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Abstract: The investigation of rigorous justification of the hydrodynamic limits in
bounded domains has seen significant progress in recent years. While some headway has
been made for the diffuse-reflection boundary case (Esposito et al. in Ann PDE 4:1-119,
2018; Ghost effect from Boltzmann theory. arXiv:2301.09427, 2023; Jang and Kim in
Ann PDE 7:103, 2021), the more intricate in-flow boundary case, where the leading-
order boundary layer effect cannot be neglected, still poses an unresolved challenge. In
this study, we tackle the stationary and evolutionary Boltzmann equations, considering
the in-flow boundary conditions within both convex and non-convex bounded domains,
and demonstrate their diffusive limits in L. Our approach hinges on a groundbreaking

insight: a remarkable gain of £7 in the kernel estimate, which arises from a meticulous
selection of test functions and the careful application of conservation laws. Additionally,
we introduce a boundary layer with a grazing-set cutoff and investigate its BV regularity
estimates to effectively control the source terms in the remainder equation with the help
of the Hardy’s inequality.
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1. Introduction

Hydrodynamic limits concern the derivation of fluid equations, such as the Euler equa-
tions or the Navier—Stokes equations, from the kinetic equations such as the Boltzmann
equation or the Landau equation. Hydrodynamic limits in non-convex domains (includ-
ing the so-called exterior domains) play a significant role in the science and engineering
problems: e.g. gas dynamics around airplane wings or high-rise buildings, water dynam-
ics near ships or bridge pier, plasma dynamics inside the Tokamak, etc. However, due
to the intrinsic singularity of kinetic equations in non-convex domains [28,60,82], the
rigorous justification of hydrodynamic limits remains largely open so far.

In this work, we will study the diffusive limits of both the stationary and evolutionary
Boltzmann equations in general (convex or non-convex) smooth bounded domains in
the presence of boundary layer corrections. We will show that the solutions to the Boltz-
mann equations converge to a global Maxwellian plus a small perturbation given by the
incompressible Navier—Stokes—Fourier system. Due to the complexity of the problems,
we will put most of the notation in the Appendix for the convenience of the reader.

1.1. Stationary problem. We consider the stationary Boltzmann equation in a three-
dimensional smooth bounded domain 2 > x = (x1, x2, x3) and velocity domain R3 >
v = (v1, v2, v3). The stationary density function F(x, v) satisfies

(1.1)

v-ViF=e10[F. 3] in @ xR,

F(xo, v) = Fp(xo,v) for xo € 02 and v-n <0,
where n(xg) is the unit outward normal vector at xo € 92, and the Knudsen number
0 < & < 1 characterizes the average distance a particle might travel between two
collisions.

Here Q is the hard-sphere collision operator

OIF, G] :=/ /q(a), Iu—vI)[F(u*)G(v*)—F(u)G(v)]dwdu, (1.2)
R3 SZ
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with 1, := u+ o((v — 1) - ), v := v — ®((v — u) - ), and the hard-sphere collision
kernel g(w, [u — v|) := qo |w - (v — u)| for a positive constant g.
We intend to study the asymptotic limit of F(x, v) as e — 0.

1.1.1. Setup and assumptions The function spaces and norms used in this paper are
introduced in “Appendix B”. Assume the in-flow boundary data

1
Sb(x0, v) == p(v) + &2 (v)fp(xo, v) = 0, (1.3)
where © denotes the global Maxwellian

v
2

() = Qm) e T, (1.4)

and f(xg, v) is a small perturbation satisfying
00 ,00 =o(1). 15
|fb|W3, W;,,g,ﬁ ( ) ( )

Here the subscript y_ which denotes the in-flow boundary is also defined in “Ap-
pendix B”.

1.1.2. Normal chart near boundary We follow the approach in [79] to define the geo-
metric quantities.

For smooth manifold 92, there exists an orthogonal curvilinear coordinates system
(t1, t2) such that the coordinate lines coincide with the principal directions atany xg € 92
(at least locally). Assume 9€2 is parameterized by r = r(t1, ¢3). Let the vector length be
L; = ‘atir| and unit vector ¢; = L;lal,.r.

Consider the corresponding new coordinate system (¢, (2, n), where n denotes the
normal distance to boundary surface 0€2, i.e. x = r — nn. Define the scaled variable
n = &~ n, which implies % = %%. Denote ¢ := (1,1, t2). Finally, we define the
orthogonal velocity substitution for v := (vy, v, v,,) as

—V-n =y, V-Gl =, V-G =V, (1.6)
1.1.3. Asymptotic expansion We seek a solution to (1.1) in the form
Fx,v)y=pn+f+ fB +s,u%R =u ‘Hﬁ <8f1 +82f2) +,u%(8f13) +8pL%R, (1.7)
where the interior solution is
v =2 @) (efi (e, 0) + €2, 0) ), (1.8)
and the boundary layer is
P o) =t o)(eff @ o). (1.9)

Here f and f5 are defined in Sect. 3.1 and R(x, v) is the remainder satisfying

{v.vam—l/:[R] =S in Q x R, (1.10)

R(xg, v) = h(xg,v) for v-n <0 and xg € 02,
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where the linearized Boltzmann operator £ is defined in (A.2), & and S are defined in
(3.71)—(3.78).

Let P[R] be the projection of R onto the null space N of £ as introduced in Section
A. Then we split for some p(x), b(x), c(x):

lv|?> =5

R =P[R]+ (I —P)[R] := Mi(v)<p(x) +v-b(x)+ c(x)> + (I —P)[R].

(1.11)

Define the working space equipped with the norm

1 - _1 1
IRl ==&~ 2 [P[RIll 2 +& " (= P)[RIll 2 + IRl s +¢ 2|R|L§++‘H4R

4
LV+

1 1
+¢2 ||R||ng,+82 |R|L§f’g,§' (1.12)
1.1.4. Main result Let or be a sufficiently small constant depending on f; satisfying
or = 0 as |fplyz00ptee  — 0. (1.13)
y—0.0
Theorem 1.1 (Stationary Problem). Assume that 2 is a bounded C3 domain and (1.5)

holds. Then there exists g > 0 such that for any ¢ € (0, &q), there exists a nonnegative
solution §(x, v) to the equation (1.1) represented by (1.7) satisfying

IRl x < or. (1.14)

where the X norm is defined in (1.12). Such a solution is unique among all solutions

satisfying (1.40). This further yields

<ore?,  (L15)

_1 1 1 lv]?> — 3
U2F —u2 —epZ{prtv-ug+ > T

L2
where (p1 x),ur(x), T1 (x), p1 (x)) satisfies the steady Navier—Stokes—Fourier system

Vi(p1+T1) =0,
uy - Vyeur — y1Ayup +Vipr =0,

V. u =0 (1.16)
u - ViTi — AT =0,
for constants y; > 0 and y» > 0. The boundary condition
(01G0). wi(x0). 71 0)) = (® (0), u® (x0), T (x0)) (1.17)

is given by

] -3

TB(n,tz)) eN,
(1.18)

1
Poo (X0, V) = Poolt], 12, 0) i= 142 (pB(tl,t2)+v~uB(t1,tz)+
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which is solved from the Milne problem for ®(x, v):

0d
vy 5+ LI®] =0,
®(0, 11,12, 0) = fp(ty, 12, 0) for v, >0,

| (1.19)
/ vy 2(0)P(0, 1y, 12, 0)do = My,
R3

lim ®(n, 1,2, 0) = P (ty, L2, V).
n—>0o0

Here My (11, 12) is chosen such that ,oB + T8 = constant and fasz (uB . n)de =0.

Remark 1.2. In the fluid system (1.16), p; denotes the density, u; the velocity, and T;
the temperature. From (1.15), they are related to the perturbation around the global
Maxwellian ©. p; represents the pressure in the Navier—Stokes equations and can be
determined as a byproduct of solving (1.16). Further expansion to O (¢?) as in Sect.3.1
reveals that p; = po + T + p1T1, where pa, T» represent the next-order density and
temperature.

Remark 1.3. From (1.40) and Theorem 3.9 (which provide the bounds of f1, f> and le ),

we may deduce that for o7& small enough

< ore?. (1.20)

~

1 1 1 1
”M_fs—uf 2 S OTE Hu_fs—/ﬂ

L%,
For fixed ¢ > 0, we know that the solution § belongs to the desired function space
L*N Lgf’ﬁ so that the well-posedness of the Boltzmann equation is guaranteed (see [41]
and [26]). In particular, [41] merely requires a polynomial weight since a contradiction
argument is employed in the proof of the L* estimate. Unfortunately, such an approach
is inapplicable to the asymptotic problems and thus we have to resort to the argument in
[26] which requires a Gaussian-type weight.

Remark 1.4. The assumption that the domain  is bounded and C? is mainly used in
the construction of the asymptotic expansion and remainder estimates (see Sect. 3.1 and
3.2). In detail, in order to define the radius of curvature as in (3.9) and the boundary layer
le , we need at least C2. Further, in the remainder estimates, the bound of S> in Lemma
3.16 relies on 9, le , 0 IB, Bv” le , 8,,[1 le , 3% le, which requires one more order of
regularity and thus calls for C* domains. In addition, C* domain is a natural requirement
to make sense of (1.5), which is crucial for Theorem 3.9 to justify the well-posedness
of the asymptotic expansion. The assumption that €2 is bounded is also crucial in the
proof of Proposition 3.34. The justification of (3.267) requires the finiteness of domain
volume.

Remark 1.5. The similar result as Theorem 1.1 also holds in two dimensions. Actually,
most of the proofs are analogous or even easier (e.g. in (3.177), the assumption2 < r < 6
is necessary for 3D, but it may be relaxed to 2 < r < oo for 2D). We also refer the
reader to the discussion on this dimension issue in [76,80,81].

1.2. Evolutionary problem. We consider the evolutionary Boltzmann equation in a
three-dimensional smooth bounded domain 2 > x = (x1, x2, x3) and velocity domain
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R3 5 v = (vy, v2, v3) with time 7 € R,. The evolutionary density function §(z, x, v)
satisfies

e, F+v-ViF=¢10[F, 3] in Ry x Q x R3,
50, x,v) =Fi(x,v) in Q x R3, (1.21)
F(t, xo, v) = Fp(t, x0,v) for t € Ry, x9 € 92 and v - n(xg) < O.

We intend to study the asymptotic limit of §(¢, x, v) as e — 0.

1.2.1. Setup and assumptions Assume the in-flow boundary data
1
Sb(1, x0, v) := () + e (V)fp (2, x0,v) = 0, (1.22)
where fp (¢, x¢, v) is a small perturbation satisfying
o) =) »00 = I). 1.23
”fb”wl, W3, W}L,Q,z? 0( ) ( )
Assume the initial data
4
. 1 k3 [k]
it v) = u) +ep? i v) = p@)+ ) e @F v =0 (1.24)
k=1

where for some (p’(x), u/ (x), Tl(x)) satisfying ,01 +T! = constant, V, -u/ =0 and
V, X (uI -Veu! — yleul) =0:

[1] ) i i > =3,

fiix,v) =2 p ) +v-u(x)+ 5 T (x) ], (1.25)
20, v) = £‘1[ — v Vs [, fl[”]], (1.26)
e, vy = 27 = v vt i, 7]), (1.27)

and f!.4] (x,v) € L% N C! canbe an arbitrary function. We assume that §; (x, v) is a small
perturbation term satisfying

i H = o(1), (1.28)

1,
w OOLZ,Oﬁ

4
lilwioors, <)

k=1

Remark 1.6. Solving 9,§ from (1.21), our definition of §; and (1.28) guarantee that

e 208 | . =oe  oufi] o, =0. (1.29)
o,

e}
Lg,ﬂ

which will play a significant role in the remainder estimates. As a matter of fact, our
proof still holds with even weaker assumptions: for fi, f» introduced in (1.7)
1 1
e 208 g = 0011 g — 01 2] g | = 0D, (1.30)
0.0
Based on the analysis in [27], this weaker requirement is very sharp to guarantee that
1

Sorez.

the initial time derivative of the remainder || 0rR | =0 || [0
=ollLe,
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In addition, assume that f, and §; satisfy the compatibility conditionat?z = 0, xg € 92
andv-n <0:

b(0, x0, v) = fi (x0,v) =0, 9 f»(0, xo, v) = 0. (1.31)

Remark 1.7. The compatibility condition (1.31) guarantees that there will be no boundary
layer att = 0.

1.2.2. Asymptotic expansions We seek a solution to (1.21) in the form

T, x,v) = ,u+f+fB +8/,L%R = [,L+,LL%(8f1 +82f2> +;ﬁ<£f18> +8;1.%R,

(1.32)
where the interior solution is
Ftx,v) = u%(v)(afl (1, x,v) + 2 fo(t, x, v)), (1.33)
and the boundary layer is
B 1 B
P e ) = n ) (s 1.1, 0). (1.34)

Here f and f B are defined in Sect. 4.1 and R(¢, x, v) is the remainder satisfying

ey R+v-ViR+e 'LIR1=S in R, x Q x R?,
R(0, x,v) = z(x,v) in  x R3, (1.35)
R(t, xp,v) = h(t, xg,v) for v-n <0 and xg € 022,

where z, h and S are defined in (4.25)—(4.33).
As for (1.11), we split

2
R =P[R]+ (I —P)[R] = M%(v)<p(z,x) to-b )+

c(t, x)) + (I —-P)[R].
(1.36)

Define the working space equipped with the norm
1 _1 _
IRl = RNes2, +e72 RN 2 +e™2 PRI +&~" 1A= PRI
_1 1 _
13RIl zerz, +& 2 10:R I 2 +e 2 I10PLRIII 2 + 2" llor (L~ PRIl 3

1 1
—2 4
& 8 Rlgers, + |1 R|

+ 7 A= PRI oz + IR o,

LY,

1 1
+&2 IRl s, +67 IRl - (137)
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1.2.3. Main result Let or be a sufficiently small constant depending on f; and f; satis-
fying

or = 0 as Wfillwioorg, + I lymyamyton = 0. (1.38)
Theorem 1.8 (Evolutionary Problem). Assume that Q2 is a bounded C 3 domain and
(1.23), (1.28), (1.31) hold. Then there exists &g > O such that for any ¢ € (0, &9) and

any prescribed constant T > 0, there exists a nonnegative solution §(t, x, v) defined on
(t, x,v) € [0, F] x Q x R to the equation (1.21) represented by (1.32) satisfying

lRIllx < o, (1.39)

where the X norm is defined in (1.37). Such a solution is unique among all solutions
satisfying (1.39). This further yields

< ore?, (1.40)

_1 1 1 lv|? — 3
U2E —u2 —ep2{prtv-up+ 5 T

L2

where (,01 (t,x), w1 (¢, x), T1 (¢, x), p1 (¢, x)) satisfies the unsteady Navier—Stokes—Fourier
system

Vi(p1 +T1) =0,
ouy +uy - Viup — yrAyug + Vipp =0,

=0 (1.41)
0Ty +uy - ViTy — AT =0.
The initial condition
(010,20, 010,), 710,1)) = (" (¥), w' (@), T () (1.42)

is given by (1.25), and the boundary condition

(o1, x0) Wit 20). Ty 30)) = (071, x0), w1, x0). TP (1, x0))  (143)

is given by (1.18) solved from the Milne problem (1.19) for ®(t, r, v).
Remark 1.9. The implicit constants in the estimates (1.39) and (1.40) may depend on %.

Remark 1.10. If we strengthen the boundary data assumption (1.23) such that for some
constant Ko > 0

HeK"’fb H = o(1), (1.44)

1,00 73,00 py7 1:©
wheew Wy__g.l,

then by a similar argument, Theorem 1.8 still holds with ¥ = oo and the improved (1.40)
states that for some constant K € (0, K)

H‘eK’RH‘X <or, (1.45)

and

<ore2.  (1.46)
L2

2
vl =3
eK’{u‘éﬁ—ué—f?u%(pwv-uwl |2 Tl)}

Particularly, the constants in the estimates (1.45) and (1.46) are independent of <.
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2. Background and Methodology

2.1. Literature review. The hydrodynamic limit of the Boltzmann equation is a key
ingredient to tackle Hilbert’s famous sixth problem [48] on the axiomization of physics,
which has attracted a lot of attention since the pioneering work [49,50]. Most of the
important fluid models can be derived by asymptotic expansion with respect to the
Knudsen number ¢ (the so-called Hilbert expansion) at least formally. The rigorous
justification of this asymptotic convergence has been well studied in many different
settings (domains, scalings, notions of solutions) and it is almost impossible for us to
provide an extensive literature review.
The classical dimensionless Boltzmann equation is given by:

88, F+v-ViF=e 0I5, 51, @2.1)

where the Strouhal number § quantifies the rate at which the particle system undergoes
variation (relaxation time), while the Knudsen number ¢ measures the relative distance
a particle can travel between two collisions (scattering strength). These dimensionless
quantities play a crucial role in characterizing the scales of the problem. The fundamental
problem in hydrodynamic limits is to study the asymptotic behavior of F(z, x, v) in (2.1)
as & — 0 and/or 6 — 0.

Notably, the well-known von Karman relation [71] provides a useful guideline for
understanding the expected hydrodynamic limits in the context of kinetic theory. The
von Kdrmaén relation states that the Knudsen number (Kn) is proportional to the ratio of
the Mach number (Ma) to the Reynolds number (Re). Depending on the different com-
binations of Kn, Ma and Re, the solution to (2.1) may result in different fluid equations.

When Ma = O(1) and thus Re = O (¢!, the solution of the Boltzmann equation
will converge to a local Maxwellian which depends on solutions of the compressible
Euler equations. Such result was obtained by Caflisch [16] and Lachowicz [63], while
Nishida [68], Asano-Ukai [5] proved the similar results with a different approach. For
the convergence in the presence of singularities for the Euler equations, we refer to Yu
[83] and Huang-Wang-Yang [52,53]. The bounded domain case with boundary effects
was considered in Huang-Wang-Yang [54], Huang-Wang-Wang-Yang [51] and Guo-
Huang-Wang [42]. The relativistic Euler limit has been studied in Speck-Strain [73].
Notice that the local Maxwellian pg(z, x, v) = _ptx) exp (——lv_”(t’x)‘2> leads

QrT(t.x))?2 2T
1 1

to an additional term [(8t +v-9)u] |, 2R in the remainder equation (compared

with (1.10) or (1.35)), which greatly distorts the energy-dissipation structure. Due to
this intrinsic difficulty from the local Maxwellian and the possible singularity from
solving the Euler equations, most of the results above are local in time. Also, due to the
inapplicability of almost all mature techniques in the whole space R" or the periodic
domain T", the bounded domain case remains largely open.

When Ma = O(¢) and thus Re = O(1), the diffusion effects become significant,
and the solution of the Boltzmann equation will converge to a global Maxwellian plus
an O(¢g) perturbation solving the incompressible Navier—Stokes equations. We refer
to Bardos-Ukai [11], DeMasi-Esposito-Lebowitz [23], Guo [40], Guo-Jang [43] for
smooth solutions, and Bardos-Golse-Levermore [7-10], Lions-Masmoudi [66], Jiang-
Masmoudi [57], Masmoudi-Saint-Raymond [67], Golse-Saint-Raymond [38] for renor-
malized solutions. For more references and related topics and developments, we refer
to Villani [74], Desvillettes-Villani [24,25], Carlen-Carvalho [18], Arkeryd-Nouri [4],
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Arkeryd-Esposito-Marra-Nouri [2,3], Esposito-Lebowitz-Marra [31,32]. We also refer
to the review and survey by Saint-Raymond [70], Golse [36], Esposito-Marra [33], and
the references therein.

When Ma = O(g%) for 0 < @ < 1 and thus Re = O (¢*~!), the solution of the
Boltzmann equation will converge to a global Maxwellian plus an O (¢g) perturbation
solving the incompressible Euler equations. Besides the overlapped references as above,
we also refer to the recent development in Jang-Kim [56], Cao-Jang-Kim [17], Kim-La
[61].

There is a surprising new phenomenon arising from the hydrodynamic limits. When
Ma = O(e) and thus Re = O(1), if the density/temperature is O (1) instead of O (¢),
as Sone [71,72] predicted, a new type of mixed fluid system (the so-called ghost-effect
equations) emerges as the hydrodynamic limit of the Boltzmann equation. We refer to
the recent development [29,30].

