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Abstract—This paper employs knowledge distillation to op-
timize neural network compression processes via reducing the
approximate bisimulation error between two neural networks.
The paper calculates the approximate bisimulation error between
two neural networks and derives the relationship between the
approximate bisimulation error and the soft loss of knowledge
distillation processes. Then, we propose a knowledge distillation
optimization framework to further reduce the approximate
bisimulation error between the original neural network and its
compressed version. This method can significantly enhance the
trustworthiness of the neural network compression methods as
the approximate bisimulation error is reduced.

Index Terms—Approximate Bisimulation Relation, Knowledge
Distillation, Neural Network Restoration, Reachability.

I. INTRODUCTION

To address the complexity of external environments, high
dimensionality, and uncertainty of control systems, neural
networks have continued to expand in scale and complexity.
While this expansion improves performance and accuracy, it
also poses significant challenges to the computational and stor-
age capacities of devices. This is especially true in scenarios
involving high computational loads, storage costs, and com-
plex models, where the efficient deployment of models faces
major challenges [1]. Additionally, this increases the time
cost of safety verification. Verifying even simple properties is
an NP-complete problem [2], and verifying neural networks
remains a significant challenge. The complex structure and
activation functions of large neural networks make them
nonlinear, non-convex, and difficult to understand, verification
methods are developed to verify properties of neural network
systems [3]. To address the challenges posed by large-scale
and highly complex neural networks, we compress the original
neural network while ensuring that the output of the com-
pressed neural network maintains a high level of matching with
the output of the original network within a specified accuracy
threshold.

Experimental evidence shows that by pretraining on a large-
scale neural network, smaller neural networks can achieve
results comparable to those of larger networks [4]. This
suggests that a complex model in terms of scale does not
necessarily imply complex representations. In other words,
complex tasks can be learned using simpler networks that
can replace larger networks. Mainstream model compression
techniques include knowledge distillation to train lightweight
model architectures, pruning to remove redundant neurons, and

quantization to reduce representation precision [5], [6]. Knowl-
edge distillation, in particular, can be flexibly applied across
a range of important learning paradigms [7], highlighting its
versatility. It can be integrated into major learning paradigms,
including adversarial learning, automated machine learning,
label noise filtering, lifelong learning, and reinforcement learn-
ing. The combination of knowledge distillation with other
learning methods holds promise for addressing forthcoming
real-world challenges, underscoring the considerable potential
of knowledge distillation in model compression. However,
the optimization problem in knowledge distillation remains
challenging to solve effectively using current methods. The
matching accuracy of compressed models may be relatively
low, whether on training data or test data [8].

Therefore, in this paper, we use the knowledge distillation
model compression algorithm to enhance the similarity be-
tween two neural networks which increases the trustworthiness
of neural network compression. Reachability analysis allows
the calculation of the maximum difference between the outputs
of the compressed neural network and the original neural
network, referred to as the approximate bisimulation error
[9]. This error reflects the similarity between the neural net-
works. By targeting specific training to reduce the approximate
simulation error, the accuracy of knowledge distillation-based
model compression can be improved.

The structure of this paper is as follows. Section II intro-
duces the approximate bisimulation bisimulation relation and
knowledge distillation, and reveals the relationship between
them. In Section III, the approximate bisimulation bisimulation
relation restoration framework based on knowledge distillation
is developed. Section IV evaluates the developed approach via
experiment. Finally, Section V presents the conclusions.

II. APPROXIMATE BISIMULATION RELATION AND
KNOWLEDGE DISTILLATION

A. Approximate Bisimulation Relation

Given a neural network in the description of y = Φ(u)
where, u ∈ Rnu is the input and y ∈ Rny is the output, and
Φ : Rnu → Rny denotes the neural network. the reachable set
of neural network Φ is defined as follows.

