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Abstract—This paper introduces knowledge distillation to re-
store compressed neural networks on image classification tasks.
Rather than focusing on accuracy, it adopts discrepancy as the
main metric for compressed neural network performance eval-
uation. We modify the hard target in the knowledge distillation
to address the discrepancy issue during restoration. We utilize
MNIST and CIFAR10 datasets to generate compressed neural
networks and restore networks using our knowledge distillation
method to outperform those using cross-entropy, achieving up to
a 5% reduction in performance loss. Furthermore, we discuss
the impact of the choice of hyperparameters on discrepancy
restoration. Our new knowledge distillation approach brings
up a discrepancy-based restoration method that improves the
compressed neural network discrepancy performance.

Index Terms—Knowledge Distillation, Network Restoration,
Discrepancy, Compressed Network.

I. INTRODUCTION

Image recognition has always been a popular topic in neural
networks, with many foundational network structures proposed
to tackle this problem, such as feedforward neural networks
(FNN) [1] and convolutional neural networks (CNN) [2].
Notable examples include AlexNet [3], VGGNet [4], ResNet
[5], and InceptionNet [6], each demonstrating significant
achievement in accuracy and performance. Due to the excellent
performance of neural networks, they have been applied in
various fields, with one major direction being applications on
edge devices. While those neural networks perform well, they
tend to have large model sizes, high computational demands,
and require significant memory, which makes them not the best
choices for edge applications. Due to the hardware limitations
of edge devices, such as limited processing power, memory
constraints, and lower battery life, the deployment of large
neural networks is restricted. To cope with these restrictions,
various compression methods have been proposed.

Although compression methods can reduce the model com-
plexity, compressed neural networks often exhibit reduced ac-
curacy [7], lower robustness to input variations and adversarial
attacks [8], limited capacity for handling complex tasks, and
often lack flexibility for unseen data. It is clear that merely
compressing neural networks is not sufficient, a compressed
neural network restoration approach is necessary. Compressed
neural network restoration aims to repair the compressed
neural network towards its reference one instead of training
a new one. However, only a handful of methods have been
proposed. Yang et al. propose a repair method based on the
distance to the safe domain to update the compressed neural

network parameters, modifying the neural network’s reachable
domain until it is inside the safe domain [9]. Mo et al. use
the reachability analysis method to calculate the discrepancy
between the reference neural network and the compressed one
and employ the retraining method to lower the discrepancy,
restoring the compressed neural network performance [10].

There has been considerable emphasis on improving the
accuracy of compressed neural networks, but other key aspects
are often neglected. These specifications include latency [11],
energy efficiency [12], model size [13], and discrepancy [14],
all of which are crucial for practical applications on edge
devices. Focusing solely on accuracy while neglecting other
neural network properties has hidden potential threats, espe-
cially in Cyber-Physical Systems (CPS) applications, where
the interaction between computational processes and physical
components is critical. For example, learning-enabled CPS
with a compressed neural network controller may lead to
severe safety issues due to neural network compression [15].
In environment monitor devices, energy inefficiency can result
in shorter battery life, compromising the device’s reliability
during long-term monitoring [16]. In power plants, large model
sizes may exceed the memory capacity of embedded systems,
leading to system failures [17]. Ignoring those factors can lead
to inefficient use of resources and degraded performance.

To address these issues, we propose a novel knowledge
distillation method to restore compressed neural networks. We
apply the reachability-based method to compute compressed
neural network discrepancies and use discrepancy as a metric
to repair the compressed neural network by lowering the
discrepancy. We modify the hard target loss part from the
original knowledge distillation method to address the dis-
crepancy issue. This approach aims to enhance the overall
performance of the neural networks, ensuring they meet the
prescribed specifications for practical use. We utilize MNIST
and CIFAR10 datasets to compare the performance of the orig-
inal knowledge distillation method and our discrepancy-based
knowledge distillation methods. We compare our method with
the direct retraining method to show our method guarantees
compressed neural network performance.

