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Abstract: One of the most classical and fundamental mathematical problems in kinetic theory is to
study the diffusive limit of the neutron transport equation. As € — 0, the phase space density u®(x, w)

_ — 1
& -1 & ) — & _ z R £
w-Vau’® +e (u —u ) =0, u vedmn<o = & U (%) := I \[52 u®(x, w)ydw, 0.1
converges to the interior solution Uy(x):
AUy =0, Uy, = Ul (0.2)

in which U g ., 1s obtained by solving the Milne problem for the celebrated boundary layer correction
U&. The function g represents the inflow data, and n is the unit outward normal to the smooth bounded
domain Q. Surprisingly, we found [1,2] that the expected L™ expansion

is invalid due to the grazing singularity of UJ. As a result, the corresponding well-known mathematical
theory breaks down, and the diffusive limit has remained an outstanding question. A satisfactory
theory was developed for convex domains [1-6] by constructing new boundary layers with favorable
e-geometric corrections. However, this approach is inapplicable in non-convex domains. In this paper,
we settle this open question affirmatively in the L? sense. The convergence

u® — Uy — Ug”Lm <e (0.3)

U — Ul < &2 (0.4)

holds for general smooth domains, including non-convex ones. We achieve this by discovering a novel
and optimal L? expansion theory that reveals a surprising &2 gain for the average of the remainder, and
by choosing a test function with a new cancellation via conservation of mass. We also introduce a cutoff
boundary layer U} and investigate its delicate regularity estimates to control the source terms of the
remainder equation with the help of Hardy’s inequality. Notably, our new cutoff boundary layer U}
determines U, despite its absence in the estimate.
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1. Introduction

1.1. Problem formulation

We consider the steady neutron transport equation in a three-dimensional C* bounded domain (convex
or non-convex) with in-flow boundary condition. In the spatial domain Q > x = (xy, x5, x3) and the
velocity domain S? 3> w = (wy, w,, w3), the neutron density u®(x, w) satisfies (0.1) with the Knudsen
number 0 < € <« 1. We intend to study the asymptotic behavior of u® as € — 0.

Based on the flow direction, we can divide the boundary y := {(xo,w) : xo € 0Q,w € S?} into
the incoming boundary vy_, the outgoing boundary 7y,, and the grazing set y, according to the sign of
w - n(xo). In particular, the boundary condition of (0.1) is only given on y_.

1.2. Normal chart near boundary

We follow the approach in [4,6] to define the geometric quantities, and the details can be found in
Section 2.2. For smooth manifold 02, there exists an orthogonal curvilinear coordinates system (¢, ¢5)
such that the coordinate lines coincide with the principal directions at any x, € 0€2. Assume that 0Q is
parameterized by r = r(¢y, o). Let the vector length be L; := 6Ll.r| and let the unit vector be ¢; := L;lal,.r
fori=1,2.

Consider the corresponding new coordinate system (u, ¢y, t;), where u denotes the normal distance to
the boundary surface 0€, i.e.

X=Tr—un. (1.1)

Define the orthogonal velocity substitution for w := (¢, {) as

-w-n=sing, Ww-¢ =cos@siny, w-g¢; =CoS@cosy. (1.2)
) . u C . .0 10 .
Finally, we define the scaled normal variable n = —, which implies = san We then write
P> u eon

x:=(,0,0).

1.3. Asymptotic expansion and remainder equation

We seek a solution to (0.1) in the form
u =U + U + R = (Uy +&Uy + &°Us) + Ug +R, (1.3)
where the interior solution is

Ux,w) := Uy(x) + eU (x, w) + € Us(x, w), (1.4)
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and the boundary layer is
UB(x, ) := Ul(x, w). (1.5)

Here Uy, U,, U,, and Ug are constructed in Section 2.1 and Section 2.2, and R(x, w) is the remainder
satisfying

w-V.R+&'(R-R)=S, R

- 1
weouneo = 1o R() = 4 Lz R(x, w)dw, (1.6)
where h and S are as defined in (3.4) and (3.6)—(3.9).

1.4. Literature

The study of the neutron transport equation in bounded domains has received a lot of attention since
the dawn of the atomic age. This equation is not only significant in nuclear sciences and medical imaging
but is also regarded as a linear prototype of the more important and complicated nonlinear Boltzmann
equation. As a result, it serves as an ideal starting point to develop new theories and techniques.

For the formal expansion with respect to € and its explicit solution, [7—15] provide relevant literature.
The discussion on the bounded domain and half-space cases can be found in [16-23]. In the more
general context, we refer to [24—34] for the hydrodynamic limits of Boltzmann equations in bounded
domains, and the recent progress on the diffusive limit of the transfer equation (which is a coupled
system of the transport equation and the heat equation) [35, 36].

The classical boundary layer analysis of the neutron transport equation leads to the Milne problem,
which dictates that U(1, 1, o, w) satisfies the equation given by

oUt —
sintpa—no +U§-UE=0. (1.7)

Based on the formal expansion in & (see (2.6)), it is natural to expect the following remainder estimate [16]:

IRl =

u —Ug-Uf|| . s e (1.8)

o

While this estimate holds for domains with flat boundaries, a surprising counter-example was constructed [1]
that shows (1.8) to be invalid for a two-dimensional (2D) disk due to the grazing set singularity.

To provide more specific details, demonstrating the validity of the remainder estimates (1.8), necessi-
tates the use of the higher-order boundary layer expansion U € L™. In this case, the bound 9, U¢ € L™
is required, and even though UJ € L™, it has been proven that the normal derivative 9, U] is singular
at the grazing set ¢ = 0. This singularity is then transferred to 8, U§ ¢ L™. A meticulous construction
of the boundary data [1] reveals that both the method and the result of the boundary layer (1.7) are
problematic, which justifies this invalidity.

