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Abstract The weakly ionized plasma in the Earth's ionosphere is controlled by a complex interplay between
solar and magnetospheric inputs from above, atmospheric processes from below, and plasma electrodynamics
from within. This interaction results in ionosphere structuring and variability that pose major challenges for
accurate ionosphere prediction for global navigation satellite system (GNSS) related applications and space
weather research. The ionospheric structuring and variability are often probed using the total electron content
(TEC) and its relative perturbations (dTEC). Among dTEC variations observed at high latitudes, a unique
modulation pattern has been linked to magnetospheric ultra‐low‐frequency (ULF) waves, yet its underlying
mechanisms remain unclear. Here using magnetically conjugate observations from the THEMIS spacecraft and
a ground‐based GPS receiver at Fairbanks, Alaska, we provide direct evidence that these dTEC modulations are
driven by magnetospheric electron precipitation induced by ULF‐modulated whistler‐mode waves. We
observed peak‐to‐peak dTEC amplitudes reaching ∼0.5 TECU (1 TECU is equal to 106 electrons/m2) with
modulations spanning scales of ∼5–100 km. The cross‐correlation between our modeled and observed dTEC
reached ∼0.8 during the conjugacy period but decreased outside of it. The spectra of whistler‐mode waves and
dTEC also matched closely at ULF frequencies during the conjugacy period but diverged outside of it. Our
findings elucidate the high‐latitude dTEC generation from magnetospheric wave‐induced precipitation,
addressing a significant gap in current physics‐based dTEC modeling. Theses results thus improve ionospheric
dTEC prediction and enhance our understanding of magnetosphere‐ionosphere coupling via ULF waves.

Plain Language Summary Radio signals are refracted or diffracted as they traverse the ionosphere
filled with free electrons. The ionosphere TEC, which is the total number of electrons along the raypath from the
satellite to a receiver, helps to correct refractive errors in the signal, while its relative perturbations dTEC can be
used to probe diffractive fluctuations known as ionosphere scintillation. Refractive error degrades GNSS
positioning service accuracy while scintillation leads to signal reception failures and disrupts navigation and
communication. Thus, an accurate understanding and modeling of TEC and dTEC is vital for space weather
monitoring and GNSS‐related applications. This study analyzes conjugate observations of ionospheric dTEC
from a ground‐based GPS receiver and magnetospheric whistler‐mode waves (a distinct type of very‐low‐
frequency electromagnetic waves) from the THEMIS spacecraft, which were well‐aligned both in time and
space. We find a good cross‐correlation (∼0.8) between observed and modeled dTEC, driven by whistler‐
induced magnetospheric electron precipitation. These results point to whistler‐mode waves as the driver of the
observed dTEC. Both dTEC and whistler‐mode wave amplitudes were modulated by ULF waves. These
findings enhance physics‐based ionospheric TEC prediction and our understanding of magnetosphere‐
ionosphere coupling.

1. Introduction
The Earth's ionosphere contains weakly ionized plasma in the atmosphere between approximately 80 and
1,000 km altitude. The state of ionospheric plasma is controlled by a complex interplay between solar and
magnetospheric inputs from above, neutral atmospheric processes from below, and plasma electrodynamics from
within. The resulting structuring and variability of ionospheric plasma have a major, adverse impact on the global
navigation satellite system (GNSS) radio signals as they propagate through the ionosphere and experience varying
degrees of refraction and diffraction (Morton et al., 2020). Refraction causes signal group delay and phase
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advance, leading to dominant errors in GNSS position, velocity, and time solutions, while diffraction causes
stochastic intensity and phase fluctuations at the receiver, commonly known as ionospheric scintillation
(Rino, 2011; Yeh & Liu, 1982). Scintillation leads to increased GNSS receiver measurement noise and errors and,
in extreme cases, phase‐tracking loss of lock or signal reception failures (Kintner et al., 2007). Thus, these
ionospheric effects pose real threats to the reliability, continuity, and accuracy of GNSS operations and appli-
cations (Coster & Yizengaw, 2021; Morton et al., 2020). Understanding the causes for ionospheric structuring and
variability is critical for forecasting their impacts on GNSS applications—a long‐standing challenge for space
weather research (Hey et al., 1946; Jakowski et al., 2011; Morton et al., 2020). The importance of this ionosphere
forecasting has recently gained increased attention as the solar maximum unfolds and concerns over space
weather events such as geomagnetic storms loom large (e.g., Hapgood et al., 2022; Kintner et al., 2007; Pulkkinen
et al., 2017).

