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Abstract: One of the most classical and fundamental mathematical problems in kinetic theory is to
study the diffusive limit of the neutron transport equation. As ε→ 0, the phase space density uε(x,w)

w · ∇xuε + ε−1
(
uε − uε

)
= 0, uε

∣∣∣
x∈∂Ω,w·n<0

= g, uε(x) :=
1

4π

∫
S2

uε(x,w)dw, (0.1)

converges to the interior solution U0(x):

−∆xU0 = 0, U0

∣∣∣
∂Ω

= UB
0,∞, (0.2)

in which UB
0,∞ is obtained by solving the Milne problem for the celebrated boundary layer correction

UB
0 . The function g represents the inflow data, and n is the unit outward normal to the smooth bounded

domain Ω. Surprisingly, we found [1, 2] that the expected L∞ expansion∥∥∥uε − U0 − UB
0

∥∥∥
L∞
. ε (0.3)

is invalid due to the grazing singularity of UB
0 . As a result, the corresponding well-known mathematical

theory breaks down, and the diffusive limit has remained an outstanding question. A satisfactory
theory was developed for convex domains [1–6] by constructing new boundary layers with favorable
ε-geometric corrections. However, this approach is inapplicable in non-convex domains. In this paper,
we settle this open question affirmatively in the L2 sense. The convergence

‖uε − U0‖L2 . ε
1
2 (0.4)

holds for general smooth domains, including non-convex ones. We achieve this by discovering a novel
and optimal L2 expansion theory that reveals a surprising ε

1
2 gain for the average of the remainder, and

by choosing a test function with a new cancellation via conservation of mass. We also introduce a cutoff

boundary layer UB
0 and investigate its delicate regularity estimates to control the source terms of the

remainder equation with the help of Hardy’s inequality. Notably, our new cutoff boundary layer UB
0

determines U0, despite its absence in the estimate.
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1. Introduction

1.1. Problem formulation

We consider the steady neutron transport equation in a three-dimensional C3 bounded domain (convex
or non-convex) with in-flow boundary condition. In the spatial domain Ω 3 x = (x1, x2, x3) and the
velocity domain S2 3 w = (w1,w2,w3), the neutron density uε(x,w) satisfies (0.1) with the Knudsen
number 0 < ε � 1. We intend to study the asymptotic behavior of uε as ε→ 0.

Based on the flow direction, we can divide the boundary γ :=
{
(x0,w) : x0 ∈ ∂Ω,w ∈ S2} into

the incoming boundary γ−, the outgoing boundary γ+, and the grazing set γ0 according to the sign of
w · n(x0). In particular, the boundary condition of (0.1) is only given on γ−.

1.2. Normal chart near boundary

We follow the approach in [4, 6] to define the geometric quantities, and the details can be found in
Section 2.2. For smooth manifold ∂Ω, there exists an orthogonal curvilinear coordinates system (ι1, ι2)
such that the coordinate lines coincide with the principal directions at any x0 ∈ ∂Ω. Assume that ∂Ω is
parameterized by r = r(ι1, ι2). Let the vector length be Li :=

∣∣∣∂ιir∣∣∣ and let the unit vector be ςi := L−1
i ∂ιir

for i = 1, 2.
Consider the corresponding new coordinate system (µ, ι1, ι2), where µ denotes the normal distance to

the boundary surface ∂Ω, i.e.

x = r − µn. (1.1)

Define the orthogonal velocity substitution for w := (ϕ, ψ) as

−w · n = sinϕ, w · ς1 = cosϕ sinψ, w · ς2 = cosϕ cosψ. (1.2)

Finally, we define the scaled normal variable η =
µ

ε
, which implies

∂

∂µ
=

1
ε

∂

∂η
. We then write

x := (η, ι1, ι2).

1.3. Asymptotic expansion and remainder equation

We seek a solution to (0.1) in the form

uε =U + UB + R =
(
U0 + εU1 + ε2U2

)
+ UB

0 + R, (1.3)

where the interior solution is

U(x,w) := U0(x) + εU1(x,w) + ε2U2(x,w), (1.4)
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and the boundary layer is

UB(x,w) := UB
0 (x,w). (1.5)

Here U0, U1, U2, and UB
0 are constructed in Section 2.1 and Section 2.2, and R(x,w) is the remainder

satisfying

w · ∇xR + ε−1(R − R
)

= S , R
∣∣∣
x∈∂Ω,w·n<0

= h, R(x) =
1

4π

∫
S2

R(x,w)dw, (1.6)

where h and S are as defined in (3.4) and (3.6)–(3.9).

1.4. Literature

The study of the neutron transport equation in bounded domains has received a lot of attention since
the dawn of the atomic age. This equation is not only significant in nuclear sciences and medical imaging
but is also regarded as a linear prototype of the more important and complicated nonlinear Boltzmann
equation. As a result, it serves as an ideal starting point to develop new theories and techniques.

For the formal expansion with respect to ε and its explicit solution, [7–15] provide relevant literature.
The discussion on the bounded domain and half-space cases can be found in [16–23]. In the more
general context, we refer to [24–34] for the hydrodynamic limits of Boltzmann equations in bounded
domains, and the recent progress on the diffusive limit of the transfer equation (which is a coupled
system of the transport equation and the heat equation) [35, 36].

The classical boundary layer analysis of the neutron transport equation leads to the Milne problem,
which dictates that UB

0 (η, ι1, ι2,w) satisfies the equation given by

sinϕ
∂UB

0

∂η
+ UB

0 − UB
0 = 0. (1.7)

Based on the formal expansion in ε (see (2.6)), it is natural to expect the following remainder estimate [16]:

‖R‖L∞ =
∥∥∥uε − U0 − UB

0

∥∥∥
L∞
. ε. (1.8)

While this estimate holds for domains with flat boundaries, a surprising counter-example was constructed [1]
that shows (1.8) to be invalid for a two-dimensional (2D) disk due to the grazing set singularity.

To provide more specific details, demonstrating the validity of the remainder estimates (1.8), necessi-
tates the use of the higher-order boundary layer expansion UB

1 ∈ L∞. In this case, the bound ∂ιiU
B
0 ∈ L∞

is required, and even though UB
0 ∈ L∞, it has been proven that the normal derivative ∂ηUB

0 is singular
at the grazing set ϕ = 0. This singularity is then transferred to ∂ιiU

B
0 < L∞. A meticulous construction

of the boundary data [1] reveals that both the method and the result of the boundary layer (1.7) are
problematic, which justifies this invalidity.