The structure of this paper is as follows. Section II intro-
duces background and related works. In Section III, we discuss
the modification of hard target loss in knowledge distillation.
Section IV evaluates the developed approach via experiments.
Finally, Section V presents the conclusions.
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II. RELATED WORKS
A. Reachability Analysis

Neural network verification aims to ensure the reliability
and safety of neural networks through a sound and complete
process. As some neural network applications require high
robustness against adversarial inputs, compliance with strict
specifications, and safe behavior under all possible condi-
tions, it is crucial to perform neural network verification.
Reachability analysis is a powerful tool for neural network
verification, which uses mathematical techniques to determine
the set of all possible states that a system can reach with a
given set of inputs. By exploring the range of possible inputs,
reachability analysis helps identify all potential outputs, detect
unsafe regions, and validate given specifications. There are
many proposed reachability analysis methods, such as star
set [18], zonotope [19], polytope [20], and face lattice [21].
These methods develop different set representations to handle
complex and redundant sets generated during the analysis and
try to accelerate the whole process. Even though those methods
face challenges in handling high dimensionality inputs, non-
linear functions, and complex network structures, they are still
powerful and efficient neural network verification approaches.

B. Equivalence Verification

As a branch of neural network verification, equivalence ver-
ification also aims to ensure the neural networks’ correctness
and reliability. However, unlike other neural network verifica-
tion problems that focus more on the characteristics of a single
neural network, equivalence verification pays more attention
to the relationship between the two neural networks. It aims
to solve the challenges in the deployment and maintenance
scenario, such as model updates for performance improve-
ment, cross-platform consistency for platform migration, and
especially, model compression for edge device deployment.
Equivalence verification involves rigorously proving and eval-
uating whether the outputs between two neural networks are
sufficiently similar or even the same for a given input domain.
So far, some different approaches have been proposed for
equivalence verification. Xiang et. al. propose approximate
bisimulation relations to indicate the distance between two
neural networks for model reduction [22]. Mo et. al. propose
a reachability-based neural network discrepancy computation
approach, giving a concrete value to characterize the maxi-
mum output difference between the two neural networks after
compression [14]. As a branch of neural network verification,
except for the challenges encountered in general verification
problems, equivalence verification has other challenges, such
as structural differences between two neural networks and
acceptable approximate equivalence levels.

III. DISCREPANCY-BASED KNOWLEDGE DISTILLATION

As described in the knowledge distillation paper [23] and
application in [24], the knowledge embedded in an ensemble
of models can be transferred into a single model, where the
single model has similar performance as the ensemble of mod-
els. Compared to other model training methods, the knowledge

distillation method proposes an important concept, referred to
as the teacher-student model, which enables the knowledge
transfer from a powerful but computationally intensive model
to a smaller and more efficient model. To accomplish the goal
that restoring the compressed neural network to have a similar
output as the reference neural network, knowledge distillation
is employed to repair the compressed neural network, where
the compressed neural network is viewed as student model Ng,
and the reference neural network is the teacher model Nr.

Unlike the general training process, which uses ground truth
labels as the only targets, knowledge distillation adopts the
soft targets produced by the teacher model to help the student
model mimic the teacher model’s decision. The loss function
of the soft target Lg is defined below

Ls=-=3pi ~log(§), (1)
where
Di = ®(yr/T) q; = exp(ys./T) . ?2)
! > exp(yry /)" ™ > jexp(ys,/T)

The softmax function is applied on the neural network
output to convert the teacher model logit y7, and student model
logit yg, into probability p;, g; for each label <. T is the tem-
perature that controls the sharpness of probability distribution
over classes. A higher T" produces a softer distribution. p; and
q; are the softmax outputs of the teacher and student models at
temperature 7', respectively. The loss function of hard targets
Ly using cross-entropy is defined below

Ly =-> ¢ -log(g), 3

where

1, corresponding label outputs
¢ = ) “

0, otherwise

and ¢; is the softmax output of the student model at tempera-
ture 7. Thus, the final loss function is the combination of the
soft targets and hard targets as below

L=alLs+(1—a«)Ly, ©)

where the « is the hyper-parameters to balance the influence
of soft targets and hard targets.

