (3.185), we have
∣∣∣ε−1

〈
ψ · vμ 1

2 , S2

〉∣∣∣ � ε−1
∣∣∣∣
〈
S2,

∫ n

0
∂nψ

〉∣∣∣∣ �
∣∣∣∣
〈
ηS2,

1

n

∫ n

0
∂nψ

〉∣∣∣∣
�

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

L2
x L

1
v

∥∥∥∥1

n

∫ n

0
∂nψ

∥∥∥∥
L2

�
∥∥∥η( f B1 + S2b + S2c

)∥∥∥
L2
x L

1
v

‖∂nψ‖L2 � oT ‖b‖rLr + oT ε
r
2 . (3.222)

From Lemma 3.15, we directly bound∣∣〈∇xψ : B, S1
〉∣∣ � ‖∇xψ‖L2 ‖S1‖L2 � oT ‖b‖rLr + oT ε

r . (3.223)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

∣∣〈∇xψ : B, S2
〉∣∣ ≤

∣∣∣〈S2,∇xψ

∣∣∣
n=0

〉∣∣∣ +

∣∣∣∣ε
〈
ηS2,

1

n

∫ n

0
∂n∇xψ

〉∣∣∣∣
�

∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|∇xψ |L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr

∥∥∥∥1

n

∫ n

0
∂n∇xψ

∥∥∥∥
L

r
r−1

�
∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
ι1ι2

L1
nL1

v

|∇xψ |L2
γ

+ ε

∥∥∥η( f B1 + S2b + S2c
)∥∥∥

Lr
‖∂n∇xψ‖

L
r

r−1

� oT ε
2
r ‖b‖r−1

Lr � oT ‖b‖rLr + oT ε
2. (3.224)

Based on Lemma 3.18, Lemma 3.19, and Lemma 3.20, we have
∣∣〈∇xψ : B, S3 + S4 + S5

〉∣∣ � ‖∇xψ‖L2 ‖S3 + S4 + S5‖L2

� oT ‖b‖rLr + oT ‖R‖rL2 + oT ε
r
2 � oT ‖b‖rLr + oT ε

r
2 ‖R‖rX + oT ε

r
2 .

(3.225)

Finally, based on Lemma 3.21, we have

∣∣〈∇xψ : B, S6
〉∣∣ �

∣∣∣〈∇xψ : B, Γ
[
P[R],P[R]

]〉∣∣∣ +
∣∣∣〈∇xψ : B, Γ

[
R, (I − P)[R]

]〉∣∣∣ .
(3.226)

The oddness and orthogonality imply that∣∣∣〈∇xψ : B, Γ
[
P[R],P[R]

]〉∣∣∣
�

∣∣∣〈∇xψ : B, Γ
[
μ

1
2 (v · b) , μ 1

2 (v · b)
]〉∣∣∣

+

∣∣∣∣∣
〈
∇xψ : B, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]〉∣∣∣∣∣ . (3.227)

We may directly bound∣∣∣〈∇xψ : B, Γ
[
μ

1
2 (v · b) , μ 1

2 (v · b)
]〉∣∣∣ � ‖∇xψ‖

L
3r

2r−3
‖b‖L3 ‖b‖Lr

� ‖ψ‖
W

2, r
r−1

‖b‖L3 ‖b‖Lr � ε
1
4 ‖R‖X ‖b‖rLr .

(3.228)



Diffusive Limit of the Boltzmann Equation in Bounded Domains Page 43 of 85   279 

Due to oddness andBi i = L−1
[(

|vi |2 − 1

3
|v|2

)
μ

1
2

]
, noting thatΓ

[
μ

1
2

(
|v|2 − 5

2
c

)
,

μ
1
2

(
|v|2 − 5

2
c

)]
only depends on |v|2, we have

∣∣∣∣∣
〈
∇xψ : B, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]〉∣∣∣∣∣
=

∣∣∣∣∣
〈
∂1ψ1B11 + ∂2ψ2B22 + ∂3ψ3B33, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]〉∣∣∣∣∣
=

∣∣∣∣∣
〈(∇x · ψ)

Bi i , Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]〉∣∣∣∣∣ = 0. (3.229)

In addition, we have∣∣∣〈∇xψ : B, Γ
[
R, (I − P)[R]

]〉∣∣∣ � ‖∇xψ‖L2 ‖R‖L6 ‖(I − P)[R]‖L3

� ε
1
2 ‖b‖r−1

Lr ‖R‖2
X � o(1) ‖b‖rLr + ε

r
2 ‖R‖2r

X .

(3.230)

Hence, we know

∣∣〈∇xψ : B, S6
〉∣∣ � ε

1
4 ‖R‖X ‖b‖rLr + o(1) ‖b‖rLr + ε

r
2 ‖R‖2r

X . (3.231)

Summarizing the above, we have found that
∣∣∣〈qμ 1

2 , S
〉∣∣∣ +

∣∣∣ε−1
〈
ψ · vμ 1

2 , S
〉∣∣∣ +

∣∣〈∇xψ : B, S
〉∣∣

� ε
1
4 ‖R‖X ‖b‖rLr +

(
o(1) + oT

) ‖b‖rLr + oT ε
r
2 ‖R‖rX + ε

r
2 ‖R‖2r

X + oT
(
ε
r
2 + ε2

)
.

(3.232)

Inserting (3.232) into (3.219), we have

‖b‖rLr � ε
1
4 ‖R‖X ‖b‖rLr +

∣∣μ 1
4 R

∣∣r
L

2r
3
γ+

+ ‖(I − P)[R]‖rLr + oT ε
r
2 ‖R‖rX + ε

r
2 ‖R‖2r

X

+ oT
(
ε
r
2 + ε2

)
. (3.233)

Hence, (3.209) follows. ��

3.4.4. Synthesis of kernel estimates

Proposition 3.32. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε− 1
2 ‖P[R]‖L2 + ‖P[R]‖L6 � oT ‖R‖X + ‖R‖2

X + oT . (3.234)

Proof. Collecting Proposition 3.29, Proposition 3.30 and Proposition 3.31, we obtain
the desired result. ��
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3.5. L∞ estimate. We define a weight function scaled with parameters 0 ≤ � < 1
2 and

ϑ ≥ 0,

w(v) := 〈v〉ϑ e�
|v|2

2 . (3.235)

Lemma 3.33. We have

|k(u, v)| �
(
|u − v| + |u − v|−1

)
e
− 1

4 |u−v|2− 1
4
||u|2−|v|2|2

|u−v|2 . (3.236)

Let 0 ≤ � < 1
2 and ϑ ≥ 0. Then for δ > 0 sufficiently small and any v ∈ R

3,

∫
R3

eδ|u−v|2 |k(u, v)| 〈v〉ϑ e�
|v|2

2

〈u〉ϑ e�
|u|2

2

du � ν−1. (3.237)

Proof. This is a rescaled version of [41, Lemma 3] and [44, Lemma 2.3]. ��
Proposition 3.34. Let R be the solution to (1.10). Under the assumption (1.5), we have

ε
1
2 ‖R‖L∞

�,ϑ
+ ε

1
2 |R|L∞

γ+,�,ϑ
� oT ‖R‖X + ‖R‖2

X + oT . (3.238)

Proof. We will use the well-known L2 − L6 − L∞ framework.
Step 1: Mild Formulation Denote the weighted solution

Rw(x, v) := w(v)R(x, v), (3.239)

and the weighted non-local operator

Kw(v)[Rw](v) := w(v)K

[
Rw
w

]
(v) =

∫
R3

kw(v)(v, u)Rw(u)du, (3.240)

where

kw(v)(v, u) := k(v, u)
w(v)

w(u)
. (3.241)

Multiplying εw on both sides of (1.10), we have{
εv · ∇x Rw + νRw = Kw[Rw](x, v) + εw(v)S(x, v) in � × R

3,

Rw(x0, v) = wh(x0, v) for x0 ∈ ∂� and v · n < 0,
(3.242)

We can rewrite the solution of the equation (3.242) along the characteristics by Duhamel’s
principle as

Rw(x, v) =w(v)h(xb, v)e
−ν(v)tb +

∫ tb

0
w(v)εS

(
x − ε(tb − s)v, v

)
e−ν(v)(tb−s)ds

+
∫ tb

0

∫
R3

kw(v)(v, u)Rw
(
x − ε(tb − s)u, u

)
e−ν(v)(tb−s)duds, (3.243)

where

tb(x, v) := inf
{
t > 0 : x − εtv /∈ �

}
, (3.244)
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and

xb(x, v) := x − εtb(x, v)v /∈ �. (3.245)

We further rewrite the non-local term along the characteristics as

Rw(x, v) =w(v)h(xb, v)e
−ν(v)tb +

∫ tb

0
w(v)εS

(
x − ε(tb − s)v, v

)
e−ν(v)(tb−s)ds

+
∫ tb

0

∫
R3

kw(v)(v, u)w(u)h(x
′
b, v)e

−ν(u)t ′be−ν(v)(tb−s)duds

+
∫ tb

0

∫
R3

kw(v)(v, u)
∫ t ′b

0
εS

(
x − ε(tb − s)u − ε(t ′b − r)u, u

)

e−ν(u)(t ′b−r)e−ν(v)(tb−s)drduds

+
∫ tb

0

∫
R3

kw(v)(v, u)
∫ t ′b

0

∫
R3

kw(u)(u, u
′)Rw

(
x − ε(tb − s)u − ε(t ′b − r)u′, u′)

e−ν(u)(t ′b−r)e−ν(v)(tb−s)du′drduds, (3.246)

where

t ′b(x, v; s, u) := inf
{
t > 0 : x − ε(tb − s) − εtu /∈ �

}
, (3.247)

and

x ′
b(x, v; s, u) := x − ε(tb − s) − εt ′b(x, v; s, u)u /∈ �. (3.248)

Step 2: Estimates of Source Terms and Boundary Terms Based on Lemma 3.13 –
Lemma 3.21, we have

∣∣∣w(v)h(xb, v)e−ν(v)tb
∣∣∣ +

∣∣∣∣
∫ tb

0

∫
R3

kw(v)(v, u)w(u)h(x
′
b, v)e

−ν(u)t ′be−ν(v)(tb−s)duds

∣∣∣∣
� |h|L∞

γ−,�,ϑ
� oT , (3.249)

and ∣∣∣∣
∫ tb

0
w(v)εS

(
x − ε(tb − s)v, v

)
e−ν(v)(tb−s)ds

∣∣∣∣
+

∣∣∣∣∣
∫ tb

0

∫
R3

kw(v)(v, u)
∫ t ′b

0
εS

(
x − ε(tb − s)u − ε(t ′b − r)u, u

)

e−ν(u)(t ′b−r)e−ν(v)(tb−s)drduds
∣∣∣

�ε

∥∥∥ν−1S
∥∥∥
L∞
�,ϑ

� oT + oT ε ‖R‖L∞
�,ϑ

+ ε ‖R‖2
L∞
�,ϑ

� oT ε
1
2 ‖R‖X + ‖R‖2

X + oT .

(3.250)

Step 3: Estimates of Non-Local Terms The only remaining term in (3.246) is the
non-local term

I : =
∫ tb

0

∫
R3

kw(v)(v, u)
∫ t ′b

0

∫
R3

kw(u)(u, u
′)Rw

(
x − ε(tb − s)u − ε(t ′b − r)u′, u′)
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e−ν(u)(t ′b−r)e−ν(v)(tb−s)du′drduds, (3.251)

which will be estimated in five cases:

I := I1 + I2 + I3 + I4 + I5. (3.252)

In the following, we assume that δ � 1 and N � 1 are constants that will be determined
later.

Case I: I1 : |v| ≥ N
Based on Lemma 3.33, we have∣∣∣∣

∫
R3

∫
R3

kw(v)(v, u)kw(u)(u, u
′)dudu′

∣∣∣∣ � 1

1 + |v| � 1

N
. (3.253)

Hence, we get

|I1| � 1

N
‖Rw‖L∞ . (3.254)

Case II: I2 : |v| ≤ N , |u| ≥ 2N , or |u| ≤ 2N ,
∣∣u′∣∣ ≥ 3N Notice this implies either

|u − v| ≥ N or
∣∣u − u′∣∣ ≥ N . Hence, at least one of the following is valid:

∣∣kw(v)(v, u)∣∣ ≤ Ce−δN2 ∣∣kw(v)(v, u)∣∣ eδ|v−u|2 , (3.255)∣∣kw(u)(u, u′)
∣∣ ≤ Ce−δN2 ∣∣kw(u)(u, u′)

∣∣ eδ|u−u′|2
. (3.256)

Correspondingly, based on Lemma 3.33, we know
∫

R3

∣∣kw(v)(v, u)∣∣ eδ|v−u|2 du < ∞ or
∫

R3

∣∣kw(u)(u, u′)
∣∣ eδ|u−u′|2

du′ < ∞.

(3.257)

Hence, we have

|I2| � e−δN2 ‖Rw‖L∞ . (3.258)

Case III: I3 : t ′b − r ≤ δ and |v| ≤ N , |u| ≤ 2N ,
∣∣u′∣∣ ≤ 3N In this case, since the in-

tegral with respect to r is restricted in a very short interval, there is a small contribution
as

|I3| �
∣∣∣∣∣
∫ t ′b

t ′b−δ

e−(t ′b−r)dr

∣∣∣∣∣ ‖Rw‖L∞ � δ ‖Rw‖L∞ . (3.259)

Case IV: I4 : t ′b − r ≥ |ln(δ)| and |v| ≤ N , |u| ≤ 2N ,
∣∣u′∣∣ ≤ 3N In this case, t ′b − r

is significantly large, so e−(t ′b−r) ≤ δ is very small. Hence, the contribution is small

|I4| �
∣∣∣∣
∫ ∞

|ln(δ)|
e−(t ′b−r)dr

∣∣∣∣ ‖Rw‖L∞ � δ ‖Rw‖L∞ . (3.260)

Case V: I5 : δ ≤ t ′b − r ≤ |ln(δ)| and |v| ≤ N , |u| ≤ 2N ,
∣∣u′∣∣ ≤ 3N
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This is the most complicated case. Since kw(v)(v, u) has integrable singularity of
type |v − u|−1, we can introduce the truncated kernel kN (v, u) which is smooth and has
compactly supported range such that

sup
|v|≤3N

∫
|u|≤3N

∣∣kN (v, u) − kw(v)(v, u)
∣∣ du ≤ 1

N
. (3.261)

Then we can split

kw(v)(v, u)kw(u)(u, u
′) =kN (v, u)kN (u, u) +

(
kw(v)(v, u) − kN (v, u)

)
kw(u)(u, u

′)

+

(
kw(u)(u, u

′) − kN (u, u
′)
)
kN (v, u). (3.262)

This means that we further split I5 into

I5 := I5,1 + I5,2 + I5,3. (3.263)

Based on (3.261), we have

∣∣I5,2∣∣ � 1

N
‖Rw‖L∞ ,

∣∣I5,3∣∣ � 1

N
‖Rw‖L∞ . (3.264)

Therefore, the only remaining term is I5,1. Note that we always have x − ε(tb − s)v −
ε(t ′b − r)u ∈ �. Hence, we define the change of variable u → y as y = (y1, y2, y3) =
x − ε(tb − s)v − ε(t ′b − r)u. Then the Jacobian