A new approach to constructing the boundary layer has been proposed in recent works [1, 3–6]. It is
based on the ε-Milne problem with geometric corrections for ŨB

0 (x,w), given by

sinϕ
∂ŨB

0

∂η
−

ε

Rκ − εη
cosϕ

∂ŨB
0

∂ϕ
+ ŨB

0 − ŨB
0 = 0, (1.9)
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where Rκ(ι1, ι2) > 0 denotes the radius of curvature on ∂Ω. This new construction has been shown
to provide a satisfactory characterization of the L∞ diffusive expansion in two-dimension (2D) or
three-dimensional (3D) convex domains. The proof relies on a detailed analysis of W1,∞ regularity and
boundary layer decomposition techniques for (1.9).

In non-convex domains, where Rκ(ι1, ι2) < 0, the boundary layer with geometric correction is
described in [2] as follows:

sinϕ
∂ŨB

0

∂η
+

ε

|Rκ| + εη
cosϕ

∂ŨB
0

∂ϕ
+ ŨB

0 − ŨB
0 = 0. (1.10)

This sign flipping of the geometric correction term in contrast to (1.9) dramatically changes the
characteristics of the boundary layer.
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Figure 1. Characteristics in convex domains.
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Figure 2. Characteristics in non-convex domains.

In Figure 1 and Figure 2 [2], the horizontal axis represents the scaled normal variable η, while the
vertical axis represents the velocity ϕ. The inflow boundary is located on the left boundary where η = 0
and ϕ > 0. It is apparent from Figure 2 that there exists a “hollow” region where the characteristics
may never track back to the inflow boundary. This discrepancy in the information source results in a
strong discontinuity across the boundary of the “hollow” region, making it impossible to obtain W1,∞

estimates, which, in turn, prevents higher-order boundary layer expansion.
In this paper, we employ a fresh approach to design a cutoff boundary layer without the geometric

correction and justify the L2 diffusive expansion in smooth non-convex domains.
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1.5. Notation and convention

Let 〈 · , · 〉w denote the inner product for w ∈ S2, 〈 · , · 〉x for x ∈ Ω, and 〈 · , · 〉 for (x,w) ∈
Ω × S2. Moreover, let 〈 · , · 〉γ± denote the inner product on γ± with the measure dγ := |w · n| dwdS x =

|sinϕ| cosϕdwdS x. Denote the bulk and boundary norms as follows:

‖ f ‖L2 :=
("

Ω×S2
| f (x,w)|2 dwdx

) 1
2

, | f |L2
γ±

:=
(∫

γ±

| f (x,w)|2 dγ
) 1

2

. (1.11)

Define the L∞ norms as follows:

‖ f ‖L∞ := ess sup
(x,w)∈Ω×S2

∣∣∣ f (x,w)
∣∣∣, | f |L∞γ± := ess sup

(x,w)∈γ±

∣∣∣ f (x,w)
∣∣∣. (1.12)

Let ‖·‖Wk,p
x

denote the usual Sobolev norm for x ∈ Ω and |·|Wk,p
x

for x ∈ ∂Ω, and ‖·‖Wk,p
x Lq

w
denote the Wk,p

norm for x ∈ Ω and the Lq norm for w ∈ S2. Similar notation also applies when we replace Lq by Lq
γ.

When there is no possibility of confusion, we will ignore the (x,w) variables in the norms.
Throughout this paper, C > 0 denotes a constant that only depends on the domain Ω, but does not

depend on the data or ε. It is referred to as universal and can change from one inequality to another. We
write a . b to denote a ≤ Cb and a & b to denote a ≥ Cb. We also write a ' b if a . b and a & b. We
use o(1) to denote a sufficiently small constant that is independent of the data.

1.6. Main results

Theorem 1.1. Under the assumption

|g|W3,∞W1,∞
γ−
. 1, (1.13)

there exists a unique solution uε(x,w) ∈ L∞(Ω × S2) to (0.1). Moreover, the solution obeys the estimate

‖uε − U0‖L2 . ε
1
2 . (1.14)

Here, U0(x) satisfies the Laplace equation with the Dirichlet boundary condition ∆xU0(x) = 0 in Ω,

U0(x0) = Φ∞(x0) on ∂Ω,
(1.15)

in which Φ∞(ι1, ι2) = Φ∞(x0) for x0 ∈ ∂Ω is given by solving the Milne problem for Φ(x,w)
sinϕ

∂Φ

∂η
+ Φ − Φ = 0,

Φ(0, ι1, ι2,w) = g(ι1, ι2,w) for sinϕ > 0,

lim
η→∞

Φ(η, ι1, ι2,w) = Φ∞(ι1, ι2).

(1.16)

Remark 1.2. In [1, 5, 6] for 2D/3D convex domains, as well as [2] for a 2D annulus domain, it is
justified that for any 0 < δ � 1 ∥∥∥∥uε − Ũ0 − ŨB

0

∥∥∥∥
L2
. ε

5
6−δ, (1.17)
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where ŨB
0 (x,w) is the boundary layer with geometric correction defined in (1.9), and Ũ0 is the corre-

sponding interior solution. Previous work [23, Theorem 2.1] has revealed that the difference between
two types of interior solutions satisfies ∥∥∥Ũ0 − U0

∥∥∥
L2 . ε

2
3 . (1.18)

Due to the rescaling η = ε−1µ, for the general in-flow boundary data g, the boundary layer ŨB
0 , 0

satisfies ∥∥∥∥ŨB
0

∥∥∥∥
L2
' ε

1
2 . (1.19)

Hence, we conclude that

‖uε − U0‖L2 ' ε
1
2 . (1.20)

Therefore, this indicates that (1.14) in Theorem 1.1 achieves the optimal L2 bound of the diffusive
approximation.

1.7. Methodology

It is well-known that the key of the remainder estimate is to control R. In a series of works [1–6], it
has been shown that the kernel estimate∥∥∥R

∥∥∥
L2 . ε

−1
∥∥∥R − R

∥∥∥
L2 + ε−

1
2 |R|L2

γ−
+ 1 (1.21)

and the basic energy (entropy production) bound

ε−1
∥∥∥R − R

∥∥∥
L2 + ε−

1
2 |R|L2

γ−
. o(1)

∥∥∥R
∥∥∥

L2 + 1. (1.22)

provide a full control of the remainder R:

‖R‖L2 . ε−1
∥∥∥R − R

∥∥∥
L2 +

∥∥∥R
∥∥∥

L2 . 1. (1.23)

Although (1.23) alone is not enough to justify

lim
ε→0

∥∥∥uε − U0 − UB
0

∥∥∥
L2 = 0, (1.24)

expanding the boundary layer approximation beyond the leading order UB
0 further improves the righ-

hand side (RHS) of (1.23) to εα with α > 0, and leads to (1.24). While this technique works well for
convex domains, as our previous analysis revealed, it is impossible to expand to UB

1 for non-convex
domains due to the lack of the W1,∞ estimate in (1.10).