Notice that the von Kdrman relation only dictates the behavior of Knudsen numbers.
The limiting fluid systems also depend on the scale of the Strouhal number § (which is a
word borrowed from the fluid mechanics). Unfortunately, there is no a priori knowledge
of what the “correct” scaling § = O (¢*) should be, but usually a properly chosen s
would balance the particle collisions and time variation such that neither of them is
negligible. For example, in the diffusion regime Ma = O(¢) and thus Re = O(1), if
» = 1, then the balance is achieved and the corresponding fluid system is the evolutionary
incompressible Navier—Stokes equations; if sz > 1, then the time varies too slowly and
the corresponding fluid system is the stationary incompressible Navier—Stokes equations.

In this paper, we will focus on the diffusive limit of the Boltzmann equation in bounded
domains, under both stationary and evolutionary settings with balanced Strouhal/Knudsen
numbers (i.e. Ma = O(g), Re = O(1) and § = O(¢)). Our work is closely related to
the recent development of L> — L% — L framework and the kinetic boundary layer
with geometric effects. We refer to Esposito-Guo-Kim-Marra [26,27], and Wu [76],
Wu-Ouyang [79-81] for the diffuse-reflection boundary. In particular, [26,27] justify
the L? convergence (for both convex and non-convex domains) relying on an improved
L% — L% — L™ framework without boundary layer expansion, and [76,79-81] show the
L®° convergence for convex domains with the boundary layer expansion. As [47,60,82]
reveal, the delicately designed boundary layer with geometric correction cannot attain
W 1% regularity in non-convex domains, and thus the L> convergence for non-convex
domains is far from reach. The case of specular-reflection and bounce-back boundary
remain largely open (except on half-space or channel domains), mainly due to the lack
of explicit kernel estimate to track the ¢ dependence [14,41]. We also refer to the recent
development [22].

Boundary effect and grazing singularity play a more significant role for the in-flow
boundary, since this is the only case that the leading-order boundary layer does not
vanish. The L> convergence requires W2 regularity of the boundary layer, which
is way too far from reach at this stage. As a matter of fact, even for L> convergence,
we cannot see any viable option to completely avoid the introduction of the boundary
layer expansion. As far as we are aware of, the best result for the in-flow case is the L™
convergence for unit disk or unit ball domains [75], but there is no clear path to extend
the techniques to cover general smooth convex domains, let alone the non-convex ones.

In addition, we include some recent papers on the diffusive limit of the Boltzmann
equation and related models [14,15,55,58]. We also list some recent developments along
L? — LP — L® framework [41,43-46,59,60,73,77,78].
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In this paper, we utilize a different approach and design a cutoff boundary layer
combined with a novel remainder estimates to obtain the L? convergence in general
smooth bounded (including convex and non-convex) domains.

2.2. Major difficulty. In the following, we will utilize the stationary remainder equation
(1.10) to illustrate the key ideas. Rooted from the basic energy estimate (via multiplying
¢~ R on both sides of (1.10) and integrating over 2 x R3 as in [27,75,79]) and the
coercivity of (L[R], R) in (A.5), we may bound || (I — P)[R]]| .2

1

1
e 2Rl +e" A =P)[R1ll 2 S o(1) [PIR]l| 2 + o7&~ 2. (2.2)

Then by testing (1.10) against functions V¢ - of with ¢ ~ A;lp, A;lc and V¢ : ZB
with ¥ ~ A7'b for o/, % defined in (C.1) and (C.2), we may in turn bound P[R] in
terms of (I — P)[R]:

IPIRII 2 < &7 2[RIz +& 1A= PRIl +ore ™2 (23)

Clearly, (2.2) and (2.3) lead to
_1 _ _1
e 2Rl +e M —P)[R]ll2 +IP[R]ll > S ore™ 2. (2.4

However, due to the negative power of ¢ on the RHS, (2.4) is insufficient to justify the
desired L? convergence

lim |[R]l 2 = 0. 2.5)
e—0

For the diffuse-reflection boundary in convex domains [27,81], the general strategy to
overcome the above difficulty is to expand the interior solution and boundary layer to
sufficiently high order, i.e. compared with (1.7), we redefine

Fx,v) = u+f+f3 +e;ﬁR = u+;ﬁ(sf1 +52f2+53f3> +,u%(ele +82f23> +8,LL%R.
(2.6)
The diffuse-reflection boundary condition implies that le = 0 and thus there is no

difficulties caused by the regularity of the boundary layer [75]. The extra terms &3 f3/ﬁ

and &2 sz p.% help improve the bounds of S and % in (1.10). Eventually, this leads to the
improved version of (2.4):

1 —
e 2[Rl +e  |A =PRIl + PRIl 2 S ore”, 2.7)

for some @ > 0 and thus (2.5) follows.
Unfortunately, this strategy does not work for the in-flow boundary, in which le is

B
not necessarily zero and ZfT‘n ¢ L°° [75]. Hence, we cannot expect to expand to sz
which satisfies the Milne problem

afB afB
vnﬁ+£[f23] ~ 8—1]17 (2.8)



279  Page 12 of 85 Z. Ouyang, L. Wu

The loss of le regularity makes it impossible [75] to justify the well-posedness of (2.8),
and thus (2.5) is not attainable.

On the other hand, in non-convex domains, as illustrated in a similar scenario for the
neutron transport equation [82], the boundary layer fIB is already problematic. Tradition-
ally, there are two approaches to design the boundary layer. If le is defined satisfying
the flat Milne problem [12] (which is designed for flat domains)

af e

Up _8}’)

+L [ le] ~0, (2.9)

. . . afE .
then the remainder R estimates requires the control of Ble which is not in L as the
n

previous paragraph stated. If le is defined using the geometrically corrected Milne
problem [75,76,80,81] (which is designed for curved convex domains)

B B B
Bfl e (1)2 8f1 >+R € <U2 8fl >+£|:le:| ~ 0, (2.10)

vyp— + —— v -
Toan o Ri—en\ " dv, ) —en\ 2 dvy,

where R; denotes the radii of principal curvatures, then the well-posedness of le is not
attainable in non-convex domains. This adds additional difficulty in the construction of
asymptotic expansion. In this work, we will utilize the so-called cutoff Milne problem
to define le as (3.51) which contains a crucial cutoff near the grazing set v, = 0. The
usage of this cutoff is explained in the next two subsections and Lemma 3.16, and the
rigorous well-posedness and regularity theory of le is given in Sect. 3.1.2.

2.3. Methodology: stationary problem. As the above analysis reveals, with the expan-
sion (1.7) for the in-flow boundary, the bottleneck of (2.4) lies in the kernel bound
[IP[R]]l;> and the source terms estimates for both (2.2) and (2.3). In this paper, we will
design several delicate test functions to obtain

e Rl +e~' IA= PRI S o(De™? PRIz +or,  (211)
and
e IPIRII 2 S &7 [Rlp +e 1A= PRIz +or, (2.12)
which introduce a crucial gain of half-order ¢ compared with (2.3):
e Ry, +e” A= P)[RIl L+ IPLRII 2 S or, (2.13)

and lead to (2.5).

Our key idea is a set of tricky combinations of weak formulations and conservation
laws to eliminate the worst term ¢~ |||(I — P)[R]|l| 12 on the RHS of (2.3) and greatly
improve the source term estimates in (2.2) and (2.3). We will illustrate more precise
statement of the argument in the following.

Energy Estimate Testing (1.10) against £ ~! R and utilizing the coercivity and orthog-
onality yield

e~ IR, +e 1A= PRI, S ‘8*1(5, R)‘ . (2.14)
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Here, the most difficult term in S is the normal velocity derivative of f]B :
5B

‘8—1 <f1’ p[R]>
vy

which relies on a key integration by parts with respect to v, and taking the full advantage
of the rescaling 7 = ¢ ~'n. Here the inner product (-, -) is defined in “Appendix B”.
Therefore, we arrive at

1
<! ‘(le’P[R]M <g! Hle H PRIl 2 S ore™ 2 PRIz,

|
LILy

(2.15)

87% |R|L%+ +e! - P)[R]||L% < 0T87% IP[R]ll;2 + or + nonlinear terms.
(2.16)

Estimate of p Test (1.10) against the smooth function ¢ = /,L% (v - ngo) with ¢ ~
A7 p yields

f Ry (-n)—(R,v-Veyr) = (S, ¥) (2.17)
Y

By oddness and orthogonality, we eliminate the worst contribution 8_1<,C[R], w) =0.

. . 1 .
Then a straightforward estimate for the source term <S , w) reveals the €2 gain:
_1 _1
e 2 lpl2 Se 2 IRl +or. (2.18)
+

Estimate of ¢ For smooth function ¢ ~ A;lc with (p!m = 0, we test (1.10) against

¢(Iv[> = 5)7 to obtain

1
~(Vep, g>x+f (pg~n=<¢ (|v|2—5) p,z,s), (2.19)
Q2
and against V¢ - </ to obtain

— K(Ax(p, c)x + £_1<Vx(p, g>
=(Vap- . h), —(Veg- /. R), + <v Yy (ngo . M), (I— P)[R]) +(Vag -, ),
(2.20)

where ¢ 1= / ,u%v |v|2 I —-P)[R].
R3
Therefore, adding e~ 1'x(2.19) and (2.20) exactly eliminates the troublesome terms
¢ Vyp. g) and g ! / @¢ -n whose presence leads to the worst ¢ =2 ||(I — P)[R]|Ii%

contribution. These new conservation laws will be the backbone of ¢ estimates. Hence,
. T
we obtain the £2 gain:

1 1 .
e 2lcllj2 Se2 |R|L% +ore (X = P)[R]| ;2> + or + nonlinear terms,  (2.21)
+ v
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. . . 1
which relies on the careful estimates for the source terms &~ ((p (Ivl2 — 5) w2, S) and

(fop -, S ) Here we will take full advantage of the cutoff boundary layer (see the key
bounds in Lemma 3.16) and Hardy’s inequality

e (w79t TN <o o5t )
<%f0 2 (1~ 5) et nf1>
L2 (o - 5)ul

2
Estimate of b
For smooth function ¢ ~ A;]b with V, - ¥ = 0 and }[I|8§2 = 0 (solved from the

Stokes problem), we test (1.10) against ¢ - v/ﬁ to obtain

<

~

Soret gl Sore? el (2.22)

(Ve v, p), — Vet ), +/ (pv+v-o)n=(v-wrs), @23
Q2
and against V¢ : % to obtain

—MAxy.b) +e7 (Vey, o)

= (V¥ - B.h), ~ (Vv -B.R), +<v . Vx(wa : 93), a— P)[R])+<wa . B, 5),
(2.24)

where @ = /3 M%(v ®v)d —P)[R].

Therefore, Hsdding e~ 1%x(2.23) and (2.24) exactly eliminates the worrisome terms
e Voy, ) e (Ve ¥, p), and ! /dsz (pl// +y - w) - n which yields the worst
e72||(I = P)[R] ||i% contribution. Then similar to ¢ estimates, after the careful estimates

for the source terms &~ !(y - ol S)and (Vi : B, S), we obtain 0(?) gain of RHS:
e 2 bl > <e2 IRIz_ +ore”" 1= P)[RI[ 3 +or + nonlinear terms. ~ (2.25)

These new conservation laws will sit at the center stage of b estimates.

L Estimate Due to the presence of the nonlinear term I"[R, R] in (1.10), we need
to bound L2 — L® — L norms for both P[R] and (I — P)[R]. After extending the above
techniques from L? to L°, we will employ the L® — L° framework to obtain

1 1 _
&2 IRl +27 IRl S IPIRIs +e~" | =PRIz +or.  (226)

One crucial step in proving the result above is the estimate of contributions related to

B
the normal velocity derivative —- 8 . In view of Lemma 3.16 and the grazing-set cutoff,

B
we may deduce % ~ ore!, Wthh leads to the bound (3.250).
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2.4. Methodology: evolutionary problem. Besides the difficulties and methodology men-
tioned in the stationary problem, we have an additional obstacle in the evolutionary
settings for the remainder equation (1.35). The L°° estimate

1 1
2 oo 2 o0 < o0
e IRz, +&2 IRz < IPIRILeLs
+e I =PRIz, +or IRIx +IRI% +or (2.27)

calls for the control of the instantaneous bound |[||P[R]]|| LLS > instead of the accu-
mulative bound [||[P[R]|l|;¢ from the energy and kernel estimates. Hence, we have to
carefully study the interplay of the accumulative and instantaneous norms and estimate
both L? — L° versions of them.

Accumulative Estimates Based on a delicate choice of test functions and the analo-
gous cancellation with weak formulations and conservation laws, we obtain the energy
estimate

-1 -
IRON 2 +e 2 IRl 2 +e YA =PRIl 2 S or IRl + IRIK + o7,

(2.28)
18R 2 + 72 ||3z1'?||L§+ +e" A= P)[3, Rl 2 < or IRy + lIRII + o7,
(2.29)
and the kernel estimate
e 2 IPLRIll2 S or IRIlx + IRl +or. (2.30)
e 2 1aPIR]I 2 < or IRIlx + IRI + o7 (2.31)

Notice that we need to bound both R and its time derivative d; R for the convenience of

instantaneous estimates. Notably, the d; R estimates calls for ||3; R(0)[l;2 < 8% which
is the key reason that our argument only applies to the well-prepared initial data (1.24),
and cannot include the discussion of the initial layer (as opposed to the case of transport
equation [69]).

In the analysis of evolutionary conservation laws, we also need a careful bound of the
time-derivative terms which provide a favorable sign and separate estimates of 9; Vi ¢
and 0, V¥ to close the proof.

Instantaneous Estimates We rewrite (1.35) by moving d; R to the RHS

v-ViR+e 'L[R] =S — &R, (2.32)

where we regard d; R as a source term in the stationary remainder equation. Hence, by
a similar estimate as the stationary case, we obtain the energy estimate

e ROz, +& 1A= PURION S or IIRIx + IR +or.  (233)
1= PRI s + |1t RE) 1y, SOr IRl + IR +or.  (2.34)

and the kernel estimate
IPLRI() 6 < o7 IRIIx + [IRII + o7 (2.35)

Notice that these estimates heavily rely on the accumulative L2 bound of 9, R in (2.29).
Then we may proceed to the L°° estimate (2.27) and close the proof.
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3. Stationary Problem

3.1. Asymptotic analysis.

3.1.1. Interior solution The derivation of the interior solution is classical. We refer to
[36,71,72] and the references therein. By inserting (1.8) into (1.1) and equating the order
of ¢, we require that

1y 1
0=2u"2Q"[. u? fi], (3.1)
1y 1 1 L 1
vV fi =272 Q% [, w2 o] + T2 Q12 fi, w2 f1, (3.2)
which are equivalent to

LIfil=0, 3.3)
vV fi+ LI =T 1, fil. (3.4)

Considering the further expansion, we additionally require
v-Vifa LN (3.5)

Hence, we conclude that

vl?

-3
5 T (x)), (3.6)

filx,v) = Mi(v)(m () + v (x) +

where (p1, uj, 77) satisfies the incompressible Navier—Stokes—Fourier system (1.16).
Also, we have

2 _
fH@.v) =u%(v><pz(x>+v-u2(x>+ v : 3T2(X))

2-3
+u%<v><m<v-u1)+ (i + 5 |u1|2)> + L7 v Ve i+ IR A]

(3.7)

where (p2, up, T>) satisfies the fluid system

P2+ T+ p1T1 =p1,

up - Vywp + (pjug +up) - Vyup — 1 Axup + Vipy = =y Vy - AxT) — Y4 Vi

(Tl (qul +(Vx“1)T)),

Vy-up = —uj - Vypy,

up - ViTr + (prup +up) - ViTp —up - Vipp =y (Vxlll + (Vxlll)T)2 +Ax(nTa+ V5T12)»
(3.8)

for constants ys, ya, y5. Here p1, po represent the pressures in the fluid equations and
they are related to the density and temperature in various levels of expansion. In the
equations above, we see that p; = p2 + T» + p1T;. If we further expand the interior
solution to O (&%), then p, will also be related to p3 and 7.
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3.1.2. Milne problem The normal chart defined in Sect. 1.1.2 was introduced in [29,30],
and was designed to split the normal and tangential variables for the convenience of
defining boundary layers. Under the substitution (x, v) — (x, v), we have (letting R;
be the radii of principal curvatures)

g L 1 , 8 9 1 , 8 i
v-Vy =—vp— — Vo — —vpu,, —— | — V. — — UpU, ——
TTe Moy Ry—enp\ Y vy T 9, Ro —en \ ?9vy, T2 90,
1 R10,,,r - 0,T Ro0,,,,T - 01 d

+ ( 10101 1 Vi Uiy + 20111 1 UL22>
LiLy \ L1(Ry —en) Ly(Rp —en) vy

1 R0y, - 0y T R10y,r-0yr o\ 0
+ Vy Vi + —— v |
LiLy \ L(Ry —en) Li(Ry —en) vy,

7—\:"lvtl 0 RZU!z 0 )
+ — + — ). 3.9
(Ll (R1—en)duyy  Ly(Ro —en) dip (3-9)

Well-Posedness and Regularity Now we discuss the well-posedness and regularity

of the Milne problem for G(x, v) (for generality, we use the notation G here instead of
® in (1.19)):

G
Un% + Ug - K[_g] = 07
G(0,t1,t2,9) = h(iy, tp,0) for v, >0, (3.10)
/ vy 2 (G0, 11, 12, v)do = M.
R3

Here the function v(v) and the operator K are defined via (A.2) and (A.3).

Remark 3.1. Inthe asymptotic problems, given /2 and M r»forfixed (11, 12), we are mostly
concerned with the solution G that satisfies

G, 0) = Goo(b) € N as n — o0, (3.11)

where G, can be determined from hand M - Since 1 € [0, 00), for nonzero G, it is
quite hard to define proper function spaces in (7, v) to describe G (e.g. the integral in 1
may become infinity). Thus we will first confirm the existence and estimates of G, and
then investigate the estimates of the difference G — Go. This is a well-known strategy
as illustrated in [6,21]. In addition, G, and G — G play different roles in the matching
procedure.

The following result is a generalization of [29, Theorem 3.1] and [6,21,75,79] when
we consider nonzero mass flux M s:

Proposition 3.2. Assume the boundary data h € thj"‘f; for some k € N and the mass
flux My e WK% are given. Then there exists a unique solution G(x, v) € LZ‘?79 to (3.10)

Lt
such that
G(x.0) = Goo(t1, 2, 9) + (2. ) = Goo 1,12, D)) (3.12)
where

2
|

Gooll1, 12, 0) = 2 <P°°(ll, ©0)+v-u>(y, 0+ i T, Lz)) eN, (3.13)
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satisfies

Goo —vanMf‘ M| (3.14)

LY., Y00 U N}

Also, ® := G — G solves
08
vna—+v(’5—K[(’5] =0,
n _
®(Oa 1, L2, t)) = h(Lla L2, U) - gOO([15 L2, U) = h("la L2, U) for v?] > 05 (3'15)
/ vy} @B(0, 11, 12, V)do = 0,
R3

and satisfies for some Ky > 0 and any 0 < s <k

Kon <5
Je* 6”% Sl + 1Ml (3.16)

and

’eK"”vﬂa,,(%HLg% + HCKO’;W?avn@HLE’CI9 5 |E|L;3_M + |VUE|L$° + My

ll lz
(3.17)
eKo’]a%@HLZ% N HeKonavtzQSHng, Sl Vol |Mf\L?OJ . (3.18)

agﬁ’
1 Lao
Y-

Mf) . (3.19)

‘] 2

il bl s

VQ19

0.0

|Mf|L°°

Proof. The estimates (3.16)—(3.19) with M s = 0 have been obtained in [29, Theorem
2.1] and [6,75,79], so it suffices to consider the case My # 0. Directly integrating over
R3 in (3.15), we obtain for any 5 € [0, o]

My = / vyt (0)G(0, v) = f o2 (0)G (1, v). (3.20)
R3 R3

In other words, the mass flux M f is a conserved quantity for all 7. Hence, G — vnu%Mf
satisfies (3.10)-type equation with zero mass flux. Then we may directly apply the zero
mass-flux results from [29, Theorem 2.1] and [6,75,79] to obtain (3.16)—(3.19). O

Remark 3.3. Suppose that # and M 7 are given as in Proposition 3.2. Following a similar
argument as the derivation of G, and the proofs of (3.14) and (3.19), we may easily
obtain that p>, T € W} . Denote u™ = (u°, u>®, u’), for the normal component
and the two tangentlal components. From the proof of Proposition 3.2, we know

My = /R 0yl (0)Gao () = U, (3.21)

and thus from an analogous argument to derive (3.14), we deduce thatu;°, up’ € Wt’i e
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BV Estimates For function f (5, v), denote the semi-norm

I fllgy == sup { // f(Vyo - ¥)dndo s ¢ € Cland [l < 1}, (3.22)
n,0

and thus the BV norm can be defined as

If gy == Al + 1 f gy - (3.23)

It is classical that W!-! < BV. The following result comes from [29, Theorem 2.16]:
Proposition 3.4. Fixing (11, 12), we have

Iv&ligy < 16l ,+/ |3v,;h!vndb+/
yoet v, >0 v

bl do+ |My|. (3.24)
0 n>0
FParticularly, the constant in the above estimate is uniform in (i1, (2).