∣∣∣∣dy

du

∣∣∣∣ =
∣∣∣∣∣∣

∣∣∣∣∣∣
ε(t ′b − r) 0 0

0 ε(t ′b − r) 0
0 0 ε(t ′b − r)

∣∣∣∣∣∣

∣∣∣∣∣∣ = ε3(t ′b − r)3 ≥ ε3δ3. (3.265)

Considering |v| , |u| , ∣∣u′∣∣ ≤ 3N , we know |Rw| � |R|. Also, since kN is bounded, we
estimate

∣∣I5,1∣∣ �
∫

|u|≤2N

∫
|u′|≤3N

∫ t ′b

0
1{x−ε(tb−s)v−ε(t ′b−r)u∈�}

∣∣∣R(x − ε(tb − s)v − ε(t ′b − r)u, u′)∣∣∣
e−ν(u)(t ′b−r)drdudu′. (3.266)

Using Hölder’s inequality, we estimate

∫
|u|≤2N

∫
|u′|≤3N

∫ t ′b

0
1{x−ε(tb−s)v−ε(t ′b−r)u∈�}

∣∣∣R(x − ε(tb − s)v − ε(t ′b − r)u, u′)∣∣∣
e−ν(u)(t ′b−r)drdudu′

≤
(∫

|u|≤2N

∫
|u′|≤3N

∫ t ′b

0
1{x−ε(tb−s)v−ε(t ′b−r)u∈�}e−ν(u)(t ′b−r)drdudu′

) 5
6

×
(∫

|u|≤2N

∫
|u′|≤3N

∫ t ′b

0
1{x−ε(tb−s)v−ε(t ′b−r)u∈�}

∣∣∣R(x − ε(tb − s)v − ε(t ′b − r)u, u′)∣∣∣6

e−ν(u)(t ′b−r)drdudu′
) 1

6



  279 Page 48 of 85 Z. Ouyang, L. Wu

�
∣∣∣∣∣
∫ t ′b

0

1

ε3δ3

∫
|u′|≤3N

∫
�

1{y∈�}
∣∣R(y, u′)

∣∣6e−(t ′b−r)dydu′dr
∣∣∣∣∣

1
6

� 1

ε
1
2 δ

1
2

‖R‖L6 . (3.267)

Inserting (3.267) into (3.266), we obtain

∣∣I5,1∣∣ � 1

ε
1
2 δ

1
2

‖R‖L6 . (3.268)

Combined with (3.264), we know

I5 � 1

N
‖Rw‖L∞ +

1

ε
1
2 δ

1
2

‖R‖L6 . (3.269)

Summarizing all five cases in (3.254),(3.258),(3.259),(3.260),(3.269), we obtain

|I | �
(

1

N
+ e−δN2

+ δ

)
‖Rw‖L∞ +

1

ε
1
2 δ

1
2

‖R‖L6 . (3.270)

Choosing δ � 1 sufficiently small, and then taking N sufficiently large satisfying
N−1 ≤ δ and e−δN2 ≤ δ, we have

|I | � δ ‖Rw‖L∞ +
1

ε
1
2 δ

1
2

‖R‖L6 . (3.271)

Step 4: Synthesis Summarizing all above, we obtain for any (x, v) ∈ � × R
3,

∣∣Rw(x, v)∣∣ � δ ‖Rw‖L∞ +
1

ε
1
2 δ

1
2

‖R‖L6 + oT ε
1
2 ‖R‖X + ‖R‖2

X + oT . (3.272)

Since δ � 1, we obtain
∣∣Rw(x, v)∣∣ � ε− 1

2 ‖R‖L6 + oT ε
1
2 ‖R‖X + ‖R‖2

X + oT , (3.273)

and thus the desired result follows from Proposition 3.32. ��

3.6. Remainder estimate.

Theorem 3.35. Let R be the solution to (1.10). Under the assumption (1.5), we have

‖R‖X � oT . (3.274)

Proof. Based on Proposition 3.27 and Corollary 3.28, we have

ε− 1
2 |R|L2

γ+
+
∣∣μ 1

4 R
∣∣
L4
γ+

+ ε−1 ‖(I − P)[R]‖L2
ν

+ ‖(I − P)[R]‖L6 � oT ‖R‖X + ‖R‖2
X + oT .

(3.275)

Based on Proposition 3.32, we have

ε− 1
2 ‖P[R]‖L2 + ‖P[R]‖L6 � oT ‖R‖X + ‖R‖2

X + oT . (3.276)

Combining both of them, we have

ε− 1
2 |R|L2

γ+
+
∣∣μ 1

4 R
∣∣
L4
γ+

+ ε− 1
2 ‖P[R]‖L2 + ε−1 ‖(I − P)[R]‖L2

ν
+ ‖R‖L6
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� oT ‖R‖X + ‖R‖2
X + oT . (3.277)

Based on Proposition 3.34, we have

ε
1
2 ‖R‖L∞

�,ϑ
+ ε

1
2 |R|L∞

γ+,�,ϑ
� oT ‖R‖X + ‖R‖2

X + oT . (3.278)

Collecting (3.277) and (3.278), we have

‖R‖X � oT ‖R‖X + ‖R‖2
X + oT . (3.279)

Hence, we have

‖R‖X � ‖R‖2
X + oT . (3.280)

By a standard iteration/fixed-point argument, our desired result follows. ��
Proof of Theorem 1.1. The estimate (1.40) follows from Theorem 3.35. The construc-
tion and positivity of F based on the expansion (1.7) is standard and we refer to [27,29],
so we will focus on the proof of (1.15). From Theorem 3.35, we have

ε− 1
2 ‖P[R]‖L2 + ε−1 ‖(I − P)[R]‖L2

ν
� oT , (3.281)

which yields

‖R‖L2 � oT ε
1
2 . (3.282)

From (1.7), we know

∥∥∥μ− 1
2 F − μ

1
2 − ε f1 − ε2 f2 − ε f B1

∥∥∥
L2

= ‖εR‖L2 � oT ε
3
2 . (3.283)

From Theorem 3.9 and the rescaling η = ε−1n, we have

∥∥∥ε2 f2
∥∥∥
L2

� oT ε
2,

∥∥∥ε f B1
∥∥∥
L2

� oT ε
3
2 . (3.284)

Hence, we have

∥∥∥μ− 1
2 F − μ

1
2 − ε f1

∥∥∥
L2

� oT ε
3
2 . (3.285)

Therefore, (1.15) follows. ��
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4. Evolutionary Problem

4.1. Asymptotic analysis.

4.1.1. Interior solution The derivation of the interior solution is classical. We refer to
[36,71,72] and the references therein. By inserting (1.33) into (1.21) and comparing the
order of ε, we require that

0 = 2μ− 1
2 Q∗[μ,μ 1

2 f1
]
, (4.1)

v · ∇x f1 = 2μ− 1
2 Q∗[μ,μ 1

2 f2
]

+ μ− 1
2 Q∗[μ 1

2 f1, μ
1
2 f1

]
, (4.2)

which are equivalent to

L [ f1] = 0, (4.3)

v · ∇x f1 + L [ f2] = Γ [ f1, f1] . (4.4)

Considering the further expansion, we additionally require

∂t f1 + v · ∇x f2 ⊥ N . (4.5)

Hence, we conclude

f1(t, x, v) = μ
1
2 (v)

(
ρ1(t, x) + v · u1(t, x) +

|v|2 − 3

2
T1(t, x)

)
, (4.6)

where (ρ1,u1, T1) satisfies the incompressible Navier–Stokes–Fourier system (3.8).
Also, we have

f2(t, x, v) = μ
1
2 (v)

(
ρ2(t, x) + v · u2(t, x) +

|v|2 − 3

2
T2(t, x)

)

+ μ
1
2 (v)

(
ρ1(v · u1) +

(
ρ1T1 +

|v|2 − 3

2
|u1|2

))

+ L−1
[

− v · ∇x f1 + Γ [ f1, f1]
]

(4.7)

where (ρ2,u2, T2) satisfies the fluid system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ2 + T2 + ρ1T1 = p1,

∂tu2 + u1 · ∇xu2 + (ρ1u1 + u2) · ∇xu1 − γ1�xu2 + ∇xp2

= −γ2∇x · �x T1 − γ4∇x ·
(
T1

(∇xu1 + (∇xu1)
T
))
,

∇x · u2 = −u1 · ∇xρ1,

∂t T2 + u1 · ∇x T2 + (ρ1u1 + u2) · ∇x T1 − u1 · ∇xp1

= γ1

(
∇xu1 + (∇xu1)

T
)2

+ �x
(
γ2T2 + γ5T 2

1

)
.

(4.8)
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4.1.2. Boundary layer We define a cutoff boundary layer f B1 as (3.51). Denote

f B1 (t, x, v) = χ
(
ε−1vη

)
χ(εη)�(t, x, v). (4.9)

We may verify that f B1 satisfies

vη
∂ f B1
∂η

+ L
[
f B1

]
=vηχ(ε

−1vη)
∂χ(εη)

∂η
� + χ(εη)

(
χ(ε−1vη)K

[
�
]

− K
[
χ(ε−1vη)�

])
,

(4.10)

with

f B1 (t, 0, ι1, ι2, v) = χ
(
ε−1vη

) (
fb(t, ι1, ι2, v) − �∞(t, ι1, ι2, v)

)
for vη > 0.

(4.11)

4.1.3. Matching procedure The construction of boundary layer and the boundary con-
dition of the interior solution is exactly the same as in Sect. 3.1.4, so we only discuss the
initial condition of the interior solution.

Using (1.25), we require the matching condition for t = 0:

ρ1

∣∣∣
t=0

= ρ I , u1

∣∣∣
t=0

= uI , T1

∣∣∣
t=0

= T I . (4.12)

By standard fluid theory [13,19] for the unsteady Navier–Stokes equations (3.8), we
have for any s ∈ [2,∞)

‖ρ1‖W 1,∞
t W 3,s

x
+ ‖u1‖W 1,∞

t W 3,s
x

+ ‖T1‖W 1,∞
t W 3,s

x
� oT . (4.13)

Also, for f2, since there is no initial layer, we may simply take

ρ2

∣∣∣
t=0

= 0, u2

∣∣∣
t=0

= 0, T2

∣∣∣
t=0

= 0. (4.14)

By standard fluid theory [13,19] for the linear unsteady Navier–Stokes equations (4.8),
we have for any s ∈ [2,∞)

‖ρ2‖W 1,∞
t W 2,s

x
+ ‖u2‖W 1,∞

t W 2,s
x

+ ‖T2‖W 1,∞
t W 2,s

x
� oT . (4.15)

Theorem 4.1. Under the assumptions (1.23),(1.28),(1.31), there exists a unique solution
(ρ1,u1, T1) to the unsteady Navier–Stokes equations (3.8) and (ρ2,u2, T2) to (4.8)
satisfying for any s ∈ [2,∞)

‖ρ1‖W 1,∞
t W 3,s

x
+ ‖u1‖W 1,∞

t W 2,s
x

+ ‖T1‖W 1,∞
t W 3,s

x
�oT , (4.16)

‖ρ2‖W 1,∞
t W 2,s

x
+ ‖u2‖W 1,∞

t W 2,s
x

+ ‖T2‖W 1,∞
t W 2,s

x
�oT . (4.17)

Thus, we can construct f1, f2 and f B1 such that

||| f1|||W 1,∞
t W 3,s

x L∞
v,�,ϑ

+ ‖ f1‖
W 1,∞W 3− 1

s ,s L∞
γ ,�,ϑ

� oT , (4.18)

||| f2|||W 1,∞
t W 2,s

x L∞
v,�,ϑ

+ ‖ f2‖
W 1,∞

t W
2− 1

s ,s
x L∞

γ ,�,ϑ

� oT , (4.19)

and for some K0 > 0 and any 0 < s ≤ 3
∣∣∣
∣∣∣
∣∣∣eK0η f B1

∣∣∣
∣∣∣
∣∣∣
W 1,∞

t L∞
x,v,�,ϑ

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣eK0η

∂s f B1
∂ιs1

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
W 1,∞

t L∞
x,v,�,ϑ

+

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣eK0η

∂s f B1
∂ιs2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
W 1,∞

t L∞
x,v,�,ϑ

� oT .

(4.20)
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4.2. Remainder equation. Inserting (2.6) into (1.21), we have

ε∂t

(
μ + f + f B + εμ

1
2 R

)
+ v · ∇x

(
μ + f + f B + εμ

1
2 R

)

= ε−1Q∗ [
μ + f + f B + εμ

1
2 R, μ + f + f B + εμ

1
2 R

]
, (4.21)

or equivalently

ε∂t R + v · ∇x R − 2ε−1μ− 1
2 Q∗[μ,μ 1

2 R
]

= −μ− 1
2 ∂t

(
f + f B

)
− ε−1μ− 1

2

(
v · ∇x

(
f + f B

) )
+ μ− 1

2 Q∗ [
μ

1
2 R, μ

1
2 R

]

+ 2ε−1μ− 1
2 Q∗ [

f + f B, μ
1
2 R

]
+ ε−2μ− 1

2 Q∗ [
μ + f + f B, μ + f + f B

]
. (4.22)

Also, we have the initial and boundary conditions(
μ + f + εμ

1
2 R

) ∣∣∣
t=0

= μ + εμ
1
2 fi ,

(
μ + f + f B + εμ

1
2 R

) ∣∣∣
γ−

= μ + εμ
1
2 fb,

(4.23)

which are equivalent to

R
∣∣
t=0 = fi − ε−1μ− 1

2 f, R
∣∣
γ−

= fb − ε−1μ− 1
2
(
f + f B

)
. (4.24)

Note that due to the compatibility condition (1.31), the boundary layer has no influence
on the initial data.