A new approach to constructing the boundary layer has been proposed in recent works [1,3-6]. Itis

based on the e-Milne problem with geometric corrections for Ug(x, w), given by

oUE Uk — =
i - +UB-UB =0, 1.9
sin ¢ o R —en cos ¢ T 0 0 (1.9)
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where R.(t1,1,) > 0 denotes the radius of curvature on dQ. This new construction has been shown
to provide a satisfactory characterization of the L™ diffusive expansion in two-dimension (2D) or
three-dimensional (3D) convex domains. The proof relies on a detailed analysis of W' regularity and
boundary layer decomposition techniques for (1.9).
In non-convex domains, where R,(¢1,t,) < 0, the boundary layer with geometric correction is
described in [2] as follows:
8Ug o4 o — =

0 B B
+ —+ Uz -U? =0. 1.10
o Rlven o Fap 0T 0 (10

sin ¢

This sign flipping of the geometric correction term in contrast to (1.9) dramatically changes the
characteristics of the boundary layer.

Figure 2. Characteristics in non-convex domains.

In Figure 1 and Figure 2 [2], the horizontal axis represents the scaled normal variable 7, while the
vertical axis represents the velocity ¢. The inflow boundary is located on the left boundary where n = 0
and ¢ > 0. It is apparent from Figure 2 that there exists a “hollow” region where the characteristics
may never track back to the inflow boundary. This discrepancy in the information source results in a
strong discontinuity across the boundary of the “hollow” region, making it impossible to obtain W'
estimates, which, in turn, prevents higher-order boundary layer expansion.

In this paper, we employ a fresh approach to design a cutoff boundary layer without the geometric
correction and justify the L? diffusive expansion in smooth non-convex domains.
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1.5. Notation and convention

Let (-, ), denote the inner product for w € S2, (-, ), forx € Q, and (-, -) for (x,w) €
Q x S%. Moreover, let ( -, - )y, denote the inner product on y, with the measure dy := |w - n|dwdS, =
|sin ¢| cos ¢dwdS ,. Denote the bulk and boundary norms as follows:

Ifll2 = (ffg . |f(x,w)|2dwdx) VIS (f |f(x,w)|2dy) . (1.11)
xS2 - Y+

Define the L™ norms as follows:

Ifll~ = esssup |fCx,w)|,  Ifls = esssup|fix, w)l. (1.12)

(x,w)eQxS2 (x, W)€y

Let ||-||W§,p denote the usual Sobolev norm for x € Q and |-|W/;,p for x € 0Q2, and ||-||Wi<.p 1 denote the W&
norm for x € Q and the L? norm for w € $2. Similar notation also applies when we replace L¢ by L.
When there is no possibility of confusion, we will ignore the (x, w) variables in the norms.

Throughout this paper, C > 0 denotes a constant that only depends on the domain €, but does not
depend on the data or . It is referred to as universal and can change from one inequality to another. We
write a < b to denote a < Cb and a 2 b to denote a > Cb. We also writea ~ bifa < banda > b. We
use o(1) to denote a sufficiently small constant that is independent of the data.

1.6. Main results
Theorem 1.1. Under the assumption
glyseowre s 1, (1.13)
there exists a unique solution u®(x,w) € L*(Q x S?) to (0.1). Moreover; the solution obeys the estimate
lu® = Uoll2 < €. (1.14)

Here, Uy(x) satisfies the Laplace equation with the Dirichlet boundary condition

AUp(x) =0 in Q,
(1.15)
Uo(xp) = Poo(xg) on 0Q,
in which @ (1, ;) = Poo(xg) for xo € 0Q is given by solving the Milne problem for ®(x, w)
oD _
sing— +® - ® =0,
an
@0, ¢1, 1, W) = g(ty, L2, W) for sing >0, (1.16)

lim q)(rla L1, L, m) = q)OO(Lla LZ)'
n—o0

Remark 1.2. In [1, 5, 6] for 2D/3D convex domains, as well as [2] for a 2D annulus domain, it is
Jjustified that for any 0 < 6 < 1

w = To- US|, <28, (1.17)
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where Uf(x, w) is the boundary layer with geometric correction defined in (1.9), and Uy is the corre-
sponding interior solution. Previous work [23, Theorem 2.1] has revealed that the difference between
two types of interior solutions satisfies

|Us = U, < &7 (1.18)

Due to the rescaling n = £ ', for the general in-flow boundary data g, the boundary layer 553 #0
satisfies

Hﬁg & (1.19)

e
Hence, we conclude that
lu® = Ugll = 2. (1.20)

Therefore, this indicates that (1.14) in Theorem 1.1 achieves the optimal L* bound of the diffusive
approximation.

1.7. Methodology

It is well-known that the key of the remainder estimate is to control R. In a series of works [1-6], it
has been shown that the kernel estimate

IR||,. s e |R-R|[,, +&7 IRz +]1 (1.21)
and the basic energy (entropy production) bound
e |R-R|,+& 2 Rlz <o|R|[,+1. (1.22)
provide a full control of the remainder R:
IRIl> < &' ||R-R|,. +|[R||,. < 1. (1.23)

Although (1.23) alone is not enough to justify

: £ B _
lim|[|u — Uy - U], = 0. (1.24)

expanding the boundary layer approximation beyond the leading order U further improves the righ-
hand side (RHS) of (1.23) to &* with @ > 0, and leads to (1.24). While this technique works well for
convex domains, as our previous analysis revealed, it is impossible to expand to U} for non-convex
domains due to the lack of the W!* estimate in (1.10).

The bottleneck of the L? bound (1.23) lies in the kernel estimate (1.21), which stems from the weak
formulation of (1.6) with the test function w - V,.&

f Rw-V.&)w-m) = (Row-Vi(w- V&) + e (R-Rw-V,&) = (S, w- V,&). (1.25)
Y
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Here, the auxiliary function &£(x) satisfies

-AE=R, 4, =0. (1.26)

In (1.25), <R, w- V. (w- Vx§)> ~ ||I_€||iz, and 8_1<R ~R,w- Vx§> leads to the worst and critical contribution
&' R~ Rl
The key improvement in our work is an upgraded (compared with (1.21)) kernel estimate

IRll,. s &2 |[R-R||,. + IRl +& (1.27)
which, combined with (1.22), leads to

IRl s &7 |[R-R|,. +[Rll,. < & (1.28)

The extra 2 gain in (1.27) follows from a crucial observation. We consider the conservation law of
(1.6) with the test function & defined in (1.26):

~(Row- V&) = ~(R-R.w-V.£) = (S.£). (1.29)

We discover that the combination ™' x(1.29) and (1.25) yields
f Row - V.00 -n) = (Row-Vo(w-V.8)) = £7(S.€) + (S.w- V.£), (1.30)
Y

which exactly cancels out the worst contribution 8_1<R -Rw- Vx.§>. This key cancellation leads to

an additional crucial gain of &7 in (1.27). Consequently, we can deduce the remainder estimate (1.28)
without any further expansion of the (singular) boundary layer approximation.