Mass Flux In the hydrodynamic limit problems, usually the boundary data # is de-
termined a priori (see Sect. 3.1.4), but we still have the freedom of the mass flux M s to
manipulate. Next we plan to prove that the mass flux M y can be well chosen such that the
solution to (3.10) satisfies certain “desired properties” used in the matching procedure.
In particular, M s has an interesting interaction with p°° + T'°° defined in the expression
of G as (3.13):

Proposition 3.5. Suppose that h is given as in Proposition 3.2. For any given constant

P € R, there exists a mass flux My € Wtkl”‘fzo such that Goo in Proposition 3.2 satisfies

P, 12) + T (g, 12) = P. (3.25)
In addition, M y satisfies

[ Mg lyos < [Rlyyses +1PI (3.26)

ISR%)
Proof. We first solve a zero-mass flux problem for G:
G - _
vna—g+vg—K[g] =0,
_ on —
G(0,t1,12,0) = h(t1, 12, 0) for v, >0, (3.27)

/3 vyt G0, ¢1, 12, 0)do = 0,
R

Based on Proposition 3.2 and Remark 3.3, there exists a limit function

2
_ —3_
goo(tl,tz,t]):u;<ﬁoo+v-ﬁoo+ |v|2 TOO> eN. (3.28)

which satisfies

[P

wes + [T e S lyees (3.29)
1t

) s A%



279  Page 20 of 85 Z. Ouyang, L. Wu

If we already have P = p™° + T, then simply take My = 0. Otherwise, we consider
the following auxiliary problem for G

G~ .
v,,a—g+vg—K[g] =0,
~ o7
G(0,t1,12,0) =0 for v, >0, (3.30)
f vyt @G0, 11, 12, v)do = M.
R3

Based on Proposition 3.2, there exists a limit function

2
~ N —3.
Goo(0) = 2 <5°°+v-u°°+ vl 5 T°°) eN. (3.31)

Without loss of generality, we may consider (3.30) for fixed (i1, t). Multiplying G on
both sides of (3.30) and integrating over (7, v) € Ry X R3, we obtain

/ vn|§oo|2d0—/ vn|§(0)|2d0+[ / §<v§—K[§])dndn —0. (332
R3 R3 0 R3

When My # 0, direct computation reveals that QN cannot be in the kernel A/. Then based
on the proof of Proposition 3.2, we know

/ ” f §(v§ - K[&])dndn >0 (3.33)
0 R3

Clearly, from the boundary condition in (3.30), we know

- /Rs v, |G(0)] dv = —/ o IG(O)| do > 0. (3.34)

n

Hence, we must have
/ vy|Goodo = 20 (5% + T) = 28 ¢ (5% + T) < 0. (3.35)
3
Hence, when Mf # 0, we must also have p™> + T # 0. Since (3.30) is a linear

equation, we know that M ¢ is proportional to p> + T, i.c. there exists a nonzero
constant D such that

My =D (p>+T%). (3.36)
P — ,0 -7
Then consider the sum of (3.27) and %x(3.30), we know that the limit
function is
_ P—p®-T" ~
_°°+T°°)+—~- 54 T%) = p 3.37
(p o a T (» ) (3.37)

which satisfies the requirement. In this case, the mass flux is

P—p°-T" - =
M=l iy =D(P -7 -T7). (3.38)
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Hence, from (3.29), we know My € A satisfying

L1082

[M sl < 0

AN

wheo + [P (3.39)

1.t
0

Remark 3.6. Suppose that & is given as in Proposition 3.2. From Remark 3.3 and the

proof of Proposition 3.5, we know that u° W/j”‘ff. Further, based on Remark 3.3, we
have u™ e W/j’ff.

The following corollary tells us what the “desired properties” are and confirms the
existence of M.

Corollary 3.7. Suppose that h is given as in Proposition 3.2. There exists a constant
P € R and a mass flux My € WK% such that Goo in Proposition 3.2 satisfies

L1,t2

P, ) + T (1, 10) = P, (3.40)

and
MydS =/ u°dS, = 0. (3.41)
02 R

In addition, M y and P satisfy

M [[yyee < [l pes (3.42)
and
|P| = ||p™ + T°°||L?10L2 < |Eywlkl,olg (3.43)
Proof. Based on the proof of Proposition 3.5, in order to guarantee that
M ds =/ D(P _5%® T°°) ds, =0, (3.44)
a0 a0
we must take
- (500 +T°°) ds (3.45)
10€2] Joq o '
Then the desired result follows from Proposition 3.5. O

Remark 3.8. Suppose that / is given as in Proposition 3.2. From Remark 3.3 and Remark
3.6, we know that G, constructed in Corollary 3.7 satisfies

(3.46)

[0 s + 0]

be whes F |7

s S Milyps
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3.1.3. Boundary layer Let ® be solution to the Milne problem (1.19) with M ; deter-

mined from Corollary 3.7 with h = f». Based on Proposition 3.2, Remark 3.8 and (1.5),
we know that there exists
2
. 1 B B |U| -
Do (tr,t2,0) :=pu2 [ p7(t1,12) +v-u” (1, 12) + 7

T8, lz)) e N, (347)

satisfying

[ . sor. 1PI=|pf+TE| <o, (3.48)

) )

and for some Ko > 0, @(x, ) := P (x, v) — Do (11, t2, b) satisfies

- Kongp < o <
Ooclizy, *+ [59] . Slhlizz ,, Sor. (3.49)
Let x (y) € C*°(R) be smooth cut-off functions satisfying
_ iyl =1,
() = {0 o2, (3.50)

and X (y) = 1 — x(y). We define a cutoff boundary layer le . Denote
B @0 =7 (7 vy ) xem B, v). (3.51)
We may verify that fIB satisfies

af g
U'? 73 7

el — — _
# £ [ ] = v o KT 4 g (Y(e_lvn)Kg[Q] - K[w—lvn)cb]),

(3.52)
with
FEO 0,0 =7 (2710,) (b1 2, 0) = P12, 0)) for v, > 0. (3.53)

Also, based on (3.51) and Proposition 3.2 as well as (1.5), we know that for some K¢ > 0
andany 0 <s <3

s B s B
d eKoﬂu

< or. (3.54)
L5

~

=)
Lg,z?
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3.1.4. Matching procedure Considering the boundary condition in (1.1) and the expan-
sion (1.7), we require the matching condition for xp € Q2 and v - n < O:

nw? (fi+18)

= . (3.55)

v-n<0

Hence, it suffices to define

B B

plo=of | =uf —TE. (3.56)

T )
a0 Fle} Fle}
Therefore, from (3.54) and (3.56), we know the boundary estimates
Ip1lyy3ee + il .00 + [ T1l 300 S 07 (3.57)

In particular, we know

_ BB _
(p1+T1)‘ag_p +78 = P, /Q

(Vx~u1):/ (u ~n)=/ My =0. (3.58)
a2 a2

By standard fluid theory [13,19] for the steady Navier—Stokes equations (1.16), we have
for any s € [2, 00)

101l + Iy + 173l o < o7 (3.59)

Then for f>, there is no corresponding boundary layer, and thus we may simply take

,02‘39 l12 2= ol / Vior), T . (3.60)

By standard fluid theory [13, 19] for the linear steady Navier—Stokes equations (3.8), we
have for any s € [2, 00)

lo2lly2s + o2l s + 1 T2lly2s S o7 (3.61)

Theorem 3.9. Under the assumption (1.5), there exists a unique solution (p1, a1, T1) to
the steady Navier—Stokes equations (1.16) and (p2, a2, T>) to (3.8) satisfying for any
s € [2,00)

lo1lys + Mutllyzs + I Tillyss S o7 (3.62)

lo2lly2s + u2ll s + 1 T2lly2s S o7 (3.63)

Thus, we can construct f1, f» and le such that

35700+ 1 <or, 3.64
Willygons,, +1l st Sor (3.64)
Iflyzops +102l o, Sor (3.65)
‘ Wi Lmﬁ
and for some Ky > 0 andany 0 < s <3
B B
ST eI ol Il <o Geo)
LY, oy a1 ~
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3.2. Remainder equation. Inserting (1.7) into (1.1), we have

vV, ([,L+f+fB+8/,L%R) = 10" |:pL+f+fB+8/L%R,/L+f+fB+8M%R]
(3.67)

or equivalently

vV R =267 2 0 [/x, /ﬁR] = —slu2 (v - Vy (f+fB))+/f%Q* [H%R,M%R]

+2e7 2 0 |:f+fB,[L%R:| el 0* I:,u+f+fB,pL+f+fB:|. (3.68)
Also, we have the boundary condition
(M+f+f3+su%1e)‘ — o+ ey, (3.69)
which is equivalent to
R =f—e'u 2(f + 7). (3.70)

Therefore, we need to consider the remainder equation (1.10). Here the boundary data
is given by

h= (— e +X(e*‘v,,)6)‘ , 3.71)
]/,
and
S:=S1+S8+853+84+ S5+ Se, (3.72)
where
S| :=—¢v-V,fa, (3.73)
1 afe afB 1 afB afB
Sy = (vtzlL - vnv”L> + (vlzzL - vnvlzi> (3.74)
Ri1—en v, vy, Ry —en vy, vy,
_ 1 (Rt der 0 Radnl - 0or o afg
LiLy \ Li(Ri—en) "% LyRy—en) 2) du,
L (Radpr-dyr o Ridur - afe
LiLy \ Ly(Ry—en) "7 Li(Ri—en) ') dv,
Li(Ri—en) du  La(Ra —en) diz
1y Oxen) = — _ —
we o (e ) D e (K [@]xe v xten — K[@x e v xten]).
1 1 1 1
S3:=2u"2Q0" [;ﬂfl +eu? f, lﬂR] =2I'[fi+ef2, R, (3.75)
1 1 1
Sy=2umb 0 (Wb ff i R] =21 [ £E.R]. (3.76)

Ss imen2 0% 1 fo u @ fi +ef) |+ 20710 [ @f1 +20f+ £F). 1 £E] BTD)

m
=T [f2.2fi +efal +20 251 +2ef + £, ],
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Se =2 0" [M%R,M%R] — I'[R, R]. (3.78)

In particular, we may further split S»:

1 afB 1 afB
g 200 L (%) 3.79
TR - en (v“ vy > Ry —en (vl2 vy (3.79)
1 afB 1 afB
Sop = — —(v,,v[l —1> — —(vnvtz—] (3.80)
Ri—¢en vy, Ry —en 0V,
b (Ridugr-dor 0 Radyel 3ot o aff
LiLy \Li(Ri—en) "7 Ly(Rp—en) ) v,
1 (Rzé)tmr- our o Riduor a“rv2> afe
LiLy \ Ly(Ra—en) 7 Li(Ry—en) ) dv,
R afB R afE ] _
— 1Y L+ e O +e o x(e oy x(en) D,
Li(Ri—en) oy La(Ra—en) 0z 0
Se == (K[®] xe ™ vpxenm — K[@xe vpxen]). (3.81)

Here, Sy, will be the most tricky term in the later analysis since it involves the normal
derivatives of the boundary layer le . Additionally, the non-local term S, needs some
special handling. Lemma 3.16 will be devoted to these issues.

Lemma 3.10 (Green’s Identity, Lemma 2.2 of [26]). Assume f (x,v), g(x,v) € L2(Qx
R andv-Vif, v-Vig e L2 (Q xR} with f, g € Li. Then

(v-Vifig)+(v- Vig, f):/fg(v-n). (3.82)
14

Using Lemma 3.10, we can derive the weak formulation of (1.10). For any test
function g(x, v) € L3(Q x RY) with v - V, g € L*(Q x R?) with g € L2, we have

/ Rg(v-n) —(v-Vig, R)+e (LIR], g) = (S, g). (3.83)
14

3.2.1. Estimates of boundary and source terms The estimates below in Lemma 3.13
to Lemma 3.21 follow from analogous arguments as in [29, Section 4]. To keep this
article self-contained and avoid the notational confusions, we will include brief proofs
highlighting the key steps. Particularly, the bounds heavily rely on the estimates presented
in Sect. 3.1. In the following, assume that g is a given function and 2 < r < 6. In what
follows, fR3 denotes integration with respect to the measure dv.

Preliminary Estimates Here we present some lemmas regarding I”.

Lemma 3.11 (Lemma 2.3 of [39]). Let I'[ f, g] be given by (A.6). We have

1 1
(Fler, g2, g3), | 5{ (f v |g1|2)2 (f |g2|2>2
R3 R3
1 1 1
+(f vlgzl2)2</ |g1|2)2}(/ v|g3|2>2, (3.84)
R3 R3 R3
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1

2
I(Ilg1. 821, 83), [ ,> S(sup|vigs| )min{sup( [ lg11*) lgall.2.
L
x X,V x R3

2
sup(f |82|2> ||g1||Lz}, (3.85)
x R3

1
2
(g1, g21g3 12 S(suplvggl)min { sup (/ |81|2> lgallz2 .
X,V X R3

5 2
sup </ |22 ) llgillz2 } (3.86)
X R3

Lemma 3.12 (Lemma 5 of [41]). Let I'[ f, g] be given by (A.6). We have

! < o -
s el| S sl ezl - (3.87)

o N~
0.9

Estimates of/, h
Lemma 3.13. Under the assumption (1.5), for h defined in (3.71), we have

3
|hl2 Sore, |hl 2 Sorer, |h|pe . <or, sup/ [al|v-nldv < ore.
- LV3— r= 11,02 Jun<0

(3.88)

Proof. Note that from Theorem 3.9, it holds that | f2|; , < ”fz”Wl,xLool, < or. Then
Y,0.v o,
we know

< <
efalix ,, Selflix,, S ore. (3.89)

2
Then we obtain the similar estimates for L)ZL and L},{ norms.
On the other hand, noticing that ‘5| 100 S or from (3.49) and Proposition 3.2, the
v,0,0

cutoff x (8_11),]) implies a restriction to the domain |v,,‘ < ¢, and the y norm has an
extra vy, we have

3 < ore?, (3.90)

‘X (sflv,,)E
LV

and the L}z,_ estimate follows when r = 3, and

/ ‘X (eilvn) 5‘ lvp| dv S e. (3.91)
v-n<0

Then our estimates follow. |

Remark 3.14. We may directly compute that for xg € 92

b(xo) - n =/ R(xo)u%(v-n)dv=/ h(xo)u%(v.n)dwf R(xo)ie? (v - n)dv.
R3 v

v-n>0
(3.92)

-n<0

Estimates of S
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Lemma 3.15. Under the assumption (1.5), for S defined in (3.73), we have
|22 Sore. ISl Sore. ISiliy, < ore. (3.93)
Also, we have the orthogonality property
(12,81), =0, (w7, 81), =0, (u? PP, ), =0. (3.94)

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and

Vi follee, S M2l 2 2, < or, (3.95)
which is derived from Theorem 3.9. Also, the orthogonality property follows from
(3.5). O

Estimates of S»

Lemma 3.16. Under the assumption (1.5), for S defined in (3.74), we have

1S2lls + 0 (S26 + S20) 11 + |7 (S26 + $20)| | S ore, (3.96)
|2 52|, +11n 26+ S20)ll 2+ |1 (S2+ $20)| |, S o, (3.97)
IS2lir + 1 Sa+ S20)ll e + |07 S+ S20| | Sore?™l, (3.98)
15211, rary +lm (S2p + Szc)”L{llzL-luLi S ore. . (3.99)
and
1526 + Sacllr 13, + 117 (S2 + $20)ll g 11, S orer (3.100)
(202 &)+ 120, &)1+ |20 &)l S [ @2 SE| 2, IVugller S ore'™7 IVugllr -

(3.101)

Also, we have
1211, < ore™. (3.102)

Proof. We start from the L" estimate (3.98), and then (3.96) and (3.97) will naturally
follow. We first focus on S5,. Notice that

f — — N — (na U)
o 00 =7 (70 ) e @00 47 (¢ ) e AU ERTE)
n
From Propositions 3.2 and 3.4, we have
[ _ I®(n, ) 3P (n, )
x(e 1vn)x(sn)a— Sel o—s
U | Un |
oV 0,0
dd(n, v
<e !, 7(8—11),7))((577)L <1 (3.104)
av?? L]
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-1

Then by change of variable n = ¢~ 'n, we have

(// e % (67 ) x(em@(n, D)‘,>r
6! (// X (e B, v)] )7 <ol
QxR3

1
r),

e "% (e vy) x (em)@(n.

and

7(5—11),7) )((877)M 7(8‘%) x(é?n)M

vy L vy
a3 v) | a0 0|\
— — n’ — _ n7
<([ren ] L) e
n LZ% QxR- n
1
S(e7 Ve < gl (3.106)

Hence, we know || S, |7 < 8%_1. Similarly Sy estimates follow from Proposition 3.2
and Proposition 3.4.
Noticing that

o1 4 _ — -~ —
Sac =& u T x(en) (x(e Loy K[®) - K| x (e 1v,7)<1>]>, (3.107)
which has one less e-power but contains an g-size cutoff x (s_lv,,). Clearly, the term

X (7! v K [®] can be estimated by a similar argument as (3.106). Then noticing that

by the change of variable w, = s_lu,,

/1‘@3 ’K[X(e_lv,,)a]‘dv = /R3

< sup/ |k(u, v)|dv
u JR3

/ k(u, v)x (¢~ ) @ (w)du| dv
R3

/ x (e ) @ (w)du
]R3

SV x(e ) @wydu| < e (3.108)
]R3

we can bound K X(e”v,,)@] by a similar argument as (3.106). Hence, we complete
the proof of (3.98).

Noting the rescaling 7 = £~ !n and the cutoff X(s_lv,,), using Proposition 3.2 and
Proposition 3.4, (3.99) and (3.100) follow from substitution in the integral.

i
<3v1 ,g>.