The bottleneck of the L2 bound (1.23) lies in the kernel estimate (1.21), which stems from the weak
formulation of (1.6) with the test function w · ∇xξ∫

γ

R
(
w · ∇xξ

)
(w · n) −

〈
R,w · ∇x

(
w · ∇xξ

)〉
+ ε−1

〈
R − R,w · ∇xξ

〉
=

〈
S ,w · ∇xξ

〉
. (1.25)
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Here, the auxiliary function ξ(x) satisfies

−∆xξ = R, ξ
∣∣∣
∂Ω

= 0. (1.26)

In (1.25),
〈
R,w ·∇x

(
w ·∇xξ

)〉
'

∥∥∥R
∥∥∥2

L2 , and ε−1
〈
R−R,w ·∇xξ

〉
leads to the worst and critical contribution

ε−1
∥∥∥R − R

∥∥∥
L2 .

The key improvement in our work is an upgraded (compared with (1.21)) kernel estimate∥∥∥R
∥∥∥

L2 . ε
− 1

2
∥∥∥R − R

∥∥∥
L2 + |R|L2

γ−
+ ε

1
2 (1.27)

which, combined with (1.22), leads to∥∥∥R
∥∥∥

L2 . ε
− 1

2
∥∥∥R − R

∥∥∥
L2 +

∥∥∥R
∥∥∥

L2 . ε
1
2 . (1.28)

The extra ε
1
2 gain in (1.27) follows from a crucial observation. We consider the conservation law of

(1.6) with the test function ξ defined in (1.26):

−
〈
R,w · ∇xξ

〉
= −

〈
R − R,w · ∇xξ

〉
=

〈
S , ξ

〉
. (1.29)

We discover that the combination ε−1×(1.29) and (1.25) yields∫
γ

R
(
w · ∇xξ

)
(w · n) −

〈
R,w · ∇x

(
w · ∇xξ

)〉
= ε−1

〈
S , ξ

〉
+

〈
S ,w · ∇xξ

〉
, (1.30)

which exactly cancels out the worst contribution ε−1
〈
R − R,w · ∇xξ

〉
. This key cancellation leads to

an additional crucial gain of ε
1
2 in (1.27). Consequently, we can deduce the remainder estimate (1.28)

without any further expansion of the (singular) boundary layer approximation.
Technically, to estimate the source terms ε−1

〈
S , ξ

〉
and

〈
S ,w · ∇xξ

〉
in (1.30), and ε−1

〈
S ,R

〉
in

deriving (1.22), particularly the derivatives of the boundary layers, we construct a new cut-off boundary
layer

UB
0 (x,w) := χ̃

(
ε−1ϕ

)
χ(εη)Ψ(x,w), (1.31)

where Ψ solves the Milne problem. With the grazing set cutoff χ̃
(
ε−1ϕ

)
, we are able to perform delicate

and precise estimates to control the resulting complex forcing term S (see (3.6)–(3.9)). In addition, with
the help of integration by parts in ϕ and Hardy’s inequality [37, 38] in the µ direction, we have∣∣∣∣∣∣ε−1

〈
cosϕ

∂UB
0

∂ϕ
, ξ

〉∣∣∣∣∣∣ . ∣∣∣∣ε−1
〈
UB

0 , ξ
〉∣∣∣∣ . ∣∣∣∣∣∣

〈
ηUB

0 ,
1
µ

∫ µ

0

∂ξ

∂µ

〉∣∣∣∣∣∣ . ∥∥∥ηUB
0

∥∥∥
L2

xL1
w

∥∥∥∥∥1
µ

∫ µ

0

∂ξ

∂µ

∥∥∥∥∥
L2

(1.32)

.
∥∥∥ηUB

0

∥∥∥
L2

xL1
w

∥∥∥∥∥∂ξ∂µ
∥∥∥∥∥

L2
. ε

1
2 ‖ξ‖H1 . ε

1
2
∥∥∥R

∥∥∥
L2 ,

we can bound all source contributions in terms of the desired order of ε for closure.
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2. Asymptotic analysis

2.1. Interior solution

Inserting (1.4) into (0.1) and comparing the order of ε, and following the analysis in [4,6], we deduce
that

U0 = U0, ∆xU0 = 0, (2.1)

U1 = U1 − w · ∇xU0, ∆xU1 = 0, (2.2)

U2 = U2 − w · ∇xU1, ∆xU2 = 0. (2.3)

We need the boundary layer to determine the boundary conditions for U0, U1, and U2.

2.2. Boundary layer

2.2.1. Geometric substitutions

The construction of the boundary layer requires a local description in a neighborhood of the physical
boundary ∂Ω. We follow the procedure in [4, 6].

Substitution 1: Spatial Substitution Following the notation in Section 1.2, under the coordinate
system (µ, ι1, ι2), we have

w · ∇x = −(w · n)
∂

∂µ
−

w · ς1

L1(κ1µ − 1)
∂

∂ι1
−

w · ς2

L2(κ2µ − 1)
∂

∂ι2
, (2.4)

where κi(ι1, ι2) for i = 1, 2 is the principal curvature.