Technically, to estimate the source terms 8“<S ,§> and <S,w . Vx§> in (1.30), and 8_1<S,R> in
deriving (1.22), particularly the derivatives of the boundary layers, we construct a new cut-off boundary
layer

U, w) := x(e o) (em¥(x, ), (1.31)

where ¥ solves the Milne problem. With the grazing set cutoff y(£7'¢), we are able to perform delicate
and precise estimates to control the resulting complex forcing term S (see (3.6)—(3.9)). In addition, with
the help of integration by parts in ¢ and Hardy’s inequality [37,38] in the u direction, we have

oUE 1 (*o¢ 1 (*o¢
O Cudo ou uJo O

0¢ 1 1=
@H <&t el < & |[R)

< |[nUg

< '8‘1<Ug,§>‘ < (1.32)

L2LL

12

2’

B
<|lnUs ||L%L'W
we can bound all source contributions in terms of the desired order of & for closure.
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2. Asymptotic analysis

2.1. Interior solution

Inserting (1.4) into (0.1) and comparing the order of &, and following the analysis in [4,6], we deduce
that

Uy=Uy, AU,=0, 2.1)
U =U -w-V,Uy, AU, =0, (2.2)
U, =U,-w-V .U, AU,=0. (2.3)

We need the boundary layer to determine the boundary conditions for Uy, U, and Us.

2.2. Boundary layer
2.2.1. Geometric substitutions

The construction of the boundary layer requires a local description in a neighborhood of the physical
boundary 9€Q2. We follow the procedure in [4, 6].

Substitution 1: Spatial Substitution Following the notation in Section 1.2, under the coordinate
system (u, ¢y, 1), we have

d w-gr 0 w-g 0
w-Vy=—-w-n)—— Y 2.4
( )3,‘1 Likipt— 1), Lok — 1) 1y 4

where «;(¢1,t;) for i = 1,2 is the principal curvature.

Substitution 2: Velocity Substitution Under the orthogonal velocity substitution (1.2) for ¢ €

[ 72T 2]andljfe[ 7, ], we have

V, =sin 0 (Sinzw + Cosz‘ﬁ) cos d  cosgsiny d L Cospcosy 0 2.5)
w-V, = - _ 9 |
‘PG/J Ri—-pu Ry—pu 90(990 Li(1 —xp) aLl L2(1 — Kopt) Oz
siny (R, 00590( ) }
: 0, -
i R, —ﬂ{ LL, $1 (92X( 1zr><§2)) sin ¢ cos ¥ 30
cosy (Rpcosg . . 5
_ R, _l-l{ LiL, (gz . (gl X (0L1L2r X S‘l))) — S1n ¢ sin w}%’

where R; = Ki_l represents the radius of curvature. Note that the Jacobian dw = cos ¢dedy will be
present when we perform integration.
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Substitution 3: Scaling Substitution Considering the scaled normal variable = ™', we have

WV, =] sintpg _( sin® ¥ N cos? | )cosgoi N R, coscpsinz//i N choscpcoswi 2.6)
. on \Ry—en Ry—en Op  Li(Ry—en) 0  Ly(Ry—en) o
Rjnigz;n{Rchltzsf(g : (gz X (8,1 X gz))) — singcos x//}a%
- RZOE ﬁﬂ{RZLTZQD(Q . (g1 X (0, X gl))) — sin g sin w}%
2.2.2. Milne problem
Let ®(x, w) be the solution to the Milne problem
. 0D — — 1 (™[
sin (pa—n +® -0 =0, D) = In j:,, [’; ®(x, w) cos ededy, 2.7
with the boundary condition
(0, ¢1, 1, w) = g(ty, 12, w) for sing > 0. (2.8)
We are interested in the solution that satisfies
]}i_p(}o D1, 11, L2, W) = Doo(t1,L2) (2.9)

for some ®,(¢,¢,). Based on [4, Section 4], we have the well-posedness and regularity of (2.7).

Proposition 2.1. Under the assumption (1.13), there exist (11, t2) and a unique solution ® to (2.7)such
that ¥ := © — @, satisfies

oY —
sing—+¥Y-¥ =0,
on
\II(O’ L, Lo, m) = g(L19L27 m) - q)oo(Ll’ L2)7 (210)

lim W(n, ¢y, 6, w) = 0,
T]—)OO

and for some constant K > 0 and any 0 < r < 3, we have

[Declyyz + [l <1, 2.11)
P P Wy
eK"sincpa— + eK”singoa— + eK”a— <1, (2.12)
677 L>® a(/) L>® (9'70 L
e’“?aqj + eK"a\P <l. (2.13)
0 || 0 ||

Let y(y) € C®(R) and y(y) = 1 — x(y) be smooth cut-off functions satisfying y(y) = 1 if [y| < 1 and
x() = 0if [y| > 2. We define the boundary layer as follows:

Ug(x, w) = (& o) (en)¥(x, ). (2.14)

Communications in Analysis and Mechanics Volume 17, Issue 2, 365-386.



374

Remark 2.2. Due to the cutoff in (2.14), we have

U011, 10, w) = )7(87190)(301, 12, 0) — D (1g, Lz)) = x(e'9)¥(0, 11, 12, w),

and
oy —5_ = = o\ Ox(en)
sing— b+ U = Uf = X e + i phten) + sin (e o)

2.3. Matching procedure

We plan to enforce the matching condition for xy € 0Q and w-n <0
Uo(x0) + Ug (xo, w) =g(x0, W) + O(&).
Considering (2.15), it suffices to require
Uo(x0) = Poo(X0) = DPoo(l1, L2),
which yields
Uo(xo) + F(x0, w) =g(x0, W).
Hence, we obtain

Uo(xg, w) + Ug(xo, w) = g(xg, w) —)((8_190)‘}’(0, Ly, L, W).