The hard targets part using the cross-entropy on correspond-
ing outputs in the knowledge distillation indicates that the
student model mimics the teacher model’s decision strategy
and gives higher output probability on the correct class and
lower down probability on other classes. However, this strategy
isn’t consistent with the goal of restoring the student model
to give similar outputs as the teacher model, as the student
model may pay more attention to the correct class and less to
the correlation among all classes. To address the similarity in
the output of all classes, we modify the hard targets part with
the discrepancy result in Smaw, which can be obtained from
reachability-based discrepancy computation as shown in [14].
The hard targets part is modified below

yT =Yr — ﬂsmaza (6)
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where yr is the output vector of the teacher model, and (3
is a tuning parameter to avoid overfitting issues, normally
set as 0.5. The loss function of hard targets is switched to
mean squared error instead of cross-entropy loss as mean
squared error contains more information for all classes. Thus,
the modified loss function for hard targets is

N
. 1 R
Ly = N ;ﬂ lyr —ysll (7)

where yg is the output vector of the student model. As we
introduce the discrepancy to the teacher model logits, the soft
targets part is modified as follows:

£ N qi
LS = 7Zipi : IOg(E)a (8)
where
> exp(dr, /1)
Thus, the final loss function is updated as follows
L=aLs+(1—a)ly. (10)

Algorithm 1 summarizes the discrepancy-based knowledge
distillation on compressed neural network restoration. For
each epoch, it computes the discrepancy between the updated
student and teacher models and updates the loss function for
student model parameter. If the discrepancy drops below a
prescribed threshold, the restoration process is finished, and a
timeout counter is adopted to avoid endless updates.

Algorithm 1: Discrepancy-Based Knowledge Distilla-
tion for Neural Network Restoration
input : Teacher model Np, student model Ng,
discrepancy threshold d
output: Restored student model Ng
Smaz — discrepancy (N7, Ng) while True do
yT YT — 0.5 * 5'rnaa:
~ exp(gr, /T
Pt = i%(‘éé />T>
exp(ys, /T)
A > explys; /T)
Lg = =>_;pi - log(#)
Ly =% i, Iy — ys|

L+ als+(1—a)Ly
Ng « loss backward(Ng, L)
Omaz < discrepancy(Np, Ng)

if

qi <

wm

e e N

10

‘ < d or timeout then

67” axr

Ng <+ Ng
break

11
12
13
14 end

15 return NS

end
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IV. EXPERIMENTS
A. Datasets

For the experiments, we utilize the MNIST and CIFAR10
datasets for evaluations. The MNIST dataset includes a large
number of hand-written digits, and each image is a 28 ¥ 28 x 1
grayscale image. The CIFAR10 dataset contains 10 different
classes of images, and each image is a 32* 323 RGB image.
These two datasets are popularly used benchmarks for image
recognition.

B. Neural Network Implementation

For the experiments, we implement three different neural
networks as the teacher model for different datasets.

o MNIST FNN: It is a feedforward neural network with a
total of 4 linear layers, each of which is followed by the
ReLU function except for the output layer.

MNIST CNN: It is a convolution neural network with
two convolution layers, a max pooling layer, and two
linear layers. Except for the output layer, each layer is
followed by the ReLU function.

CIFAR10 VGG: It is a deep convolution neural network
with 16 layers [4]. It contains five groups of convolution
layers, where the first two groups have two layers, and
the last three groups contain three layers. A max pooling
layer is added between two convolution groups. Three
linear layers follow the last convolution group. The ReLU
function follows each layer.

We adopt the quantization method for each student model
to compress each teacher model without changing the network
structure. Table I shows that the teacher model and the student
model have the same number of parameters, as we apply the
same network structure. After quantization, all student models’
size drops down to one-quarter the size of their teacher models
while maintaining a high accuracy.

TABLE I: Overview of neural network implementation.

Parameters ~ Size (KB)  Accuracy (%)
MNIST Teacher 472,042 1,847 96
FNN Student 472,042 469 96
MNIST Teacher 1,199,882 4,690 98
CNN Student 1,199,882 1,179 98
CIFAR10  Teacher 7,879,818 30,791 80
VGG Student 7,879,818 7,725 80

C. Discrepancy Computation

As our method is based on discrepancy results, we employ
the exact reachability analysis method to calculate the maxi-
mum vector Sm(m. Exact reachability analysis guaranteed the
maximum discrepancy between the two neural networks with
a given input domain without any conservativeness, unlike
over-approximation, which provides conservative results due
to approximation on non-linear function. For simplicity, we
randomly choose an image from both datasets as our exper-
iment sample and set a pixel on the sample with a £0.05
variation after normalization and standardization.
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Fig. 1: Discrepancy performance restoration comparison among different methods.