Substitution 2: Velocity Substitution Under the orthogonal velocity substitution (1.2) for ϕ ∈[
−
π

2
,
π

2

]
and ψ ∈ [−π, π], we have

w · ∇x = sinϕ
∂

∂µ
−

( sin2 ψ

R1 − µ
+

cos2 ψ

R2 − µ

)
cosϕ

∂

∂ϕ
+

cosϕ sinψ
L1(1 − κ1µ)

∂

∂ι1
+

cosϕ cosψ
L2(1 − κ2µ)

∂

∂ι2
(2.5)

+
sinψ

R1 − µ

{R1 cosϕ
L1L2

(
ς1 ·

(
ς2 ×

(
∂ι1ι2r × ς2

)))
− sinϕ cosψ

}
∂

∂ψ

−
cosψ
R2 − µ

{R2 cosϕ
L1L2

(
ς2 ·

(
ς1 ×

(
∂ι1ι2r × ς1

)))
− sinϕ sinψ

}
∂

∂ψ
,

where Ri = κ−1
i represents the radius of curvature. Note that the Jacobian dw = cosϕdϕdψ will be

present when we perform integration.
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Substitution 3: Scaling Substitution Considering the scaled normal variable η = ε−1µ, we have

w · ∇x =ε−1 sinϕ
∂

∂η
−

( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
cosϕ

∂

∂ϕ
+

R1 cosϕ sinψ
L1(R1 − εη)

∂

∂ι1
+

R2 cosϕ cosψ
L2(R2 − εη)

∂

∂ι2
(2.6)

+
sinψ

R1 − εη

{R1 cosϕ
L1L2

(
ς1 ·

(
ς2 ×

(
∂ι1ι2r × ς2

)))
− sinϕ cosψ

}
∂

∂ψ

−
cosψ

R2 − εη

{R2 cosϕ
L1L2

(
ς2 ·

(
ς1 ×

(
∂ι1ι2r × ς1

)))
− sinϕ sinψ

}
∂

∂ψ
.

2.2.2. Milne problem

Let Φ(x,w) be the solution to the Milne problem

sinϕ
∂Φ

∂η
+ Φ − Φ =0, Φ(x) =

1
4π

∫ π

−π

∫ π
2

− π2

Φ(x,w) cosϕdϕdψ, (2.7)

with the boundary condition

Φ(0, ι1, ι2,w) = g(ι1, ι2,w) for sinϕ > 0. (2.8)

We are interested in the solution that satisfies

lim
η→∞

Φ(η, ι1, ι2,w) = Φ∞(ι1, ι2) (2.9)

for some Φ∞(ι1, ι2). Based on [4, Section 4], we have the well-posedness and regularity of (2.7).

Proposition 2.1. Under the assumption (1.13), there exist Φ∞(ι1, ι2) and a unique solution Φ to (2.7)such
that Ψ := Φ − Φ∞ satisfies 

sinϕ
∂Ψ

∂η
+ Ψ − Ψ = 0,

Ψ(0, ι1, ι2,w) = g(ι1, ι2,w) − Φ∞(ι1, ι2),

lim
η→∞

Ψ(η, ι1, ι2,w) = 0,

(2.10)

and for some constant K > 0 and any 0 < r ≤ 3, we have

|Φ∞|W3,∞
ι1 ,ι2

+
∥∥∥eKηΨ

∥∥∥
L∞
.1, (2.11)∥∥∥∥∥eKη sinϕ

∂Ψ

∂η

∥∥∥∥∥
L∞

+

∥∥∥∥∥eKη sinϕ
∂Ψ

∂ϕ

∥∥∥∥∥
L∞

+

∥∥∥∥∥eKη∂Ψ

∂ψ

∥∥∥∥∥
L∞
.1, (2.12)∥∥∥∥∥∥eKη∂

rΨ

∂ιr1

∥∥∥∥∥∥
L∞

+

∥∥∥∥∥∥eKη∂
rΨ

∂ιr2

∥∥∥∥∥∥
L∞
.1. (2.13)

Let χ(y) ∈ C∞(R) and χ̃(y) = 1 − χ(y) be smooth cut-off functions satisfying χ(y) = 1 if |y| ≤ 1 and
χ(y) = 0 if |y| ≥ 2. We define the boundary layer as follows:

UB
0 (x,w) := χ̃

(
ε−1ϕ

)
χ(εη)Ψ(x,w). (2.14)
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Remark 2.2. Due to the cutoff in (2.14), we have

UB
0 (0, ι1, ι2,w) = χ̃

(
ε−1ϕ

)(
g(ι1, ι2,w) − Φ∞(ι1, ι2)

)
= χ̃

(
ε−1ϕ

)
Ψ(0, ι1, ι2,w), (2.15)

and

sinϕ
∂UB

0

∂η
+ UB

0 − UB
0 = −χ̃

(
ε−1ϕ

)
χ(εη)Ψ + Ψχ̃(ε−1ϕ)χ(εη) + sin φχ̃

(
ε−1ϕ

)∂χ(εη)
∂η

Ψ. (2.16)

2.3. Matching procedure

We plan to enforce the matching condition for x0 ∈ ∂Ω and w · n < 0

U0(x0) + UB
0 (x0,w) =g(x0,w) + O(ε). (2.17)

Considering (2.15), it suffices to require

U0(x0) = Φ∞(x0) := Φ∞(ι1, ι2), (2.18)

which yields

U0(x0) + Ψ(x0,w) =g(x0,w). (2.19)

Hence, we obtain

U0(x0,w) + UB
0 (x0,w) = g(x0,w) − χ

(
ε−1ϕ

)
Ψ(0, ι1, ι2,w). (2.20)

Construction of U0 Based on (2.1) and (2.18), we define U0(x) satisfying

U0 = U0, ∆xU0 = 0, U0(x0) = Φ∞(x0). (2.21)

From standard elliptic estimates [39, Chapter 9: Section 2], trace theorem, and Proposition 2.1, we have
for any s ∈ [2,∞)

‖U0‖W3+ 1
s ,s

+ |U0|W3,s . 1. (2.22)

Construction of U1 Based on (2.2), we define U1(x,w) satisfying

U1 = U1 − w · ∇xU0, ∆xU1 = 0, U1(x0) = 0. (2.23)

From (2.22), we have that for any s ∈ [2,∞)

‖U1‖W2+ 1
s ,sL∞

+ |U1|W2,sL∞ . 1. (2.24)
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Construction of U2 Based on (2.2), define U2(x,w) satisfying

U2 = U2 − w · ∇xU1, ∆xU2 = 0, U2(x0) = 0. (2.25)

From (2.24), we have for any s ∈ [2,∞)

‖U2‖W1+ 1
s ,sL∞

+ |U2|W1,sL∞ . 1. (2.26)

Summarizing the analysis above, we have the well-posedness and regularity estimates of the interior
solution and boundary layer.