Definition 1: [9] Given a neural network Φ and an input set
U ⊂ Rnu , the following set

Y = {y ∈ Rny | y = Φ(u), u ∈ U} , (1)

is called the output reachable set of neural network Φ.
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Consider two neural networks Φ1 and Φ2, the approximate
bisimulation relation between two neural networks formally
characterizes the the maximum difference between outputs.

Definition 2: [9] Given two neural networks Φ1 and Φ2

with an input set U ⊂ Rnu , we define the following metric to
characterize the output discrepancy of two neural networks

d(Φ1,Φ2) =

{
ρ(y1, y2) if u1 = u2

+∞ otherwise
, (2)

where

ρ(y1, y2) = sup
y1∈Y1,y2∈Y2

∥y1 − y2∥ , (3)

in which Yi, i ∈ {1, 2} are output reachable sets defined by
(1) for two neural networks .

Definition 3: [9] Given two neural networks Φ1 and Φ2

with an input set U ⊂ Rnu , and let ε ≥ 0 and, a relation
Rε ⊂ Rny1×Rny2 is called an approximate simulation relation
between Φ1 and Φ2, of precision ε, if for all (y1, y2) ∈ Rε

1) d(Φ1(u),Φ2(u)) ≤ ε, ∀u ∈ U ;
2) ∀u ∈ U , ∀Φ1(u) ∈ Y1, ∃Φ2(u) ∈ Y2 such that

(Φ1(u),Φ2(u)) ∈ Rε;
3) ∀u ∈ U , ∀Φ2(u) ∈ Y2, ∃Φ1(u) ∈ Y1 such that

(Φ1(u),Φ2(u)) ∈ Rε

and we say neural networks Φ1 and Φ2 are approximately
bisimilar with precision ε, denoted by Φ1 ∼ε Φ2. Furthermore,
the approximate bisimulation error is defined by

d(Φ1,Φ2) = sup{ε | Φ1 ∼ε Φ2}. (4)

In [9]–[12], a neural network merging approach was de-
veloped to compute the approximate bisimulation error using
reachability tools for various neural networks such as feedfor-
ward neural networks, convolutional neural networks, etc.

B. Knowledge Distillation

To perform knowledge distillation, it is essential to first
define the concept of knowledge, which can be abstractly
described as the mapping relationship from input to output.
Distillation, in this context, refers to the methodology of
transferring knowledge from large-scale neural networks to
more compact neural network models [13]. This process
involves the utilization of a teacher-student model, where the
pre-trained large-scale model functions as the teacher, ΦL, and
the compact model serves as the student, ΦS . The core of
this approach lies in leveraging the soft targets predicted by
ΦL, in conjunction with hard targets, to train ΦS . Knowledge
distillation employs a loss function, measured through cross-
entropy relative to the output distribution, to quantify the com-
pression effect. A typical knowledge distillation framework is
illustrated in Fig. 1.

The use of hard-target supervision is deemed necessary
as soft-targets may also incur prediction errors, necessitating
correction through hard-targets. LH measures the loss between
the ground truth values and the predicted values. Regarding
LS , the reachable input set is utilized to generate soft targets
by employing ΦL at a high temperature T. At temperature T ,

Layer 1 Layer 2 Layer m

Layer 1 Layer 2 Layer n

Original network
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softmax(𝑡𝑡 = 𝑇𝑇)

softmax(𝑡𝑡 = 𝑇𝑇)
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Soft
Loss

Softmax

Total
Loss

Hard
Loss
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Hard
predicts
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Fig. 1. General Knowledge Distillation Framework.

the cross-entropy between the outputs of ΦL and ΦS yields
the soft loss. The cross-entropy between the original ground
truth values and the outputs of the compressed neural network
serves as the hard loss. The cross-entropy between the softmax
output and the soft-targets at the same elevated temperature T
is outlined below

LS = −
∑

ipi · log(qi), (5)

where

pi =
exp(yLi

/T )∑
j exp(yLj/T )

, qi =
exp(ySi

/T )∑
j exp(ySj/T )

, (6)

in which pi represents the value in the softmax output of the
original neural network ΦL at temperature T, qi represents the
value in the softmax output of the compressed neural network
ΦS at temperature T. The hard loss in the diagram can be
represented as

LH = −
∑

ici · log(qi), (7)

where ci represents the reference value. ci ∈ [0, 1], takes the
value of 1 for corresponding outputs and 0 otherwise, and qi
for LH is with T = 1. These two losses are combined and
weighted to obtain the total loss.