Therefore, we need to consider the remainder equation (1.35). Here the initial data
is given by

z := −ε f2, (4.25)

the boundary data is given by

h = −ε f2 + χ
(
ε−1vη

)
�, (4.26)

and

S := S1 + S2 + S3 + S4 + S5 + S6, (4.27)

where

S1 := − ε∂t f1 − ε2∂t f2 − εv · ∇x f2, (4.28)

S2 := − ε∂t f
B

1 +
1

R1 − εη

(
v2
ι1

∂ f B1
∂vη

− vηvι1
∂ f B1
∂vι1

)
+

1

R2 − εη

(
v2
ι2

∂ f B1
∂vη

− vηvι2
∂ f B1
∂vι2

)

(4.29)

− 1

L1L2

(R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vι1vι2 +
R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2
ι2

)
∂ f B1
∂vι1

− 1

L1L2

(R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vι1vι2 +
R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2
ι1

)
∂ f B1
∂vι2

−
(

R1vι1
L1(R1 − εη)

∂ f B1
∂ι1

+
R2vι2

L2(R2 − εη)

∂ f B1
∂ι2

)
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+ ε−1vηχ(ε
−1vη)

∂χ(εη)

∂η
� − ε−1

(
K

[
�
]
χ(ε−1vη)χ(εη) − K

[
�χ(ε−1vη)χ(εη)

])
,

S3 := 2μ− 1
2 Q∗ [

μ
1
2 f1 + εμ

1
2 f2, μ

1
2 R

]
= 2Γ [ f1 + ε f2, R], (4.30)

S4 := 2μ− 1
2 Q∗ [

μ
1
2 f B1 , μ

1
2 R

]
= 2Γ

[
f B1 , R

]
, (4.31)

S5 := εμ− 1
2 Q∗ [

μ
1
2 f2, μ

1
2
(
2 f1 + ε f2

)]
+ 2μ− 1

2 Q∗ [
μ

1
2
(
2 f1 + 2ε f2 + f B1

)
, μ

1
2 f B1

]
(4.32)

= εΓ [ f2, 2 f1 + ε f2] + 2Γ
[
2 f1 + 2ε f2 + f B1 , f B1

]
,

S6 := μ− 1
2 Q∗ [

μ
1
2 R, μ

1
2 R

]
= Γ [R, R]. (4.33)

In particular, we may further split S2:

S2a := 1

R1 − εη

(
v2
ι1

∂ f B1
∂vη

)
+

1

R2 − εη

(
v2
ι2

∂ f B1
∂vη

)
, (4.34)

S2b := − ε∂t f
B

1 − 1

R1 − εη

(
vηvι1

∂ f B1
∂vι1

)
− 1

R2 − εη

(
vηvι2

∂ f B1
∂vι2

)
(4.35)

− 1

L1L2

(R1∂ι1ι1r · ∂ι2r
L1(R1 − εη)

vι1vι2 +
R2∂ι1ι2r · ∂ι2r
L2(R2 − εη)

v2
ι2

)
∂ f B1
∂vι1

− 1

L1L2

(R2∂ι2ι2r · ∂ι1r
L2(R2 − εη)

vι1vι2 +
R1∂ι1ι2r · ∂ι1r
L1(R1 − εη)

v2
ι1

)
∂ f B1
∂vι2

−
(

R1vι1

L1(R1 − εη)

∂ f B1
∂ι1

+
R2vι2

L2(R2 − εη)

∂ f B1
∂ι2

)
+ ε−1vηχ(ε

−1vη)
∂χ(εη)

∂η
�,

S2c := − ε−1
(
K

[
�
]
χ(ε−1vη)χ(εη) − K

[
�χ(ε−1vη)χ(εη)

])
. (4.36)

We also consider the time derivative of the remainder equation⎧⎨
⎩
ε∂t

(
∂t R

)
+ v · ∇x

(
∂t R

)
+ ε−1L[∂t R] = ∂t S in R+ × � × R

3,

∂t R(0, x, v) = ∂t z(x, v) in � × R
3,

∂t R(t, x0, v) = ∂t h(t, x0, v) for v · n < 0 and x0 ∈ ∂�.

(4.37)

Here the initial data ∂t z is solved from (2.6) and Remark 1.6:

∂t z := ∂t R
∣∣
t=0 =

(
ε−1μ− 1

2 ∂tF − ∂t f1 − ε∂t f2
)∣∣∣

t=0
. (4.38)

For any fixed t ∈ R+, we may also rewrite (1.35) as a stationary remainder equation{
v · ∇x R(t) + ε−1L[R(t)] = S(t) − ε∂t R(t) in � × R

3,

R(t, x0, v) = h(t, x0, v) for v · n < 0 and x0 ∈ ∂�.
(4.39)

Lemma 4.2 (Green’s Identity, Lemma 2.2 of [26]). Assume f (t, x, v), g(t, x, v) ∈
L∞([0, T ]; L2(�× R

3)) and ∂t f + v · ∇x f, ∂t g + v · ∇x g ∈ L2([0, T ] ×�× R
3) with

f, g ∈ L2
γ . Then for almost all t, s ∈ [0, T ]

∫ t

s

∫∫
�×R3

(
∂t f + v · ∇x f

)
g +

∫ t

s

∫∫
�×R3

(
∂t g + v · ∇x g

)
f

=
∫∫

�×R3
f (t)g(t) −

∫∫
�×R3

f (s)g(s) +
∫ t

s

∫
γ

f g(v · n). (4.40)
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Using Lemma 4.2, we can derive the weak formulation of (1.35). For any test function
g(t, x, v) ∈ L∞([0, T ]; L2

ν(� × R
3)) with ∂t g + v · ∇x g ∈ L2([0, T ] × � × R

3) with
g ∈ L2

γ , we have

ε
〈
R(t), g(t)

〉 − ε
〈
z, g(0)

〉 − ε⟪R, ∂t g⟫ +
∫∫

γ

Rg(v · n) − ⟪v · ∇x g, R⟫

+ ε−1⟪L[R], g⟫ = ⟪S, g⟫. (4.41)

4.2.1. Estimates of initial, boundary and source terms The estimates below follow from
analogous argument as in [29, Section 4] and Sect. 3.2.1, so we omit the details and
only highlight the key differences. In particular, for S1–S6 estimates, we need both the
accumulative L p

t and instantaneous L∞
t versions. To present them uniformly, we only

write down the estimates for each fixed t (which is similar to those in Sect. 3.2.1) and
simply ignore the t variable. Then the instantaneous estimates (by taking supt∈[0,T]) and
the accumulative estimates (by integrating over t ∈ [0,T]) will naturally follow.

Estimates of z

Lemma 4.3. Under the assumptions (1.23),(1.28),(1.31), for z defined in (4.25), we have

‖z‖L2 � oT ε, ‖z‖L∞
�,ϑ

� oT ε. (4.42)

In addition, for ∂t z defined in (4.38), we have

‖∂t z‖L2 � oT ε, ‖∂t z‖L∞
�,ϑ

� oT ε. (4.43)

Proof. The estimates follow from Remark 1.6 and Theorem 4.1. ��
Estimates of h

Lemma 4.4. Under the assumptions (1.23),(1.28),(1.31), for h defined in (4.26), we have

|h|L2
γ−

� oT ε, |h|
L

2r
3
γ−

� oT ε
3
r , |h|L∞

γ−,�,ϑ
� oT , sup

ι1,ι2

∫
v·n<0

|h| |v · n| dv � oT ε.

(4.44)

In addition, the estimates in (4.44) still hold with h replaced by ∂t h.

Estimatesof S1

Lemma 4.5. Under the assumptions (1.23),(1.28),(1.31), for S1 defined in (4.28), we
have ∥∥〈v〉2S1

∥∥
L2 � oT ε, ‖S1‖Lr � oT ε, ‖S1‖L∞

�,ϑ
� oT ε. (4.45)

Also, we have the property〈
μ

1
2 , S1

〉
v

= ε2
〈
μ

1
2 , ∂t f2

〉
v
,

〈
μ

1
2 v, S1

〉
v

= ε2
〈
μ

1
2 v, ∂t f2

〉
v
,〈

μ
1
2 |v|2 , S1

〉
v

= ε2
〈
μ

1
2 |v|2 , ∂t f2

〉
v

(4.46)

In addition, the estimates in (4.45) still hold with S1 replaced by ∂t S1.

Estimates of S2
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Lemma 4.6. Under the assumptions (1.23),(1.28),(1.31), for S2 defined in (4.29), we
have

‖S2‖L1 + ‖η (S2b + S2c)‖L1 +
∥∥∥η2 (S2b + S2c)

∥∥∥
L1

� oT ε, (4.47)∥∥∥〈v〉2 S2

∥∥∥
L2

+ ‖η (S2b + S2c)‖L2 +
∥∥∥η2 (S2b + S2c)

∥∥∥
L2

� oT , (4.48)

‖S2‖Lr + ‖η (S2b + S2c)‖Lr +
∥∥∥η2 (S2b + S2c)

∥∥∥
Lr

� oT ε
2
r −1, (4.49)

‖S2‖Lrι1ι2 L1
nL1

v
+ ‖η (S2b + S2c)‖Lrι1ι2 L1

nL1
v

� oT ε, , (4.50)

and

‖S2b + S2c‖Lr
x L

1
v

+ ‖η (S2b + S2c)‖Lr
x L

1
v

� oT ε
1
r , (4.51)

|〈S2a, g〉| + |〈ηS2a, g〉| +
∣∣〈η2S2a, g

〉∣∣ �
∥∥∥〈v〉2 f B1

∥∥∥
L

r
r−1

‖∇vg‖Lr � oT ε
1− 1

r ‖∇vg‖Lr .

(4.52)

Also, we have

‖S2‖L∞
�,ϑ

� oT ε
−1. (4.53)

In addition, the estimates in (4.47)–(4.53) still hold with S2 replaced by ∂t S2.

Remark 4.7. Notice that the BV estimate in Proposition 3.4 does not contain exponential
decay in η, and thus we cannot directly bound ηS2a and η2S2a . Instead, we should first
integrate by parts with respect to vη as in (4.52) to study f B1 :

∥∥∥ f B1

∥∥∥
Lr

+
∥∥∥η f B1

∥∥∥
Lr

+
∥∥∥η2 f B1

∥∥∥
Lr

� oT ε
2
r −1, (4.54)∥∥∥ f B1

∥∥∥
Lrι1ι2 L

1
nL1

v

+
∥∥∥η f B1

∥∥∥
Lrι1ι2 L

1
nL1

v

� oT ε, , (4.55)

∥∥∥ f B1

∥∥∥
Lrx L

1
v

+
∥∥∥η f B1

∥∥∥
Lrx L

1
v

� oT ε
1
r . (4.56)

Estimates of S3

Lemma 4.8. Under the assumptions (1.23),(1.28),(1.31), for S3 defined in (4.30), we
have

∣∣〈S3, g〉v
∣∣ � oT ε

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν |R|2

) 1
2

, (4.57)

and thus

|〈S3, g〉| � oT ε ‖g‖L2
ν
‖R‖L2

ν
� oT ε ‖g‖L2

ν

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
. (4.58)

Also, we have

‖S3‖L2 � oT ε ‖R‖L2
ν
,

∥∥∥ν−1S3

∥∥∥
L∞
�,ϑ

� oT ε ‖R‖L∞
�,ϑ

. (4.59)

In addition, the estimates in (4.57)–(4.59) still hold with S3 replaced by ∂t S3 and R
replaced by ∂t R.
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Estimates of S4

Lemma 4.9. Under the assumptions (1.23),(1.28),(1.31), for S4 defined in (4.31), we
have

∣∣〈S4, g〉v
∣∣ �

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν

∣∣∣ f B1
∣∣∣2
) 1

2
(∫

R3
ν |R|2

) 1
2

, (4.60)

and thus

|〈S4, g〉| �oT ‖g‖L2
ν
‖R‖L2

ν
� oT ‖g‖L2

ν

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
, (4.61)

|〈S4, g〉| �oT
∥∥∥ f B1

∥∥∥
L2
ν

‖g‖L∞
�,ϑ

‖R‖L2
ν

� oT ε
1
2 ‖g‖L∞

�,ϑ

(
‖P[R]‖L2 + ‖(I − P)[R]‖L2

ν

)
.

(4.62)

Also, we have

‖S4‖L2 � oT ‖R‖L2
ν
,

∥∥∥ν−1S4

∥∥∥
L∞
�,ϑ

� oT ‖R‖L∞
�,ϑ

. (4.63)

In addition, the estimates in (4.60)–(4.63) still hold with S4 replaced by ∂t S4 and R
replaced by ∂t R.

Estimates of S5

Lemma 4.10. Under the assumptions (1.23),(1.28),(1.31), for S5 defined in (4.32), we
have

∣∣〈S5, g〉v
∣∣ � oT

(∫
R3

ν |g|2
) 1

2

, (4.64)

and thus

|〈S5, g〉| � oT ε
1
2 ‖g‖L2

ν
, |〈S5, g〉| � oT ε ‖g‖L∞

�,ϑ
. (4.65)

Also, we have

‖S5‖L2 � oT ε
1
2 ,

∥∥∥ν−1S5

∥∥∥
L∞
�,ϑ

� oT . (4.66)

In addition, the estimates in (4.64)–(4.66) still hold with S5 replaced by ∂t S5 and R
replaced by ∂t R.

Estimates of S6
Note that ∂tΓ [R, R] = 2Γ [R, ∂t R]. Then the proof follows from that of Lemma

3.21.

Lemma 4.11. Under the assumptions (1.23),(1.28),(1.31), for S6 defined in (4.33), we
have

∣∣〈S6, g〉v
∣∣ �

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν |R|2

)
, (4.67)
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and thus

|〈S6, g〉| � ‖g‖L2
ν
‖R‖L2

ν
‖R‖L∞

�,ϑ
. (4.68)

Also, we have

‖S6‖L2 � ‖R‖L2
ν
‖R‖L∞

�,ϑ
, (4.69)∥∥∥ν−1S6

∥∥∥
L∞
�,ϑ

� ‖R‖2
L∞
�,ϑ

. (4.70)

In addition, we have

∣∣〈∂t S6, g〉v
∣∣ �

(∫
R3

ν |g|2
) 1

2
(∫

R3
ν |R| |∂t R|

)
, (4.71)

and thus

|〈∂t S6, g〉| � ‖g‖L2
ν
‖∂t R‖L2

ν
‖R‖L∞

�,ϑ
. (4.72)

Also, we have

‖∂t S6‖L2 � ‖∂t R‖L2
ν
‖R‖L∞

�,ϑ
, (4.73)∥∥∥ν−1∂t S6

∥∥∥
L∞
�,ϑ

� ‖∂t R‖L∞
�,ϑ

‖R‖L∞
�,ϑ

. (4.74)

4.2.2. Conservation laws Classical Conservation Laws

Lemma 4.12. Let R be the solution to (1.35).Under theassumptions (1.23),(1.28),(1.31),
we have the conservation laws

ε∂t
(
p − c

)
+ ∇x · b =

〈
μ

1
2 , S1 + S2

〉
v
, (4.75)

ε∂tb + ∇x p + ∇x · � =
〈
vμ

1
2 , S1 + S2

〉
v
, (4.76)

ε∂t
(
3p

)
+ 5∇x · b + ∇x · ς =

〈
|v|2 μ 1

2 , S1 + S2

〉
v
, (4.77)

where � and ς are defined in Lemma 3.22.

Proof. We multiply test functionsμ
1
2 , vμ

1
2 , |v|2 μ 1

2 on both sides of (1.35) and integrate
over v ∈ R

3. Using the orthogonality of L and noticing

∫
R3

μ
1
2 R = p − c,

∫
R3

vμ
1
2 R = b,

∫
R3

|v|2 μ 1
2 R = 3p. (4.78)

the results follow. ��
Conservation Law with Test Function ∇xϕ · A



  279 Page 58 of 85 Z. Ouyang, L. Wu

Lemma 4.13. Let R be the solution to (1.35).Under theassumptions (1.23),(1.28),(1.31),
for smooth test function ϕ(t, x), we have

ε
〈
R(t),∇xϕ(t) · A 〉−ε

〈
z,∇xϕ(0) · A 〉−ε⟪R, ∂t∇xϕ · A ⟫−κ⟪�xϕ, c⟫t x

+ε−1⟪∇xϕ, ς⟫ = ⟪∇xϕ · A , h⟫γ− −⟪∇xϕ · A , R⟫γ +

+⟪v · ∇x

(
∇xϕ · A

)
, (I − P)[R]⟫+⟪∇xϕ · A , S⟫. (4.79)

Proof. Taking test function g = ∇xϕ · A in (4.41), we obtain

ε
〈
R(t),∇xϕ(t) · A 〉 − ε

〈
z,∇xϕ(0) · A 〉 − ε⟪R, ∂t∇xϕ · A ⟫

+
∫∫

γ

(
∇xϕ · A

)
R
(
v · n) − ⟪v · ∇x

(
∇xϕ · A

)
, R⟫ + ε−1⟪L[R],∇xϕ · A ⟫ = ⟪∇xϕ · A , S⟫.