Proposition 2.3. Under the assumption (1.13), we can construct U0,U1,U2, and UB
0 as in (2.21), (2.23),

(2.25), and (2.14) satisfying for any s ∈ [2,∞)

‖U0‖W3+ 1
s ,s

+ |U0|W3,s .1, (2.27)

‖U1‖W2+ 1
s ,sL∞

+ |U1|W2,sL∞ .1, (2.28)

‖U2‖W1+ 1
s ,sL∞

+ |U2|W1,sL∞ .1, (2.29)

and, for some constant K > 0 and any 0 < r ≤ 3, we have

∥∥∥eKηUB
0

∥∥∥
L∞

+

∥∥∥∥∥∥eKη∂
rUB

0

∂ιr1

∥∥∥∥∥∥
L∞

+

∥∥∥∥∥∥eKη∂
rUB

0

∂ιr2

∥∥∥∥∥∥
L∞
.1. (2.30)

3. Remainder equation

Denote the approximate solution

ua :=
(
U0 + εU1 + ε2U2

)
+ UB

0 . (3.1)

Inserting (1.3) into (0.1), we have

w · ∇x
(
ua + R

)
+ ε−1

(
ua + R

)
− ε−1

(
ua + R

)
= 0,

(
ua + R

)∣∣∣∣
γ−

= g, (3.2)

which yields

w · ∇xR + ε−1
(
R − R

)
= −w · ∇xua − ε

−1
(
ua − ua

)
, R

∣∣∣∣
γ−

=
(
g − ua

)∣∣∣∣
γ−
. (3.3)

3.1. Formulation of remainder equation

Now we consider the remainder equation (1.6), where the boundary data h is given by

h := −εw · ∇xU0 − ε
2w · ∇xU1 − χ

(
ε−1ϕ

)
Ψ(0), (3.4)

and the source term S is given by

S := S 0 + S 1 + S 2 + S 3, (3.5)
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where

S 0 := − ε2w · ∇xU2, (3.6)

S 1 :=
( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
cosϕ

∂UB
0

∂ϕ
, (3.7)

S 2 :=ε−1 sin φχ̃
(
ε−1ϕ

)∂χ(εη)
∂η

Ψ +
R1 cosϕ sinψ
L1(R1 − εη)

∂UB
0

∂ι1
+

R2 cosϕ cosψ
L2(R2 − εη)

∂UB
0

∂ι2
(3.8)

+
sinψ

R1 − εη

{R1 cosϕ
L1L2

(
ς1 ·

(
ς2 ×

(
∂ι1ι2r × ς2

)))
− sinϕ cosψ

}∂UB
0

∂ψ

−
cosψ

R2 − εη

{R2 cosϕ
L1L2

(
ς2 ·

(
ς1 ×

(
∂ι1ι2r × ς1

)))
− sinϕ sinψ

}∂UB
0

∂ψ
,

S 3 :=ε−1
(
χ̃
(
ε−1ϕ

)
χ(εη)Ψ − Ψχ̃

(
ε−1ϕ

)
χ(εη)

)
. (3.9)

3.2. Weak formulation

Lemma 3.1 (Green’s identity, Lemma 2.2 of [40]). Assume f (x,w), g(x,w) ∈ L2(Ω × S2), and w ·
∇x f , w · ∇xg ∈ L2(Ω × S2) with f , g ∈ L2

γ. Then"
Ω×S2

((
w · ∇x f

)
g +

(
w · ∇xg

)
f
)
dxdw =

∫
γ

f g(w · n) =

∫
γ+

f gdγ −
∫
γ−

f gdγ. (3.10)

Using Lemma 3.1, we can derive the weak formulation of (1.6). For any test function g(x,w) ∈
L2(Ω × S2) with w · ∇xg ∈ L2(Ω × S2) with g ∈ L2

γ, we have∫
γ

Rg(w · n) −
"

Ω×S2
R
(
w · ∇xg

)
+ ε−1

"
Ω×S2

(
R − R

)
g =

"
Ω×S2

S g. (3.11)

3.3. Estimates of boundary and source terms

Lemma 3.2. Under the assumption (1.13), for h defined in (3.4), we have

|h|L2
γ−
. ε. (3.12)

Proof. Based on Proposition 2.3, we have

|εw · ∇xU0|L2
γ−

+
∣∣∣ε2w · ∇xU1

∣∣∣
L2
γ−

. ε. (3.13)

Noting that the cutoff χ
(
ε−1ϕ

)
restricts the support to |ϕ| . ε and that the dγ measure contributes an

extra sinϕ, we have ∣∣∣χ(ε−1ϕ
)
Ψ(0)

∣∣∣
L2
γ−

. ε. (3.14)

Hence, our result follows. �

Lemma 3.3. Under the assumption (1.13), for S 0 defined in (3.6), we have

‖S 0‖L2 . ε2. (3.15)
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Proof. This follows from Proposition 2.3. �

Lemma 3.4. Under the assumption (1.13), for S 1 defined in (3.7), we have∥∥∥(1 + η
)
S 1

∥∥∥
L2 . 1. (3.16)

Also, for the boundary layer UB
0 defined in (2.14), we have∥∥∥(1 + η

)
UB

0

∥∥∥
L2 . ε

1
2 ,

∥∥∥(1 + η
)
UB

0

∥∥∥
L2

xL1
w
. ε

1
2 , (3.17)

and ∣∣∣∣〈(1 + η
)
S 1, g

〉∣∣∣∣ . ∥∥∥(1 + η
)
〈w〉2 UB

0

∥∥∥
L2 ‖∇wg‖L2 . ε

1
2 ‖∇wg‖L2 . (3.18)

Proof. We split

S 1 = S 11 + S 12 :=
( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
cosϕ

∂Ψ

∂ϕ
χ̃
(
ε−1ϕ

)
χ(εη) (3.19)

+

( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
cosϕ

∂χ̃
(
ε−1ϕ

)
∂ϕ

χ(εη)Ψ.

Note that S 11 is nonzero only when |ϕ| ≥ ε and thus based on Proposition 2.1, we know
∣∣∣∣∣∂Ψ

∂ϕ

∣∣∣∣∣ ≤
|sinϕ|−1

|Ψ| . ε−1. Hence, using dµ = εdη, we have

‖S 11‖L2 .

("
|ϕ|≥ε

∣∣∣∣∣∂Ψ

∂ϕ

∣∣∣∣∣2 dϕdµ
) 1

2

.

("
|ϕ|≥ε

|sinϕ|−2
|Ψ|2 dϕdµ

) 1
2

(3.20)

.

("
|ϕ|≥ε

|sinϕ|−2 e−2Kηdϕdµ
) 1

2

.

(
ε

"
|ϕ|≥ε

|sinϕ|−2 e−2Kηdϕdη
) 1

2

.
(
εε−1

) 1
2

= 1.