To minimize the total loss, the knowledge distillation pro-
cess will reduce both soft and hard losses. The hard loss
reflects the prediction accuracy as it is the cross-entropy
between the original ground truth values and the outputs as
in a normal neural network training process. The soft loss is
featured by knowledge distillation to represent the difference
between the teacher model ΦL and the student model ΦS .
In the following, we will explore the relationship between
knowledge distillation and approximate bisimulation relation,
particularly in the view of soft loss.

Taking the partial derivative of LS with respect to each logit
ySi

further yields:

∂

∂ySi

LS =
1

T

(
exp(ySi/T )∑
jexp(ySj

/T )
− exp(yLi/T )∑

jexp(yLj
/T )

)
, (8)

which can be approximated as below when the temperature
parameter T is chosen to be relatively large

∂

∂ySi

LS ≈ 1

T
(

1 + ySi
/T

N +
∑

jySj/T
− 1 + yLi

/T

N +
∑

jyLj/T
). (9)
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Fig. 2. Approximation Bisimulation Relation Restoration Framework.

Assuming that the logits are centered around zero for each
sample, we can yield a further approximation as follows

∂

∂ySi

LS ≈ 1

NT 2
(yLi

− ySi
). (10)

As a result, the knowledge distillation is equivalent to
minimizing (yLi − ySi)

2 in high temperature. On the other
hand, Definition 3 of approximate simulation relation error
between ΦL and ΦS implies that ε ≈ maxi ∥yLi

− ySi
∥.

Therefore, it implies that the knowledge distillation can reduce
and minimize the approximate simulation relation error ε.

III. APPROXIMATE BISIMULATION RELATION
RESTORATION

To address the problem of approximation bisimulation re-
lation restoration, we define the input domain with approxi-
mation bisimulation error between two neural networks as the
large error input set domain, denoted as Ue. The definition can
be tailored to specific application scenarios, for example, if
the error between the outputs of two neural networks exceeds
d(ΦL,ΦS)/2, the input is considered part of Ue.

Definition 4: Consider two neural networks ΦL and ΦS , if
their outputs yL, ẏS for input u satisfies

d(ΦL,ΦS) = ∥yL − ẏS∥ ≥ dth, (11)

where the data pair (u, ẏS) is referred to as significant outliers.
dth represents the threshold to determine significant outliers.

As illustrated in Fig. 2, after determining significant outliers,
we have to correct them to data pairs (u, ỹS) to avoid data
variability and merge them into the retraining dataset as
pairs of (u, ȳS) for knowledge distillation. Specifically in the
correction process, we multiply the correction d(ΦL,ΦS) by a
coefficient in the range of (0, 1) to mitigate significant outliers
data variability. The function for correct significant outliers is
in the following form of

ỹS = ẏS + β · sup ∥yL − ẏS∥ , (12)

where β ∈ (0, 1) denotes the correction coefficient.
The approximation bisimulation relation restoration proce-

dure aims to reduce the approximation bisimulation error ε,
which can be summarized as follows:

• Initialization: For a given original neural network ΦL

and its compressed version ΦS , the approximation bisim-
ulation error ε between the two is calculated. Input-output
data pairs (u, yS) corresponding to the approximation
bisimulation error exceeding the threshold dth are consid-
ered as significant outliers (u, ẏS), requiring correction.

• Correction: Identify significant outliers (u, ẏS), apply
the correction function (12) to rectify them to be correct-
ing data pairs (u, ỹS), and construct a retraining dataset
(u, ȳS) with both corrected and normal data pairs.