Construction of U, Based on (2.1) and (2.18), we define U,(x) satisfying

Up=Uy AUy=0, Uyxg) = Deo(xp).

Y.

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

2.21)

From standard elliptic estimates [39, Chapter 9: Section 2], trace theorem, and Proposition 2.1, we have

for any s € [2, 00)

IUoll 01, + [Uolyas < 1.

1
W3+§’

Construction of U; Based on (2.2), we define U, (x, w) satisfying

U =U -w-VUy,, AU =0, U (x)=0.
From (2.22), we have that for any s € [2, 00)

UM + |Uilyasp < 1.

W2+%,SL00

(2.22)

(2.23)

(2.24)
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Construction of U, Based on (2.2), define U,(x, w) satisfying

Uy=U,-w-V, U, AU, =0, Ujyx) =0. (2.25)
From (2.24), we have for any s € [2, 00)

10| + |Uslwrsp < 1. (2.26)

WH%‘SL‘)O

Summarizing the analysis above, we have the well-posedness and regularity estimates of the interior
solution and boundary layer.

Proposition 2.3. Under the assumption (1.13), we can construct Uy, Uy, U,, and U, g asin (2.21), (2.23),
(2.25), and (2.14) satisfying for any s € [2, 00)

0ol 3015 + [Uolwas <1, (2.27)
WUt + U W2s 10 ST, (2.28)
102l et s + U2l <1, (2.29)

and, for some constant K > 0 and any 0 < r < 3, we have

e*" US|, + eK"a;f{g + [|eX” a;gg <. (2.30)
1 e 2 =
3. Remainder equation
Denote the approximate solution
u, = (Up + eUy + 82U5) + U§. 3.1)
Inserting (1.3) into (0.1), we have
w-V(u, +R) + s‘l(ua + R) — s_](u_a + ﬁ) =0, (u,+ R)‘y_ =g, (3.2)
which yields
w-V.R+ e‘l(R - E) =-w-Vu, - 8‘1(ua - u_a), R‘ = (g — u) ) (3.3)
3.1. Formulation of remainder equation
Now we consider the remainder equation (1.6), where the boundary data /4 is given by
hi=—ew-V.Uy—&w- VU, — x(e'0)¥(0), (3.4)
and the source term § is given by
S =S0+S1+85,+85;3, (3.5
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where

So:=—&w-V,U,, (3.6)

s 2 2 auB
s, ::( sin” ¢ , cos v )coscp 0 (3.7)
Ri—en R,—en oy

- 1 o — aX(Sn) R] COSQOSinl//aUg RZCOS‘,OCOSl//(?Ug

S, =& sin gy (s Y+ 4 13
2 ¢X( 90) an Li(R, —en) 0y Ly(R, —en) i (3.8)

sin R, cos ‘ IUB

* R —tn{ lLle(p(gl : (s‘z X (0yy0,x X 5‘2))) — sin g cos 1,//} al;

CoSs R, cos ‘ ‘ oUB

-z —ﬁn{ 2LIL2‘10(92 : (gl X (0,1 X gl))) - Slncpsmzﬁ}a—l;,
ok ::8_1(; (e o (em¥ — q’)?(s‘lso)x(sn))' (3.9)

3.2. Weak formulation

Lemma 3.1 (Green’s identity, Lemma 2.2 of [40]). Assume f(x,w), g(x,w) € L*(Q x S?), and w -
Vifs w-V.g € LX(Qx S*) with f, g € L. Then

ffgxsz ((W-fo)g + (W-ng)f)dXdW = j;fg(w-n) = f;+ fedy — fy‘_ fgdy. (3.10)

Using Lemma 3.1, we can derive the weak formulation of (1.6). For any test function g(x, w) €
L*(Q x S?) withw - V,g € L>(Q x S?) with g € L2, we have

ng(w-n)—ff R(W-ng)+s_1ff (R—E)g:ff Sg. (3.11)
y QxS2 QxS? QOS2

3.3. Estimates of boundary and source terms

Lemma 3.2. Under the assumption (1.13), for h defined in (3.4), we have
Iz s e (3.12)
Proof. Based on Proposition 2.3, we have

<e. (3.13)

lew -V, Uolrz + |82W-VXU1|L2 <
Y-

Noting that the cutoff y(g™'¢) restricts the support to |¢| < £ and that the dy measure contributes an
extra sin ¢, we have

(™)), s (3.14)

Hence, our result follows. O

Lemma 3.3. Under the assumption (1.13), for S defined in (3.6), we have

ISoll2 < & (3.15)
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Proof. This follows from Proposition 2.3. O

Lemma 3.4. Under the assumption (1.13), for S defined in (3.7), we have
(1 +m)S4],. s 1. (3.16)

Also, for the boundary layer Ug defined in (2.14), we have

[+, &t a+nUg]l,., <& (3.17)
and
(1 +ms 1, g)| < [0+ m) w7 U8 19uglle < £ Vgl (3.18)
Proof. We split
S1 =S +5n ::(Rslm_2 Zn + Igfs_zfn)cos <pg%y(g—1<p)x(en) (3.19)

i 2 2 v -1
+( Sin” + cos”y )cos go—)((g 90))((87])\1".
Ri—en Ry-—¢n oy

Note that S; is nonzero only when |¢| > & and thus based on Proposition 2.1, we know |6_| <

|sin (,al_1 |¥| < £7!. Hence, using du = &dn, we have

1 1
1Sl <( f f ) < ( f f sin gl 2 |9 dsodﬂ) (3.20)
lpl=e lpl>e
1 1
2 2 1
s(ff |sin |~ e_ZK"dgody) < (8 ff |sin |~ e_2K”d¢dn) < (88_1)2 =1.
lpl>e lol>e