Then we turn to (3.101). The most difficult term in |(S2,, g)| is Note that

B
% = 0 for |v,,| < ¢ due to the cutoff in le . Integration by parts with respect to v,
implies
0 0 0
o R R
8v,7 vy | L7
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0
From (1.6) and a—x = 0, we know the substitution (n, 1, t2, v) = (n, (1, t2, v) implies

Uy
—337” n =1, _3870 ¢ =0, — - ¢» = 0. Hence, we know ‘ < 1, and thus
n Up
;Tg,, < |V BBUUW < |va|.Hence, we know that
ofi 1
<a n,g> S| #2) ivegl, e Soret 1l 5 G110)
Finally, (3.102) holds due to the cutoff . |

Remark 3.17. Notice that the BV estimate in Proposition 3.4 does not contain exponential
decay in 7, and thus we cannot directly bound 1S5, and %S5, Instead, we should first
integrate by parts with respect to v, as in (3.101) to study le :

7]+ neel, |, sore™, (3.111)
78], + || Sore., (3.112)
L1L2L L} LlLZL L}
1
1e L,L1+an1 Lot S OTET (3.113)

Estimates of S3

Lemma 3.18. Under the assumption (1.5), for Sz defined in (3.75), we have

[(S3, 8)y| S or (/ v|g|2>2 </ v|R|2>2, (3.114)
R3 R3

and thus
(53 &)1 S or lglzz IRl 2 < o llglza (IPTRIIL + 1A= PRIz ) . (3.115)
Also, we have

ISsl2 Sor IRz, [v7's| . Sor IRl - (3.116)
0.0 '

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and noting the
fact that

< : <
i, + 12l S WAl + 12yt Sor. (3.117)

derived from Theorem 3.9. m|
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Estimates of Sy

Lemma 3.19. Under the assumption (1.5), for S4 defined in (3.76), we have

; N :
sl < ([vier) ([ole[) ([ome) s

and thus
[(Se. &)1 Sor gz IRl a S or Iglzz (IPIRI2 + 1A= PRI ). G119)
152,901 Sor | ], Ushezs, 1RIL; < ore® lgllzs, (IPLRIIL: + 10— PRIz )
(3.120)
Also, we have
Ial2 S or IRz |1 Sor RNz, (3.121)

Proof. The desired estimates follow from Lemma 3.11, Lemma 3.12, and the fact that

< ope?, (3.122)

~Y
L

B B
|1, sor 1o

o N
Lg_ﬂ

derived from Theorem 3.9. O
Estimates of S5

Lemma 3.20. Under the assumption (1.5), for S5 defined in (3.77), we have

1
2
(S5, 8)y| S or (/ﬂ;3 vIg|2> , (3.123)

and thus
1
(S5, &) Sore? ligle2, (S5, 8)l S ore IIgIILZfﬁ . (3.124)
Also, we have

S or. (3.125)

~

1 -1
18512 S ored, [v'ss|
LOC
0.0

Proof. Similar to the proof of Lemma 3.18 and Lemma 3.19, this follows from Lemma
3.11 and Lemma 3.12 with the help of Theorem 3.9. O

Estimates of Sg

Lemma 3.21. Under the assumption (1.5), for S¢ defined in (3.78), we have

%
|(S6, &)u] < </R3 v |g|2) </R3 VIRIZ), (3.126)
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and thus

(S5 &)1 S llgllza (1= PRIz [ Rle, + IPIRIL IPIRIILs ) S Nglzz IRI
(3.127)

Also, we have

156122 S (1@ = PRI IRl sz, + IPLRIILs IPLRYI e ) S IRI

(3.128)

—1 2
So| . SIRIZ= - 3.129
[v='s 1, SIRIZ, (3.129)
Proof. The estimate (3.126) follows from Lemma 3.11. Then using Holder’s inequality
VR3 VRA=P)R]| SIA=P)RII.2 IRz, (3.130)
[ v IPLRIP < IPLRINLs PRI e (3131

we obtain (3.127). Then (3.128) follows from duality. Finally, (3.129) holds due to
Lemma 3.12. o

3.2.2. Conservation laws This section is dedicated to the proof of the crucial conserva-
tion laws via a delicate design of a family of test functions.
Classical Conservation Laws

Lemma 3.22. Let R be the solution to (1.10). Under the assumption (1.5), we have the
conservation laws

vx-b=<;ﬁ,s> <m S) , (3.132)
Vop+V, w = (Mz S> <u > , (3.133)
SVx-b+Vx-g=<|v|2,u7,S> <|v| ul, 32) , (3.134)

where @w ::/ /ﬁ(v@v)(I—P)[R] andg::/ /ﬁv|v|2 I —P)[R].
R3 R3

Proof. We multiply test functions u% , U ,u%  v]? u% on both sides of (1.10) and integrate
over v € R3. Using the orthogonality of £ and Lemma 3.15 (which comes from (3.5)),
the results follow. O

Conservation Law with Test Function V, ¢ - &/

Lemma 3.23. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ¢(x), we have

- K<AX(/J, c>x + 8_1<Vx(p, g>
=(Veg . h), —(Veg- /. R), <v Vx(Vx(p Qf) (I—P)[R]>+(Vx<p»;a?, s).
(3.135)
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Proof. Taking test function g = V, ¢ - o in (3.83), we obtain

/}/(Vx(o.yi)R(v.n) (o V(e 7). R LIRL Vi o) = (V- 7. 5).
(3.136)
Using the splitting (1.11), oddness and orthogonality of <7, we deduce
— k{Acp. ), +e 7! (Vap. g)
- —/y (Vg - ) R@ )+ (v Ve(Vep - ), A= PRI} + (Vg - 7, ).

(3.137)

Notice that
R1, =R1,, +hl,_, (3.138)
we have (3.135). |

Conservation Law with Test Function V¢ :

Lemma 3.24. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
Sfunction v (x) satisfying Vy - ¥ = 0, we have

— Ay, b) +e  (Vey, )
= (Vay - Bh), —(Vew - 2. R), + (v Vo(Vew: 2), A= PRI
+(Vay : B, S). (3.139)
Proof Taking test function g = V. : 2 in (3.83), we obtain

/ (Vv : B)R(v-n) = (v Vi (Vawr : 2), R)+ 7 (LIR), Vv : )
' =(Vay : B, 5). (3.140)
Using the splitting (1.11), oddness and orthogonality of %, we deduce
_ <v : vx(vxw : %’), vt .b)+e*‘(vx¢, )

=_[y (Vew - )R-+ (v- Ve (Vaw : B), A= PR+ (Vowr B, 5).
(3.141)

Here, we may further compute
1 R
<v : vx(vxw : %), vt -b> =(Z -V, (Vv : B),b), (3.142)
and use V, - ¢y = 0 to obtain

adi Y + (@ +A)31Yn + (@ + A)013%3 + A0 Y1 + A033Y
R3

BV (Ve - B) = (Olazzlﬂz + @+ A)012Y1 + (@ +A)023Y3 + X011Y2 + Ad33Yn2
03393 + (@ + A)313Y1 + (@ + A)33V2 + A011Y3 + A00nY3
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(@ —a@ — 2011y + Aoy + 20339 Ax
=|(@—a— Aoy +2011Y2+A333%2 | =A | Ax2 | .
(0 —a —A)d33¢3 + A011Y3 + A022Y3 Axyrs
(3.143)
Here, we use the fact that & = T( [v] )@ for some function Y that only depend on |v|

(see [37, Lemma 14]). The constants «, o and A are defined in Section C. Then direct
computation shows that « — o = 2A: fori # j

a—&—2k=A3T(|v|)((v?—%Ivlz)z— ( ?—%|v|2> <vf—%|v|2>

— 2vi2v]2-)u(v)dv

- /R} (Il )(v;‘ - 3u,.2v}),,c(v)du. (3.144)

Then we use the spherical coordinates
v; = |v]sin 6 sin ¢, v; = |v|sin@ cos ¢, (3.145)

to estimate

o0 g
a—a—z,\=/ |v|2T(|v|)u(|v|)d|v|/ sin’ 0do
0 0

2
/ (sin4 ¢0—3 sin’ 10 cos? go)d<p =0. (3.146)
0
Using (3.138), we obtain (3.139). o

Conservation Law with Test Function V¢ - o7 + 5_190( [v |2 — S)M%

Lemma 3.25. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
function ¢(x) satisfying g0|3g2 =0, we have

—(Axg.c), = (Veg - h), —(Vag - K], +(v-Vi(Veg - ), A= P)R))
+e*1<<p (|v|2—5> M%,S>+<nga~d, ). (3.147)
Proof. From (3.132) and (3.134), we have
Vx-§=<<|v|2—5),u%,S>v. (3.148)
Multiplying ¢ (x) € R on both sides of (3.148) and integrating over x € £, we obtain
1
Ve, g)x+/m<pg-n=<<p (|v|2—5),u,s>. (3.149)

Hence, adding £ ~! x(3.149) and (3.135) to eliminate &~V , S), yields

— K(Ax(p, c)x +e! /z;sz @S -n
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= (Vep - h), —(Veg - K], +(v-Vi(Veg - ), A= P)R))
+e—1<¢ (|v|2—5),u%,S>+(ng0~4a/, ). (3.150)

The assumption go| 9o = 0 completely eliminates the boundary term g1 / 9 S -1 in
(3.150). Hence, we have (3.147). |

. . . 1
Conservation Law with Test Function Vo : Z+ ¢~ 1y - v 2

Lemma 3.26. Let R be the solution to (1.10). Under the assumption (1.5), for any smooth
Sfunction W (x) satisfying Vy - =0, ¥ |3Q = 0, we have

(A, = (Vv Bh), —(Voy: BR), + (v Vi(Vey ), A= P)RY)
. <¢ oul, s> +(Vey: B, S). (3.151)

Proof. Multiplying v (x) € R? on both sides of (3.133) and integrating over x € 2, we
obtain

~(Vy -y p), — (Vavr, o), +/M2 (pw+w : w) n= (w ou?, S>. (3.152)

Hence, adding &' x(3.152) and (3.139) to eliminate ¢ ~/(V, ¢, ) _yields

— MAB) = (Ve -y, p), 6 /m (pv+w o)
= (Vay: B.h), — (Vb 2 R), +(v-Vo(Vew : 2), A= P)R])
4o <¢ Cvu?, S>+(wa . B, ). (3.153)

The assumptions V- = 0and ¢|,, = Oeliminate eV, -9, p) ande™! [io (pl/f+
- w) -n in (3.153). Hence, we have (3.151). o

3.3. Energy estimate.

Proposition 3.27. Let R be the solution to (1.10). Under the assumption (1.5), we have
1 —
e 2[RIz +e |A=PIRIlL Sor IRIx +RIF +or. (3.154)
Proof. 1t suffices to justify

_1 _ _1
e 2RIz, +e  IA=P)IRIIz Sore 2 PRIl +or [RIx +[IRI% +or.
(3.155)

Weak Formulation Taking test function g = ¢~ 1R in (3.83), we obtain

-1
87 R*(v-n)+e *(L[R], R)=¢&"'(S, R). (3.156)
14
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Notice that

flez(v.n)zure@2 —|RI3, =IR3, —Ihl7, . (3.157)
y e 7 2 v
and
(CIRI1. R) Z II(I—P)[R]IIi%. (3.158)
Then we know
e~ IR, +e 7 1A= PRI, N‘ s, R)‘+e_1|h| . (3.159)

Using Lemma 3.13, we have
eV IRIZ, +eT 1A= PRI, S [e7U(s. R)| +ore. (3.160)
Source Term Estimates We split

e (S, R) =& (S, P[R]) + (S, M — P)[R]). (3.161)

We may directly bound using Lemmas 3.15-3.21
[e7!(s, A= P)RY| S &7 ISl2 1A~ PRI

< (o) +or)e ? A= P)RIIIZ, +or IRI% + I RIk +or-

(3.162)
Using the orthogonality property of I", we have
e 'S, P[R]) = ¢~ !(S1 + S5, P[R]). (3.163)
From Lemma 3.15, we know
[ (s1 PRI S &7 IS1l12 IPIRII > S o7 IPIRIZ, +or.  (3.164)
Also, from Lemma 3.16 and Remark 3.17, we have
e (S5, P[R]) = e~ !(Saq, PIR1) + £ (S + Sac, P[R]). (3.165)
After integrating by parts with respect to v, in the S, term, we obtain
e s PRI < o7 (AP, 180+ Saclizey ) IPLRI .5
Sore™? PRIz S ore ™ [PLRIIZ, + o7 (3.166)

In total, we have

6718, R)| < ore ™ IPLRIIIZ: + (o(1) + 07)e ™2 A = P)RII7; +or [ RIX + [ RI + o7
(3.167)
Synthesis Inserting (3.167) into (3.160), we have

Sore VPRI, +or IRI% + IRk +or.
(3.168)
Then we have (3.155). d

e IR, +e |- PRI
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Corollary 3.28. Let R be the solution to (1.10). Under the assumption (1.5), we have
1
I =PRI o+ |t R| s < or IRl +IRIG +or. (3.169)
Proof. By interpolation and Proposition 3.27, we obtain

1 2
[ @ =PRI o < |@ =PRI L[ A= PRI s,

wIN

<orIRllx + IR +or,
(3.170)

1 1 1
< (or IR+ IRIE +or ) (7 I RN, )

1 1 1
4R <RI, IR}
iRl SIRIL IRl
i 1 1 % 2
< (or IRIG +IRIG +or) (e* IRz, )" Sor IRIx +IRIE +or.
(3.171)

Then the desired result follows from (3.170), (3.171). O

3.4. Kernel estimate.

3.4.1. Estimate of p

Proposition 3.29. Let R be the solution to (1.10). Under the assumption (1.5), we have

_1
e 2 |Ipli2+1ple Sor IRIx + IRl +or. (3.172)

Proof. Tt suffices to show for2 <r <6

2
s

1
Ipllyr S |uAR| 2 +orer. (3.173)
L
Weak Formulation Denote
1
Y, v) =12 @) (v Vep)), (3.174)
where ¢(x) is defined via solving the elliptic problem
~Awp=plpl ™ in Q,
{(p:O on 0%2. (3.175)
Based on standard elliptic estimates [62], there exists a solution ¢ satisfying
Wl oo SN0l S NP 1PI 72 S I (3.176)

0.V

Based on Sobolev embedding and trace estimate, we have for2 <r <6

. < rfl
¥l 2 +|1//|Ly2r%5 Slellzr - (3.177)
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Taking test function g = v in (3.83), we obtain
/ Rydy — (R, v- Vo) = (S, ¥). (3.178)
Y

From Lemma 3.13, we know

/Rwdy < / Rydy| + / hwdy‘sluiRi y Wl e bl g W1
v Ve - Ly Ly~ Ly Lyt
L 1 1
SoM W s + iRz +1h" 5 SoM Iply + |1t R| x +ore’.
LE’——g Lyi L;‘i Lyy
(3.179)
Due to oddness and orthogonality, we have
(12 (v-b). v Vov) = (A= P)RL v V,y) =0. (3.180)
Due to orthogonality of <7, we know
1> =5 1—
w— e, v Ve ) =(c, u2d - Vi) = 0. (3.181)

Also, we have

—(u%p,v-vxx/f>=—(pu,v-vx(v-vx¢)>=—%/Qp(Axso) fR3Mv|2= Ipl, -
(3.182)

In summary, we have shown that

Il < ‘M%R :% +ore’ +|(S, )| (3.183)
7+

Source Term Estimates Due to the orthogonality property of I" and Lemma 3.15, we
know

(S, 9) = (82, ¥). (3.184)

Using Hardy’s inequality and integrating by parts with respect to v, in S, based on

Lemma 3.16 and Remark 3.17, we have
1 n
)|+ s<nsz,—/ anw»
n=0 nJo

el [l
%/0 o

Wiz +e |n(fF + S+ S2c)

|(S2. v)| < KSz, 14

r

S Hf1B+52b+Szc

LLzleLrl\Lll; Lr L1
sl esmesl, Wl e a0 + 5w+ 820)] 1owo
Sorelyle +orer [onvll, = Sorer Iplyy" S or Iply +ore’. (3.185)
Inserting (3.185) into (3.183), we have shown

Iply < |M%R|’L%, +oré>. (3.186)

Y+

Hence, we have (3.173). o
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3.4.2. Estimate of ¢
Proposition 3.30. Let R be the solution to (1.10). Under the assumption (1.5), we have
_1
e 2 |lcll 2 + llells Sor IRIlx + IRk + o7 (3.187)

Proof. Tt suffices to justify for2 <r <6

L i 1
lellr S &% RN el +|ud R

y + 1A= PRIl
Ly;

1 1 5 12
+ore2 |Rlx +&2 |Rlly +or(e2 +¢7). (3.188)

Weak Formulation We consider the conservation law (3.147) where the smooth test
function ¢(x) satisfies

(gl me
Based on standard elliptic estimates [62], there exists a solution ¢ satisfying
ol ey S letel ™2, 2 S el (3.190)
Based on Sobolev embedding and trace estimate, we have for2 <r <6
Il +1Vx0l 2, < el (3.191)

I

Hence, from (3.147), we have
clely, =(Veg- . h), —(Vag - R), +(v-Vi(Vag- ), A= P)[R])
+e*‘<¢ (|v| —5>ME,S>+<VX¢-M, ). (3.192)
From Lemma 3.13, we have

(( @ 7. h) ‘< V- m |h| y Sor el +ore’, (3.193)

¥, (3.194)

r
3
LV+

1
(Voo o/ R), | S Va0 1, ey IR 3 S o) el + |t R

and

(v V(v ). =PRI S [0 V(Y- )| o 1A=PLRIIL
SoM el +IA=PIRIL . (3199)

In summary, we have shown that

1 r
el S [uiR|

% + (=PRI}, +ore’ + ‘g—l <<p( 2 = 5)u?, s)‘ +|(Veg - . 5)].
Y+
(3.196)
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Source Term Estimates Due to the orthogonality of I" and Lemma 3.15, we have

g <(p( 2 = 52, S> —e! <(p( w2 —5)uz, Sz). (3.197)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

o f )

1
S ‘<7752, a / 3n§0>‘ S H?](le + Sop + Sz,;)
0

e o (P = s)ut, )| s 7!

l n
_/ N
nJo

L)%Lll) 12
S (7 + 52+ 520) L, I80ll2 S or el +oret. (3.198)
From Lemma 3.15, we directly bound
[(Veo - o, S1)| S IVapli2 I1Sil2 S or llelly +ore”. (3.199)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

1
8<’7S2s E/é 3an</)>‘
1
- Y
I Hn,/; nVx®

-5 = 5],

< Hle + 825 + Soc

IVioplp2 +& Hn(le + S + Sac)

L2 LLL}

oy Lr-1
S|l esmasal, y, 1eolig we a4 5+ 52| 1000l
Sorst ey S or el +ore™. (3.200)
Based on Lemma 3.18, Lemma 3.19, and Lemma 3.20, we have
(Ve - o, S3+ S4+Ss)| S IIVeglip2 1S3+ Sa + S5l 12
Sorllelyy +or IR, +ore® Sor el +ore? IRl +ore?.  (3.201)

Finally, based on Lemma 3.21, we have

[(Veg -, S6)| < [(Vew - o, T[P[R],P[R]])| + |(Vae - &, T[R, A= P)[R]])] .
(3.202)

The oddness and orthogonality of the elements in (A.4), combined with the interpolation
1 1 | )
Iblls S 1Bl Ibll}6 < e IRl x, imply that

L6 ~
2_
<Vx¢)~%,1" [u; (v-b),/ﬁ<lv| > 56)}>‘

< < -
SVeel e Wbl lielr < el o e, Ibl53 liellzr

|(Vxg - o, T[P[R], P[R]])| <

1
SetlIRlx llellr - (3.203)
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1 1
In addition, using the interpolation || (I — P)[R]|| ;3 < (T — P)[R]||Z2 Il — P)[R]||Z6 <

1
e2 ||R|| x, we have

(Vog /. 1 [R, A= PRI)| S 1:0ll 2 IR s 1A= PRI

1 _ r
<e2 el IR S o) llelly + 2 RN .
(3.204)

Hence, we know
1 r
(Veg - o, Se)| < ed Rl llclyr + o) llcly +e2 [RIY . (3.205)
Summarizing, we have found that

‘871 ((p( lv]? — S)M%, S>’ + |(VX(/) - S>|

1 r r r
1 4 L 2 r 2
S et IRIx el + (o) +or) el +ore? IRl + €2 |RIY +or (82 +e )

(3.206)
Inserting (3.206) into (3.196), we have

1 T r
el < et IRlx llelly- + |M4R|L2Tr + [ =PRIy, +ore? IRl
Y+

+e2 |RI¥ +or <s% +82). (3.207)

Hence, (3.188) follows. O
3.4.3. Estimate of b

Proposition 3.31. Let R be the solution to (1.10). Under the assumption (1.5), we have

72 [Ibll 2 + bl s < or [ Rllx + IRI% +or- (3.208)

Proof. 1t suffices to justify for2 <r <6

a1 1 1 1 1
bllor S e IRl IbllLr + ’M4R|L2% + A =P)[R]llpr +ore? |R]x + &2 ||R||§(

Y+

+or(e? +67). (3.209)

Weak Formulation Assume (V, g) : Q — R3 x R (where ¢ has zero average) is the
unique strong solution to the Stokes problem

—AAY +Veg =bb"2 in Q,
Ve ¥ =0 in Q, (3.210)
Y =0 on 0%2.