• Distillation: By utilizing the distillation-based restora-
tion, Φ̂S is repeatedly trained by adjusting its weights and
biases so that the output yS of Φ̂S converges as closely
as possible to the output yL of ΦL, aiming to minimize
the approximate bisimulation error between Φ̂S and ΦL.
This process is intended to make the new network Φ̂S

closely resemble ΦL.
• Evaluation: After distilling the compressed model, calcu-

late the approximation bisimulation error ε and compare
it with the predefined threshold. Until the condition (11)
is not satisfied, the evaluating, correction, and distillation
process concludes. Otherwise, iterate through the distil-
lation process again.

IV. EXPERIMENTS AND EVALUATION

In random numerical experiments, an original neural net-
work ΦL of the size of 2 × 20 × 20 × 20 × 2 is randomly
constructed. Subsequently, a smaller-scale neural network ΦS

was obtained through knowledge distillation, with a size of
2× 5× 5× 2. The activation function used for hidden layers
is the Rectified Linear Unit (ReLU).

The small-scale neural network ΦS obtained from the
original neural network employs the approximate bisimula-
tion error d(ΦL,ΦS) from Eq. (4) between the two neural
networks. The input set is chosen within the following interval
U ≜ [0, 0.5]×[0, 0.5]. Using the reachable set computation tool
NNV [14], the approximate bisimulation error ε between the
two neural networks can be computed through the application
of approximation bisimulation error d(ΦL,ΦS) = 0.10714.
Hence, it can be inferred that for any sampled input data from
the input set U , the distance between the resulting outputs is
guaranteed to be less than or equal to 0.10714.

Fig. 3 depicts the simulated output scatter plots for the two
neural networks. Observing the output data points generated
by both neural networks using the same set of input data,
we found that all the output data points from the large-scale
neural network ΦL fall within the circles centered around the
corresponding output data points generated by the small-scale
neural network ΦS , with a radius equal to the approximate
bisimulation error d(ΦL,ΦS).

After performing knowledge-distillation-base restoration on
the compressed neural network, denoted as Φ̂S , the sampled
outputs are shown in Fig. 4. The approximate bisimulation
error was reduced from 0.10714 to 0.068976, which is a
35.62% decrease from the original one as shown in Table I.
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TABLE I
APPROXIMATE BISIMULATION ERRORS

Before Restoration After Restoration
Error d(ΦL,ΦS) 0.10714 0.068976

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

3.5

4

4.5

5

Original NN :2*20*20*20*2
Compressed NN :2*5*5*2

Approximate distance = 0.10714

Fig. 3. Approximate Bisimulation Error Before Restoration
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Compressed NN :2*5*5*2

Approximate distance = 0.10714
Approximate distance (Optimization) = 0.068976

Fig. 4. Approximate Bisimulation Error After Restoration

For each sampled output data point of the optimized com-
pressed neural network, a deep blue circle is drawn with
a radius equal to the new approximate bisimulation error,
denoted as d(ΦL, Φ̂S). It can be observed that the range of
sampled outputs fitted by the optimized compressed neural
network (deep blue region) is smaller than that of the original
compressed neural network (light blue region), indicating
a smaller approximate bisimulation error for the optimized
compressed neural network. This suggests a better perfor-
mance to reduce the approximate bisimulation error, thereby
demonstrating the effectiveness of approximation bisimulation
relation restoration algorithms based on knowledge distillation.

V. CONCLUSIONS

This paper addresses the neural network restoration through
a knowledge distillation model compression algorithm. By
calculating the approximate bisimulation error between the
two neural networks, the relationship between this error and
the knowledge distillation loss is derived which implies that
knowledge distillation can reduce approximate bisimulation er-
ror. Subsequently, a knowledge distillation optimization frame-
work is developed to minimize the approximate bisimulation
error, significantly enhancing the similarity and trustworthiness
between the compressed and original models. Finally, the
optimized neural network compression model is applied to
randomly generated neural networks, validating the effective-
ness of the compression optimization method.
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