(4.80)

Then following a similar argument as the proof of Lemma 3.23, we have (4.79). ��
Conservation Law with Test Function ∇xψ : B

Lemma 4.14. Let R be the solution to (1.35).Under theassumptions (1.23),(1.28),(1.31),
for smooth test function ψ(t, x) satisfying ∇x · ψ = 0, we have

ε
〈
R(t),∇xψ(t) : B〉 − ε

〈
z,∇xψ(0) : B〉 − ε⟪R, ∂t∇xψ : B⟫− λ⟪�xψ,b⟫t x

+ ε−1⟪∇xψ,�⟫ = ⟪∇xψ · B, h⟫γ− − ⟪∇xψ · B, R⟫γ +

+ ⟪v · ∇x

(
∇xψ : B

)
, (I − P)[R]⟫ + ⟪∇xψ : B, S⟫. (4.81)

Proof. Taking test function g = ∇xψ : B in (4.41), we obtain

ε
〈
R(t),∇xψ(t) : B〉 − ε

〈
z,∇xψ(0) : B〉 − ε⟪R, ∂t∇xψ : B⟫

+
∫∫

γ

(
∇xψ : B

)
R
(
v · n) − ⟪v · ∇x

(
∇xψ : B

)
, R⟫ + ε−1⟪L[R],∇xψ : B⟫

= ⟪∇xψ : B, S⟫. (4.82)

Then following a similar argument as the proof of Lemma 3.24, we have (4.81). ��
Conservation Law with Test Function,∇xϕ · A + ε−1ϕ

( |v|2 − 5
)
μ

1
2

Lemma 4.15. Let R be the solution to (1.35).Under theassumptions (1.23),(1.28),(1.31),
for smooth test function ϕ(t, x) satisfying ϕ

∣∣
∂�

= 0, we have

〈
5c(t) − 2p(t), ϕ(t)

〉
x − 〈

5c(0) − 2p(0), ϕ(0)
〉
x − ⟪5c − 2p, ∂tϕ⟫t x

+ ε
〈
R(t),∇xϕ(t) · A 〉 − ε

〈
z,∇xϕ(0) · A 〉 − ε⟪R, ∂t∇xϕ · A ⟫− κ⟪�xϕ, c⟫t x

=⟪∇xϕ · A , h⟫γ− − ⟪∇xϕ · A , R⟫γ +
+ ⟪v · ∇x

(
∇xϕ · A

)
, (I − P)[R]⟫

+ ε−1 ⟪ϕ
(
|v|2 − 5

)
μ

1
2 , S⟫ + ⟪∇xϕ · A , S⟫. (4.83)
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Proof. From (4.75) and (4.77), we have

ε∂t
(
5c − 2p

)
+ ∇x · ς =

〈(
|v|2 − 5

)
μ

1
2 , S

〉
v
. (4.84)

Multiplying ϕ(t, x) ∈ R on both sides of (4.84) and integrating over [0, t] × �, we
obtain

ε
〈
5c(t) − 2p(t), ϕ(t)

〉
x − ε

〈
5c(0) − 2p(0), ϕ(0)

〉
x − ε⟪5c − 2p, ∂tϕ⟫t x

− ⟪∇xϕ, ς⟫t x +
∫ t

0

∫
∂�

ϕς ·

n = ⟪ϕ
(
|v|2 − 5

)
μ

1
2 , S⟫ . (4.85)

Hence, adding ε−1×(4.85) and (4.79) to eliminate ε−1⟪∇xϕ, ς⟫t x yields

〈
5c(t) − 2p(t), ϕ(t)

〉
x − 〈

5c(0) − 2p(0), ϕ(0)
〉
x − ⟪5c − 2p, ∂tϕ⟫t x

+ ε
〈
R(t),∇xϕ(t) · A 〉 − ε

〈
z,∇xϕ(0) · A 〉 − ε⟪R, ∂t∇xϕ · A ⟫− κ⟪�xϕ, c⟫t x

+ ε−1
∫ t

0

∫
∂�

ϕς · n

= ⟪∇xϕ · A , h⟫γ− − ⟪∇xϕ · A , R⟫γ +
+ ⟪v · ∇x

(
∇xϕ · A

)
, (I − P)[R]⟫

+ ε−1 ⟪ϕ
(
|v|2 − 5

)
μ

1
2 , S⟫ + ⟪∇xϕ · A , S⟫. (4.86)

The assumption ϕ
∣∣
∂�

= 0 completely eliminates the boundary term ε−1
∫ t

0

∫
∂�

ϕς · n
in (4.86). Hence, we have (4.83).

��
Conservation Law with Test Function ∇xψ : B + ε−1ψ · vμ 1

2

Lemma 4.16. Let R be the solution to (1.35).Under theassumptions (1.23),(1.28),(1.31),
for smooth test function ψ(t, x) satisfying ∇x · ψ = 0, ψ

∣∣
∂�

= 0, we have

〈
b(t), ψ(t)

〉
x − 〈

b(0), ψ(0)
〉
x − ⟪b, ∂tψ⟫t x

+ ε
〈
R(t),∇xψ(t) : B〉 − ε

〈
z,∇xψ(0) : B〉 − ε⟪R, ∂t∇xψ : B⟫− λ⟪�xψ,b⟫t x

=⟪∇xψ : B, h⟫γ− − ⟪∇xψ : B, R⟫γ +
+ ⟪v · ∇x

(
∇xψ : B

)
, (I − P)[R]⟫

+ ε−1 ⟪ψ · vμ 1
2 , S⟫ + ⟪∇xψ : B, S⟫. (4.87)

Proof. Multiplying ψ(t, x) ∈ R
3 on both sides of (4.76) and integrating over [0, t]×�,

we obtain

ε
〈
b(t), ψ(t)

〉
x − ε

〈
b(0), ψ(0)

〉
x − ε⟪b, ∂tψ⟫t x

−⟪∇x · ψ, p⟫t x − ⟪∇xψ,�⟫t x +
∫ t

0

∫
∂�

(
pψ + ψ · �

)
· n = ⟪ψ · vμ 1

2 , S⟫ .

(4.88)
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Hence, adding ε−1×(4.88) and (4.81) to eliminate ε−1⟪∇xψ,�⟫t x yields
〈
b(t), ψ(t)

〉
x − 〈

b(0), ψ(0)
〉
x − ⟪b, ∂tψ⟫t x

+ ε
〈
R(t),∇xψ(t) : B〉 − ε

〈
z,∇xψ(0) : B〉 − ε⟪R, ∂t∇xψ : B⟫

− λ⟪�xψ,b⟫t x − ε−1⟪∇x · ψ, p⟫t x + ε−1
∫ t

0

∫
∂�

(
pψ + ψ · �

)
· n

=⟪∇xψ : B, h⟫γ− − ⟪∇xψ : B, R⟫γ +
+ ⟪v · ∇x

(
∇xψ : B

)
, (I − P)[R]⟫

+ ε−1 ⟪ψ · vμ 1
2 , S⟫ + ⟪∇xψ : B, S⟫. (4.89)

The assumptions ∇x · ψ = 0 and ψ
∣∣
∂�

= 0 eliminates ε−1⟪∇x · ψ, p⟫t x and

ε−1
∫ t

0

∫
∂�

(
pψ + ψ · �

)
· n in (4.89). Hence, we have (4.87). ��

4.3. Energy estimate: accumulative.

Proposition 4.17. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖R(t)‖L2 + ε− 1
2 ‖R‖L2

γ+
+ ε−1 |||(I − P)[R]|||L2 � oT |||R|||X + |||R|||2X + oT . (4.90)

Proof. It suffices to justify

‖R(t)‖L2 + ε− 1
2 ‖R‖L2

γ+
+ ε−1 |||(I − P)[R]|||L2 � oT ε

− 1
2 |||P[R]|||L2 + oT |||R|||X

+ |||R|||2X + oT . (4.91)

Weak Formulation Taking test function g = ε−1R in (4.41), we obtain

1

2
‖R(t)‖2

L2 − 1

2
‖z‖2

L2 +
ε−1

2

∫∫
γ

R2(v · n) + ε−2⟪L[R], R⟫ = ε−1⟪S, R⟫. (4.92)

Notice that ∫∫
γ

R2(v · n) = ‖R‖2
L2
γ+

− ‖R‖2
L2
γ−

= ‖R‖2
L2
γ+

− ‖h‖2
L2
γ

, (4.93)

and

⟪L[R], R⟫ � |||(I − P)[R]|||2L2
ν
. (4.94)

Then we know

‖R(t)‖2
L2 + ε−1 ‖R‖2

L2
γ+

+ ε−2 |||(I − P)[R]|||2L2
ν

�
∣∣∣ε−1⟪S, R⟫

∣∣∣ + ε−1 ‖h‖2
L2
γ

+ ‖z‖2
L2 .

(4.95)

Using Lemma 4.3 and Lemma 4.4, we have

‖R(t)‖2
L2 + ε−1 ‖R‖2

L2
γ+

+ ε−2 |||(I − P)[R]|||2L2
ν

�
∣∣∣ε−1⟪S, R⟫

∣∣∣ + oT ε. (4.96)
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Source Term Estimates We split

ε−1⟪S, R⟫ = ε−1⟪S,P[R]⟫ + ε−1⟪S, (I − P)[R]⟫. (4.97)

We may directly bound using Lemma 4.5 – Lemma 4.11
∣∣∣ε−1⟪S, (I − P)[R]⟫

∣∣∣ � ε−1 |||S|||L2 |||(I − P)[R]|||L2

�
(
o(1) + oT

)
ε−2 |||(I − P)[R]|||2L2 + oT |||R|||2X + |||R|||4X + oT .

(4.98)

Using orthogonality of Γ , we have

ε−1⟪S,P[R]⟫ = ε−1⟪S1 + S2,P[R]⟫. (4.99)

From Lemma 4.5, we know∣∣∣ε−1⟪S1,P[R]⟫
∣∣∣ = ε

∣∣⟪∂t f2,P[R]⟫∣∣ � oT ε |||P[R]|||L2 � oT |||P[R]|||2L2 + oT ε
2.

(4.100)

Also, from Lemma 4.6 and Remark 4.7, after integrating by parts with respect to vη in
S2a term, we obtain∣∣∣ε−1⟪S2,P[R]⟫

∣∣∣ � ε−1
∣∣∣
∣∣∣
∣∣∣ f B1 + S2b + S2c

∣∣∣
∣∣∣
∣∣∣
L2
t x L1

v

|||P[R]|||L2
t x L∞

v

� oT ε
− 1

2 |||P[R]|||L2 � oT ε
−1 |||P[R]|||2L2 + oT . (4.101)

In total, we have∣∣∣ε−1⟪S, R⟫
∣∣∣ � oT ε

−1 |||P[R]|||2L2 +
(
o(1) + oT

)
ε−2 |||(I − P)[R]|||2L2

+ oT |||R|||2X + |||R|||4X + oT . (4.102)

Synthesis Inserting (4.102) into (4.96), we have

‖R(t)‖2
L2 + ε−1 ‖R‖2

L2
γ+

+ ε−2 |||(I − P)[R]|||2L2
ν

� oT ε
−1 |||P[R]|||2L2 + oT |||R|||2X

+ |||R|||4X + oT . (4.103)

Then we have (4.91). ��
Proposition 4.18. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖∂t R(t)‖L2 + ε− 1
2 ‖∂t R‖L2

γ+
+ ε−1 |||(I − P)[∂t R]|||L2 � oT |||R|||X + |||R|||2X + oT .

(4.104)

Proof. Applying a similar argument as in the proof of Proposition 4.17 to the equation
(4.37), using Lemma 4.3 – Lemma 4.11, we obtain the desired result. In particular, we
should use ∂t z estimates in Lemma 4.3. ��
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4.4. Kernel estimate: accumulative.

4.4.1. Estimate of p

Proposition 4.19. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||p|||L2 � ε− 1

2 |||b|||L2 + oT |||R|||X + |||R|||2X + oT . (4.105)

Proof. It suffices to show

|||p|||L2 � ε
1
2 ‖R(t)‖L2 + ‖R‖L2

γ+
+ |||b|||L2 + |||(I − P)[R]|||L2 + oT ε. (4.106)

Weak Formulation Denote

ψ(t, x, v) := μ
1
2 (v)

(
v · ∇xϕ(t, x)

)
, (4.107)

where ϕ(t, x) is defined via solving the elliptic problem{−�xϕ(t) = p(t) in �,

ϕ(t) = 0 on ∂�.
(4.108)

Based on standard elliptic estimates [62] and trace theorem, there exists a solution ϕ

satisfying

|ψ(t)|L2
γ

+ ‖ψ(t)‖H1
x L

∞
v,�,ϑ

� ‖ϕ(t)‖H2 � ‖p(t)‖L2 . (4.109)

Taking test function g = ψ in (4.41), we obtain

ε
〈
R(t), ψ(t)

〉 − ε
〈
z, ψ(0)

〉 − ε⟪R, ∂tψ⟫ +
∫∫

γ

Rψ(v · n) − ⟪R, v · ∇xψ⟫ = ⟪S, ψ⟫.
(4.110)

We may directly bound∣∣ε〈R(t), ψ(t)〉∣∣ � ε ‖R(t)‖L2 ‖ψ(t)‖L2 � ε ‖R(t)‖L2 ‖p(t)‖L2 � ε ‖R(t)‖2
L2 .

(4.111)

From Lemma 4.3, we know∣∣ε〈R(0), ψ(0)〉∣∣ � ε ‖R(0)‖L2 ‖ψ(0)‖L2 � ε ‖z‖2
L2 � oT ε

3. (4.112)

And oddness and orthogonality lead to

∣∣ε⟪R, ∂tψ⟫∣∣ =
∣∣∣ε〈μ 1

2
(
v · b), ∂tψ 〉∣∣∣ � |||b|||2L2 + ε2 |||∂t∇xϕ|||2L2 . (4.113)

Based on Lemma 4.4, we know∣∣∣∣
∫∫

γ

Rψ(v · n)
∣∣∣∣ � ‖R‖L2

γ+
‖ψ‖L2

γ+
+ ‖h‖L2

γ−
‖ψ‖L2

γ−

� o(1) ‖ψ‖2
L2
γ

+ ‖R‖2
L2
γ+

+ ‖h‖2
L2
γ−

� o(1) |||p|||2L2 + ‖R‖2
L2
γ+

+ oT ε
2.