Noticing that
∂χ̃

(
ε−1ϕ

)
∂ϕ

= ε−1χ̃′
(
ε−1ϕ

)
and χ̃′

(
ε−1ϕ

)
is nonzero only when ε < |ϕ| < 2ε, based on

Proposition 2.1, we have

‖S 12‖L2 .ε−1
("

ε<|ϕ|<2ε
|Ψ|2 dϕdµ

) 1
2

. ε−1
("

ε<|ϕ|<2ε
e−2Kηdϕdµ

) 1
2

(3.21)

.ε−1
(
ε

"
ε<|ϕ|<2ε

e−2Kηdϕdη
) 1

2

. ε−1 (εε)
1
2 = 1.

Combining (3.20) and (3.21), we have (3.16). Note that e−Kη will suppress the growth from the pre-factor
1 + η.

Naturally, (3.17) comes from Proposition 2.1. We now turn to (3.18). The most difficult term in∣∣∣ 〈S 1, g〉
∣∣∣ is essentially

∣∣∣∣∣∣
〈
∂UB

0

∂ϕ
, g

〉∣∣∣∣∣∣. Integration by parts with respect to ϕ implies that

∣∣∣∣∣∣
〈
∂UB

0

∂ϕ
, g

〉∣∣∣∣∣∣ .
∣∣∣∣∣∣
〈
UB

0 ,
∂g
∂ϕ

〉∣∣∣∣∣∣ . ∥∥∥UB
0

∥∥∥
L2

∥∥∥∥∥∂g
∂ϕ

∥∥∥∥∥
L2
. (3.22)
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From (1.2) and
∂x
∂ϕ

= 0, we know that the substitution (µ, ι1, ι2,w)→ (µ, ι1, ι2,w) implies

−
∂w
∂ϕ
· n = cosϕ,

∂w
∂ϕ
· ς1 = − sinϕ sinψ,

∂w
∂ϕ
· ς2 = − sinϕ cosψ. (3.23)

Hence, we know
∣∣∣∣∣∂w
∂ϕ

∣∣∣∣∣ . 1, and thus

∣∣∣∣∣∂g
∂ϕ

∣∣∣∣∣ . |∇wg|
∣∣∣∣∣∂w
∂ϕ

∣∣∣∣∣ . |∇wg| . (3.24)

Hence, we know that ∣∣∣∣∣∣
〈
∂UB

0

∂ϕ
, g

〉∣∣∣∣∣∣ . ∥∥∥UB
0

∥∥∥
L2 ‖∇wg‖L2 . ε

1
2 ‖∇wg‖L2 . (3.25)

�

Lemma 3.5. Under the assumption (1.13), for S 2 defined in (3.8), we have∥∥∥(1 + η
)
S 2

∥∥∥
L2 . ε

1
2 ,

∥∥∥(1 + η
)
S 2

∥∥∥
L2

xL1
w
. ε

1
2 . (3.26)

Proof. Notice that
∣∣∣∣∣ε−1 sin φχ̃

(
ε−1ϕ

)∂χ(εη)
∂η

∣∣∣∣∣ . 1. Based on Proposition 2.1 and Proposition 2.3, we

directly bound

‖S 2‖L2 .

(" (
|Φ|2 +

∣∣∣∣∣∂Φ

∂ι1

∣∣∣∣∣2 +

∣∣∣∣∣∂Φ

∂ι2

∣∣∣∣∣2 +

∣∣∣∣∣∂Φ

∂ψ

∣∣∣∣∣2 )
dϕdµ

) 1
2

(3.27)

.

("
e−2Kηdϕdµ

) 1
2

.

(
ε

"
e−2Kηdϕdη

) 1
2

. ε
1
2 .

Then the L2
xL1

w estimate follows from a similar argument, noting that there is no rescaling in w variables.
�

Lemma 3.6. Under the assumption (1.13), for S 3 defined in (3.9), we have∥∥∥(1 + η
)
S 3

∥∥∥
L2 . 1,

∥∥∥(1 + η
)
S 3

∥∥∥
L2

xL1
w
. ε

1
2 . (3.28)

Proof. Using χ = 1 − χ̃, we split

S 3 = S 31 + S 32 :=ε−1Ψχ
(
ε−1ϕ

)
χ(εη) − ε−1χ

(
ε−1ϕ

)
χ(εη)Ψ. (3.29)

Noting that S 31 is nonzero only when |ϕ| ≤ ε, based on Proposition 2.1, we have

‖S 31‖L2 .

("
|ϕ|≤ε

∣∣∣ε−1Ψ
∣∣∣2 dϕdµ

) 1
2

.

(
ε−2
"
|ϕ|≤ε

e−2Kηdϕdµ
) 1

2

(3.30)
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.

(
ε−1
"
|ϕ|≤ε

e−2Kηdϕdη
) 1

2

.
(
ε−1ε

) 1
2 . 1.

Analogously, noting that S 32 contains a w integral, we have

‖S 32‖L2 .

(" ∣∣∣∣ε−1Ψχ(ε−1ϕ)
∣∣∣∣2 dϕdµ

) 1
2

.

ε−2
" ∣∣∣∣∣∣

∫
|ϕ|≤ε

Ψdϕ

∣∣∣∣∣∣2 dϕdµ


1
2

(3.31)

.

ε−2
" ∣∣∣∣∣∣

∫
|ϕ|≤ε

e−Kηdϕ

∣∣∣∣∣∣2 dϕdµ


1
2

.

(
ε−2
"

ε2e−2Kηdϕdµ
) 1

2

.

("
e−2Kηdϕdµ

) 1
2

.

(
ε

"
e−2Kηdϕdη

) 1
2

. ε
1
2 .

Combining (3.30) and (3.31), we have the L2 estimate. Similarly, we derive the L2
xL1

w bound:

‖S 31‖L2
xL1

w
.

(∫ ( ∫
|ϕ|≤ε

∣∣∣ε−1Ψ
∣∣∣ dϕ)2

dµ
) 1

2

.

(∫
e−2Kηdµ

) 1
2

.

(
ε

∫
e−2Kηdη

) 1
2

. ε
1
2 , (3.32)

‖S 32‖L2
xL1

w
.

(∫ ( ∫ ∣∣∣∣ε−1Ψχ(ε−1ϕ)
∣∣∣∣ dϕ)2

dµ
) 1

2

.