Noticing that X(a SD) e Y (e7'¢) and ¥’ (s '¢) is nonzero only when & < |¢| < 2¢, based on
¥

Proposition 2.1, we have

3 3
IS 12l <! ( f f |‘P|2d‘,0d,u) <e! ( f f e2K'7d90d,u) (3.21)
e<|pl<2e e<|pl<2e
1
2
<e™! (8 ff e_ZK”dgodn) <ég! (88)% =1.
e<|pl<2e

Combining (3.20) and (3.21), we have (3.16). Note that %7 will suppress the growth from the pre-factor
1+n.
Naturally, (3.17) comes from Proposition 2.1. We now turn to (3.18). The most difficult term in

| S1,8) | is essentially

oUs
<6—0, g>‘ Integration by parts with respect to ¢ implies that
¥

oUB
_O’g s Ug’a_
Oy Op
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0
From (1.2) and (9_x = 0, we know that the substitution (u, t1, t2, w) — (u, ¢y, 1o, w) implies
®

ow ow ) ) ow .
——n=C0S¢, —- ¢ =-—singsiny, — - ¢ = —Ssingcosy. (3.23)
d¢ d¢ dp
w
Hence, we know ‘— < 1, and thus
d¢
ow
V,gll—I| 5 IV,gl. 3.24
CRCRe o
Hence, we know that
aU(l); B 1
28| 5 |US||,> 1V el < &7 1Vgll,z - (3.25)
O
Lemma 3.5. Under the assumption (1.13), for S , defined in (3.8), we have
1 1
(T +mSa]|,. s &2 [ +m)Ss|,p, s &7 (3.26)

Proof. Notice that < 1. Based on Proposition 2.1 and Proposition 2.3, we

el singy(e7 )"
directly bound
D |* acp

2 < (D
1S 2l (ff O + ol o,
s( f f e-ZK’fcupdﬂ) s( f f ZK”d(pdn) <er.

Then the L2L! estimate follows from a similar argument, noting that there is no rescaling in w variables.

BCD

)dgod/l)z (3.27)

O
Lemma 3.6. Under the assumption (1.13), for S5 defined in (3.9), we have
|l +m)Ssf,. <1, [l +m)Ss|l,., <2 (3.28)
Proof. Using y = 1 =y, we split
S5 =831+ 83 =" Py(e  o)x(en) — e w(e @) (en)?. (3.29)

Noting that S 3, is nonzero only when |¢| < &, based on Proposition 2.1, we have

1 1
_ 2 2
1S 31ll.2 s( ff |8‘1‘I‘|2dgod,u) S(a_z ff e_ZK”dgod/,t) (3.30)
lel<e lpl<e
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1
b 1
s(s_l ff e_ZK"dgodn) < (8_18)2 < 1.
lpl<e

Analogously, noting that S 3, contains a w integral, we have
2
f Ydo
lpl<e

1
__» 2
i5lis < [ T dvan s[g—z I

—2

N

Knd(p

3 3
[T o s =

Combining (3.30) and (3.31), we have the L? estimate. Similarly, we derive the L2L! bound:

_ 2 3 i 1
“SSIHLf,L}V < f(f |8_1\P| d(p) d/,t) S(fe—ZKndﬂ) S(efe—ZKndn) Sz‘:%,
lpl<e
2 \2
f ‘I’dgo' d¢) d,l)
lelse

1

IS 3all 210 S f(f‘a—lm‘dcp)zd’u)z g(g—zf(f

1

2 2 % %
s_zf(fse_’(”dtp) d,u) < (fe_ZK”d,u) < (sfe_”(”dn)

4. Remainder estimate

N

4.1. Basic energy estimate

Lemma 4.1. Under the assumption (1.13), we have
g! |R|i§+ +&° ||R - E”iz <o(le™! ||1’_€||i2 + 1.

Proof. Taking g = & 'R in (3.11), we obtain

-1

% fy|R|2 w-n)+ 8_2<R,R - §> = 8_1<R, S>.

By using the orthogonality of R and R — R, we have
-1 -1
€ 2 -2 BIP — 1 € 2
— IR, + e |[R=Rl[,, =& (R.S ) + = Ihl}
Using Lemma 3.2, we know that

& IRE, + 2 ||R-Rl, s o+ (RSo+51+5,+55)
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2
dgodu) < (8_2 ﬂ sze_ZK"d<pd,u)

<€

~

(3.31)

(3.32)

(3.33)

(4.1)

4.2)

4.3)

4.4)

365-386.



380

Using Lemma 3.3, we have
|7 (R.S0)| < &7 IRl IS oll> 5 & IRl < o) IRIE, + 22 45)
Using Lemma 3.4, Lemma 3.5, and Lemma 3.6, we have
'8_1<R —R, S| +S,+ S3>' <" ||[R=R|[,IS1 +S2 + S3ll.2 (4.6)
<e”'||R-R|,. s o |R-R|[, + 1.

Finally, we turn to s‘1<§, S1+S8,+S 3>. For § |, we integrate by parts with respect to ¢ and use Lemma
3.4 to obtain

/5 /= ( sin*y cos? yr oUg
' (R.51)| =" <R,(R1 et gn)cos ¢W> 4.7)
) 2
i[5 S Y cos“ Y\ p .
=& <R’(R1 en + Ry — sn)UO sm<p>‘
se” Rl U8y < &7 IRl < 0™ [RI: + 1.
In addition, Lemma 3.5 and Lemma 3.6 yield
|7 (R.S5 +85)] <7 Rl (ISalli2ey + 1S llzey ) &7 [Rl]» s oD [RIf, + 1. (4.8)
Combining (4.5)—(4.8), we obtain
|67 (R, S0+ 81+ 82+ 53)| 5 o1& ||R =R, + o(De™ IRIZ, + 1. (4.9)
Combining (4.9) and (4.4), we have (4.1). O
4.2. Kernel estimate
Lemma 4.2. Under the assumption (1.13), we have
IR, < ||k =Rl + IRE, +e. (4.10)
Proof. Denote &(x) satisfying
{ “A¢ =R in Q,
4.11)
&(xo) =0 on 0Q.
Based on standard elliptic estimates and trace estimates [41, Chapter 6: Section 6.3], we have
1Ellze +19:E1 < (R - (4.12)
Taking g = £ in (3.11), we have
ng(w-n) —(Rw-V.£)+e(R-R.£) = (S.£). (4.13)
Y
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Using oddness, orthogonality, and & | 50 = 0, we obtain (1.29)