(4.114)
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Due to oddness and orthogonality, we have

⟪μ
1
2
(
v · b), v · ∇xψ⟫ = ⟪(I − P)[R], v · ∇xψ⟫ = 0. (4.115)

Due to orthogonality of A , we know

⟪μ
1
2
|v|2 − 5

2
c, v · ∇xψ⟫ = ⟪c, μ 1

2 A · ∇xψ⟫ = 0. (4.116)

Also, we have

−⟪μ 1
2 p, v · ∇xψ⟫ = −⟪pμ, v · ∇x

(
v · ∇xϕ

)
⟫

= −1

3

∫ t

0

∫
�

p
(
�xϕ

) ∫
R3

μ |v|2 = |||p|||2L2 . (4.117)

In summary, we have shown that

|||p|||2L2 � ε ‖R(t)‖2
L2 + ‖R‖2

L2
γ+

+ |||b|||2L2 + ε2 |||∂t∇xϕ|||2L2 + oT ε
2 +

∣∣⟪S, ψ⟫∣∣ .
(4.118)

Source Term Estimates Due to the orthogonality of Γ and Lemma 3.15, we know

⟪S, ψ⟫ = ⟪S1 + S2, ψ⟫. (4.119)

Using Lemma 4.5, we have∣∣⟪S1, ψ⟫
∣∣ = ε2

∣∣⟪∂t f2, ψ⟫∣∣ � oT |||p|||2L2 + oT ε
4. (4.120)

Using Hardy’s inequality and integrating by parts with respect to vη in S2a , based on
Lemma 4.6 and Remark 4.7, we have

∣∣⟪S2, ψ⟫
∣∣ ≤

∣∣∣∣⟪S2, ψ

∣∣∣
n=0
⟫

∣∣∣∣ +

∣∣∣∣⟪S2,

∫ n

0
∂nψ⟫

∣∣∣∣ =
∣∣∣∣⟪S2, ψ

∣∣∣
n=0
⟫

∣∣∣∣ +

∣∣∣∣ε⟪ηS2,
1

n

∫ n

0
∂nψ⟫

∣∣∣∣
�

∣∣∣
∣∣∣
∣∣∣ f B1 + S2b + S2c

∣∣∣
∣∣∣
∣∣∣
L2
t L2

ι1 ι2
L1
nL1

v

‖ψ‖L2
γ

+ ε

∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2

∣∣∣∣
∣∣∣∣
∣∣∣∣1

n

∫ n

0
∂nψ

∣∣∣∣
∣∣∣∣
∣∣∣∣
L2

�
∣∣∣∣∣∣∣∣∣ f B1 + S2b + S2c

∣∣∣∣∣∣∣∣∣
L2
t L2

ι1 ι2
L1
nL1

v

‖ψ‖L2
γ

+ ε

∣∣∣∣∣∣∣∣∣η( f B1 + S2b + S2c
)∣∣∣∣∣∣∣∣∣

L2
|||∂nψ |||L2

� oT ε ‖ψ‖L2
γ

+ oT ε |||∂nψ |||L2 � oT ε |||p|||L2 � oT |||p|||2L2 + oT ε
2. (4.121)

In summary, we have shown that∣∣⟪S, ψ⟫∣∣ � oT |||p|||2L2 + oT ε
2. (4.122)

Inserting (4.122) into (4.118), we have

|||p|||2L2 � ε ‖R(t)‖2
L2 + ‖R‖2

L2
γ+

+ |||b|||2L2 + ε2 |||∂t∇xϕ|||2L2 + oT ε
2. (4.123)

Estimateof |||∂t∇xϕ|||L2 Denote � = ∂tϕ. Taking g = ε� |v|2 μ 1
2 in (4.41), due to

orthogonality and �
∣∣
∂�

= 0, we obtain

ε2⟪∂t R,� |v|2 μ 1
2 ⟫− ε⟪R, v · ∇x

(
� |v|2 μ 1

2

)
⟫ = ε⟪S,� |v|2 μ 1

2 ⟫. (4.124)
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Notice that

ε2⟪∂t R,�⟫ = 3ε2⟪∂t p,�⟫ = −3ε2⟪�x�,�⟫ = 3ε2⟪∇x�,∇x�⟫ = 3ε2 |||∂t∇xϕ|||2L2 .

(4.125)

Also, we know∣∣∣ε⟪R, v · ∇x

(
� |v|2 μ 1

2

)
⟫
∣∣∣ ≤

∣∣∣ε⟪μ 1
2
(
v · b), v |v|2 μ 1

2 · ∇x�⟫
∣∣∣

+
∣∣∣ε⟪(I − P)[R], v |v|2 μ 1

2 · ∇x�⟫
∣∣∣

� |||b|||2L2 + |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xϕ|||2L2 .

(4.126)

Then, by a similar argument as the above estimates for ⟪S, ψ⟫, we have∣∣∣ε⟪S,� |v|2 μ 1
2 ⟫

∣∣∣ =
∣∣∣ε〈S1 + S2,� |v|2 μ 1

2
〉∣∣∣ � oT ε

2 |||∂t∇xϕ|||2L2 + oT ε
2. (4.127)

In summary, we have shown that

ε2 |||∂t∇xϕ|||2L2 � |||b|||2L2 + |||(I − P)[R]|||2L2 + oT ε
2. (4.128)

Inserting (4.128) into (4.123), we have

|||p|||2L2 � ε ‖R(t)‖2
L2 + ‖R‖2

L2
γ+

+ |||b|||2L2 + |||(I − P)[R]|||2L2 + oT ε
2. (4.129)

Then (4.106) follows. ��
Proposition 4.20. Let R be the solution to (1.35). Under the assumptions (1.23),
(1.28),(1.31), we have

ε− 1
2 |||∂t p|||L2 � ε− 1

2 |||∂tb|||L2 + oT |||R|||X + |||R|||2X + oT . (4.130)

Proof. Applying a similar argument as in the proof of Proposition 4.19 to the equation
(4.37), we obtain the desired result. ��

4.4.2. Estimate of c

Proposition 4.21. Let R be the solution to (1.35). Under the assumptions (1.23),
(1.28),(1.31), we have

ε− 1
2 |||c|||L2 � ε− 1

2 |||p|||L2 + oT |||R|||X + |||R|||2X + oT . (4.131)

Proof. It suffices to justify

|||c|||L2 � ε
1

12 |||R|||
1
2
X |||c|||L2 + ε

1
2 ‖R(t)‖L2 + ‖R‖L2

γ+
+ |||p|||L2 + |||(I − P)[R]|||L2

+ oT ε
1
2 |||R|||X + ε

1
2 |||R|||2X + oT ε

1
2 . (4.132)

Weak Formulation We consider the conservation law (4.83) where the smooth test
function ϕ(t, x) satisfies {−�xϕ(t) = 5c(t) − 2p(t) in �,

ϕ(t) = 0 on ∂�.
(4.133)
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Based on the standard elliptic estimates [62] and trace theorem, there exists a solution
ϕ satisfying

|∇xϕ(t)|L2
∂�

+ ‖ϕ(t)‖H2 � ‖c(t)‖L2 + ‖p(t)‖L2 . (4.134)

From (4.83), we have

⟪∂t
(
5c − 2p

)
, ϕ⟫t x

+ ε
〈
R(t),∇xϕ(t) · A 〉 − ε

〈
z,∇xϕ(0) · A 〉 − ε⟪R, ∂t∇xϕ · A ⟫− κ⟪�xϕ, c⟫t x

= ⟪∇xϕ · A , h⟫γ− − ⟪∇xϕ · A , R⟫γ +
+ ⟪v · ∇x

(
∇xϕ · A

)
, (I − P)[R]⟫

+ ε−1 ⟪ϕ
(
|v|2 − 5

)
μ

1
2 , S⟫ + ⟪∇xϕ · A , S⟫. (4.135)

Direct computation reveals that

⟪∂t
(
5c − 2p

)
, ϕ⟫t x = −⟪∂t�xϕ, ϕ⟫t x = ⟪∂t∇xϕ,∇xϕ⟫t x

= 1

2
‖∇xϕ(t)‖2

L2 − 1

2
‖∇xϕ(0)‖2

L2 , (4.136)

and from Lemma 4.3

‖∇xϕ(0)‖2
L2 � ‖p(0)‖2

L2 + ‖c(0)‖2
L2 � ‖z‖2

L2 � oT ε
2. (4.137)

Also, we have

−κ⟪�xϕ, c⟫t x = κ⟪5c − p, c⟫t x = 5κ |||c|||2L2 − κ⟪p, c⟫t x (4.138)

with ∣∣κ⟪p, c⟫t x ∣∣ � o(1) |||c|||2L2 + |||p|||2L2 . (4.139)

Using Lemma 4.3, we have
∣∣ε〈R(t),∇xϕ(t) · A 〉∣∣ � ε ‖R(t)‖L2 ‖ϕ(t)‖H1 � ε ‖R(t)‖L2

(
‖c(t)‖L2 + ‖p(t)‖L2

)

� ε ‖R(t)‖2
L2 , (4.140)∣∣ε〈R(0),∇xϕ(0) · A 〉∣∣ � ε ‖R(0)‖L2 ‖ϕ(0)‖H1 � ε ‖z‖2

L2 � oT ε
3. (4.141)

Due to the orthogonality of A , we know∣∣ε⟪R, ∂t∇xϕ · A ⟫∣∣ = ∣∣ε⟪(I − P)[R], ∂t∇xϕ · A ⟫∣∣ � |||(I − P)[R]|||2L2

+ o(1)ε2 |||∂t∇xϕ|||2L2 . (4.142)

Using Lemma 4.4, we have∣∣∣⟪∇xϕ · A , h⟫γ−

∣∣∣ � ‖∇xϕ · A ‖L2
γ−

‖h‖L2
γ−

� oT |||c|||2L2 + oT |||p|||2L2 + oT ε
2,

(4.143)∣∣∣⟪∇xϕ · A , R⟫γ +

∣∣∣ � ‖∇xϕ · A ‖L2
γ+

‖R‖L2
γ+

� o(1) |||c|||2L2 + o(1) |||p|||2L2 + ‖R‖2
L2
γ+

,

(4.144)

and
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∣∣∣⟪v · ∇x

(
∇xϕ · A

)
, (I − P)[R]⟫

∣∣∣ �
∣∣∣∣∣∣∣∣∣v · ∇x

(
∇xϕ · A

)∣∣∣∣∣∣∣∣∣
L2

|||(I − P)[R]|||L2

� o(1) |||c|||2L2 + o(1) |||p|||2L2 + |||(I − P)[R]|||2L2 .

(4.145)

In summary, we have shown that

‖∇xϕ(t)‖2
L2 + |||c|||2L2 � ε ‖R(t)‖2

L2 + ‖R‖2
L2
γ+

+ |||p|||2L2

+ |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xϕ|||2L2 + oT ε
2

+
∣∣∣ε−1 ⟪ϕ

( |v|2 − 5
)
μ

1
2 , S⟫

∣∣∣ +
∣∣⟪∇xϕ · A , S⟫

∣∣ . (4.146)

Source Term Estimates Due to the orthogonality of Γ , we have

ε−1 ⟪ϕ
( |v|2 − 5

)
μ

1
2 , S⟫ = ε−1 ⟪ϕ

( |v|2 − 5
)
μ

1
2 , S1 + S2⟫ . (4.147)

Based on Lemma 4.5, we have∣∣∣ε−1 ⟪ϕ
( |v|2 − 5

)
μ

1
2 , S1⟫

∣∣∣
=

∣∣∣ε ⟪ϕ( |v|2 − 5
)
μ

1
2 , ∂t f2⟫

∣∣∣ � oT ε |||c|||L2 � oT |||c|||2L2 + oT ε
2. (4.148)

Similar to (4.121), based on Lemma 4.6, Remark 4.7 and Hardy’s inequality, we have

∣∣∣ε−1 ⟪ϕ
( |v|2 − 5

)
μ

1
2 , S2⟫

∣∣∣ � ε−1
∣∣∣∣⟪S2,

∫ n

0
∂nϕ⟫

∣∣∣∣
�

∣∣∣∣⟪ηS2,
1

n

∫ n

0
∂nϕ⟫

∣∣∣∣ �
∥∥∥η( f B1 + S2b + S2c

)∥∥∥
L2
t L2

x L
1
v

∣∣∣∣
∣∣∣∣
∣∣∣∣1

n

∫ n

0
∂nϕ

∣∣∣∣
∣∣∣∣
∣∣∣∣
L2

�
∥∥∥η( f B1 + S2b + S2c

)∥∥∥
L2
t L2

x L
1
v

|||∂nϕ|||L2 � oT |||c|||2L2 + oT ε. (4.149)

From Lemma 4.5, we directly bound
∣∣⟪∇xϕ · A , S1⟫

∣∣ � |||∇xϕ|||L2 |||S1|||L2 � oT ‖c‖2
L2 + oT ε

2. (4.150)

By a similar argument as for deriving (4.149), we obtain

∣∣⟪∇xϕ · A , S2⟫
∣∣ ≤

∣∣∣∣⟪S2,∇xϕ

∣∣∣
n=0
⟫

∣∣∣∣ +

∣∣∣∣ε⟪ηS2,
1

n

∫ n

0
∂n∇xϕ⟫

∣∣∣∣
�

∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
t L2

ι1 ι2
L1
nL1

v

‖∇xϕ‖L2
γ

+ ε

∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2

∣∣∣∣
∣∣∣∣
∣∣∣∣1

n

∫ n

0
∂n∇xϕ

∣∣∣∣
∣∣∣∣
∣∣∣∣
L2

�
∥∥∥ f B1 + S2b + S2c

∥∥∥
L2
t L2

ι1 ι2
L1
nL1

v

‖∇xϕ‖L2
γ

+ ε

∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2

|||∂n∇xϕ|||L2 � oT ε |||c|||L2 � oT |||c|||2L2 + oT ε
2. (4.151)

Based on Lemma 4.8, Lemma 4.9, and Lemma 4.10, we have∣∣⟪∇xϕ · A , S3 + S4 + S5⟫
∣∣ � |||∇xϕ|||L2 |||S3 + S4 + S5|||L2

� oT |||c|||2L2 + oT |||R|||2L2 + oT
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ε � oT |||c|||2L2 + oT ε |||R|||2X + oT ε. (4.152)

Finally, based on Lemma 4.11, we have

∣∣⟪∇xϕ · A , S6⟫
∣∣ �

∣∣∣⟪∇xϕ · A , Γ
[
P[R],P[R]

]
⟫
∣∣∣ +

∣∣∣⟪∇xϕ · A , Γ
[
R, (I − P)[R]

]
⟫
∣∣∣ .