(
ε−2

∫ (∫ ∣∣∣∣∣∣
∫
|ϕ|≤ε

Ψdϕ

∣∣∣∣∣∣ dϕ)2

dµ
) 1

2

(3.33)

.

(
ε−2

∫ (∫
εe−Kηdϕ

)2

dµ
) 1

2

.

(∫
e−2Kηdµ

) 1
2

.

(
ε

∫
e−2Kηdη

) 1
2

. ε
1
2 .

�

4. Remainder estimate

4.1. Basic energy estimate

Lemma 4.1. Under the assumption (1.13), we have

ε−1 |R|2L2
γ+

+ ε−2
∥∥∥R − R

∥∥∥2

L2 . o(1)ε−1
∥∥∥R

∥∥∥2

L2 + 1. (4.1)

Proof. Taking g = ε−1R in (3.11), we obtain

ε−1

2

∫
γ

|R|2 (w · n) + ε−2
〈
R,R − R

〉
= ε−1

〈
R, S

〉
. (4.2)

By using the orthogonality of R and R − R, we have

ε−1

2
|R|2L2

γ+

+ ε−2
∥∥∥R − R

∥∥∥2

L2 = ε−1
〈
R, S

〉
+
ε−1

2
|h|2L2

γ−
. (4.3)

Using Lemma 3.2, we know that

ε−1 |R|2L2
γ+

+ ε−2
∥∥∥R − R

∥∥∥2

L2 . ε + ε−1
〈
R, S 0 + S 1 + S 2 + S 3

〉
. (4.4)
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Using Lemma 3.3, we have∣∣∣∣ε−1
〈
R, S 0

〉∣∣∣∣ . ε−1 ‖R‖L2 ‖S 0‖L2 . ε ‖R‖L2 . o(1) ‖R‖2L2 + ε2. (4.5)

Using Lemma 3.4, Lemma 3.5, and Lemma 3.6, we have∣∣∣∣ε−1
〈
R − R, S 1 + S 2 + S 3

〉∣∣∣∣ .ε−1
∥∥∥R − R

∥∥∥
L2 ‖S 1 + S 2 + S 3‖L2 (4.6)

.ε−1
∥∥∥R − R

∥∥∥
L2 . o(1)ε−2

∥∥∥R − R
∥∥∥2

L2 + 1.

Finally, we turn to ε−1
〈
R, S 1 + S 2 + S 3

〉
. For S 1, we integrate by parts with respect to ϕ and use Lemma

3.4 to obtain ∣∣∣∣ε−1
〈
R, S 1

〉∣∣∣∣ =ε−1

∣∣∣∣∣∣
〈
R,

( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
cosϕ

∂UB
0

∂ϕ

〉∣∣∣∣∣∣ (4.7)

=ε−1

∣∣∣∣∣∣
〈
R,

( sin2 ψ

R1 − εη
+

cos2 ψ

R2 − εη

)
UB

0 sinϕ
〉∣∣∣∣∣∣

.ε−1
∥∥∥R

∥∥∥
L2

∥∥∥UB
0

∥∥∥
L2

xL1
w
. ε−

1
2
∥∥∥R

∥∥∥
L2 . o(1)ε−1

∥∥∥R
∥∥∥2

L2 + 1.

In addition, Lemma 3.5 and Lemma 3.6 yield∣∣∣∣ε−1
〈
R, S 2 + S 3

〉∣∣∣∣ .ε−1
∥∥∥R

∥∥∥
L2

(
‖S 2‖L2

xL1
w

+ ‖S 3‖L2
xL1

w

)
. ε−

1
2
∥∥∥R

∥∥∥
L2 . o(1)ε−1

∥∥∥R
∥∥∥2

L2 + 1. (4.8)

Combining (4.5)–(4.8), we obtain∣∣∣∣ε−1
〈
R, S 0 + S 1 + S 2 + S 3

〉∣∣∣∣ . o(1)ε−2
∥∥∥R − R

∥∥∥2

L2 + o(1)ε−1 ‖R‖2L2 + 1. (4.9)

Combining (4.9) and (4.4), we have (4.1). �

4.2. Kernel estimate

Lemma 4.2. Under the assumption (1.13), we have∥∥∥R
∥∥∥2

L2 .
∥∥∥R − R

∥∥∥2

L2 + |R|2L2
γ+

+ ε. (4.10)

Proof. Denote ξ(x) satisfying  −∆xξ = R in Ω,

ξ(x0) = 0 on ∂Ω.
(4.11)

Based on standard elliptic estimates and trace estimates [41, Chapter 6: Section 6.3], we have

‖ξ‖H2 + |∇xξ|H
1
2
.

∥∥∥R
∥∥∥

L2 . (4.12)

Taking g = ξ in (3.11), we have∫
γ

Rξ(w · n) −
〈
R,w · ∇xξ

〉
+ ε−1

〈
R − R, ξ

〉
=

〈
S , ξ

〉
. (4.13)
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Using oddness, orthogonality, and ξ
∣∣∣
∂Ω

= 0, we obtain (1.29)

−
〈
R,w · ∇xξ

〉
= −

〈
R − R,w · ∇xξ

〉
=

〈
S , ξ

〉
, (4.14)

Then taking g = w · ∇xξ in (3.11), we obtain (1.25)∫
γ

R
(
w · ∇xξ

)
(w · n) −

〈
R,w · ∇x

(
w · ∇xξ

)〉
+ ε−1

〈
R − R,w · ∇xξ

〉
=

〈
S ,w · ∇xξ

〉
. (4.15)

Adding ε−1×(4.14) and (4.15) to eliminate ε−1
〈
R − R,w · ∇xξ

〉
, we obtain∫

γ

R
(
w · ∇xξ

)
(w · n) −

〈
R,w · ∇x

(
w · ∇xξ

)〉
=ε−1

〈
S , ξ

〉
+

〈
S ,w · ∇xξ

〉
. (4.16)

Notice that

−
〈
R,w · ∇x

(
w · ∇xξ

)〉
= −

〈
R,w · ∇x

(
w · ∇xξ

)〉
−

〈
R − R,w · ∇x

(
w · ∇xξ

)〉
, (4.17)

where (4.12) and Cauchy’s inequality yield

−
〈
R,w · ∇x

(
w · ∇xξ

)〉
'

∥∥∥R
∥∥∥2

L2 , (4.18)∣∣∣∣〈R − R,w · ∇x
(
w · ∇xξ

)〉∣∣∣∣ . ∥∥∥R − R
∥∥∥2

L2 + o(1)
∥∥∥R

∥∥∥2

L2 . (4.19)