TABLE II: Discrepancy restoration performance

Model Method Ori. Disc. Re. Disc. Reduction
Disc. KD | 113810 3.9215 345%
NEEET Ori. KD | 113810 139124  1222%
Retrain | 113810 14141 12.4%
Disc. KD | 265594 14474 54%
Ng};T Ori. KD | 265594 80912 30.5%
Retrain | 265504 17304 6.5%
Disc. KD | 17.0158  3.8791 8%
Clgélélo Ori. KD | 17.0158 10923517  >1000%
Retrain | 170158 22670 133%

D. Knowledge Distillation Evaluation

In this experiment, we mainly focus on comparing the dis-
crepancy results for employing different restoration methods.
Here, we compare our discrepancy-based knowledge distilla-
tion method with the original knowledge distillation method
on the discrepancy restoration performance, and we take the
retraining method proposed in [10] as the reference, which
has been proved effective in performance restoration. For the
hyperparameters in knowledge distillation, we generally set
temperature 7' = 2 and o = 0.5. We run for five epochs to ob-
serve the trends of different methods. Fig.1 shows the result for
these methods’ performance on discrepancy restoration. Only
in Fig.1b the original knowledge distillation method can help
reduce the discrepancy after several epochs. Besides, the origi-
nal knowledge distillation method can’t help restore the neural
network’s discrepancy but may even increase the discrepancy,
which is not expected. On the opposite, our discrepancy-
based knowledge distillation method can effectively reduce
the discrepancy. Compared to the retraining method, our
method can reduce the discrepancy to as low as the retraining
method. Table II shows the detail of discrepancy restoration
performance for different restoration methods. “Disc. KD”
means the discrepancy-based knowledge distillation, “Ori.
KD” means the original knowledge distillation, “Ori. Disc.”
means the originally calculated discrepancy, “Re. Disc.” means
the discrepancy after restoration, and “Reduction” means the
ratio of restored discrepancy to the original discrepancy. “Ori.
KD” incredibly increases the discrepancy over ten times after
the restoration process, which goes against our purpose. It is
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interesting to notice that our “Disc. KD can perform better
than retraining in the MNIST CNN model, which shows the
potential for further improvement in discrepancy restoration
purposes.

CIFAR10 Discrepancy Restoration Result

60
> B Ori. KD
§ Bl Teacher
“3 40 1 HEm Retrain
3 === Disc. KD
2z
£
E 20 A
X
©
=

0 B

bird cat

plane

car deer dog

Label

frog horse ship truck

Fig. 2: Output result comparison among different restoration
methods with CIFAR10 sample.

As the “Ori. KD” provides a very high discrepancy result
after the restoration process, we want to dig a little deeper to
find out the reason. We input the sample to the three student
models and the teacher model and plot the comparison for all
label outputs in Fig. 2. The results of the teacher model are the
target outputs. It is clear that the “Retrain” and the “Disc. KD”
methods can narrow down the difference between the student
model’s output and the teacher model’s output. However, the
“Ori. KD” methods increase the difference between them.
Although the logit at the correct label is still the highest
one, the logit itself rises too high. As the original knowledge
distillation uses Eq. (3) as the hard target part, it raises too
much attention on the correct label, which leads to the incre-
ment of the correct label logit. Meanwhile, Eq. (1) updates
the student model to provide a similar output distribution
as the teacher model, which forces all other label logits to
increase as the correct label logit rises too high. To testify, we
evaluate the student model’s accuracy performance. “Ori. KD”
drops the accuracy down to 66%, while the “Disc. KD” keeps
the accuracy at 70%, which further proves our discrepancy-
based knowledge distillation method outperforms the original
knowledge distillation in neural network restoration.
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Fig. 3: Discrepancy performance restoration comparison
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Fig. 4: Discrepancy performance restoration comparison with different temperature 7.

E. Hyperparameters Tuning for Discrepancy Based Knowl-
edge Distillation

As shown in section three, the knowledge distillation
method has two hyperparameters that are not pre-set. The
combination of different temperatures 7' and « can affect
the loss function and further affect the optimization of neural
networks. In the above experiment, the temperature is set to
2, and « is set to 0.5 as an initial setting. To further explore
the influence of different choices of 7" and «, we design two
controlled variable experiments to have a glance at the effect
of temperature 7' and «.