(4.153)

The oddness and orthogonality, with the help of interpolation |||b|||L3 � |||b|||
2
3
L2 |||b|||

1
3
L∞
�,ϑ

�

ε
1
6 |||R|||X , imply that

∣∣∣⟪∇xϕ · A , Γ
[
P[R],P[R]

]
⟫
∣∣∣ �

∣∣∣∣∣⟪∇xϕ · A , Γ

[
μ

1
2 (v · b) , μ 1

2

(
|v|2 − 5

2
c

)]
⟫

∣∣∣∣∣
� |||∇xϕ|||L6 |||b|||L3 |||c|||L2 � |||ϕ|||L2

t H2
x
|||b|||L3 |||c|||L2

� ε
1
6 |||R|||X |||c|||2L2 . (4.154)

In addition, with the help of |||(I − P)[R]|||L3 � |||(I − P)[R]|||
2
3
L2 |||(I − P)[R]|||

1
3
L∞
�,ϑ

�

ε
1
2 |||R|||X , we have∣∣∣⟪∇xϕ · A , Γ

[
R, (I − P)[R]

]
⟫
∣∣∣ � |||∇xϕ|||L6 |||R|||L2 |||(I − P)[R]|||L3

� ε |||c|||L2 |||R|||2X � o(1) |||c|||2L2 + ε2 |||R|||4X .
(4.155)

Hence, we know
∣∣⟪∇xϕ · A , S6⟫

∣∣ � ε
1
6 |||R|||X |||c|||2L2 + o(1) |||c|||2L2 + ε2 |||R|||4X . (4.156)

In summary, we have shown that∣∣∣ε−1 ⟪ϕ
( |v|2 − 5

)
μ

1
2 , S⟫

∣∣∣ +
∣∣⟪∇xϕ · A , S⟫

∣∣
� ε

1
6 |||R|||X |||c|||2L2 +

(
o(1) + oT

) |||c|||2L2 + oT ε |||R|||2X + ε |||R|||4X + oT ε. (4.157)

Inserting (4.157) into (4.146), we have

‖∇xϕ(t)‖2
L2 + |||c|||2L2 � ε

1
6 |||R|||X |||c|||2L2 + ε ‖R(t)‖2

L2 + ‖R‖2
L2
γ+

+ |||p|||2L2 + |||(I − P)[R]|||2L2 + ε2 |||∂t∇xϕ|||2L2

+ oT ε |||R|||2X + ε |||R|||4X + oT ε. (4.158)

Estimate of |||∂t∇xϕ|||L2 Denote � = ∂tϕ. Taking g = ε�
( |v|2 − 5

)
μ

1
2 in (4.41),

due to orthogonality and �
∣∣
∂�

= 0, we obtain

ε2⟪∂t R,�
(|v|2 − 5

)
μ

1
2 ⟫− ε⟪R, v · ∇x

(
�

(|v|2 − 5
)
μ

1
2

)
⟫ = ε⟪S,�

(|v|2 − 5
)
μ

1
2 ⟫.

(4.159)
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Notice that

ε2⟪∂t R,�
(|v|2 − 5

)
μ

1
2 ⟫ = 2ε2⟪∂t

(
5c − p

)
,�⟫ = −2ε2⟪�x�,�⟫ = 2ε2 |||∂t∇xϕ|||2L2 .

(4.160)

Based on orthogonality, we have

∣∣∣ε⟪R, v · ∇x

(
�

(
|v|2 − 5

)
μ

1
2

)
⟫
∣∣∣ =

∣∣∣ε⟪(I − P)[R], v · ∇x

(
�

(
|v|2 − 5

)
μ

1
2

)
⟫
∣∣∣

� |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xϕ|||2L2 .

(4.161)

Then, by a similar argument as the above estimates for ε−1 ⟪ϕ
( |v|2 − 5

)
μ

1
2 , S⟫, we

have
∣∣∣ε⟪S,� (|v|2 − 5

)
μ

1
2 ⟫

∣∣∣ = ε

∣∣∣⟪S1 + S2,�
(|v|2 − 5

)
μ

1
2 ⟫

∣∣∣ � o(1)ε2 |||∂t∇xϕ|||2L2 + oT ε.

(4.162)

In summary, we have shown that

ε2 |||∂t∇xϕ|||2L2 � |||(I − P)[R]|||2L2
ν

+ oT ε. (4.163)

Inserting (4.163) into (4.158), we have

‖∇xϕ(t)‖2
L2 + |||c|||2L2 � ε

1
6 |||R|||X |||c|||2L2 + ε ‖R(t)‖2

L2

+ ‖R‖2
L2
γ+

+ |||p|||2L2 + |||(I − P)[R]|||2L2

+ oT ε |||R|||2X + ε |||R|||4X + oT ε. (4.164)

Hence, (4.132) follows. ��
Proposition 4.22. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||∂t c|||L2 � ε− 1

2 ‖∂t p‖L2 + oT |||R|||X + |||R|||2X + oT . (4.165)

Proof. Applying a similar argument as in the proof of Proposition 4.21 to the equation
(4.37), we obtain the desired result. Notice that in the bounds (4.154) and (4.155), we
should always assign L2 norm to the time-derivative terms and L3 to the no-derivative
terms. ��

4.4.3. Estimate of b

Proposition 4.23. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||b|||L2 � o(1)ε− 1

2 |||p|||L2 + oT |||R|||X + |||R|||2X + oT . (4.166)
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Proof. It suffices to justify

|||b|||L2 � ε
1

12 |||R|||
1
2
X |||b|||L2 + ε

1
2 ‖R(t)‖L2 + ‖R‖L2

γ+
+ o(1) |||p|||L2 + |||(I − P)[R]|||L2

+ oT ε
1
2 |||R|||X + ε

1
2 |||R|||2X + oT ε

1
2 . (4.167)

Weak Formulation Assume
(
ψ(t), q(t)

) : � → R
3×R (whereq(t)has zero average)

is the unique strong solution to the Stokes problem

⎧⎨
⎩

−β�xψ(t) + ∇xq(t) = b(t) in �,

∇x · ψ(t) = 0 in �,

ψ(t) = 0 on ∂�.

(4.168)

Based on the standard fluid estimates [19] and trace theorem, we have

‖ψ(t)‖H2 + |∇xψ(t)|L2 + ‖q(t)‖H1 + |q(t)|L2 � ‖b(t)‖L2 . (4.169)

Multiplying b on both sides of (4.168) and integrating by parts for ⟪∇xq,b⟫t x , we have

−⟪λ�xψ,b⟫t x − ⟪q,∇x · b⟫t x +
∫ t

0

∫
∂�

q(b · n) = |||b|||2L2 , (4.170)

which, by combining (4.75) and Remark 3.14, implies

−⟪λ�xψ,b⟫t x − ⟪qμ 1
2 , S⟫ + ⟪qμ

1
2 , R⟫γ +

− ⟪qμ 1
2 , h⟫γ− = |||b|||2L2 . (4.171)

Inserting (4.171) into (4.87) to replace −⟪λ�xψ,b⟫t x , we obtain

⟪∂tb, ψ⟫t x + ε
〈
R(t),∇xψ(t) : B〉 − ε

〈
z,∇xψ(0) : B〉 − ε⟪R, ∂t∇xψ : B⟫ + |||b|||2L2

= − ⟪qμ 1
2 , h⟫γ− + ⟪qμ

1
2 , R⟫γ +

+ ⟪∇xψ : B, h⟫γ− − ⟪∇xψ : B, R⟫γ +

+ ⟪v · ∇x

(
∇xψ : B

)
, (I − P)[R]⟫− ⟪qμ 1

2 , S⟫ + ε−1 ⟪ψ · vμ 1
2 , S⟫ + ⟪∇xψ : B, S⟫.

(4.172)

Using the divergence-free of ψ and ψ
∣∣
∂�

= 0, we have

⟪∂tb, ψ⟫t x = ⟪− λ∂t�xψ + ∂t∇xq, ψ⟫t x = λ⟪∂t∇xψ,∇xψ⟫t x

= λ

2
‖∇xψ(t)‖2

L2 − λ

2
‖∇xψ(0)‖2

L2 , (4.173)

and from Lemma 4.3

λ

2
‖∇xψ(0)‖2

L2 � ‖b(0)‖2
L2 � ‖z‖2

L2 � oT ε
2. (4.174)

Similarly, based on Lemma 4.3, we know∣∣ε〈z,∇xψ(0) : B〉∣∣ � ε ‖z‖L2 ‖∇xψ(0)‖L2 � ε ‖z‖2
L2 � oT ε

3, (4.175)

and direct bounds yield
∣∣ε〈R(t),∇xψ(t) : B〉∣∣ � ε ‖R(t)‖L2 ‖∇xψ(t)‖L2 � ε ‖R(t)‖L2 ‖b(t)‖L2 � ε ‖R(t)‖2

L2 ,

(4.176)
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and ∣∣ε⟪R, ∂t∇xψ : B⟫∣∣ = ∣∣ε⟪(I − P)[R], ∂t∇xψ : B⟫∣∣
� |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xψ |||2L2 . (4.177)

In addition, based on Lemma 4.4, we have
∣∣∣⟪qμ 1

2 , h⟫γ−

∣∣∣ +
∣∣∣⟪∇xψ : B, h⟫γ−

∣∣∣ � o(1)
∥∥∥qμ 1

2

∥∥∥2

L2
γ−

+ o(1) ‖∇xψ : B‖2
L2
γ−

+ ‖h‖2
L2
γ−

� o(1) |||b|||2L2 + oT ε
2, (4.178)∣∣∣⟪qμ 1

2 , R⟫γ +

∣∣∣ +
∣∣∣⟪∇xψ : B, R⟫γ +

∣∣∣ � o(1)
∥∥∥qμ 1

2

∥∥∥2

L2
γ+

+ o(1) ‖∇xψ : B‖2
L2
γ+

+ ‖R‖2
L2
γ+

� o(1) |||b|||2L2 + ‖R‖2
L2
γ+

, (4.179)

and ∣∣∣⟪v · ∇x

(
∇xψ : B

)
, (I − P)[R]⟫

∣∣∣ � o(1)
∣∣∣
∣∣∣
∣∣∣∇2

xψ

∣∣∣
∣∣∣
∣∣∣2
L2

+ |||(I − P)[R]|||2L2

� o(1) |||b|||2L2 + |||(I − P)[R]|||2L2 . (4.180)

In summary, we have shown that

‖∇xψ(t)‖2
L2 + |||b|||2L2 � ε ‖R(t)‖2

L2 + ‖R‖2
L2
γ+

+ |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xψ |||2L2 + oT ε
2

+
∣∣∣⟪qμ 1

2 , S⟫
∣∣∣ +

∣∣∣ε−1 ⟪ψ · vμ 1
2 , S⟫

∣∣∣ +
∣∣⟪∇xψ : B, S⟫

∣∣ . (4.181)

Source Term Estimates Due to orthogonality of Γ , we have∣∣∣⟪qμ 1
2 , S⟫

∣∣∣ +
∣∣∣ε−1 ⟪ψ · vμ 1

2 , S⟫
∣∣∣ =

∣∣∣⟪qμ 1
2 , S1 + S2⟫

∣∣∣ +
∣∣∣ε−1 ⟪ψ · vμ 1

2 , S1 + S2⟫
∣∣∣ .

(4.182)

Using Lemma 4.5, we have
∣∣∣⟪qμ 1

2 , S1⟫
∣∣∣ +

∣∣∣ε−1 ⟪ψ · vμ 1
2 , S1⟫

∣∣∣ = ε2
∣∣∣⟪qμ 1

2 , ∂t f2⟫
∣∣∣ + ε

∣∣∣⟪ψ · vμ 1
2 , ∂t f2⟫

∣∣∣
� ε

(
|||q|||L2 + |||∇xψ |||L2

)
|||∂t f2|||L2 � oT |||b|||2L2 + oT ε

2.

(4.183)

Using Lemma 4.6 and Remark 4.7, integrating by parts in vη for S2a , we obtain
∣∣∣⟪qμ 1

2 , S2⟫
∣∣∣ � |||q|||L2

∣∣∣∣∣∣∣∣∣ f B1 + S2b + S2c

∣∣∣∣∣∣∣∣∣
L2
t L2

x L
1
v

� oT ε
1
2 |||q|||L2 � oT |||b|||2L2 + oT ε.

(4.184)

Similar to (4.121), we have

∣∣∣ε−1 ⟪ψ · vμ 1
2 , S2⟫

∣∣∣ � ε−1
∣∣∣∣⟪S2,

∫ n

0
∂nψ⟫

∣∣∣∣
�

∣∣∣∣⟪ηS2,
1

n

∫ n

0
∂nψ⟫

∣∣∣∣ �
∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2
t L2

x L
1
v

∣∣∣∣
∣∣∣∣
∣∣∣∣1

n

∫ n

0
∂nψ

∣∣∣∣
∣∣∣∣
∣∣∣∣
L2
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�
∣∣∣∣∣∣∣∣∣η( f B1 + S2b + S2c

)∣∣∣∣∣∣∣∣∣
L2
t L2

x L
1
v

|||∂nψ |||L2 � oT |||b|||2L2 + oT ε. (4.185)

From Lemma 4.5, we directly bound

∣∣⟪∇xψ : B, S1⟫
∣∣ � |||∇xψ |||L2 |||S1|||L2 � oT |||b|||2

L2 + oT ε
2. (4.186)

Similar to (4.121), based on Lemma 4.6, Remark 4.7 and Hardy’s inequality, we have

∣∣⟪∇xψ : B, S2⟫
∣∣ ≤

∣∣∣∣⟪S2,∇xψ

∣∣∣
n=0
⟫

∣∣∣∣ +

∣∣∣∣ε⟪ηS2,
1

n

∫ n

0
∂n∇xψ⟫

∣∣∣∣
�

∣∣∣
∣∣∣
∣∣∣ f B1 + S2b + S2c

∣∣∣
∣∣∣
∣∣∣
L2
t L2

ι1 ι2
L1
nL1

v

‖∇xψ‖L2
γ

+ ε

∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2

∣∣∣∣
∣∣∣∣
∣∣∣∣1

n

∫ n

0
∂n∇xψ

∣∣∣∣
∣∣∣∣
∣∣∣∣
L2

�
∣∣∣
∣∣∣
∣∣∣ f B1 + S2b + S2c

∣∣∣
∣∣∣
∣∣∣
L2
t L2

ι1 ι2
L1
nL1

v

‖∇xψ‖L2
γ

+ ε

∣∣∣
∣∣∣
∣∣∣η( f B1 + S2b + S2c

)∣∣∣
∣∣∣
∣∣∣
L2

|||∂n∇xψ |||L2 � oT ε |||b|||L2 � oT |||b|||2L2 + oT ε
2. (4.187)

Based on Lemma 4.8, Lemma 4.9, and Lemma 4.10, we have
∣∣⟪∇xψ : B, S3 + S4 + S5⟫

∣∣ � |||∇xψ |||L2 |||S3 + S4 + S5|||L2

� oT |||b|||2
L2 + oT |||R|||2

L2 + oT ε � oT |||b|||2
L2 + oT ε |||R|||2X + oT ε.

(4.188)

Finally, based on Lemma 4.11, we have

∣∣⟪∇xψ : B, S6⟫
∣∣ �

∣∣∣⟪∇xψ : B, Γ
[
P[R],P[R]

]
⟫
∣∣∣ +

∣∣∣⟪∇xψ : B, Γ
[
R, (I − P)[R]

]
⟫
∣∣∣ .

(4.189)

The oddness and orthogonality implies that
∣∣∣⟪∇xψ : B, Γ

[
P[R],P[R]

]
⟫
∣∣∣ �

∣∣∣∣⟪∇xψ : B, Γ

[
μ

1
2 (v · b) , μ 1

2 (v · b)
]
⟫

∣∣∣∣
+

∣∣∣∣∣⟪∇xψ : B, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]
⟫

∣∣∣∣∣ . (4.190)

Similar to (4.154), we may directly bound∣∣∣∣⟪∇xψ : B, Γ
[
μ

1
2 (v · b) , μ 1

2 (v · b)
]
⟫

∣∣∣∣ � |||∇xψ |||L6 |||b|||L3 |||b|||L2

� |||ψ |||L2
t H2

x
|||b|||L3 |||b|||L2 � ε

1
6 |||R|||X |||b|||2

L2 .