~(Row-V.£) = ~(R-R.w-V.&) = (5.¢), (4.14)
Then taking g = w- V,& in (3.11), we obtain (1.25)
f Rw-V.&)w-m) = (Row-Vi(w- V&) + e (R-Rw-V,&) = (S, w- V,&). (4.15)
Y

Adding £7'x(4.14) and (4.15) to eliminate 3‘1<R -R,w- Vx§>, we obtain

f Rw- V. &)w-n) = (Rw-V(w- V.£)) =7(S,£) + (S, w- V.&). (4.16)
Y
Notice that

~(Row-V(w- V&) = = (Rw-Vy(w-V.£)) = (R—Rw- Vy(w- V.8)), (4.17)

where (4.12) and Cauchy’s inequality yield

~(Row-V,(w-V.9) = |R]... (4.18)
(R=Row-V.(w-v.8)| 5[[R =R + o) R[] (4.19)

Also, using (4.12) and Lemma 3.2, we have

f ROv- V&) - )| ( IRz, + 3 ) IVl < o) R, + IRE, + &% (4.20)
Y

Inserting (4.17)—(4.20) into (4.16), we obtain

IRl 5%+ IR =Rl G, + |7 (5.6 + (5. 7.6)

. (4.21)
Then we turn to the estimate of source terms in (4.21). Cauchy’s inequality and Lemma 3.3 yield

<& IS0l €l < & |[R]|,. < oD |[R][. + & (4.22)

[71(S0.€)| + (S0 w - V.£)

Similar to (4.7), we first integrate by parts with respect to ¢ in §;. Using §| a0 = 0, (4.12), Hardy’s
inequality, Lemma 3.4, Lemma 3.5, and Lemma 3.6, we have

) 1 (o
s—l(Ug+Sz+S3,f i)i:‘<nUg+nsz+nS3,;f —§>‘ (4.23)
0 0

ou ou
lf”%
uJo opllpe

L
<ot [/ < o) [RI] + &

[7(S1+55+53,¢)| <

S [nUs +nS> + 0832, < [nUg + 82+ 183,y

= <& lléll,
8/1 12 "
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Analogously, we integrate by parts with respect to ¢ in S ;. Then using (4.12), fundamental theorem of
calculus, Hardy’s inequality, Lemma 3.4, Lemma 3.5, and Lemma 3.6, we bound

|(S1 +8y+S5,w- V,g)‘ < <U§ +52+853, V| + foﬂ 6(Z;§)>| (4.24)
< KU{? +S,+ S3’ngu:0> + s<nU(‘f +nS, + ,753’}1 j;" 6(Z;§)>‘
<08 + 52+ Sall 9.8+ 208 + 52 sl | T2
L
set Vel +eliéllye < e [R],. < o) |[R]], + .
Hence, inserting (4.22), (4.23), and (4.24) into (4.21), we have shown (4.10). O
4.3. Synthesis
Proposition 4.3. Under the assumption (1.13), we have
e R +& 2 ||R||, +& [[R-R|,, s 1. (4.25)
Proof. From (4.1), we have
& IRE, +&2||R =R, < ohe"" [R], + 1. (4.26)
From (4.10), we have
IR, < R =Rl +IRE, +e. (4.27)
Inserting (4.27) into (4.26), we have
s IRE, +&7 [R-R < 1. (4.28)
Inserting (4.28) into (4.27), we have
IR <& (4.29)
Hence, adding £7'x(4.29) and (4.28), we have
& IR, +&7 R, + &2 ||R- R < 1. (4.30)
Then our result follows. O

5. Proof of the main theorem

The well-posedness of (0.1) is well-known [1, 16, 17]. The construction of U, ®, and ®,, follows
from Proposition 2.1 and Proposition 2.3, so we focus on the derivation of (1.14).
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Based on Proposition 4.3 and (1.3), we have

u® — Uy — eUy - £2U, - UE|, < &7. (5.1)
Using Proposition 2.3, we have

ety + Uy, < & (5.2)
Using Proposition 2.3 and the rescaling = ™', we have
|UE]|,. < & (5.3)

Then (1.14) follows from inserting (5.2) and (5.3) into (5.1).
Author contributions
The authors have equal contribution to this paper.
Use of Al tools declaration
The authors declare they have not used Artificial Intelligence (Al) tools in the creation of this article.
Acknowledgment

We sincerely thank the editor and referees for their careful checking and proofreading. Yan Guo’s
research is supported by NSF grant DMS-2405051. Lei Wu’s research is supported by NSF grants
DMS-2104775 and DMS-2405161.

Conflict of interest

The authors claim that there is no conflict of interest.

References

1. L. Wu, Y. Guo, Geometric correction for diffusive expansion of steady neutron transport equation,
Comm. Math. Phys., 336 (2015), 1473—-1553. https://doi.org/10.1007/s00220-015-2315-y

2. L. Wu, X. F. Yang, Y. Guo, Asymptotic analysis of transport equation in annulus, J. Stat. Phys.,
165 (2016), 585-644. https://doi.org/10.1007/s10955-016-1623-8

3. Y. Guo, L. Wu, Geometric correction in diffusive limit of neutron transport equation in 2D convex
domains, Arch. Rational Mech. Anal., 226 (2017), 321-403. https://doi.org/10.1007/s00205-017-
1135-y

4. Y. Guo, L. Wu, Regularity of milne problem with geometric correction in 3D, Math. Models
Methods Appl. Sci., 27 (2017), 453-524. https://doi.org/10.1142/S0218202517500075