1) a-Tuning Experiment: To explore the effect of o, we
control the temperature 7' = 2 and test it with three different
a, where a = 0.2, 0.5, and 0.8. We test our three models and
run them with five epochs to gain insight into the discrepancy
reduction trend. The results are shown in Fig. 3 and Table III.
From the results, we notice that in small models, different «
have almost the same reduction slope for the first few epochs.
In Fig. 3a, « 0.8 has a trend of continued decline, but
a = 0.5 and o = 0.2 are more inclined to start converging.
In Fig. 3b, all three o give the same result. After inspection,
we find that the hard target loss far outperforms the soft target
loss, which results in that the updated direction of the student
model mainly relies on the hard target part. In Fig. 3c, o = 0.2
and o = 0.8 may increase the discrepancy at the first epoch but
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lately drop rapidly and reach a lower discrepancy compared
to a = 0.5. After 5 epochs, all of these three « still have a
downward trend to reduce the discrepancy further.

From this « experiment, we can briefly conclude that the
choice of o will affect the discrepancy descent rate. A lower
« brings a more aggressive decline curve but converges early,
and a higher « allows a slower but steadier decline. However,
it requires the soft target loss and hard target loss to be in the
same order of magnitude.

2) T-Tuning Experiment: To explore the effect of tempera-
ture T°, we control the a« = 0.5 and test it with three different
T, where T' = 0.8, 2, and 5. Same as the a-tuning process,
the results are shown in Fig. 4 and Table III. In Fig. 4a,
T = 2 and T = 0.8 have similar decline curves, both of which
have a sharp drop at the second epoch and start converging
at later epochs. While 7" = 5 performs differently, where the
discrepancy reduces steadily and goes lower than the other
two. In Fig. 4b, T' = 2 and T' = 0.8 have the same curve,
and the 7" = 5 has a very similar curve, which means that
in this model, the hard target loss far exceeds the soft target
loss, which led almost the same update direction. But, it is
interesting to notice that the 7' =5 is a little different, which
brings us a hint that a higher temperature will increase the soft
target loss ratio in the total loss and decrease the effect from
the hard target part. In Fig. 4c, taking 7" = 2 as a reference,
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TABLE III: Hyperparameters tuning result for discrepancy-based knowledge distillation

Model Ori. Disc. a=05,T=2 «a=02T7T=2 «a=08T=2 «a=05717T=08 a=05"1T=5
MNIST FNN 11.3810 3.9215 3.7550 3.2620 3.6056 3.4563
MNIST CNN 26.5594 1.4474 1.4474 1.4474 1.4474 1.4488
CIFAR10 VGG 17.0159 3.8791 3.2217 2.2759 3.3584 2.5741
T = 0.8 has a noticeable rise at the first epoch and later drops [6] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep

down to a lower discrepancy. 7' = 5 still gives a steady decline
curve and reaches the lowest point among these three curves.
From these three model comparisons, discrepancy converges
earlier with a simple neural network, and a more complicated
neural network seems to restore to a lower discrepancy level,
as MNIST FNN seems to start converging while CIFAR10
VGG keeps decreasing.

From this temperature 7' experiment, we can briefly summa-
rize the effect of the temperature 7' in the restoration process.
A higher temperature 7' helps increase the soft target loss
proportion in the total loss and provides a steady decline curve.
A lower T' can bring a sharp decline curve and drop down
to the low discrepancy point earlier. As explained in [23],
a higher temperature 7' provides a soft and smooth output
distribution, fuzzing the relation between label logits. A lower
temperature 7', especially when 7' < 1, addresses each label,
bringing more attention to each label logit.

V. CONCLUSIONS

This paper introduces our discrepancy-based knowledge
distillation method for neural network restoration in image
recognition problems. Compared to the classic knowledge
distillation, we apply discrepancy results on teacher logits
and modify hard target loss to be consistent with the target
of lowering the student model’s discrepancy. The experiment
proves that our knowledge distillation outperforms the original
one in discrepancy restoration performance. And we discuss
the effect of o and temperature 7". With different combinations
of v and 7T, it has great potential to have better discrepancy
restoration performance on image recognition problems and
outperform the retraining method.
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