(4.191)

Due to oddness and Bi i = L−1
[(

|vi |2 − 1

3
|v|2

)
μ

1
2

]
, noting that

Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]
only depends on |v|2, we have

∣∣∣∣∣⟪∇xψ : B, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]
⟫

∣∣∣∣∣
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=
∣∣∣∣∣⟪∂1ψ1B11 + ∂2ψ2B22 + ∂3ψ3B33, Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]
⟫

∣∣∣∣∣
=

∣∣∣∣∣⟪
(∇x · ψ)

Bi i , Γ

[
μ

1
2

(
|v|2 − 5

2
c

)
, μ

1
2

(
|v|2 − 5

2
c

)]
⟫

∣∣∣∣∣ = 0. (4.192)

In addition, similar to (4.155), we have∣∣∣⟪∇xψ : B, Γ
[
R, (I − P)[R]

]
⟫
∣∣∣ � |||∇xψ |||L6 |||R|||L2 |||(I − P)[R]|||L3

� ε |||b|||L2 |||R|||2X � o(1) |||b|||2L2 + ε2 |||R|||4X .
(4.193)

Hence, we know
∣∣⟪∇xψ : B, S6⟫

∣∣ � ε
1
6 |||R|||X |||b|||2L2 + o(1) |||b|||2L2 + ε2 |||R|||4X . (4.194)

In summary, we have shown that∣∣∣∣⟪qμ 1
2 , S⟫

∣∣∣∣ +

∣∣∣∣ε−1 ⟪ψ · vμ 1
2 , S⟫

∣∣∣∣
+
∣∣⟪∇xψ : B, S⟫

∣∣
� ε

1
6 |||R|||X |||b|||2

L2 +
(
o(1) + oT

) |||b|||2
L2 + oT ε |||R|||2X + ε |||R|||4X + oT ε.

(4.195)

Inserting (4.195) into (4.181), we have

‖∇xψ(t)‖2
L2 + |||b|||2L2 � ε

1
6 |||R|||X |||b|||2L2 + ε ‖R(t)‖2

L2 + ‖R‖2
L2
γ+

+ |||(I − P)[R]|||2L2 + o(1)ε2 |||∂t∇xψ |||2L2

+ oT ε |||R|||2X + ε |||R|||4X + oT ε. (4.196)

Estimate of |||∂t∇xψ |||L2 Denote � = ∂tψ . Taking g = ε� · vμ 1
2 in (4.41), due to

orthogonality and �
∣∣
∂�

= 0, we obtain

ε2⟪∂t R, � · vμ 1
2 ⟫− ε⟪R, v · ∇x

(
� · vμ 1

2

)
⟫ = ε⟪S, � · vμ 1

2 ⟫. (4.197)

Noticing that � is divergence-free and that �
∣∣
∂�

= 0, we find

ε2⟪∂t R, � · vμ 1
2 ⟫ = ε2⟪∂tb, �⟫ = ε2⟪− λ�x� + ∂t∇xq, �⟫

= ε2⟪− λ�x�,�⟫ = λε2 ‖∂t∇xψ‖2
L2 . (4.198)

Also, using orthogonality, we have

∣∣∣ε⟪R, v · ∇x

(
� · vμ 1

2

)
⟫
∣∣∣ = ε

∣∣∣∣∣⟪μ
1
2 p + μ

1
2

(
|v|2 − 5

2

)
c, v · ∇x

(
� · vμ 1

2

)
⟫

∣∣∣∣∣
= ε

∣∣∣⟪μ 1
2 p, v · ∇x

(
� · vμ 1

2

)
⟫
∣∣∣ � |||p|||2L2 + o(1)ε2 |||∂t∇xψ |||2L2 ,

(4.199)
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Then, by a similar argument as the above estimates for ε−1 ⟪ψ · vμ 1
2 , S⟫, we have

∣∣∣ε⟪S, � · vμ 1
2 ⟫

∣∣∣ =
∣∣∣ε⟪S1 + S2, � · vμ 1

2 ⟫
∣∣∣ � o(1)ε2 |||∂t∇xϕ|||2L2 + oT ε. (4.200)

In summary, we have shown that

ε2 |||∂t∇xϕ|||2L2 � |||p|||2L2 + oT ε. (4.201)

Inserting (4.201) into (4.196), we have

‖∇xψ(t)‖2
L2 + |||b|||2L2 � ε

1
6 |||R|||X |||b|||2L2 + ε ‖R(t)‖2

L2

+ ‖R‖2
L2
γ+

+ o(1) |||p|||2L2 + |||(I − P)[R]|||2L2

+ oT ε |||R|||2X + ε |||R|||4X + oT ε. (4.202)

Hence, (4.167) follows. ��
Proposition 4.24. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||∂tb|||L2 � o(1)ε− 1

2 |||∂t p|||L2 + oT |||R|||X + |||R|||2X + oT . (4.203)

Proof. We may use a similar argument as proving Proposition 4.23 to the equation
(4.37). Notice that in the bounds (4.191) and (4.193), we should always assign L2 norm
to the time-derivative terms and L3 to the no-derivative terms. ��

4.4.4. Summary of kernel estimates

Proposition 4.25. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||P[R]|||L2 � oT |||R|||X + |||R|||2X + oT . (4.204)

Proof. Summarizing Proposition 4.19, Proposition 4.21 and Proposition 4.23 leads to
the desired result. ��
Proposition 4.26. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |||P[∂t R]|||L2 � oT |||R|||X + |||R|||2X + oT . (4.205)

Proof. Summarizing Proposition 4.20, Proposition 4.22 and Proposition 4.24 leads to
the desired result. ��
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4.5. Energy estimate: instantaneous.

Proposition 4.27. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε− 1
2 |R(t)|L2

γ+
+ ε−1 ‖(I − P)[R](t)‖L2 � oT |||R|||X + |||R|||2X + oT . (4.206)

Proof. For fixed t ∈ R+, we apply a similar argument as the proof of Proposition 3.27
to (4.39), and obtain

ε−1 |R(t)|2L2
γ+

+ ε−2 ‖(I − P)[R](t)‖2
L2 � oT |||R|||2X + |||R|||4X + oT +

∣∣ε−1〈ε∂t R(t), R(t)〉∣∣ .
(4.207)

Using Proposition 4.17 and Proposition 4.18, we have
∣∣ε−1〈ε∂t R(t), R(t)〉∣∣ = ∣∣〈∂t R(t), R(t)〉∣∣ � ‖R(t)‖2

L2 + ‖∂t R(t)‖2
L2 � oT |||R|||2X + |||R|||4X + oT .

(4.208)

��
Corollary 4.28. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖(I − P)[R](t)‖L6 +
∣∣∣μ 1

4 R(t)
∣∣∣
L4
γ+

� oT |||R|||X + |||R|||2X + oT . (4.209)

Proof. This is similar to the proof of Corollary 3.28. ��

4.6. Kernel estimate: instantaneous.

Proposition 4.29. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖p(t)‖L6 � oT |||R|||X + |||R|||2X + oT . (4.210)

Proof. For fixed t ∈ R+, we apply a similar argument as the proof of Proposition 3.29
with r = 6 to (4.39). We obtain for ψ defined in (3.174)

‖p(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT +
∣∣〈ε∂t R(t), ψ 〉∣∣ . (4.211)

Using Proposition 4.18, we have∣∣〈ε∂t R(t), ψ 〉∣∣ � ε ‖∂t R(t)‖L2 ‖ψ‖L2 � ε ‖∂t R(t)‖L2 ‖ψ‖
W 1, 6

5

� ε
(
oT |||R|||X + |||R|||2X + oT

)
‖p(t)‖5

L6 � ε6 ‖p(t)‖6
L6 + oT |||R|||6X

+ |||R|||12
X + oT . (4.212)

Hence, we have

‖p(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT , (4.213)

and thus (4.210) follows. ��
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Proposition 4.30. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖c(t)‖L6 � oT |||R|||X + |||R|||2X + oT . (4.214)

Proof. For fixed t ∈ R+, we apply a similar argument as the proof of Proposition 3.30
with r = 6 to (4.39). We obtain for ϕ defined in (3.189)

‖c(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT +
∣∣∣ε−1

〈
ϕ
( |v|2 − 5

)
μ

1
2 , ε∂t R(t)

〉∣∣∣
+
∣∣〈∇xϕ · A , ε∂t R(t)

〉∣∣ . (4.215)

Using Proposition 4.18, we have∣∣∣ε−1
〈
ϕ
( |v|2 − 5

)
μ

1
2 , ε∂t R(t)

〉∣∣∣ +
∣∣〈∇xϕ · A , ε∂t R(t)

〉∣∣
� ‖∂t R(t)‖L2 ‖ϕ‖H1 � ‖∂t R(t)‖L2 ‖ϕ‖

W 2, 6
5

�
(
oT |||R|||X + |||R|||2X + oT

)
‖c(t)‖5

L6

�o(1) ‖c(t)‖6
L6 + oT |||R|||6X + |||R|||12

X + oT . (4.216)

Hence, we have

‖c(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT , (4.217)

and thus (4.214) follows. ��
Proposition 4.31. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖b(t)‖L6 � oT |||R|||X + |||R|||2X + oT . (4.218)

Proof. For fixed t ∈ R+, we apply a similar argument as the proof of Proposition 3.31
with r = 6 to (4.39). We obtain for ψ and q defined in (3.210)

‖b(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT

+
∣∣∣〈qμ 1

2 , ε∂t R(t)
〉∣∣∣ +

∣∣∣ε−1
〈
ψ · vμ 1

2 , ε∂t R(t)
〉∣∣∣ +

∣∣〈∇xψ : B, ε∂t R(t)
〉∣∣ .

(4.219)

Using Proposition 4.18, we have∣∣∣〈qμ 1
2 , ε∂t R(t)

〉∣∣∣ +
∣∣∣ε−1

〈
ψ · vμ 1

2 , ε∂t R(t)
〉∣∣∣ +

∣∣〈∇xψ : B, ε∂t R(t)
〉∣∣

� ‖∂t R(t)‖L2

(
‖ψ‖H1 + ‖q‖L2

)
� ε ‖∂t R(t)‖L2

(
‖ψ‖

W 2, 6
5

+ ‖q‖
W 1, 6

5

)

�
(
oT |||R|||X + |||R|||2X + oT

)
‖b(t)‖5

L6 � o(1) ‖b(t)‖6
L6 + oT |||R|||6X + |||R|||12

X + oT .

(4.220)

Hence, we have

‖b(t)‖6
L6 � oT |||R|||6X + |||R|||12

X + oT , (4.221)

and thus (4.218) follows. ��
Proposition 4.32. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

‖P[R](t)‖L6 � oT |||R|||X + |||R|||2X + oT . (4.222)

Proof. Summarizing Proposition 4.29, Proposition 4.30 and Proposition 4.31 leads to
the desired result. ��
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4.7. L∞ estimate. We define a weight function as (3.235).

Proposition 4.33. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

ε
1
2 |||R|||L∞

�,ϑ
+ ε

1
2 ‖R‖L∞

γ+,�,ϑ
� oT |||R|||X + |||R|||2X + oT . (4.223)

Proof. We will use the well-known L2 − L6 − L∞ framework.
Step 1: Mild Formulation Denote the weighted solution

Rw(t, x, v) := w(v)R(t, x, v), (4.224)

and the weighted non-local operator

Kw(v)[Rw](v) := w(v)K

[
Rw
w

]
(v) =

∫
R3

kw(v)(v, u)Rw(u)du, (4.225)

where

kw(v)(v, u) := k(v, u)
w(v)

w(u)
. (4.226)

Multiplying εw on both sides of (1.10), we have
⎧⎨
⎩
ε2∂t Rw + εv · ∇x Rw + νRw = Kw[Rw](x, v) + εw(v)S(t, x, v) in R+ × � × R

3,

Rw(0, x, v) = wz(x, v) in � × R
3,

Rw(t, x0, v) = wh(t, x0, v) for x0 ∈ ∂� and v · n < 0,
(4.227)

We can rewrite the solution of the equation (4.227) along the characteristics by Duhamel’s
principle as

Rw(t, x, v) = 1ti<tbw(v)z(x, v)e
−ν(v)ti + 1tb<tiw(v)h(x, v)e

−ν(v)tb

+
∫ t

0
w(v)εS

(
t − ε2s, x − ε(t − s)v, v

)
e−ν(v)(t−s)ds

+
∫ t

0

∫
R3

kw(v)(v, u)Rw
(
t − ε2s, x − ε(t − s)u, u

)
e−ν(v)(t−s)duds,

(4.228)

where

tb(x, v) := inf
{
t > 0 : x − εtv /∈ �

}
, ti (t) = ε−2t, t = min

{
ti , tb

}
, (4.229)

and

x(x, v) := x − εt(x, v)v. (4.230)

We further rewrite the non-local term along the characteristics as

Rw(t, x, v)

= 1ti<tbw(v)z(x, v)e
−ν(v)ti + 1tb<tiw(v)h(x, v)e

−ν(v)tb
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+
∫ t

0
w(v)εS

(
t − ε2s, x − ε(t − s)v, v

)
e−ν(v)(t−s)ds

+ 1t ′i<t ′b

∫ t

0

∫
R3

kw(v)(v, u)w(u)z(x
′, v)e−ν(u)t ′i e−ν(v)(t−s)duds

+ 1t ′b<t ′i

∫ t

0

∫
R3

kw(v)(v, u)w(u)h(x
′, v)e−ν(u)t ′be−ν(v)(t−s)duds

+
∫ t

0

∫
R3

kw(v)(v, u)
∫ t ′

0
εS

(
t − ε2s − ε2r, x − ε(t − s)u − ε(t ′ − r)u, u

)

e−ν(u)(t ′−r)e−ν(v)(t−s)drduds

+
∫ t

0

∫
R3

kw(v)(v, u)
∫ t ′

0

∫
R3

kw(u)(u, u
′)Rw

(
t − ε2s − ε2r, x − ε(t − s)u − ε(t ′ − r)u′, u′)

e−ν(u)(t ′−r)e−ν(v)(t−s)du′drduds, (4.231)

where

t ′b(x, v; s, u) := inf
{
t > 0 : x − ε(t − s) − εtu /∈ �

}
, t ′i (t; s) = ε−2t − s,

t ′ = min
{
t ′i , t ′b

}
, (4.232)

and

x ′(x, v; s, u) := x − ε(t − s) − εt ′(x, v; s, u)u. (4.233)

Step 2: Estimates of Source Terms and Boundary Terms Based on Lemma 4.3 –
Lemma 4.11, we have∣∣∣1ti<tbw(v)z(x, v)e

−ν(v)ti
∣∣∣

+

∣∣∣∣∣1t ′i<t ′b

∫ t

0

∫
R3

kw(v)(v, u)w(u)z(x
′, v)e−ν(u)t ′i e−ν(v)(t−s)duds

∣∣∣∣∣
� ‖z‖L∞

�,ϑ
� oT ε, (4.234)