We have the standard estimate [19]

102z + Nl ey S [DIBI2) S bz (3:211)

‘ _r_
Lr—1
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Based on Sobolev embedding and trace estimate, we have for2 <r <6

-1
2 SIblt (3.212)
IR

Il + Vel 2 +ligli2 + gl
L r—3 L
aQ

Multiplying b on both sides of (3.210) and integrating by parts for <qu, b)x, we have

—(rAx¥.b) —(g. V. -b), +/aQq(b -n) = b}, (3.213)
which, by combining (3.132) and Remark 3.14, implies
1 1 1 -
~[rAcwb), —(qu?. S)+(qut K], ~{gut h), =Ibly . (214
Inserting (3.214) into (3.151) to replace —(AA 1, b) , we obtain

BNy, =g h), +lgu?.R), +(Vew : B.h), — (Ve : B.R),

+<v V(v 2), (I—P)[R]) - <q,ﬁ, S>+s_l <¢/ ol s>+<vxw L B, 5).

(3.215)
From Lemma 3.13, we have
1
auton), |+ |(Vew :on), | < (1l g +1Vawl 2 )il
Lyg Ly Ly’
<Sor bl +ore?, (3.216)
1
g R, |+ |(Vov s 2. R), | < (lal oy + 19201 e )IRI 5
Ljg - Ly Lyy
r
<o) [Ibll, + \M%R T (3.217)

Y+

and

(o ve(Vv :2). =PRI S [v- v (Vv 2)| L 1A =PRI
So( bl +IA-PIRIL . (218)

In summary, we have shown that

bl S iR

r 1
3 A= PRI +ore® + |(aud, s)|

v+

+ ‘a—l <¢ oul, S>‘ +|(Vew : 8, 5)|. (3.219)

Source Term Estimates Due to orthogonality of I" and Lemma 3.15, we have

ok b ot = o o et
Using Lemma 3.16 and Remark 3.17, integrating by parts in v, for Sy, we obtain

1 r
Sore? gl Sor bl +ore?.

T+ S+ Sae 21~
(3.221)

1
(ant. )| < gl
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Similar to (3.185), we have

’8‘1<1ﬁ o, Sz>‘ Se!

0 nJo
1 n
—/ Bt
nJo

S Hﬂ(le + S + Sac)

L2L)

x v L2
S [n(E + 50+ 52)| 10002 S or DI +ore?.  (3222)
From Lemma 3.15, we directly bound
(Vav : Z.51)| S IV 2 1812 Sor Bl +ore™.  (3223)

Similar to (3.185), based on Lemma 3.16, Remark 3.17 and Hardy’s inequality, we have

1 n
s<nsz,—f anvxw»
nJo
1 n
— 0V
B ano Vo

(Vv : 2. 5)| < (5. vxlp‘nz())‘ N

S Hf1B + Sop + Soc

Vtlig +e [n(fE + 52+ 52)

L2, LiL} LT
B B
SlAFesmesa| L L, 1wl e |n(AE + S0+ 520) | 10aVav
Lllz n v
2
2 -1
Sorer bl < or bl +ore?. (3.224)

Based on Lemma 3.18, Lemma 3.19, and Lemma 3.20, we have

(Vi : B, S3+ S4+S5)| S NVelip2 1S3 + Sa+ Ssll 2

r r r
Sor bl +or IRl 2 +ore? Sor bl +ore? Ry +ore?.
(3.225)

Finally, based on Lemma 3.21, we have

(V0 2, 86)| S |(Vaw : 2, T[PIRLPIRI|) +|(Vew : 2. TR, A= PIRI]).

(3.226)
The oddness and orthogonality imply that
‘(vxw . B, F[P[R], P[R]M
sl(vev: 2 r [t @ et o)
+ <vx1p - B, T [Mi ('”'22_ 5c> ol <|v|22_ SC)D' . (3.227)
We may directly bound
(Vew: 8.1 [0 @), 12 @-B)])| SIVHN e DL bl

1
SV 2z bl Ls DL S ¥ IRl DI -
(3.228)
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1 2_5
Duetooddnessand %;; = £ | ( |vi1> — = [v]?) 12 |, noting that I | w2 vl o).
3

2

(P =5 >
,u2 > only depends on |v|“, we have

oot (4575 (5 )
- <alw1%n + DB + D33 B, T [M’ ('”'2 ),,,L% ('”'22_5c>}>‘
=<(v I//)%”,F|: (|v|22_5c),,u (” . c)M:o. (3.229)

In addition, we have
(V0 2, TR A=PIRI])| S 1V2w ]2 IR I o 1= PRI 15

Bf—

1
<e2 bl IR S o) bl +&2 [RIF
(3 230)

Hence, we know
1 r
(Ve = B, S6)| < €% IRIIx IIbll, +o(1) bl +&7 [RIY . (3.231)
Summarizing the above, we have found that
(gu. s)] + e (- vut, 5|+ |(Vew - . 5)]
2

1 r
S &5 IRl DI + (o(1) +o7) bl +ore® Rl +2% [RIY +or (o7 +¢2)
(3.232)

Inserting (3.232) into (3.219), we have

1 1 r r r
bl S e® IIRIx bl + IWRIL% + (L= P)[RII| +ore? R +&2 |RIY

Y+

+or (e% + 82> . (3.233)
Hence, (3.209) follows. m|

3.4.4. Synthesis of kernel estimates
Proposition 3.32. Let R be the solution to (1.10). Under the assumption (1.5), we have
_1
™7 |P[R]ll 12 + IP[R]ll s < or [Rllx + [RI% +o7. (3.234)

Proof. Collecting Proposition 3.29, Proposition 3.30 and Proposition 3.31, we obtain
the desired result. O
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3.5. L™ estimate. We define a weight function scaled with parameters 0 < o < % and
U >0,

o]

wv) ;= (V)7 e 2. (3.235)
Lemma 3.33. We have

1 =)

I PP B L LA B
Ik (u, v)|§(|u—u|+|u—v|*1)e L e (3.236)

Let0 <o < % and © > 0. Then for § > 0 sufficiently small and any v € R3,

2
D Q‘L%
/ 1 [, vy T g <o, (3.237)
R3 <u>19 e %
Proof. This is a rescaled version of [41, Lemma 3] and [44, Lemma 2.3]. O

Proposition 3.34. Let R be the solution to (1.10). Under the assumption (1.5), we have
1 1
&2 IRl +27 RIS or IRl +[RIX +or. (3.238)

Proof. We will use the well-known L?> — L® — L™ framework.
Step 1: Mild Formulation Denote the weighted solution

Ry(x,v) :=w@)R(x, v), (3.239)

and the weighted non-local operator

Ry
Kyw)[Ryl() :=w@)K |:7i| (v) = /1‘@ kw(v)(v, w) Ry, (w)du, (3.240)
where
(v)
m@w»w=Muwz£y (3.241)

Multiplying ew on both sides of (1.10), we have

(3.242)

gV - ViRy + VRy = Ky[Ryl(x, v) + ew(v)S(x, v) in € x R,
Ry, (x0, v) = wh(xg, v) for xo € 02 and v-n < 0,

We can rewrite the solution of the equation (3.242) along the characteristics by Duhamel’s
principle as

Iy
Ry (x, v) =w(v)h(xp, v)e "W +/ w(v)sS(x —e(ty — )V, v)e_”(”)(’b_s)ds
0

h
+ / / kw(v)(v,u)Rw(x — ety — S, u)e*””)(’b*s)duds, (3.243)
0 R3

where

tp(x, v) ;= inf {t >0:x —¢tv ¢ Q} (3.244)
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and

Xp(x,v) :=x —etp(x, V)V ¢ Q. (3.245)

We further rewrite the non-local term along the characteristics as
1
Ry (x, v) =w()h(xp, v)e " +/ w(v)sS(x —e(tp — 5)v, u)e*”(”)(fbﬂ)ds
0

Iy ,
+/ / k() (0, Ww )k (x;, v)e " Wihe B9 qydg
0o Jr3

th 7,
+/ / k) (v, u)/ 85()6 —&(tpy — s)u — e(ty, — r)u, u)
o Jrs 0

eV W= = B=5) 4 duds

I t;)
+/ / (o) (0, u)/ / Koy (1, W) Ry (x — ety — ) — e(t) — ', u/)
0 JR3 0 JR3

e YW@= =V 1=5) qy/ drduds, (3.246)
where
tl/)(x, v; s, u) ;= inf {t >0:x—¢e(tp—s)—etu ¢ Q}, (3.247)
and
xp(x,v;8,u) = x —e(tp — ) — ety (x, v; 5, Wu ¢ Q. (3.248)

Step 2: Estimates of Source Terms and Boundary Terms Based on Lemma 3.13 —
Lemma 3.21, we have

‘w(v)h(xb, v)e*“(”)fb ‘ +

tp ,
/ / Kuw @, Wwwh(x,, v)e " Whe V@B =9 qyds
0 R
S bl , Sor (3.249)

and

h
/ w(v)sS(x — ety — s)v, v)efv(”)(’bﬂ)ds
0

I 7
/ / kuy(v) (v, 1) / eS(x —e(tp — s)u—e(ty, —ru, u)
0o JRr3 0

ew(u)(r{,fr)efv(v)(rbﬂ)drduds‘

+

-1 2 3 2
Selvs|,. SorsorelRILy, +eIRIG:, S ored IRIx +IRI +or.
o,
(3.250)

Step 3: Estimates of Non-Local Terms The only remaining term in (3.246) is the
non-local term

Iy t[;
[:= / f Kup(o) (v, 10) / / Ky (1, W) Ry (x — ety — )u—e(t) — u’)
0 JR3 0 JR3
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e WV W= 4y drduds, (3.251)
which will be estimated in five cases:
I :=Lh+DL+1L+14+15. (3.252)

In the following, we assume that § << 1 and N >> 1 are constants that will be determined
later.

Casel: 11 : |[v|> N

Based on Lemma 3.33, we have

1 1
< —. (3.253)
1+ ©N

/R3 /R3 K (v (U, Wy (1, W) dudy’| <

Hence, we get
1
Nl s v 1Rwllzs - (3.254)

Casell: I, : |[v| < N, |u| = 2N, or |u] < 2N, |u’| > 3N Notice this implies either

lu—v| > N or |u — u” > N. Hence, at least one of the following is valid:

_SN2 2
k@) (v, W] = Ce™N Jkyy (v, W] P74, (3.255)

—8N2 }k

712
|kw(u)(u, u’)| < Ce w(w (U, u’)| b=l (3.256)

Correspondingly, based on Lemma 3.33, we know
712
/ |kw(v)(v,u)|e‘””_”|2du <oo or / |w(u) (1, u/)}e5|u—u| dv’ < oo.
R3 R3
(3.257)
Hence, we have
|l S e IRyl - (3.258)

Caselll: I3 : t;, —r < 8and |v| < N, |u| < 2N, |u" < 3N In this case, since the in-
tegral with respect to r is restricted in a very short interval, there is a small contribution
as

/

lb ,
/ e~ b"dr
t,—8

b

113 < [Rwllree < 8 11Rwlipe - (3.259)

Case IV: Iy : z‘l/J —r > |In(§)| and |v| < N, |u| < 2N,

u’| <3N Inthis case, t, —r

is significantly large, so e~ %) < §is very small. Hence, the contribution is small

o0
4] < ‘/ e~ B="dr
[In(3)|

Case Vil5:6 < tl/; —r < |In(§)| and |v| < N, |Ju| < 2N,

[Rwllzee < 811 Rwllzoe - (3.260)

u’| <3N
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This is the most complicated case. Since k) (v, u) has integrable singularity of
type |v — ul_l, we can introduce the truncated kernel ky (v, u) which is smooth and has
compactly supported range such that

1
sup / kn (v, 1) — ky) (v, w)|du < —. (3.261)
v<3N Ju|<3N N

Then we can split
k() (v, Wy (1, u) =ky (v, Wky (u, u) + (kw(v)(vs u) — ky (v, u)>kw(u) (u, )

+ (kw(u)(u, ) — ky (u, u’))kN(v, u). (3.262)
This means that we further split /5 into
Is =I5 + sy + I5 3. (3.263)
Based on (3.261), we have
|152 | Si IRwlp. [I53] < L Rl - (3.264)
N N
Therefore, the only remaining term is /5 1. Note that we always have x — e(t), — s)v —

e(t; — r)u € Q. Hence, we define the change of variable u — y as 'y = (y1, y2, y3) =
x — &(tp — s)v — &(t; — r)u. Then the Jacobian

dy ety —r) 0 0
—| = 0 et,—r) O =&ty —r)® > &38°. (3.265)
du 0 0 e —r)
Considering |v], |u], u’] < 3N, we know |Ry,| 2~ |R]. Also, since ky is bounded, we
estimate
4
|15,1‘ S4/ / / l{xfs(tbfs)vfa(t/;r)ueﬂ} )R(x —e(t, —s)v —e(t, — ru, L/)‘
lul<2N Jjw|<3N Jo

e WG g dudy’. (3.266)

Using Holder’s inequality, we estimate

it
/ / / L —ey—s)v—e(t)—ryuee) ‘R(x — ety —s)v — ety — ), u’)
<2y Jiwi<3n Jo

e VWG qrdudy’

3

1, ’ 5
5(/ ,/ / I{X*S(fh*S)vfs(tl’,fr)ueg}e v, ”drdudu’)
|u|<2N J|w'|<3N JO

1, 6
X </ / / l{xfs(tbfs)ufs(téfr)ueﬂ} ‘R(x — S(tb — S)U - 8([1; - r)u, U,)
|u|<2N JW/'|<3N JO

1

e_”(”)(’f’»_’)drdudu’> ’
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1
té 1 6 —(+ E 1
Sl == Lyeoy|R(y, )| e % dydw'dr| < —— IRl e.  (3.267)
383
o €8 Jwsn Ja 162

£262

Inserting (3.267) into (3.266), we obtain

1
51| S —— IRl s - (3.268)
£262
Combined with (3.264), we know
1 1
Is < N [Rwll oo + —— IRl s - (3.269)
£2§2
Summarizing all five cases in (3.254),(3.258),(3.259),(3.260),(3.269), we obtain
L w2 1
[ < —=+e +8 ) IRwllpee + —— IRl 16 - (3.270)
N £282

Choosing § « 1 sufficiently small, and then taking N sufficiently large satisfying
N—' < §ande N’ < 5, we have

1
] S8l Rwllzoe + —— IRIIzs - (3.271)

£282

Step 4: Synthesis Summarizing all above, we obtain for any (x, v) € Q x R3,

1 1
|Rw(x, )| S 8lIRwllpe + —— IRIls +ore? [RIx + |RI% +or.  (3.272)

£262
Since § <« 1, we obtain
_1 1
|Rw(x,v)| S e 2 [Rllgs +ore? IRl x + IRI% +or, (3.273)

and thus the desired result follows from Proposition 3.32. O

3.6. Remainder estimate.

Theorem 3.35. Let R be the solution to (1.10). Under the assumption (1.5), we have
IRIIx < or. (3.274)
Proof. Based on Proposition 3.27 and Corollary 3.28, we have

—1 1 -
&2 Rl +|niR| s +e7" IA=P)RIIL; + A= PRI S o7 [IRIx +[IRI +or.
(3.275)

Based on Proposition 3.32, we have
_1
e~ 2 |P[R1ll 2 + IP[R]l 6 S or IRl x + RN +or. (3.276)
Combining both of them, we have

_1 1 _1 _
&2 RIgz +|piR[yy +e72 PRIz + & [(X=P)[RIlIzz + I Rlls



Diffusive Limit of the Boltzmann Equation in Bounded Domains Page 49 of 85 279
Sor IRlx +IIRI% +or- (3.277)
Based on Proposition 3.34, we have
&2 IRllL, + 7 [Rlz S or IRl + IR +or. (3.278)

Collecting (3.277) and (3.278), we have

IRIlx < or [Rllx + IRI +or. (3.279)

Hence, we have
IRIx S IRI% +or. (3.280)
By a standard iteration/fixed-point argument, our desired result follows. O

Proof of Theorem 1.1. The estimate (1.40) follows from Theorem 3.35. The construc-
tion and positivity of § based on the expansion (1.7) is standard and we refer to [27,29],
so we will focus on the proof of (1.15). From Theorem 3.35, we have

_1 _
e 2 [PR]ll 2+~ 1A =PRIl S or, (3.281)
which yields
IRl S ore?. (3.282)

From (1.7), we know

1 1 3
Hu—fs —ut —efi — e — ef HLZ — |eR],> < ores. (3.283)
From Theorem 3.9 and the rescaling n = ¢~ n, we have
[¢252] . sores |er| , Soret. (3.284)

Hence, we have

3

< orel. (3.285)

_1 1
HM I — 2 —8-f1’L2

Therefore, (1.15) follows. O
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4. Evolutionary Problem

4.1. Asymptotic analysis.

4.1.1. Interior solution The derivation of the interior solution is classical. We refer to
[36,71,72] and the references therein. By inserting (1.33) into (1.21) and comparing the
order of €, we require that

N 1
0=2u"20"[n, 2 fi]. 1)
NI 1 1o L 1
vV fi =272 0%, u o]+ T2 QM [ fi w2 f1 (4.2)
which are equivalent to

L[fil=0, 4.3)
v- Vi i+ L2l =T1f, fil. 4.4)

Considering the further expansion, we additionally require
O fi+v-Vifr LN. (4.5)
Hence, we conclude

i lv|?
filt,x,v) = p2@) | p1(t, %) +v-wy(t, x) +

T (z, x)) , (4.6)

where (p1, uy, T1) satisfies the incompressible Navier—Stokes—Fourier system (3.8).
Also, we have

1 lv]* -3
f2(t,x’U)= I’LZ(U) pz(tv-x)+v'u2(t7x)+ P TZ(t,x)

1 =3
+u2@) [prv-u) + | o1 Ty + > [u; |

+ L7 [ =0 Ve i+ TUAL ] 47

where (p2, up, T>) satisfies the fluid system

;2 + T+ p1T) = py,

dmp +uy - Vi + (pjug +up) - Viuyp — yAyup + Vipo
= —12Va - AT1 = 71V - (T (Vews + (VaunT)),

Vi -up = —uy - Vypy,

T +uy - Vi + (prup +wp) - V. T —uy - Vipy

2
=y (Vew + (VaunT )+ Au (122 + 3577,

(4.8)
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4.1.2. Boundary layer We define a cutoff boundary layer le as (3.51). Denote

FEG w0 =7 (7 0y) xen®a, v o). (4.9)
We may verify that le satisfies
ale B| _. —(.—1 dx(en) = —, 1 — P
vna—n+£[fl]—vnx(s vy) o D+ x(en) | x(e vﬂ)K[CD]—K[X(e v,,)cb] s
(4.10)
with
FE,0,0,0,0) = Y(S_Ivn) (fb(t, t1,12,0) — Poo(t, 11, 2, n)) for v, > 0.
4.11)

4.1.3. Matching procedure The construction of boundary layer and the boundary con-
dition of the interior solution is exactly the same as in Sect. 3.1.4, so we only discuss the
initial condition of the interior solution.

Using (1.25), we require the matching condition for ¢ = 0:

I I I
— , u =u’, T =T". 4.12
Pl _ =P 1y 1o (4.12)

By standard fluid theory [13,19] for the unsteady Navier—Stokes equations (3.8), we
have for any s € [2, 00)

o1l wloo s + |luy ||Wll,ooWX3.x + || T1 ”Wll,oows,x <or. 4.13)
Also, for f, since there is no initial layer, we may simply take

02 =0, w =0 D 0 =0. 4.14)
(=

=0 1=0
By standard fluid theory [13, 19] for the linear unsteady Navier—Stokes equations (4.8),
we have for any s € [2, 00)

IIpzllwtl,wwg.s + ”“2”W,‘*°°W3-S + ||T2||W[1,00W3.s Sor. (4.15)

Theorem 4.1. Under the assumptions (1.23),(1.28),(1.31), there exists a unique solution
(p1,uy, T1) to the unsteady Navier-Stokes equations (3.8) and (p3, w2, T2) to (4.8)
satisfying for any s € [2, 00)

lotllyyroopas +Mutlly ooy + 1T1lly100p35 Sors (4.16)
lo2llyy 10025 + U2l 1002 + 1 T2lly1.00y25 Sor (4.17)

Thus, we can construct f, f and le such that

Il f1 ”'W,I’C’CW?“‘LZ?Q,L, + | /1 IIWLOCW_;_%‘SL%QM S or, (4.18)
<
Iflypzsse +IF ot Sor (4.19)
b R
and for some Ky > 0 and any 0 < s <3

anB BSfB

Kon »B K 1 K 1
me " H whoep I° " aus e P Sor.

! nv.e? 1 WtI’OOLi,OLuQ,ﬂ 2 Wt]VOOL;Cv.g.I?