Also, using (4.12) and Lemma 3.2, we have∣∣∣∣∣∣
∫
γ

R
(
w · ∇xξ

)
(w · n)

∣∣∣∣∣∣ .( |R|L2
γ+

+ |h|L2
γ−

)
|∇xξ|L2 . o(1)

∥∥∥R
∥∥∥2

L2 + |R|2L2
γ+

+ ε2. (4.20)

Inserting (4.17)–(4.20) into (4.16), we obtain∥∥∥R
∥∥∥2

L2 .ε
2 +

∥∥∥R − R
∥∥∥2

L2 + |R|2L2
γ+

+
∣∣∣∣ε−1

〈
S , ξ

〉∣∣∣∣ +
∣∣∣∣〈S ,w · ∇xξ

〉∣∣∣∣ . (4.21)

Then we turn to the estimate of source terms in (4.21). Cauchy’s inequality and Lemma 3.3 yield∣∣∣∣ε−1
〈
S 0, ξ

〉∣∣∣∣ +
∣∣∣∣〈S 0,w · ∇xξ

〉∣∣∣∣ . ε−1 ‖S 0‖L2 ‖ξ‖H1 . ε
∥∥∥R

∥∥∥
L2 . o(1)

∥∥∥R
∥∥∥2

L2 + ε2. (4.22)

Similar to (4.7), we first integrate by parts with respect to ϕ in S 1. Using ξ
∣∣∣
∂Ω

= 0, (4.12), Hardy’s
inequality, Lemma 3.4, Lemma 3.5, and Lemma 3.6, we have∣∣∣∣ε−1

〈
S 1 + S 2 + S 3, ξ

〉∣∣∣∣ . ∣∣∣∣∣ε−1
〈
UB

0 + S 2 + S 3,

∫ µ

0

∂ξ

∂µ

〉∣∣∣∣∣ =

∣∣∣∣∣∣
〈
ηUB

0 + ηS 2 + ηS 3,
1
µ

∫ µ

0

∂ξ

∂µ

〉∣∣∣∣∣∣ (4.23)

.
∥∥∥ηUB

0 + ηS 2 + ηS 3

∥∥∥
L2

xL1
w

∥∥∥∥∥1
µ

∫ µ

0

∂ξ

∂µ

∥∥∥∥∥
L2
.

∥∥∥ηUB
0 + ηS 2 + ηS 3

∥∥∥
L2

xL1
w

∥∥∥∥∥∂ξ∂µ
∥∥∥∥∥

L2
. ε

1
2 ‖ξ‖H1

.ε
1
2
∥∥∥R

∥∥∥
L2 . o(1)

∥∥∥R
∥∥∥2

L2 + ε.
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Analogously, we integrate by parts with respect to ϕ in S 1. Then using (4.12), fundamental theorem of
calculus, Hardy’s inequality, Lemma 3.4, Lemma 3.5, and Lemma 3.6, we bound∣∣∣∣〈S 1 + S 2 + S 3,w · ∇xξ

〉∣∣∣∣ . ∣∣∣∣∣∣
〈
UB

0 + S 2 + S 3,∇xξ
∣∣∣∣
µ=0

+

∫ µ

0

∂
(
∇xξ

)
∂µ

〉∣∣∣∣∣∣ (4.24)

.

∣∣∣∣∣〈UB
0 + S 2 + S 3,∇xξ

∣∣∣∣
µ=0

〉∣∣∣∣∣ +

∣∣∣∣∣∣ε
〈
ηUB

0 + ηS 2 + ηS 3,
1
µ

∫ µ

0

∂
(
∇xξ

)
∂µ

〉∣∣∣∣∣∣
.

∥∥∥UB
0 + S 2 + S 3

∥∥∥
L2

xL1
w
|∇xξ|L2 + ε

∥∥∥ηUB
0 + ηS 2 + ηS 3

∥∥∥
L2

∥∥∥∥∥∥∂
(
∇xξ

)
∂µ

∥∥∥∥∥∥
L2

.ε
1
2 |∇xξ|L2

∂Ω
+ ε ‖ξ‖H2 . ε

1
2
∥∥∥R

∥∥∥
L2 . o(1)

∥∥∥R
∥∥∥2

L2 + ε.

Hence, inserting (4.22), (4.23), and (4.24) into (4.21), we have shown (4.10). �

4.3. Synthesis

Proposition 4.3. Under the assumption (1.13), we have

ε−
1
2 |R|L2

γ+
+ ε−

1
2
∥∥∥R

∥∥∥
L2 + ε−1

∥∥∥R − R
∥∥∥

L2 . 1. (4.25)

Proof. From (4.1), we have

ε−1 |R|2L2
γ+

+ ε−2
∥∥∥R − R

∥∥∥2

L2 . o(1)ε−1
∥∥∥R

∥∥∥2

L2 + 1. (4.26)

From (4.10), we have ∥∥∥R
∥∥∥2

L2 .
∥∥∥R − R

∥∥∥2

L2 + |R|2L2
γ+

+ ε. (4.27)

Inserting (4.27) into (4.26), we have

ε−1 |R|2L2
γ+

+ ε−2
∥∥∥R − R

∥∥∥2

L2 . 1. (4.28)

Inserting (4.28) into (4.27), we have ∥∥∥R
∥∥∥2

L2 . ε. (4.29)

Hence, adding ε−1×(4.29) and (4.28), we have

ε−1 |R|2L2
γ+

+ ε−1
∥∥∥R

∥∥∥2

L2 + ε−2
∥∥∥R − R

∥∥∥2

L2 . 1. (4.30)

Then our result follows. �

5. Proof of the main theorem

The well-posedness of (0.1) is well-known [1, 16, 17]. The construction of U0, Φ, and Φ∞ follows
from Proposition 2.1 and Proposition 2.3, so we focus on the derivation of (1.14).
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Based on Proposition 4.3 and (1.3), we have∥∥∥uε − U0 − εU1 − ε
2U2 − UB

0

∥∥∥
L2 . ε

1
2 . (5.1)

Using Proposition 2.3, we have ∥∥∥εU1 + ε2U2

∥∥∥
L2 . ε. (5.2)

Using Proposition 2.3 and the rescaling η = ε−1µ, we have∥∥∥UB
0

∥∥∥
L2 . ε

1
2 . (5.3)

Then (1.14) follows from inserting (5.2) and (5.3) into (5.1).
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