∣∣∣1tb<tiw(v)h(x, v)e
−ν(v)tb

∣∣∣
+

∣∣∣∣∣1t ′b<t ′i

∫ t

0

∫
R3

kw(v)(v, u)w(u)h(x
′, v)e−ν(u)t ′be−ν(v)(t−s)duds

∣∣∣∣∣
� ‖h‖L∞

γ−,�,ϑ
� oT , (4.235)

and∣∣∣∣∣
∫ t

0
w(v)εS

(
t − ε2s, x − ε(t − s)v, v

)
e−ν(v)(t−s)ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫
R3

kw(v)(v, u)
∫ t ′

0
εS

(
t − ε2s − ε2r, x − ε(t − s)u − ε(t ′ − r)u, u

)
e−ν(u)(t ′−r)e−ν(v)(t−s)drduds

∣∣∣∣∣
� ε

∣∣∣
∣∣∣
∣∣∣ν−1S

∣∣∣
∣∣∣
∣∣∣
L∞
�,ϑ

� oT + oT ε ‖R‖L∞
�,ϑ

+ ε ‖R‖2
L∞
�,ϑ

� oT ε
1
2 ‖R‖X + ‖R‖2

X + oT . (4.236)
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Step 3: Estimates of Non-Local Terms The only remaining term in (4.231) is the
non-local term

I :=
∫ t

0

∫
R3

kw(v)(v, u)
∫ t ′

0

∫
R3

kw(u)(u, u
′)Rw(

t − ε2s − ε2r, x − ε(t − s)u − ε(t ′ − r)u′, u′)e−ν(u)(t ′−r)

e−ν(v)(t−s)du′drduds. (4.237)

The proof is very similar to Step 3 in the proof of Proposition 3.34 with t ′b replaced by t ,
so we will skip the details. The only non-trivial step is in the estimate of I5,1, we should
have

∫
|u|≤2N

∫
|u′|≤3N

∫ t ′

0
1{x−ε(t−s)v−ε(t ′−r)u∈�}∣∣∣R(t − ε2s − ε2r, x − ε(t − s)v − ε(t ′ − r)u, u′)∣∣∣ e−ν(u)(t ′−r)drdudu′

≤
(∫

|u|≤2N

∫
|u′ |≤3N

∫ t ′

0
1{x−ε(t−s)v−ε(t ′−r)u∈�}e

−ν(u)(t ′−r)drdudu′
) 5

6

×
(∫

|u|≤2N

∫
|u′|≤3N

∫ t ′

0
1{x−ε(t−s)v−ε(t ′−r)u∈�}

∣∣∣R(t − ε2s − ε2r, x − ε(t − s)v − ε(t ′ − r)u, u′)∣∣∣6 e−ν(u)(t ′−r)drdudu′
) 1

6

�
∣∣∣∣∣
∫ t ′

0

1

ε3δ3

∫
|u′ |≤3N

∫
�

1{y∈�}
∣∣R(t − ε2s − ε2r, y, u′)

∣∣6e−(t ′−r)dydu′dr
∣∣∣∣∣

1
6

� 1

ε
1
2 δ

1
2

|||R|||L∞
t L6

x,v
.

(4.238)

Therefore, we conclude that

|I | � δ |||Rw|||L∞ +
1

ε
1
2 δ

1
2

|||R|||L∞
t L6

x,v
. (4.239)

Step 4: Synthesis Summarizing all above, we obtain for any (t, x, v) ∈ R+ ×�×R
3,

∣∣Rw(t, x, v)∣∣ � δ |||Rw|||L∞ +
1

ε
1
2 δ

1
2

|||R|||L∞
t L6

x,v
+ oT ε

1
2 ‖R‖X + ‖R‖2

X + oT . (4.240)

Hence, when δ � 1, we obtain

∣∣Rw(t, x, v)∣∣ � ε− 1
2 |||R|||L∞

t L6
x,v

+ oT ε
1
2 ‖R‖X + ‖R‖2

X + oT , (4.241)

and thus the desired result follows. ��
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4.8. Remainder estimate.

Theorem 4.34. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

|||R|||X � oT . (4.242)

Proof. Based on Proposition 4.17, we have

‖R‖L∞
t L2

xv
+ ε− 1

2 ‖R‖L2
γ+

+ ε−1 |||(I − P)[R]|||L2 � oT |||R|||X + |||R|||2X + oT .

(4.243)

Based on Proposition 4.25, we have

ε− 1
2 |||P[R]|||L2 � oT |||R|||X + |||R|||2X + oT . (4.244)

Combining both of them, we arrive at

‖R‖L∞
t L2

xv
+ ε− 1

2 ‖R‖L2
γ+

+ ε− 1
2 |||P[R]|||L2 + ε−1 |||(I − P)[R]|||L2 � oT |||R|||X + |||R|||2X + oT .

(4.245)

Similarly, combining Proposition 4.18 and Proposition 4.26, we arrive at

‖∂t R‖L∞
t L2

xv
+ ε− 1

2 ‖∂t R‖L2
γ+

+ ε− 1
2 |||∂tP[R]|||L2 + ε−1 |||∂t (I − P)[R]|||L2 � oT |||R|||X + |||R|||2X + oT .

(4.246)

Based on Proposition 4.27 and Corollary 4.28, we have

ε− 1
2 ‖R‖L∞

t L2
γ+

+
∥∥∥μ 1

4 R
∥∥∥
L∞
t L4

γ+

+ ε−1 |||(I − P)[R]|||L∞
t L2

ν
+ |||(I − P)[R]|||L∞

t L6
xv

� oT |||R|||X + |||R|||2X + oT . (4.247)

Based on Proposition 4.32, we have

‖P[R]‖L∞
t L6

xv
� oT |||R|||X + |||R|||2X + oT . (4.248)

Combining both of them, we arrive at

ε− 1
2 ‖R‖L∞

t L2
γ+

+
∥∥μ 1

4 R
∥∥
L∞
t L4

γ+
+ ε−1 |||(I − P)[R]|||L∞

t L2
ν

+ |||R|||L∞
t L6

xv

� oT |||R|||X + |||R|||2X + oT . (4.249)

Based on Proposition 4.33, we have

ε
1
2 |||R|||L∞

t L∞
�,ϑ

+ ε
1
2 ‖R‖L∞

t L∞
γ+

+ ε
1
2 |||R|||L∞

�,ϑ
+ ε

1
2 ‖R‖L∞

γ+,�,ϑ
� oT |||R|||X + |||R|||2X + oT .

(4.250)

Collecting (4.245),(4.246),(4.249),(4.250), we have

|||R|||X � oT |||R|||X + |||R|||2X + oT . (4.251)

Hence, we have

|||R|||X � |||R|||2X + oT . (4.252)

By a standard iteration/fixed-point argument, our desired result follows. ��



  279 Page 80 of 85 Z. Ouyang, L. Wu

Proof of Theorem 1.8. The estimate (1.39) follows from Theorem 4.34. The construc-
tion and positivity of F based on the expansion (2.6) is standard and we refer to [27,29],
so we will focus on the proof of (1.40). From Theorem 4.34, we have

ε− 1
2 |||P[R]|||L2 + ε−1 |||(I − P)[R]|||L2 � oT , (4.253)

which yields

|||R|||L2 � oT ε
1
2 . (4.254)

From (2.6), we know∣∣∣∣∣∣∣∣∣μ− 1
2 F − μ

1
2 − ε f1 − ε2 f2 − ε f B1

∣∣∣∣∣∣∣∣∣
L2

= |||εR|||L2 � oT ε
3
2 . (4.255)

From Theorem 4.1 and the rescaling η = ε−1n, we have∣∣∣∣∣∣∣∣∣ε2 f2
∣∣∣∣∣∣∣∣∣

L2
� oT ε

2,

∣∣∣∣∣∣∣∣∣ε f B1
∣∣∣∣∣∣∣∣∣

L2
� oT ε

3
2 . (4.256)

Hence, we have ∣∣∣
∣∣∣
∣∣∣μ− 1

2 F − μ
1
2 − ε f1

∣∣∣
∣∣∣
∣∣∣
L2

� oT ε
3
2 . (4.257)

Therefore, (1.40) follows. ��
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Appendix A. Linearized Boltzmann Operator

Based on [20, Chapter 7] and [35, Chapters 1&3], define the symmetrized version of Q
in (1.2):

Q∗[F,G] := 1

2

∫∫
R3×R3

q(ω, |u − v|)
(
F(u∗)G(v∗) + F(v∗)G(u∗) − F(u)G(v) − F(v)G(u)

)
dωdu.

(A.1)

Clearly, Q[F, F] = Q∗[F, F]. Denote the linearized Boltzmann operator L

L[ f ] := − 2μ− 1
2 Q∗ [

μ,μ
1
2 f

]
:= ν f − K [ f ], (A.2)

where for some kernels k(u, v),

ν(v) =
∫

R3

∫
S2
q(ω, |u − v|)μ(u)dωdu, K [ f ](v) =

∫
R3

k(u, v) f (u)du. (A.3)



Diffusive Limit of the Boltzmann Equation in Bounded Domains Page 81 of 85   279 

L is self-adjoint in L2
ν(R

3) with the null space

N := span
{
μ

1
2 , vμ

1
2 , |v|2 μ 1

2

}
. (A.4)

Let N⊥ be the orthogonal complement of N in L2(R3). Denote P the orthogonal pro-
jection onto N and I − P the complement. Then L satisfies the coercivity property∫

R3
f L[ f ]dv �

∫
R3

ν(v)
∣∣(I − P)[ f ]∣∣2dv. (A.5)

Note that the validity of (A.5) and the fact ν(v) � 〈v〉 rely on the assumption of hard-
sphere gas in (1.2). Denote L−1 : N⊥ → N⊥ the quasi-inverse of L. Also, denote the
nonlinear Boltzmann operator Γ

Γ [ f, g] := μ− 1
2 Q∗ [

μ
1
2 f, μ

1
2 g

]
∈ N⊥. (A.6)

Appendix B. Inner Products and Norms

Based on the flow direction, we can divide the boundary γ := {
(x0, v) : x0 ∈ ∂�, v ∈

R
3
}

into the incoming boundary γ−, the outgoing boundary γ+, and the grazing set γ0

based on the sign of v ·n(x0). Similarly, we further divide the boundary γ := {
(t, x0, v) :

t ∈ R+, x0 ∈ ∂�, v ∈ R
3
}

into γ−, γ +, and γ 0.
Let 〈 · · 〉v denote the inner product in v ∈ R

3, 〈 · · 〉x the inner product in x ∈ �,
〈 · · 〉 the inner product in (x, v) ∈ � × R

3. Also, let 〈 · · 〉γ± denote the inner product
on γ± with measure dγ := |v · n| dvdSx .

Denote the bulk and boundary norms

‖ f ‖Lr :=
(∫∫

�×R3
| f (x, v)|r dvdx

) 1
r

, | f |Lrγ± :=
(∫

γ±
| f (x, v)|r |v · n| dγ

) 1
r

.

(B.1)

Define the weighted L∞ norms for 0 ≤ � < 1
2 and ϑ ≥ 0

‖ f ‖L∞
�,ϑ

:= ess sup
(x,v)∈�×R3

(
〈v〉ϑ e�

|v|2
2 | f (x, v)|

)
,

| f |L∞
γ±,�,ϑ

:= ess sup
(x,v)∈γ±

(
〈v〉ϑ e�

|v|2
2 | f (x, v)|

)
. (B.2)

Denote the ν-norm

‖ f ‖L2
ν

:=
(∫∫

�×R3
ν(v) | f (x, v)|2 dvdx

) 1
2

. (B.3)

When the time integral is involved (usually on [0,T] for some T > 0 from the context),
we define the corresponding inner products ⟪ · · ⟫tv , ⟪ · · ⟫t x , ⟪ · · ⟫ and ⟪ · · ⟫γ± .
Also, we define the corresponding norms: ||| f |||Lr , ‖ f ‖Lrγ±

, ||| f |||L∞
�,ϑ

, ‖ f ‖L∞
γ±,�,ϑ

and

||| f |||L2
ν
.
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We will also employ the standard Sobolev norms which are essentially the L p-norms
of the function together with its (weak) derivatives up to a given order: (for 1 < p < ∞
and s ∈ R)

‖ f ‖Ws,p(Rd ) := ∥∥ 〈∇〉s f ∥∥L p(Rd )
∼s∈N,p,d

s∑
j=0

∥∥∇ j f
∥∥
L p(Rd )

. (B.4)

For a more comprehensive discussion on the Sobolev spaces (including the definition
of the Sobolev norms on bounded domains as well as for the endpoint cases), we refer
the reader to [1,34,64,65]. In addition, we will specify the variable(s) in the subscript
when necessary.

Sometimes, (x, v) or (t, x, v) may call for different norms on each variable. Let
‖·‖Wk,pW �,q denoteWk,p norm for x ∈ � andW �,q norm forv ∈ R

3 and |||·|||Wm,sWk,pW �,q

denote Wm,s norm for t ∈ [0,T] with some T > 0, Wk,p norm for x ∈ � and W �,q

norm for v ∈ R
3. The similar notation also applies when we replace W �,q by Lq , L2

ν ,
L∞
�,ϑ , or W 1,∞

�,ϑ . When the boundary norms are considered, let ‖·‖
Wk,pW �,q

γ±
denote Wk,p

norm for x ∈ ∂� and W �,q norm for {v ∈ R
3 : v · n ≷ 0}. The similar notation also

applies to |||·|||
Wm,sWk,pW �,q

γ±
.

We will only write the variables (t, x, v) explicitly when there is a possibility of
confusion. For example, we may write ‖·‖L∞

t L2
x,v

to denote L∞ norm for t and L2 norm
for (x, v) (instead of the longer notation ‖·‖L∞L2L2 ). Also, all variables will be explicitly
written if we will further prescribe different norms on the normal n or tangential (ι1, ι2)
variables.

Appendix C. Symbols and Constants

Let 1 denote the 3 × 3 identity tensor. Define the quantities

A (v) := v ·
(
|v|2 − 5T

)
μ

1
2 ∈ R

3, A (v) := L−1
[
A

]
∈ R

3, (C.1)

B(v) :=
(
v ⊗ v − |v|2

3
1
)
μ

1
2 ∈ R

3×3, B(v) := L−1
[
B

]
∈ R

3×3, (C.2)

along with

κ :=
∫

R3
AiA i , σ :=

∫
R3

(
|v|2 − 5T

) (
AiA i

)
, (C.3)

λ :=
∫

R3
Bi jBi j , α :=

∫
R3

Bi iBi i , α :=
∫

R3
Bi iB j j , for i �= j. (C.4)

Notice that in (C.3), κ and σ remain constant for i = 1, 2, 3, and in (C.4), λ, α and γ

remain constant for i, j = 1, 2, 3 with i �= j .
For two tensors M ,N ∈ R

3×3, we may define their double dot product (contraction)
as

M : N =
3∑

i, j=1

Mi jNi j . (C.5)
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Throughout this paper, C > 0 denotes a constant that only depends on the domain
�, but does not depend on the data or ε. It is referred as universal and can change from
one inequality to another. When we write C(z), it means a certain positive constant
depending on the quantity z. We write a � b to denote a ≤ Cb and a � b to denote
a ≥ Cb. Also, we write a � b if a � b and a � b.

In this paper, we will use o(1) to denote a sufficiently small constant independent
of the data. Also, let oT be a sufficiently small constant depending on the data. For the
stationary problem, oT depends on fb only satisfying

oT → 0 as |fb|W 3,∞W 1,∞
γ−,�,ϑ

→ 0. (C.6)

For the evolutionary problem, oT depends on fi and fb satisfying

oT → 0 as ‖fi‖W 1,∞L∞
�,ϑ

+ ‖fb‖W 1,∞W 3,∞W 1,∞
γ−,�,ϑ

→ 0. (C.7)

In principle, while oT is determined by data a priori, we are free to choose o(1) in each
estimate.
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