(4.20)
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4.2. Remainder equation. Inserting (2.6) into (1.21), we have
&0y (M+f+fB+8/L%R)+v-Vx ([,L+f+fB+8/,L%R)
_ ol B 1 B 1
=¢e¢ Q" |u+f+f"+epu2R, u+f+f° +eu?R|, “4.21)

or equivalently

1

[S]

88;R+U-VXR—28_1M_%Q*[M,/L
= —u" 79, (f+f3) —8"#*%(1) - Vy (f+f3))+pf%Q* [M%RsM%R]
12yt 0t [f+fB,;ﬁR] +e a0 [M+f+fB,u+f+fB]. 4.22)

Also, we have the initial and boundary conditions

R]

<M+f+8/ﬁR>) 0=M+8/ﬁfn (M+f+fB+8M%R>‘, — e,
= Y-
4.23)

which are equivalent to

Rl g=fi—s Wb f R =fy—e"u i 7+ %) @24

Note that due to the compatibility condition (1.31), the boundary layer has no influence
on the initial data.

Therefore, we need to consider the remainder equation (1.35). Here the initial data
is given by

7= —¢&fs, (4.25)
the boundary data is given by
h=—efr+x(e vy, (4.26)
and
S:=81+5+853+84+ S5+ 56, 4.27)
where
Sii= —ed fi — €20 fr—ev-Vyfo, (4.28)
B B
(4.29)
R (Rla““r'a‘zrvuvlz . Rzamr.alzrv?) e
LiLy \ L1(Ry —¢n) Ly(Ry —en) 2) duy,
o (Rza‘z‘”'a“rv“vm L Ridyor-dyr ?) afE
LiLy \ La(Ra —en) Li(Ry—en) ') v,

_ Rlvll af]B n R2vt2 ale
Li(Ry—en) diy  La(Rp—en) 9y
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d — _
#e oy o 0T - o (K [8] 6 opxcem - K[Bxce T upxen]),
Sy =217 20* 2 fi +end fo. nIR] =20 [fi +2f2. R], (4.30)
Sy =2u"2 0 [p,%le,M%R] =2r [le,R], (4.31)

Ssi=en 0% 12 fo w2 (2f1 +ep) [+ 20720 [E (2f1 4 26f + £F), 12 ] (432)

= el [f.2f1+epl+2l [2fi+2efa+ 10, 1F ],

Se = p" 210" [M%R, M%R] — I'[R, R). (4.33)
In particular, we may further split S»:
1 afe 1 afE
Spq = v?i +— U?L , (4.34)
Ri—en\ " vy, Ro—en\ 2 v,
1 afB 1 afB
Sop = — 0 ff — ——— e r—— —L 4.35
2b e i Ri1—en (vnvtl 81)[1) Ro —en (vnvlz v, ( )
b (Ridyurdpr o Radnl - 0uT o af e
LiLy \Li(Ry—en) "% LyRa—en) 2) v,
_ 1 (Radpur-dur o Riduer T o aff
LiLy \ Ly(Ra—en) "7 Li(Ri—en) ') du,
R afe R afe ) _
_ 1V i_'_ 2V, i +8_1v,,Y(8_1v,,) X(Sﬁ)qx
Li(Ry—en) oy La(Ra—en) 3z 0
Sac = — e (K [®] xe ™ vpxenm - K[@xe vpxem]). (4.36)

We also consider the time derivative of the remainder equation

ed (3 R) +v- V(9 R) +e 'L[,R] =85 in Ry x @ x R?,
3 R0, x,v) = d;z(x,v) in  x R3, (4.37)
0 R(t, xg, v) = 9;h(t, xp,v) for v-n <0 and xg € IQ.

Here the initial data 9,z is solved from (2.6) and Remark 1.6:

1
0z = 0R|_y = (7 W0 o1 —eaifa)| (4.38)
For any fixed ¢t € R,, we may also rewrite (1.35) as a stationary remainder equation
{ v ViR +e ' LIR()] = S(t) — 8 R(t) in xR,

R(t, xp, v) = h(t, xg,v) for v-n <0 and x¢ € 022. (4.39)

Lemma 4.2 (Green’s Identity, Lemma 2.2 of [26]). Assume f(t,x,v), g(t,x,v) €

L0, T]; L2 (2 xR3)) and 3, f +v -V, f, d;g+v-Veg € L>([0, T] x Q x R3) with
f, g€ L27. Then for almost all t, s € [0, T]

[t//;ZXR3(atf+v-VXf)g+£t/,szR3(atg+v'vxg)f
=//QX]R3f(t)g(t) —//MM f(s)g(s)+/st/yfg(v-n). (4.40)
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Using Lemma 4.2, we can derive the weak formulation of (1.35). For any test function
g(t, x,v) € L¥([0, T]; L2(Q2 x R3)) with d,g + v - Vyg € L>([0, T] x 2 x R3) with
g€ L%, we have

(R W, 8)) —ofz. 4 0) — e(R g + [ [ Retw-m) = (0o, R)
Y
+e ' (LIR1. g) = (S. g)- (4.41)

4.2.1. Estimates of initial, boundary and source terms The estimates below follow from
analogous argument as in [29, Section 4] and Sect. 3.2.1, so we omit the details and
only highlight the key differences. In particular, for S;—Sg estimates, we need both the
accumulative L! and instantaneous L versions. To present them uniformly, we only
write down the estimates for each fixed ¢ (which is similar to those in Sect. 3.2.1) and
simply ignore the 7 variable. Then the instantaneous estimates (by taking sup, <o ;) and
the accumulative estimates (by integrating over ¢ € [0, T]) will naturally follow.
Estimates of z

Lemma 4.3. Under the assumptions (1.23),(1.28),(1.31), for z defined in (4.25), we have
lzliz2 Sore,  lzllix, < ore. (4.42)
In addition, for 9,z defined in (4.38), we have
I18:zll,2 S ore, Nzl S ore. (4.43)
Proof. The estimates follow from Remark 1.6 and Theorem 4.1. O
Estimates of 1

Lemma 4.4. Under the assumptions (1.23),(1.28),(1.31), for h defined in (4.26), we have

3
z

|hl2 Sore, |hl » Sorer, |h|pe 9§07, sup/ Al v -nldv < ore.
r= L} Y=a:t vn<0

y— L1,
(4.44)
In addition, the estimates in (4.44) still hold with h replaced by 0:h.
Estimatesof Sy
Lemma 4.5. Under the assumptions (1.23),(1.28),(1.31), for Sy defined in (4.28), we
have
[@W)2Si],> Sore.  NISillr Sore, IS Iz, S ore. (4.45)

Also, we have the property
1 2 1 1 2 1
(12.51) = (ub o) o (wov.s1) = (urv.o ) .
v v v v
12 2 k2
u2 |7, 8 L= [v|=, 0 f2 , (4.46)
In addition, the estimates in (4.45) still hold with S; replaced by 9;S.

Estimates of S»
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Lemma 4.6. Under the assumptions (1.23),(1.28),(1.31), for Sy defined in (4.29), we

have
210t 1 (92p 2c)lipt n 2b 2c ~ OTéE, .
12011+ 117 (Sap + S2e) o + 1 (S2p + S20) || (4.47)
v 2 1 (326 2c¢)lL? n 2b 2¢ ~ OT, .
(v)?s Lot (2 + S22 + 2(Sw+ S )2 S (4.48)
2_
82l + 1 (26 + S20) 1 + 02 S+ S20| | Sore?™, 449)
”S2”L{1L2L,11L,5 +1In (S + SZC)”LI”ILZL‘IIL}) Sore,, (4.50)
and
1526 + Sacllzrry + 11 (S26 + S2e) | S orer, (4.51)

1
[(S20: )1+ 10020, &+ [(22a: 8)] S |00 £E] | 2, 19l S 076! 1908l
(4.52)

Also, we have
12115, S ore™". (4.53)
In addition, the estimates in (4.47)—(4.53) still hold with S replaced by 9;S».

Remark 4.7. Notice that the BV estimate in Proposition 3.4 does not contain exponential
decay in 7, and thus we cannot directly bound 1S, and 772S2a. Instead, we should first
integrate by parts with respect to v, as in (4.52) to study le :

B B 2 +B 2_q
+ + < r 4.54
|72],, +[nsP], + [ s], s ore (@54
B B
H /i ‘ Ly, LhL * H n/i ‘ Ly, LhL S oré,, (4.55)
B B 1
G Hn.ﬁ o ST (4.56)
Estimates of S3
Lemma 4.8. Under the assumptions (1.23),(1.28),(1.31), for S3 defined in (4.30), we
have
1 1
2\’ 2\’
(S5, 8)y| S ore (/ v|g|) (/ v|R|> : (4.57)
R3 R3
and thus

(85 )| S orellglzz IR N2 S ore liglz (IPLRIIL2 + 1@ = PRI 2) . (4.58)
Also, we have

—1
18512 S ore ”R”L% , Hv S3 H . Sorel|R| e, - (4.59)
Lg,ﬁ e?

In addition, the estimates in (4.57)—(4.59) still hold with Sz replaced by 9;S3 and R
replaced by 9; R.
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Estimates of Sy

Lemma 4.9. Under the assumptions (1.23),(1.28),(1.31), for S4 defined in (4.31), we

have
2 2\ 2 2
seanl < ([ v1er) ([ o) ([ree)" wen
R3 R3 R3
and thus
(4, &)1 Sor lglzz IRl zz S or gl (IPRIIz + 1A= PIRIz) . (461)
1
[(Se, )1 Sor | £2] , Ngllzz, IRl Lz S ored gl (IPIRIIL + 1= PRIIz)
(4.62)
Also, we have
ISal2 Sor IR, [v7'ss] . SorlRILy, - (4.63)
0,9 !

In addition, the estimates in (4.60)—(4.63) still hold with Sy replaced by 9;S4 and R
replaced by 0; R.

Estimates of S5

Lemma 4.10. Under the assumptions (1.23),(1.28),(1.31), for S5 defined in (4.32), we

have
%
iss.onl Sor ([ vis?)”. (4.64
and thus
1
(55,8 Soredlighz. 105, 8) S ore gz, (465)
Also, we have
ISsle Sored,  |v7'ss| | sor. (4.66)
0.0

In addition, the estimates in (4.64)—(4.66) still hold with Ss replaced by 9;S5 and R
replaced by 0; R.

Estimates of Sg
Note that 9; I'[R, R] = 2I'[R, 9;R]. Then the proof follows from that of Lemma
3.21.

Lemma 4.11. Under the assumptions (1.23),(1.28),(1.31), for S¢ defined in (4.33), we

have
%
|(S6. 8)0| S (/R}wgﬁ) (fRaV'R'Z)’ (4.67)
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and thus
[(S6, &) S lglz IR IR Lee, - (4.68)
Also, we have
ISell > S IR IRz, (4.69)
Hv—lsﬁ H SR (4.70)
L, 0?

In addition, we have

1

(386, 8)u| S (/ v Iglz)2 (/ VR I81R|>, (4.71)
R3 R3

and thus
1306 &)1 S gll3 1 Rl 1 Rl - (4.72)
Also, we have
13:S6lz2 S 10:R 13 IR s, *73)
[v~toss] .. S 00RI, 1RI,- (4.74)

4.2.2. Conservation laws Classical Conservation Laws

Lemma 4.12. Let R be the solutionto (1.35). Under the assumptions (1.23),(1.28),(1.31),
we have the conservation laws

ed,(p — c) + Y, -b=<u%,sl+52> , (4.75)
v
ehb+Vip+V, @ =<vu%, S| +Sz> , (4.76)
v
£0,(3p) +5Vy b+ V, - ¢ =<|u|2p,%,sl +Sz> , 4.77)
v

where @ and ¢ are defined in Lemma 3.22.

Proof. We multiply test functions u% U ,u% |2 u% on both sides of (1.35) and integrate
over v € R>. Using the orthogonality of £ and noticing

/Rz,u%Rzp—c, /H;;UM%RZI)’ /RSIUIZ/L%Rz?ap. 4.78)

the results follow. m]

Conservation Law with Test Function V¢ - &/
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Lemma 4.13. Let R be the solutionto(1.35). Under the assumptions (1.23),(1.28),(1.31),
for smooth test function ¢(t, x), we have

e(R(1), Vag(t) - ) =&z, Vop(0) - ) —&(R, 3 Ve - & ) —i(Drop, ),
+6 (Ve 6) = (Vap -, b))y —(Vip - o, R);,

v V(oo - 7). A= PRI +(Vog - . 5). (4.79)
Proof. Taking test function g = V, ¢ - o/ in (4.41), we obtain

&(R(t), Vip(t) - &) — (2, Vx0(0) - &) — (R, 8; Ve - )
# [[ (Va0 ) R(o0) = (- V(Yo 7). R+ (LIRL Vog - ) = (Vi - . 5).
v
(4.80)
Then following a similar argument as the proof of Lemma 3.23, we have (4.79). O

Conservation Law with Test Function V¢ :

Lemma 4.14. Let R be the solutionto(1.35). Under the assumptions (1.23),(1.28),(1.31),
for smooth test function (¢, x) satisfying Vy - ¥ = 0, we have

e(R(1), Vx (1) : B) — e(z. Vxyr (0) : B) — (R, 9 Vx ¥y : B) — 2(Ax¥. b)),
+871<<VXW7 o) ={(Vxy -2, h>>77 —(Vxy - 2, R>>7+

+ (o vx(vxw : @), A=P)[RI)+ (Vv : 2, 5). 4.81)
Proof. Taking test function g = Vyy : 2 in (4.41), we obtain
E(R(). V(1) : B) — ele. Va (0) - B) — (R Vol : )
f/ (Vew - B)R(v-n) (0~ Vi(Vey : ). R) 4™ (LIRL Vv - 5)
(Vey : B, s>> (4.82)
Then following a similar argument as the proof of Lemma 3.24, we have (4.81). O

Conservation Law with Test Function, V¢ - &7 + ¢! go( lv]? — 5) /ﬁ

Lemma 4.15. Let R be the solutionto (1.35). Under the assumptions (1.23),(1.28),(1.31),
for smooth test function ¢(t, x) satisfying (p| 9o = 0, we have

(5c) —2p(@), (1)), — (5¢(0) = 2p(0), p(0)), — (5¢ —2p, dip),
+(R(1), Veg(t) - ) — (2, Vx(0) - /) — e(R, 0, Vxg - ) — k(Arg, ),
=(Vap - h)y = (Ve )y + (v Va(Vap - ). A= PRI

e <<¢ (|v|2 _ 5) u?, S>> +{(Veg - o, S). (4.83)
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Proof. From (4.75) and (4.77), we have
1
88,(5c—2p)+Vx-§=<(|v|2—5) m,s)y. (4.84)

Multiplying ¢ (¢, x) € R on both sides of (4.84) and integrating over [0, t] x 2, we
obtain

e(Sc(o —2p(0). p(1)), — £(5¢(0) —2p(0), (0)) — &(5¢c — 2p. d19)),,

— (Vxp. 5), //mws
n:<<g0<|v| — )m,s». (4.85)

Hence, adding ¢! x(4.85) and (4.79) to eliminate ¢~ (V. ¢, ¢)),, yields

(5c() —2p@0). 0()), —(5¢(0) = 2p(0). 9(0)), — (5¢ —2p. d;9),,
+ 8<R(I)» Vip(t) - 42{) - E(Z, Vip(0) - %) - 8<<R, 0 Vyp - d» - K«Ax(p, C>>tx

t
+8_1/f s -n
0 JoQ

= (Vep - h); —(Vap - o R)y, + (v Vu(Vep - ). A= PILRI)
+e ! g (|v|2—5) u3, S+ (Veg - . 5)). (4.86)

t
The assumption go’ 9o = 0 completely eliminates the boundary term g ! / / Qs n
0 Ja

in (4.86). Hence, we have (4.83).
O

. . . 1
Conservation Law with Test Function V,yr : Z+ ¢~ 1 - v 2

Lemma 4.16. Let R be the solutionto (1.35). Under the assumptions (1.23),(1.28),(1.31),
for smooth test function ¥ (¢, x) satisfying Vy - =0, ¥ |8§2 = 0, we have

(b)), v (), — (b(0), ¥(0)) — (b, 0v),,

+&(R(), Ve (t) : B) — ez, Ve (0) : B) — e(R, 8,V : B) — A(Axr, b)),
=(Vat : B )y~ (Vev : B R)y + (v (vxw : 93), a-PR]))

ve (v ont, S+ (Ve 8, 5)). 4.87)

Proof. Multiplying ¥ (¢, x) € R? on both sides of (4.76) and integrating over [0, ¢] x £,
we obtain

e(b(@), ¥ (1)), — e(b(0), ¥ (0), — &b, &),

s b = St [ [ (prvea)n = yds)).
(4.88)
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Hence, adding £ ~! x(4.88) and (4.81) to eliminate £ ! ( V1, @), yields

(b, v (), — (b(0), ¥ (0)), — (b, 09 ),,
+e(R(), Ve (1) : B) — ez, Vi (0) : B) — e(R, 3,V = B)

I A A el N (LR S
=(V¥ : BohYy — (Vats : 2. R>>7++<<v- V(Vew : %) @ - PRI
+e! <<1/f Couz, s>> + (Ve : B, S). (4.89)

The assumptions Vy - ¢ = 0 and W|39 = 0 eliminates 8_1(<VX Y, p»tx and
13

8_1/ / (p”” +y- w) - n in (4.89). Hence, we have (4.87). 0
0 Jag

4.3. Energy estimate: accumulative.

Proposition 4.17. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

IR 2 +677 IR0z + e A =P)[RI2 S or lIRIlx + IRI% +o7. (4.90)
Proof. 1t suffices to justify
IR 2 +672 1Rz + s @ =PRI S ore™? PRI 2 + o7 IRl
+IRII% +or. (4.91)

Weak Formulation Taking test function g = ¢~ 1R in (4.41), we obtain

1 1 -1
S IR, —5||Z||2L2+87//;R2(U'”)+8_2<<£[R]»R>>:8_1<<SaR>>~ (4.92)
Y

Notice that

/ fy R = IR, ~ IR, =IRE, ~ 1A, @99)
and
(LLRY. R) Z 1A = P)LRIIIZ - (4.94)
Then we know
IR, +&! ||R||§%++e—2 (X~ PRI N\ s, R>>\ - ||h||i%+||z||iz
(4.95)

Using Lemma 4.3 and Lemma 4.4, we have

IROIZ, +e  IRIZ, +e 2 IIA=P)RIIZ, S |e7'(S, RY| +ore.  (4.96)
Y+
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Source Term Estimates We split

e (S, R) = e (S, P[R]) + ' (S, X — P)[R]). (4.97)
We may directly bound using Lemma 4.5 — Lemma 4.11

e~ (S. A= PRI)| < e~ 1Sl 10— PRI
<

(o(1) +o7)e 2 IX = P)[RIIIZ, +or IIRIIK + IR +or-
(4.98)

Using orthogonality of I, we have
e (S, PIR]) = &~ (81 + Sz, PR]). (4.99)

From Lemma 4.5, we know

=11, PIRI)| =& |8, f2. PIRI)| S or¢ IIPIRIII 2 S o7 IIPLRIIIZ, + 072
(4.100)

Also, from Lemma 4.6 and Remark 4.7, after integrating by parts with respect to v, in
S>4 term, we obtain

|67 (52 PLRI)| S 7" || £+ S2o + S2c

lexLi |||P[R]|||Lr2ngo
1
Sore 2 |[PRIll ;2 S ore ' IPLRIIIZ, +or. (4.101)
In total, we have
|78, R)| S ore ™ IIPLRINZ, + (1) + or)e™ 1A = PRI,
+or [IRII% + IRII% +or- 4.102)

Synthesis Inserting (4.102) into (4.96), we have
IR®F, +&™! ||R||i%+ +e 2= PRI, < ore™ IPLRINI: +or IR
+IRII% +or. (4.103)

Then we have (4.91). |

Proposition 4.18. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

_1 _
19: RN 2 +&72 19 Rl 2+ YA = P9 RNz S o7 IRy + RN + o7
(4.104)
Proof. Applying a similar argument as in the proof of Proposition 4.17 to the equation

(4.37), using Lemma 4.3 — Lemma 4.11, we obtain the desired result. In particular, we
should use 0,z estimates in Lemma 4.3. O
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4.4. Kernel estimate: accumulative.