5. L. Wu, Boundary layer of transport equation with in-flow boundary, Arch. Rational Mech. Anal.,
235 (2020), 2085-2169. https://doi.org/10.1007/s00205-019-01461-x

Communications in Analysis and Mechanics Volume 17, Issue 2, 365-386.


http://dx.doi.org/https://doi.org/10.1007/s00220-015-2315-y
http://dx.doi.org/https://doi.org/10.1007/s10955-016-1623-8
http://dx.doi.org/https://doi.org/10.1007/s00205-017-1135-y
http://dx.doi.org/https://doi.org/10.1007/s00205-017-1135-y
http://dx.doi.org/https://doi.org/10.1142/S0218202517500075
http://dx.doi.org/https://doi.org/10.1007/s00205-019-01461-x

384

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

L. Wu, DDiffusive limit of transport equation in 3D convex domains, Peking Math. J., 4 (2021),
203-284. https://doi.org/10.1007/s42543-020-00032-4

E. W. Larse, A functional-analytic approach to the steady, one-speed neutron trans-
port equation with anisotropic scattering, Comm. Pure Appl. Math., 27 (1974), 523-545.
https://doi.org/10.1002/cpa.3160270404

E. W. Larse, Solutions of the steady, one-speed neutron transport equation for small mean free
paths, J. Mathematical Phys., 15 (1974), 299-305. https://doi.org/10.1063/1.1666642

E. W. Larse, Neutron transport and diffusion in inhomogeneous media I, J. Mathematical Phys.,
16 (1975), 1421-1427. https://doi.org/10.1063/1.522714

E. W. Larse, Asymptotic theory of the linear transport equation for small mean free paths II, SIAM
J. Appl. Math., 33 (1979), 427-445. https://doi.org/10.1137/0133027

E. W. Larse, J. D’ Arruda, Asymptotic theory of the linear transport equation for small mean free
paths I, Phys. Rev., 13 (1976), 1933-1939. https://doi.org/10.1103/PhysRevA.13.1933

E. W. Larse, G. J. Habetler, A functional-analytic derivation of Case’s full and half-range formulas,
Comm. Pure Appl. Math., 26 (1973), 525-537. https://doi.org/10.1002/cpa.3160260406

E. W. Larse, J. B. Keller, Asymptotic solution of neutron transport problems for small mean free
paths, J. Mathematical Phys., 15 (1974), 75-81. https://doi.org/10.1063/1.1666510

E. W. Larse, P. F. Zweifel, On the spectrum of the linear transport operator, J. Mathematical Phys.,
15 (1974), 1987-1997. https://doi.org/10.1063/1.1666570

E. W. Larse, P. F. Zweifel, Steady, one-dimensional multigroup neutron transport with anisotropic
scattering, J. Mathematical Phys., 17 (1976), 1812—1820. https://doi.org/10.1063/1.522826

A. Bensoussan, J. L. Lions, G. C. Papanicolaou, Boundary layers and homoge-
nization of transport processes, Publ. Res. Inst. Math. Sci., 15 (1979), 53-157.
https://doi.org/10.2977/prims/1195188427

C. Bardos, R. Santos, R. Sentis, Diffusion approximation and computation of the critical size, Trans.
Amer. Math. Soc., 284 (1984), 617-649. https://doi.org/10.1090/S0002-9947-1984-0743736-0

C. Bardos, K. D. Phung, Observation estimate for kinetic transport equations
by diffusion approximation, C. R. Math. Acad. Sci. Paris, 355 (2017), 640-664.
https://doi.org/10.1016/j.crma.2017.04.017

C. Bardos, F. Golse, B. Perthame, The rosseland approximation for the radiative transfer equations,
Comm. Pure Appl. Math., 40 (1987), 691-721. https://doi.org/10.1002/cpa.3160400603

C. Bardos, F. Golse, B. Perthame, R. Sentis, The nonaccretive radiative transfer equations:
existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434—460.
https://doi.org/10.1016/0022-1236(88)90096-1

Q. Li, J. Lu, W. Sun, Diffusion approximations and domain decomposition method of lin-
ear transport equations: asymptotics and numerics, J. Comput. Phys., 292 (2015), 141-167.
https://doi.org/10.1016/j.jcp.2015.03.014

Q. Li, J. Lu, W. Sun, Half-space kinetic equations with general boundary conditions, Math. Comp.,
86 (2017), 1269-1301. https://doi.org/10.1090/mcom/3155

Communications in Analysis and Mechanics Volume 17, Issue 2, 365-386.


http://dx.doi.org/https://doi.org/10.1007/s42543-020-00032-4
http://dx.doi.org/https://doi.org/10.1002/cpa.3160270404
http://dx.doi.org/https://doi.org/10.1063/1.1666642
http://dx.doi.org/https://doi.org/10.1063/1.522714
http://dx.doi.org/https://doi.org/10.1137/0133027
http://dx.doi.org/https://doi.org/10.1103/PhysRevA.13.1933
http://dx.doi.org/https://doi.org/10.1002/cpa.3160260406
http://dx.doi.org/https://doi.org/10.1063/1.1666510
http://dx.doi.org/https://doi.org/10.1063/1.1666570
http://dx.doi.org/https://doi.org/10.1063/1.522826
http://dx.doi.org/https://doi.org/10.2977/prims/1195188427
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1984-0743736-0
http://dx.doi.org/https://doi.org/10.1016/j.crma.2017.04.017
http://dx.doi.org/https://doi.org/10.1002/cpa.3160400603
http://dx.doi.org/https://doi.org/10.1016/0022-1236(88)90096-1
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2015.03.014
http://dx.doi.org/https://doi.org/10.1090/mcom/3155

385

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

. Q.Li, J. Lu, W. Sun, Validity and regularization of classical half-space equations, J. Stat. Phys.,
166 (2017), 398-433. https://doi.org/10.1007/s10955-016-1688-4

Y. Sone, K. Aoki, Steady gas flows past bodies at small Knudsen numbers-
Boltzmann and hydrodynamic systems, Transp. Theory Stat. Phys., 16 (1987), 189—-199.
https://doi.org/10.1080/00411458708204658