4.4.1. Estimate of p

Proposition 4.19. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

-1 _1
e 2 Ipllzz S e 2 lIblll2 +or IRl + IRI% + o7 (4.105)

Proof. Tt suffices to show
1
lipliz2 < &2 IRMIL2 + IRIz2 + bl 2 + I (X = P)[R]lll .2 + ore. (4.100)

Weak Formulation Denote

(e x0) = 1 ) (v Veple, ), (4.107)
where ¢(t, x) is defined via solving the elliptic problem

—Ayp(t) = p(t) in Q,
{so(t) =0 on Q. (4.108)

Based on standard elliptic estimates [62] and trace theorem, there exists a solution ¢
satisfying

WOl + 1Ol S lle@lg2 S TPO L2 (4.109)

Taking test function g = ¥ in (4.41), we obtain

S(R(t),w(t))—s(z,w(O))—8<<R,3t¢>>+/LR¢(v'n)—<<R,U'Vx¢>> = (S, ¥).
Y

(4.110)
We may directly bound
e(R@), v @) S e IROI2 1V Oz S e 1ROz Ip@ll2 S e IRWI7 -
4.111)
From Lemma 4.3, we know
|6(R©), v (O))| S e IRO)I 2 ¥ O 2 S e llzll7> S ore’. (4.112)
And oddness and orthogonality lead to
1
ls(R. &y )| = ‘e(uf(v-b), an/f)) S IBIG, + 2118, Vel . (4.113)

Based on Lemma 4.4, we know

ff s
Y

< |IR]||,2 2 + ||k, 2 2
S ||L7+ ||¢||L7+ l ||L77 ||W||L77

2 2 2 2 2 2
SoM IVl + IR +1Al, S oM lpllz. +IRI;. +ore”.
¥y 7+ V- Vs

4.114)
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Due to oddness and orthogonality, we have
1
(12 (- b).v- Vo) = (@ - P)RLY-V,p) = 0. “.115)

Due to orthogonality of <7, we know

] —

I !
<<[,L2 3 c,v~Vx1ﬁ>>= (cop2e/ - Vi) = 0. (4.116)

Also, we have

—<<u%p,v-Vxl/f>> =—<<pu,v-Vx(v~Vx<p)>>
=—%/Ot/§2p(Ax(p)/R3u|v|2= Pl - (@.117)

In summary, we have shown that

lpl7. S e IRWIT, +IRIZ, +IIblIT, + &2 19: Vaell7, + ore® + [(S. w)| -
Y+
(4.118)

Source Term Estimates Due to the orthogonality of I" and Lemma 3.15, we know

(S, v) ={(S1+S82¢). (4.119)

Using Lemma 4.5, we have

(St )| = (0 2, )| S or llplly, +ore®. (4.120)

Using Hardy’s inequality and integrating by parts with respect to v, in S, based on
Lemma 4.6 and Remark 4.7, we have
] n
s el
nJo

(o2 w0 1= s w1,
L s

Il +e | + 520 + 520)
L llonll 2

+ +

(2. )] < \«52’ o)

< ‘HﬁB + 82 + Sa2e

LPLY , LuL) 12 2

N m.le + S + Soc

12 +e |7 + 52 + 520)

1212, Lh L)
Sore Wil +ore gyl S oreliplle S or llpl3, +ore®. (4.121)
In summary, we have shown that

(S, )| S or llpll?, +ore®. (4.122)
Inserting (4.122) into (4.118), we have

Ipll7. S e IR+ IRIZ, + bl +&” 10 Vaoll7 + ore”. (4.123)
Y+

Estimateof ||0; Vol 2 Denote ® = 0,¢. Taking g = ¢® |v|2 y,% in (4.41), due to
orthogonality and <D|asz = 0, we obtain

(R, @0 ud) — e(Rv- Vo (@R ud)) =efs, @ ut).  @124)
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Notice that

2 (O R, @) = 36>(9,p, @) = —36>(A, D, D) = 3> (V, D, V, @) = 37 [, V.roll . -
(4.125)

Also, we know
e, v v (@102 ut))| < e

+e(@=PRL v P it v o))

D=

(v-b),v lv|? /ﬁ . VXCI>>)’

SIBIT, + 1A =PRI, + o(1)e? (18, Vaell7, -
(4.126)

Then, by a similar argument as the above estimates for (S, ¥ )), we have

e(S, @ 2 u7)

= )£<S1 + S, ® |v|2/ﬁ)

Sore? 18, Vepll7, +ore.  (4.127)

In summary, we have shown that

2 18:VrollZ2 < lIbIIT > + I —P)RI|IZ, +ore™. (4.128)

Inserting (4.128) into (4.123), we have
lipll7> S e IR, + ||R||§%+ +1IblI, + 1A = P)[RIZ, +ore®.  (4.129)
Then (4.106) follows. O

Proposition 4.20. Let R be the solution to (1.35). Under the assumptions (1.23),
(1.28),(1.31), we have

1 1
&2 N1, pllz2 S &2 192 +or IRy + IRII + o7 (4.130)

Proof. Applying a similar argument as in the proof of Proposition 4.19 to the equation
(4.37), we obtain the desired result. o

4.4.2. Estimate of ¢

Proposition 4.21. Let R be the solution to (1.35). Under the assumptions (1.23),
(1.28),(1.31), we have

_1 _1
e 2 llellz2 S e 2 liplll2 +or IRy + IRII% +or. (4.131)
Proof. 1t suffices to justify
1 i 1
llellz2 < e MR lellz2 +e2 R 2 + RNz + Pl + I =PRI 2
+

1 1 1
+ore? ||Rllx + &2 IR +ore?. (4.132)

Weak Formulation We consider the conservation law (4.83) where the smooth test
function ¢ (¢, x) satisfies

{ —Ax@(1) =5¢(1) = 2p(t) in Q,

@(t) =0 on 9Q. (4.133)
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Based on the standard elliptic estimates [62] and trace theorem, there exists a solution
@ satisfying

IVep@Dlp2 + le®ll g2 Slle®lig2 +Ip@lig2 (4.134)
From (4.83), we have

(9 (5c = 2p), @),
+e(R(1), Vxp(1) - ) — &z, Vag(0) - ) — (R, 8, Vxop - ) — i (Axgp, c)),
—{

= (Vag - h)y —(Vag - R)y + (v Vi(Vag - ), A= PRI
+e o <|v|2 - 5) 3, S+ (Veg - . 5)). (4.135)
Direct computation reveals that

<<8t(5C - 2p)’ (p>>tx = —(0: Axo, (p»z = <<at x¥, x‘p»tx

= % IVep®)7, — ||vx¢<0)||L2 , (4.136)
and from Lemma 4.3
IVe@O)172 S IpO)172 + 1cOl72 < llzll72 S ore®. (4.137)
Also, we have
—ic(Axg, €)= K(Sc = p.c),, = 5c el — k(P e),y (4.138)
with
k(. ] S oM llieliz2 + P32 - (4.139)

Using Lemma 4.3, we have

6RO, Vo) - )| S e IRWI 2 e 1 S e 1RO 2 (lle 2+ 1p)] 2 )

SelROI3. (4.140)
|&(R(0), V29 (0) - )| S e IRO) 2 9Ol g1 S e llzll7> S ore’. (4.141)
Due to the orthogonality of o7, we know
|e(R. 8, Vg - )| = |e((A—P)[R], & Vep - )| < IA— PRI,
+o(De (19, Vel - (4.142)

Using Lemma 4.4, we have
(Veo - 1)y | IV 2 Whl2 S or llellZs + or PN, + ore?,
(4.143)

<<;x‘/"ﬂvR>>* SHVx‘P'ﬂ”ﬂ ||R||[2 §0(1) |||C|||22 +o(1) |||l7||| 2+||R|| 2 ,
V4 7 7 L l

and
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(o Vx(veg - ). a=PARI)| S |0 Vi (Vep - ) || , A= PoLRII

S oM llelllF2 + o) M3, + 1A = PRI, -
(4.145)

In summary, we have shown that
IVeOII72 +llcll? S e IRMF, + ||R||§%+ +lpll3,
+ @ =P)[RIIIZ > + o(D)e” 13, Vepll7, +ore”
+ (s—l (o2 = 5)u?, S>>‘ + (Ve - . S)|.  (4.146)
Source Term Estimates Due to the orthogonality of I", we have
gl <<(p( % = 5)u, S>> ! <<(p( 2 =Sz, S + S2>> . (4.147)
Based on Lemma 4.5, we have
et oo = sk )|

= e (o0 = )t o fo))| S orellcllye S or lellZ +ore®. (4.148)

Similar to (4.121), based on Lemma 4.6, Remark 4.7 and Hardy’s inequality, we have

[ o)

1 n
S <<n52, 5/0 anw»‘ < Hn(le+S2b+S2c)

e o(? = s)ut. s:))| s !

1
- / Ong
nJo

L22r) 12
< [n(£E + S0 + S2c) pragy Nn@lliz S or liel?, +ore. (4.149)
From Lemma 4.5, we directly bound
(Ve - o, S)| S V@l Sill2 S o7 licl7 +ore’. (4.150)

By a similar argument as for deriving (4.149), we obtain

el )

1Vl 2 +e [[n(fE + 52+ S20)

|(Vip - o, S2))| < +

<<527 Vx(p n

SHle+Szb+Szc

1 n
*/ Ve
nJo

LPLE,LyL} 12 2
S| £E + 520+ 520 IVl
1 2b + D2c xPllpz
~ L202, LhL) Ly
B 2 2
v || + 52+ 52) |, Now Vgl S orellellze S or llells +ore®. (4.151)

Based on Lemma 4.8, Lemma 4.9, and Lemma 4.10, we have

|(Vep - o, S5+ Sa+Ss)| S NVeolllz2 1S3+ Sa + Sslll .2

2 2
< or llell, +or IRIIZ, +or
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e Sorllells, +ore IR +ore. (4.152)

Finally, based on Lemma 4.11, we have

(Vag - 7, S6)| < [(Vep - o, P[PIRL PIRI])| + [( Vg - o7, P[R, A= PYRI]))|.
(4.153)

~

oo s (222

S MVz@llize bl liellzz < Ml g2 MbllLs Nell g2

2 1
The oddness and orthogonality, with the help of interpolation [[|bll| ;5 < |||b|||13‘2 bl zm <
0,0

&% [IR|llx, imply that

‘«VX‘P = F[P[R], P[R]]») <

1
Ses IRy el - (4.154)

~

2 1
In addition, with the help of (T —P)[R]lll.s < IIAX =PRI, X — P)[Rllllzgoﬂ S

1
€2 [IRlllx, we have

(Vag - /. T[R, A= PRI < Vaglzs RN X = PRI

Sellellzz RN S o) lllellz, + > IR -
(4.155)

Hence, we know
1
(Ve -, Se)| < es IRl llell?y +o() llel?, + e IR - (4.156)
L L

In summary, we have shown that

e o102 = S)ueb. S| +1(Tap - . )]
S es lIRlIx llcliZ, + (0(1) +or) llcllZ, +ore IR +& IRI +ore.  (4.157)

Inserting (4.157) into (4.146), we have
1
IVe@@) 72 + llclll72 < eo RN lell7. +& IR@7 + IlRlli%

+pl72 + @ =PRI, + & 18, Vel »
+ore (IR + IR +ore. (4.158)

Estimate of [[|3; Vy¢lll ;> Denote ® = 3,¢. Taking g = e®(|v|* — S)M% in (4.41),
due to orthogonality and d>| 9o = 0, we obtain

(R, @ (v = 5) i) — (R, v Vi (@ (j0f2 = 5) u?) ) = £((S, & (jo* = 5) ).
(4.159)
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Notice that

(3R, @ (JvI? —5) u?) = 262(3 (¢ — p). @) = —262(A, D, ) = 267 [[3, V.02 .
(4.160)

Based on orthogonality, we have

’8<<R, V-V, (<I> (|v|2 - 5) /ﬁ) >>’ = ’e(((l —P)[R].v-V, (cb (|v|2 _ 5) ,ﬁ) >>‘

S A =PRI, + o(De* 19, Vepll7 .
4.161)

Then, by a similar argument as the above estimates for gl <<(p( |v|2 — 5) M%, S >>, we
have

1
oS, @ (10 —5) ) < oD 119, Vel +ore.

=& [(81+ 52, @ (o> = 5) u?)

(4.162)
In summary, we have shown that
e 19:Vaell2 < I~ PRI, +ore. (4.163)
Inserting (4.163) into (4.158), we have
V0125 + llel?s < &5 IRl lellZs +& 1R,
+ ||R||i%+ +lIpllI72 + 1A = PRI
+ore||RI% + ¢ IR + ore. (4.164)
Hence, (4.132) follows. ad

Proposition 4.22. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

_1 _1
e"2 laccll 2 S e 2 19 pll2 +or lIRIlx + IR + o7 (4.165)
Proof. Applying a similar argument as in the proof of Proposition 4.21 to the equation
(4.37), we obtain the desired result. Notice that in the bounds (4.154) and (4.155), we

should always assign L? norm to the time-derivative terms and L3 to the no-derivative
terms. a

4.4.3. Estimate of b

Proposition 4.23. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

_1 _1
e 2 bl 2 < o(De™ 2 fIpliz2 +or IRy + RN + o7 (4.166)
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Proof. 1t suffices to justify
1 L 1
bl S e IR bllz + 22 IRl + IR 2+ o) lIpllzz + 1A = PRIl .2
1 1 1
+ore? |Rllx + &2 IR +ore?. (4.167)

Weak Formulation Assume (lp ), q (t)) :Q - R3xR (where ¢ (¢) has zero average)
is the unique strong solution to the Stokes problem

V(@) =0 in Q, (4.168)

—BAxY (1) + Vxq() =b(r) in Q,
v(t)=0 on 0%2.

Based on the standard fluid estimates [19] and trace theorem, we have

IV Ol gz + IV D2 + lg@ g + g2 S IIb@) 2. (4.169)

Multiplying b on both sides of (4.168) and integrating by parts for (Vg, b)), , we have

—(rAx¥. b)), — (g, Vi - b)), /f g(-n) = b7, , (4.170)

which, by combining (4.75) and Remark 3.14, implies

1

—(2Acw.b),, (g, S|+ Gau R);, = (an?. k), =1BIZ, . @17
Inserting (4.171) into (4.87) to replace —(AA v, b)), ., we obtain
(3, ¥ ), +&(R@), Vit (1) : B) — ez, Vi (0) : B) — e(R, 3, Vs : ) + bl
— (qu. h)y +(qu?, Ry, +(Vatr : B. h)y —(Vat¥h - B. R}y
(v Vx(thp : %‘) A-P)R]) - <<q;ﬁ, sh+e{(v- v, )+ (Vew = 2, 5).

(4.172)
Using the divergence-free of iy and 1p| 9o = 0, we have
(b, ), = (- ABtA Y+ Veq, ) = 20 Valh, Vi),
= IV Ol = S IV O, @173)
and from Lemma 4.3
z ||v YOI, < DO, S l1zl3, S ore. (4.174)
Similarly, based on Lemma 4.3, we know
|6z, Veyr (0) - B)| S e llzll2 IV Ol 2 Sellzll7 S ore’s (4.175)

and direct bounds yield

le(R(), Ve (1) : B)| S e IROI 2 IV Ol 2 S e IR 2 IO 2 S e 1RO,
(4.176)
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and

(R, 0,V - BY)| = (A= P)[R], 3, Vsiy : B))|
SIA =PRI, + o(De 19, Va7, . (4.177)

In addition, based on Lemma 4.4, we have

(g i)y |+ (V2 By, | S o) [ant

2
. @2 2
2 +o(D) | Vxyr -c%”HL%_ + HhIIL%

S o) [IblI7, +ore?, (4.178)

(g Ry |+ (9w : 8. RY | S 00 [ant [, +o1vey: 1%, +RIZ,

2
2
L7+

S o) bl + RIS, (4.179)
Y+

and

‘<<v .V, (vxw : %), (I— P)[R]»‘ <o(l) H VﬁwH iz + (X = P)[RINIZ,

So() [IbllIZ, + A —P)[RI7,.  (4.180)

In summary, we have shown that
IV 172 + b2 S e IROIT, + IR, + 1A =PRI, + o) 10, VoI, + ore’
Y+
+‘<<qﬂ%,s>>‘+‘8_l<<1/I~vu%,5>>‘+’<(vx1/fZ,%),S»}. (4.181)

Source Term Estimates Due to orthogonality of I", we have

ot sl -t = il o= f-an sl

Using Lemma 4.5, we have
w2 =2 ot e - )

Se(lallzz + 9wl ) 9 fall 2 S or B, +ore?.
(4.183)

Using Lemma 4.6 and Remark 4.7, integrating by parts in v, for S>,, we obtain

1 1
(ar?. $2)| S talle || A5+ 20+ 52 < ore? llall e < or b, +ore.

LiLLy ™~
(4.184)
Similar to (4.121), we have
7 vt o) e (52 [ )
1 [" 1 [m
5‘«77521 1_1/0 3n1ﬁ>>‘ < H)n(f13+52b+520) 2L ;/0 My L
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S||n(rE + S+ $20)|| ., Wonvllz S o7 BIE: +ore. (4.185)
From Lemma 4.5, we directly bound
[(Vay = B, S| S Vel 2 1St 2 S o7 HIBIIT, +o7e?. (4.186)

Similar to (4.121), based on Lemma 4.6, Remark 4.7 and Hardy’s inequality, we have

fowsesl Mo s )

1902+ |07 + 20 + 52c)

[(Viy : B, S2)| < +

< ‘Hflg + Sop + Sa2¢

1 n
—/ R
nJo

L202, LLL)

2
e L

L2
B
< mfl + 82 + S2c

”vx‘lf”LZ
e, Ll 7

+é& ‘Hr](le + Sop + Szc)

2 13Ve¥llze S orelibllza < or bl +ore®.  (4.187)
Based on Lemma 4.8, Lemma 4.9, and Lemma 4.10, we have

|(Vxv : B, S3+S4+S5)| SUVxwlliz2 1S3+ Sa+ Sl 2

2 2 2 2
SorlIbll; 2 +or IR +ore S or bl 2 +ore IRl +ore.
(4.188)

Finally, based on Lemma 4.11, we have

(Vew 2, So)| S [(Vew - 2, T [PRLPIRI|)|+ | (Vew - 2, T [R, A= PRI
(4.189)

The oddness and orthogonality implies that

’«vﬂp - B, F[P[R],P[R]]»‘ < ‘«Vxx// BT [u% Wby, pu2 (v~b):|>>’

<<vx¢, BT {M% ('”'2‘2) ut ('”'2‘%)}»'. (4.190)

Similar to (4.154), we may directly bound

+

’«vxw LB 1 b 0t o b>]>>‘ SR YRy

1
S IIII//IIILtszz bl bl 2 S eo IRy IIIbIIIiz .
(4.191)

1
Due to oddness and 9%;; = L1 |:(|v,~|2—§|v|2>,u;i|, noting that

2 2
-5 -5
I |:,u,; <|v| 7 c) ,/ﬁ (Ivl > c>:| only depends on |v|?, we have
2 2
-5 -5

[N}
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1 2_5 1 2_5
<<81¢1%11 + 0By + 033833, I [,uz <|v| 5 c) U (|v| 7 c>:|>>‘
2 2
<<(vx V) B, T [/ﬂ ('”' 2_5c> ut ('“' ;%)}»‘ —0. (4.192)

In addition, similar to (4.155), we have

[N}

[N]

[(Vew : 8, T[R. A= PRI|)| S IV llo NRIL2 L= PRI

Sellbli2 IR < o)) b3, + e IR -
(4.193)

Hence, we know

1
[(Vew : B, Se)| < &5 IRl IbIlI7 > +o(1) [IblI7 > + & IR - (4.194)
In summary, we have shown that
1
(ot )

)
+[(Vay : 2, S)

i 2 2 2 4
S es lIRIx b2 + (o(1) + o) bl 2 +ore IR + € IR +ore.

+

(4.195)
Inserting (4.195) into (4.181), we have
1
IV @72+ 1IbIIT2 S o IR b7, +& IR@IT +IRI
Y+
+I(X =PRI > + o(D)e” 13, VeI,
+ore ||RII% + ¢ IRII% + ore. (4.196)

Estimate of [||0; Vyy/|||;2 Denote W = 9;¢. Taking g = eV - v/ﬁ in (4.41), due to
orthogonality and W | 9o = 0, we obtain

e2(9,R, W - o) — (R, v - Vy (\IJ : v,ﬁ) )= oS, - vp). 4.197)
Noticing that W is divergence-free and that \I/| aq = 0, we find

28R, W - vp2) = 2(b, W) = £2( — LAY + 3, Vg, W)
= (= AAY, W) =287 9, Vo7 (4.198)

Also, using orthogonality, we have
|2

(put <|v 2—5>C’v,vx (W.W;)»‘

=e|(n2p,v- Ve (weou2) )| S HPIZ, + o0 18,V w2,
i (w-vn?))| < men :
(4.199)

’s((R, v- Vi (\Il - v/ﬁ) })’ =¢
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Then, by a similar argument as the above estimates for gl <<1p -V /ﬁ, S >>, we have

1 1
e(S, W - ot >>‘ = ‘8<<S1 + 50, W vut)| S o 10, VepllZ, +ore.  (4200)
In summary, we have shown that
2118, Vel < 2 4.201
e M0 Veollly 2 S Pl 2 + ore. (4.201)

Inserting (4.201) into (4.196), we have

1
IV 1172 + IbllI7> < &5 [IRIx IblI7, +& IR@I7.
+IIRIZ, +o) llpll7 + X =PRI
Y+

+orellRII% +e IR +ore. (4.202)

Hence, (4.167) follows. |

Proposition 4.24. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

_1 1
e 19l 2 S o(De™ 2 13; plll 2 +or IRy + IR + o7 (4.203)

Proof. We may use a similar argument as proving Proposition 4.23 to the equation
(4.37). Notice that in the bounds (4.191) and (4.193), we should always assign L? norm
to the time-derivative terms and L to the no-derivative terms. m|

4.4.4. Summary of kernel estimates

Proposition 4.25. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

-1
e IP[R1ll 2 S or IRy + IRII + o7 (4.204)

Proof. Summarizing Proposition 4.19, Proposition 4.21 and Proposition 4.23 leads to
the desired result. O

Proposition 4.26. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

1
e~ 7 IP[3,R1lll .2 S o7 IRl + IR + o7 (4.205)

Proof. Summarizing Proposition 4.20, Proposition 4.22 and Proposition 4.24 leads to
the desired result. O
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4.5. Energy estimate: instantaneous.

Proposition 4.27. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

1
e IRM2, +e” 1A =PRI 2 S or IRIlx +IRII +or.  (4206)

Proof. For fixed t € R,, we apply a similar argument as the proof of Proposition 3.27
to (4.39), and obtain

e RO )+ e 2 A =P)RIOIZ, S or IR + IIRIIY +o7 + | (ed, R(1), R(D))].
(4.207)

Using Proposition 4.17 and Proposition 4.18, we have

le7!{ed R(1). RO))| =|(8:R(1). R®))] S IRDIT2 + 19 ROIT2 S or IIRII% + IR + o7
(4.208)

O

Corollary 4.28. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

1
X =P)[R](D)[l e + ‘MR(t) ” Sor lIRIlx + IRII% + o7 (4.209)

Y+

Proof. This is similar to the proof of Corollary 3.28. O

4.6. Kernel estimate: instantaneous.

Proposition 4.29. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

Ip@llze S or NIRIx + IR + o7 (4.210)

Proof. For fixed t € Ry, we apply a similar argument as the proof of Proposition 3.29
with 7 = 6 to (4.39). We obtain for v defined in (3.174)

PO < or RN + RN +or + |(edR(2), ¥)| . (4.211)
Using Proposition 4.18, we have
(0 R®, ¥)| S e 19 RO W llz2 S e 13ROI Il
< 8(0T IIRIx + RN + oT) P36 S e lpOIISs +or IIRING
+[IRIIE + o7 (4.212)
Hence, we have

P16 < or IR + IR +or. (4.213)
and thus (4.210) follows. |
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Proposition 4.30. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

le@lizs S or IRy + IR + o7 (4.214)

Proof. For fixed t € Ry, we apply a similar argument as the proof of Proposition 3.30
with r = 6 to (4.39). We obtain for ¢ defined in (3.189)

1
[l S or RIS +NRIE +or +[e~ (o (o2 = 5)ut, etr k()|
+|(Veg - &, €9, R(1))| . (4.215)
Using Proposition 4.18, we have

‘a_l ((p( 2 = 5)ut, e&tR(t)>‘ +|(Veg - ., 0, R))]

SRR 2 el S 10RO Nl e S (or IR +IRI +o7 ) e
So(1) IIC(I)II o +or IR + IIRII +or. (4.216)
Hence, we have
||C(f)||L6 S or RIS + IIRIN + o7, (4.217)

and thus (4.214) follows. |

Proposition 4.31. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

b lzs S or IRl + IRII% + o7 (4.218)

Proof. For fixed t € R, we apply a similar argument as the proof of Proposition 3.31
with » = 6 to (4.39). We obtain for v and ¢ defined in (3.210)

Ib@%s < or RIS + NRIIY +or

+ Kqu?, eatR(t))‘ + ‘e* <1// coul, 88,R(t)>‘ +|(Vew : B. 20, R(0))| .
(4.219)

Using Proposition 4.18, we have
Kq;ﬁ, a@,R(x)}’ + ‘a—l <w oul, 88tR(t)>’ +|(Vew : B.e0,R(0))|
S1a RO (11 + gl ) S 1RO (11 g +lal s )

<0T IRy + NIRI% +0T) @136 S o) Ib@)[S6 +or RIS + IRIY +or-

(4.220)

Hence, we have
”b(t)”LG Sor RIS + IRINY +or, (4.221)
and thus (4.218) follows. |

Proposition 4.32. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

IPLRI) s < o7 IRy + IIRII% + o7 (4.222)

Proof. Summarizing Proposition 4.29, Proposition 4.30 and Proposition 4.31 leads to
the desired result. O
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4.7. L*° estimate. We define a weight function as (3.235).

Proposition 4.33. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

1 1
e IRz, +e2 IRl S or lIRIlIx + IR + o7 (4.223)

Proof. We will use the well-known L — L% — L™ framework.
Step 1: Mild Formulation Denote the weighted solution

Ry(t, x,v) ;= w()R(t, x, v), (4.224)

and the weighted non-local operator

K@) [Rwl() —w(v)K[ ](v) / k() (v, ) Ry ()du, (4.225)
where

; (4.226)

w(v
w(v) (v,u) :==k(v,u) wt
Multiplying ew on both sides of (1.10), we have

€20, Ry + €V - ViRy + VRy = Ky[Ry1(x, v) + ew(v)S(7, x, v) in Ry x  x R3,
R, (0, x,v) = wz(x,v) in  x R3,
Ry (t, x0, v) = wh(t, xg, v) for xg € 02 and v-n <0,

(4.227)

We can rewrite the solution of the equation (4.227) along the characteristics by Duhamel’s
principle as

Ry(t, x,0) = 1 w(@)z(X, v)e "™ + 1, w()h(x, v)e "™

/ w(v)sS( — %5, x —e(f —s)v, v) —VW)(E=s) g
0

t _
+ f / k) (v, W Ry, (t — %5, x —e(f —s)u, u)e_”(")(’_s)duds,
o Jr3
(4.228)

where
tp(x,v) ;= inf {t >0:x—¢tv ¢ Q} ti(t) = 8_2t, f = min {ti, t;,}, (4.229)
and
X(x,v) :=x — ef(x, v)v. (4.230)
We further rewrite the non-local term along the characteristics as

Ry (t, x,v)

=1, <, w®)z(X, v)e "V + 1, - WA, v)e W
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g _
+/ w(v)eS(t —exs, x —e(d — s)v, v)e_”(”)('_s)ds
0
7 , .
+ 1:.’<r; / / k(v (0, Ww (w)z (X, v)e VWi eTVWE=9) gy 4
! 0 JR3

r _
+1y / /3 k(o) (v, Ww A, v)e ™" Wihe VW= dqyds
o Jr

T 7
+ / / kw)y (v, u) / sS(t —e¥s —&2rx —e( —sHu—e@ — r)u, u)
0 JR3 0

e W@ =NV =) g duds

7 I
+/ f k) (v, u)/ f k() (1, W) Ry, (t — s —’rx —e(f—sHu—e — M, u’)
0 JR3 0 JR3

e VW@ e T gy drduds, (4.231)

where

e, vis,wi=inf{t >0:x —e( —s5) —etu ¢ Q}, #(t;s) = e %t — s,
7 =min {1, 1}, (4.232)
and

X (x,v;s,u) :=x —e(f —s) — &f (x, v 5, UL (4.233)

Step 2: Estimates of Source Terms and Boundary Terms Based on Lemma 4.3 —
Lemma 4.11, we have

—v(V)t;

|1y w@)z(F, v)e

r _
+ 1:.’<z;7/ /% k() (0, Ww W) z(X, v)e " Wie V@) qyds
! 0 JR3

S llzllege, S ore, (4.234)

15, <, w (WA, v)e " @

? —
* Ly /0 /Rg k() (0, Ww A E', v)e™ Whe ™ duds
Sl Sor, (4.235)
and

T _
/ w(v)sS(t — 25, x — et — 5)v, v)e_”(”)(l_‘y)ds
0

— -
7 7 » _
+ f / Ky (v) (v, u)/ sS(t — 25— x —e(f—s)u—e@ —ru, u)e’”(u)(’ e~V E=5) g duds
0 JR3 0

1
Seffp's Sor+orellRlpo +elRI2o Sore? IRl +IIRI% +or. (4.236)
L 0. Los
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Step 3: Estimates of Non-Local Terms The only remaining term in (4.231) is the
non-local term

I —// kw (v (v, u)/ / k) (u, u) Ry,

( —¢ s—szrx—e(t—s)u—s(t — u)

—v(w) (@ —r)
e VM@= qy/drduds. (4.237)

The proof is very similar to Step 3 in the proof of Proposition 3.34 with #; replaced by 7,
so we will skip the details. The only non-trivial step is in the estimate of /5 1, we should
have

?/
1, -
[u\§2N ‘/‘u'\S3NA (x—e(t=s)v—e(t —r)ueQ}

‘R(t —e?s—etrx —e(@—s)v—e(@ —r)u, u/> e W= 4, qudy’

5

7 . 5
_ 7y
S(/ / f l{x—s(?—x)v—s(?'—r)ueﬂ}e v ')drdudu,)
Juj<2N Jjw <3N Jo
7/
X ) PN
(/I;IgZN [u’|§3N-/() {x—e(—s)v—e( —r)ue}

‘R(t — el —&%r x —e(f —s)v— e —r)u, u/>

1

° e_”(”)G/_')drdudu/> )

1

S ” 6 1

6 (7 —
5/0 78332/‘ - /1{),EQ,|R(z—ezs—ezr,y,u’)| e dydwdr| S —— IRz,
T JIW|<3N JQ 2

~ T n
£242

(4.238)

Therefore, we conclude that

1
11 S S MRwlll e + —— IRl ers , - (4.239)

1
£2482

Step 4: Synthesis Summarizing all above, we obtain for any (¢, x, v) € Ry x @ x R3,

1
|Rw (1, x,0)| S8 IRwlll o + —— I5l R oo re | +ore? IRIx + IRI% +or. (4.240)
£282

Hence, when § < 1, we obtain
_1 1
| Ruy(t, %, 0)| S &2 IRl s, +ore? IRIx + IRI +or, (4.241)

and thus the desired result follows. O
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4.8. Remainder estimate.

Theorem 4.34. Let R be the solution to (1.35). Under the assumptions (1.23),(1.28),
(1.31), we have

IRIlx < or- (4.242)
Proof. Based on Proposition 4.17, we have
_1 _
IRllzgerz, +& 2 RNz +e™" A =PRIl S o lIRIlx + RN +o7.
(4.243)
Based on Proposition 4.25, we have
_1
e 2 IP[R]ll,2 S or lIRIIx + IRI% +or. (4.244)

Combining both of them, we arrive at

_1 _1 _
IRl ez, +& 2 IRl 2+ 2 PRI + &~ 1A = PRIz < or IIRIlx + IRI + o7
(4.245)

Similarly, combining Proposition 4.18 and Proposition 4.26, we atrive at

1 1
13RIz, +672 13RIz +e 2 I3PIRIL +&" 118,X = P)RIIIL2 < or IRl + [IRIK + o7
+
(4.246)

Based on Proposition 4.27 and Corollary 4.28, we have

_1 1
&3 IRl ez, + |1 R

o T A =PRI e 2 + I A = PRI oo s,
1 Y+

Sor lIRIlx +IRII% +or-. (4.247)
Based on Proposition 4.32, we have
IPLRI 5, < or IRIIx + IIRI + o7 (4.248)
Combining both of them, we arrive at
_1 1 _
e 2 IR, + |17 R] pooyy +e7 INA =PRI zepz + IRl o s,
Sor lIRIlx +IRII% +or. (4.249)
Based on Proposition 4.33, we have

1 1 1 1
1 1 i i 2
67 IIRNge 1, +67 IRl +&2 IRl +&2 IRz S or lIRIlx + IRI +or.

(4.250)
Collecting (4.245),(4.246),(4.249),(4.250), we have
IRIx < or lIRIlx + IR +or- (4.251)
Hence, we have
IRy < NRI + o7 (4.252)

By a standard iteration/fixed-point argument, our desired result follows. O
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Proof of Theorem 1.8. The estimate (1.39) follows from Theorem 4.34. The construc-
tion and positivity of § based on the expansion (2.6) is standard and we refer to [27,29],
so we will focus on the proof of (1.40). From Theorem 4.34, we have

1
e |IP[R]l,2 + &~ I = P)[RIIl2 < o7 (4.253)
which yields
IRl < ore?. (4.254)

From (2.6), we know

1 1 3
25—t —efi = 2o —efp|| , =MeRllL S ore?. (4.255)
From Theorem 4.1 and the rescaling n = ¢ n, we have
2 2 B 3
H‘e f2H |, Sorel, H‘efl H . Sorel. (4.256)
Hence, we have
lv=25 =t —en| , S oret. (4.257)

Therefore, (1.40) follows. O
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Appendix A. Linearized Boltzmann Operator

Based on [20, Chapter 7] and [35, Chapters 1&3], define the symmetrized version of O
in (1.2):

Q*[F,G] = l// q(w, u— vl)(F(u*)G(v*) + F(0)G ) = FG(v) - F(U)G(u))dwdu-
2 R3xR3
(A1)

Clearly, Q[F, F] = Q*[F, F]. Denote the linearized Boltzmann operator £
1 1
LU= =20 Q" [ i f | = v = KL, (A2)

where for some kernels & (u, v),

v(v) =/ / q(@, [u —vhu(wydodu, K[f](v)=f k(u,v) f(wdu.  (A.3)
R Jg2 R3
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L is self-adjoint in L2(R?) with the null space
N = span[u%,v,u%, |U|2M%]. (A4)

Let A+ be the orthogonal complement of A" in L?(RR?). Denote P the orthogonal pro-
jection onto A and I — P the complement. Then £ satisfies the coercivity property

/11@ FLIfldv 2 /R} v ()|~ P)[ 1] dv. (A.5)

Note that the validity of (A.5) and the fact v(v) = (v) rely on the assumption of hard-
sphere gas in (1.2). Denote £~! : Nt — Nt the quasi-inverse of £. Also, denote the
nonlinear Boltzmann operator I”

Ilf. g :=p 20" [;ﬁf,;ﬁg] e Nt (A.6)

Appendix B. Inner Products and Norms

Based on the flow direction, we can divide the boundary y := {(xo, v): X9 €0RQ,v €
R3} into the incoming boundary y_, the outgoing boundary y., and the grazing set y
based on the sign of v-n(xp). Similarly, we further divide the boundary y := {(t, X0, V) :
teRi,x0€0,v € R3} intoy_, y,,and y.

Let (- - ), denote the inner productin v € R3 (.. ), the inner product in x € €,
(- -) the inner product in (x, v) € 2 X R3. Also, let ( - - )V . denote the inner product
on y+ with measure dy := |v - n| dvdS,.

Denote the bulk and boundary norms

||f||Lr:=(f/ |f(x,v)|’dvdx>’, i :=<f |f<x,v>|’|v~n|dy)'.
QxR3 vE v

(B.1)
Define the weighted L°° norms for 0 < ¢ < % and 9 > 0
9 ol
[ fllpee, == esssup ((v) e? 2 | f(x, v)l) ,
@ (x,0)eQxR3
lvf?
|flpeo = esssup ((v)ﬁ e? 2 | f(x, v)l) . (B.2)
koo (x,v)€y+
Denote the v-norm
%
1z = (// V() |f (x, v)|2dvdx> : (B.3)
QxR3

When the time integral is involved (usually on [0, ¥] for some T > 0 from the context),
we define the corresponding inner products (- - ), (- - Dy (- - ) and (- - )5,

Also, we define the corresponding norms: [ fll -, I/ llzz - Wfllzee, . 1l and
Y+ e &=

I1£1 -
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We will also employ the standard Sobolev norms which are essentially the L”-norms
of the function together with its (weak) derivatives up to a given order: (for 1 < p < oo
and s € R)

N
1 Mo ey == 1V £l o ey ~sevopa I 1V F o ey (B.4)

For a more comprehensive discussion on the Sobolev spaces (including the definition
of the Sobolev norms on bounded domains as well as for the endpoint cases), we refer
the reader to [1,34,64,65]. In addition, we will specify the variable(s) in the subscript
when necessary.

Sometimes, (x, v) or (¢, x, v) may call for different norms on each variable. Let
[l pye.q denote WP normforx € and W4 normforv € R3 and M-y ke p .
denote WS norm for 7 € [0, ¥] with some T > 0, WX-? norm for x € § and W44
norm for v e R3. The similar notation also applies when we replace W4 by L9, L%,

L%, or W 19 . When the boundary norms are considered, let ||-|| denote WX-P

L.q
0.9’ Whp W,

norm for x € 3Q and W9 norm for {v e R : v -n 2 0}. The similar notation also

applies to ||| : ||| wm.s Wk,p Wﬁ‘l .
Y+
We will only write the variables (¢, x, v) explicitly when there is a p0551b111ty of
confusion. For example, we may write ||-|| Ler2, to denote L norm for ¢ and L2 norm

for (x, v) (instead of the longer notation ||-|| ;oo 7 2 Lz) Also, all variables will be explicitly
written if we will further prescribe different norms on the normal n or tangential (¢1, t2)
variables.

Appendix C. Symbols and Constants
Let 1 denote the 3 x 3 identity tensor. Define the quantities

TW) =v- (|v|2 - ST) u? €eR3, (@)=L [ ] e R3, (C.1)

2
B(v) = (v ®v— %1);“ eRY, B) =L [@] eR™, (€2

along with

— of - — 2 _ o
K= /Rs%%“ o= /R3 <|v| 5T) (;zflxz{,), (C.3)
A ZZ/ '%l‘j@l‘js o ZZ/ e%ii@ii, E::/ ,@i,'@jj, for i # j. (C4)
R3 R3 R3

Notice that in (C.3), ¥ and o remain constant fori = 1,2, 3, and in (C.4), A, o and y
remain constant for i, j = 1,2,3 withi # j.

For two tensors .#, A4 € R33, we may define their double dot product (contraction)
as

3
M N =Y MNj (C.5)

ij=1
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Throughout this paper, C > 0 denotes a constant that only depends on the domain
€2, but does not depend on the data or €. It is referred as universal and can change from
one inequality to another. When we write C(z), it means a certain positive constant
depending on the quantity z. We write a < b to denote a < Cb and a 2, b to denote
a > Cb. Also, we writea >~ bifa <banda 2 b.

In this paper, we will use o(1) to denote a sufficiently small constant independent
of the data. Also, let or be a sufficiently small constant depending on the data. For the
stationary problem, o7 depends on f, only satisfying

or =0 a5 Ifplysnyroe = 0. (C.6)

For the evolutionary problem, o7 depends on f; and f; satisfying
or — 0 as ||fi||W1,ooLZ°ﬂ + 1§51y 1,00 pyr3.00 100 e 0. (C.7
’ Y—,0,t

In principle, while or is determined by data a priori, we are free to choose o(1) in each
estimate.
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