R. Esposito, J. L. Lebowitz, R. Marra, Hydrodynamic limit of the stationary Boltzmann equation
in a slab, Comm. Math. Phys., 160 (1994), 49-80. https://doi.org/10.1007/BF02099789

C. Cercignani, R. Marra, R. Esposito, The milne problem with a force term, Transport Theory
Statist. Phys., 27 (1998), 1-33. https://doi.org/10.1080/00411459808205139

N. Jiang, N. Masmoudi, Boundary Layers and Incompressible Navier-Stokes-Fourier Limit of
the Boltzmann Equation in Bounded Domain I, Comm. Pure Appl. Math., 70 (2016), 90-171.
https://doi.org/10.1002/cpa.21631

N. Masmoudi, L. Saint-Raymond, From the Boltzmann equation to the Stokes-Fourier
system in a bounded domain, Comm. Pure and Appl. Math., 56 (2006), 1263-1293.
https://doi.org/10.1002/cpa.10095

R. Esposito, Y. Guo, C. Kim, R. Marra, Stationary solutions to the Boltzmann equation in the
hydrodynamic limit, Ann. PDE, 4 (2018), 1-119. https://doi.org/10.1007/s40818-017-0037-5

K. Aoki, C. Bardos, S. Takata, Knudsen layer for gas mixtures, J. Statist. Phys., 112 (2003),
629-655. https://doi.org/10.1023/A:1023876025363

Y. Sone, K. Aoki, S. Takata, H. Sugimoto, A. V. Bobylev, Inappropriateness of the heat-conduction
equation for description of a temperature field of a stationary gas in the continuum limit: examina-
tion by asymptotic analysis and numerical computation of the Boltzmann equation, Phys. Fluids,
8 (1996), 628-638. https://doi.org/10.1063/1.868846

K. Aoki, S. Takata, H. Aikawa, F. Golse, A rarefied gas flow caused by a discontinuous wall
temperature, Phys. Fluids, 13 (2001), 2645-2661. https://doi.org/10.1063/1.1389283

K. Aoki, S. Takata, H. Aikawa, F. Golse, The ghost effect in the continuum limit for a vapor-gas
mixture around condensed phases: asymptotic analysis of the Boltzmann equation, Transport
Theory Statist. Phys., 30 (2001), 205-237. https://doi.org/10.1081/TT-100105368

J. Jang, C. Kim, Incompressible Euler limit from Boltzmann equation with diffuse boundary
condition for analytic data, Ann. PDE, 7 (2001), 22. https://doi.org/10.1007/s40818-021-00108-z

M. Ghattassi, X. Huo, N. Masmoudi, Stability of the nonlinear Milne problem for radiative heat
transfer system, Arch. Ration. Mech. Anal., 247 (2003), 102. https://doi.org/10.1007/s00205-023-
01930-4

M. Ghattassi, X. Huo, N. Masmoudi, On the diffusive limits of radiative heat transfer system
I: Well-prepared initial and boundary conditions, SIAM J. Math. Anal., 54 (2022), 5335-5387.
https://doi.org/10.1137/21M 1455267

G. H. Hardy, Note on a theorem of Hilbert, Math Z, 6 (1920), 314-317.
https://doi.org/10.1007/BF01199965

N. Masmoudi, About the Hardy Inequality, In: An Invitation to Mathematics, Berlin, Heidelberg:
Springer, 2011. https://doi.org/10.1007/978-3-642-19533-4_11

Communications in Analysis and Mechanics Volume 17, Issue 2, 365-386.


http://dx.doi.org/https://doi.org/10.1007/s10955-016-1688-4
http://dx.doi.org/https://doi.org/10.1080/00411458708204658
http://dx.doi.org/https://doi.org/10.1007/BF02099789
http://dx.doi.org/https://doi.org/10.1080/00411459808205139
http://dx.doi.org/https://doi.org/10.1002/cpa.21631
http://dx.doi.org/https://doi.org/10.1002/cpa.10095
http://dx.doi.org/https://doi.org/10.1007/s40818-017-0037-5
http://dx.doi.org/https://doi.org/10.1023/A:1023876025363
http://dx.doi.org/https://doi.org/10.1063/1.868846
http://dx.doi.org/https://doi.org/10.1063/1.1389283
http://dx.doi.org/https://doi.org/10.1081/TT-100105368
http://dx.doi.org/https://doi.org/10.1007/s40818-021-00108-z
http://dx.doi.org/https://doi.org/10.1007/s00205-023-01930-4
http://dx.doi.org/https://doi.org/10.1007/s00205-023-01930-4
http://dx.doi.org/https://doi.org/10.1137/21M1455267
http://dx.doi.org/https://doi.org/10.1007/BF01199965
http://dx.doi.org/https://doi.org/10.1007/978-3-642-19533-4_11

386

39. N. V. Krylov, Lectures on elliptic and parabolic equations in Sobolev spaces, American Mathe-
matical Society, Providence, RI, 2008. https://doi.org/10.1090/gsm/096

40. R. Esposito, Y. Guo, C. Kim, R. Marra, Non-Isothermal boundary in the Boltzmann theory and
Fourier law, Comm. Math. Phys., 323 (2013), 177-239. https://doi.org/10.1007/s00220-013-1766-2

41. L. C. Evans, PFartial differential equations. Second edition, American Mathematical Society,

Providence, RI, 2010.

@ AIMS Press

Communications in Analysis and Mechanics

©2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Volume 17, Issue 2, 365-386.


http://dx.doi.org/https://doi.org/10.1090/gsm/096
http://dx.doi.org/https://doi.org/10.1007/s00220-013-1766-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	Problem formulation
	Normal chart near boundary
	Asymptotic expansion and remainder equation
	Literature
	Notation and convention
	Main results
	Methodology

	Asymptotic analysis
	Interior solution
	Boundary layer
	Geometric substitutions
	Milne problem

	Matching procedure

	Remainder equation
	Formulation of remainder equation
	Weak formulation
	Estimates of boundary and source terms

	Remainder estimate
	Basic energy estimate
	Kernel estimate
	Synthesis

	Proof of the main theorem