Ionospheric refraction is typically quantified by the total electron content (TEC), which is the total number of
electrons within a unit cross section along the raypath extending from the receiver to the satellite. For dual‐
frequency GNSS or Global Positioning System (GPS) receivers, the TEC is estimated from differential group
delays and carrier‐phase advances (Ciraolo et al., 2007; Mannucci et al., 1998; McCaffrey & Jayachan-
dran, 2017). Global TEC maps, constructed from networks of GNSS receivers on the ground and in orbit, can be
used not only to correct ionospheric effects in GNSS‐related applications but also to monitor large‐ and meso‐
scale traveling ionospheric disturbances, typically exceeding 100 km in horizontal wavelength (Hun-
sucker, 1982; Themens et al., 2022; S.‐R. Zhang et al., 2022). Traveling ionospheric disturbances may result from
internal ionospheric dynamics or from atmospheric effects from below linked to natural hazards, such as tsu-
namis, earthquakes, explosions, and volcanic eruptions (Astafyeva, 2019; Komjathy et al., 2016). High‐resolution
TEC from individual receivers and its relative perturbations dTEC and rate of changes (ROTI) are often used for
detecting small‐scale ionospheric irregularities and scintillation events (Cherniak et al., 2014; Makarevich
et al., 2021; McCaffrey & Jayachandran, 2019; Nishimura et al., 2023; Pi et al., 1997).

While empirical and climatological TEC models exist (Jakowski et al., 2011; Rideout & Coster, 2006), physics‐
based modeling of TEC perturbations remains challenging. One of the main challenges in physical modeling of
dTEC and space weather prediction is the complex structuring and variability of ionosphere plasma. Rapid (<a
few minutes) and small‐scale (<∼100 km) dTEC are observed at both low and high latitudes but generated by
distinct mechanisms and drivers (Basu et al., 2002; Fæhn Follestad et al., 2020; Jin et al., 2015; Kintner
et al., 2007; Moen et al., 2013; Pi et al., 1997; Pilipenko et al., 2014; Prikryl et al., 2015; Spogli et al., 2009;
Watson, Jayachandran, Singer, et al., 2016). Near equatorial latitudes, these small‐scale dTEC result from plasma
bubbles or density depletions formed around post‐sunset, primarily driven by the Rayleigh‐Taylor instability
associated with lower atmosphere‐ionosphere coupling processes (C.‐S. Huang & Kelley, 1996; Kelley, 2009;
Xiong et al., 2010; Aa et al., 2020; Jin et al., 2020). At high latitudes, dTEC are associated with plasma irreg-
ularities in the auroral, cusp, and polar cap regions, spanning a few meters to hundreds of kilometers in spatial
scale (e.g., Basu et al., 1990; Moen et al., 2013; Spicher et al., 2017). These irregularities are primarily driven by
solar‐magnetosphere‐ionosphere coupling, which involves a complex interplay and synergy among solar

extreme‐ultraviolet radiation, plasma E→ × B→ drifts, charged‐particle precipitation into the atmosphere, magnetic
field‐aligned currents, and various ionospheric plasma instabilities (Fæhn Follestad et al., 2020; Kelley, 2009;
Moen et al., 2013; Spicher et al., 2015).

Among dTEC variations observed near the auroral latitudes, a unique modulation pattern has been linked to
magnetospheric ultralow frequency (ULF) waves (Davies & Hartmann, 1976; Okuzawa & Davies, 1981; Pili-
penko et al., 2014; Skone, 2009; Watson et al., 2015; Watson, Jayachandran, Singer, et al., 2016; Zhai
et al., 2021). These ULF waves feature broadband or quasi‐monochromatic geomagnetic pulsations with periods
from about 0.2 to 600 s (Jacobs et al., 1964) and are considered to be crucial for energy and plasma transport
throughout the solar‐magnetosphere‐ionosphere‐thermosphere system (e.g., Southwood & Kivelson, 1981; M. K.
Hudson et al., 2000, 2008; Hartinger et al., 2015, 2022; Zong et al., 2017). Skone (2009) noted that average power
of ground‐based ULF waves and dTEC exhibited similar temporal variations in the Pc3 band (∼22–100 mHz).
Pilipenko et al. (2014) observed a high coherence (∼0.9) between dTEC and global Pc5 pulsations in a few mHz
during a geomagnetic storm. Watson, Jayachandran, Singer, et al. (2016) also reported a high coherence and
common power between dTEC and ULF radial magnetic field variations in the Pc4 band (6.7–22 mHz). Fully
understanding ULF‐induced ionospheric dTEC not only enhances the ionosphere forecasting during space
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weather events but also elucidates the critical pathways of geospace energy coupling and dissipation via ULF
waves.

To date, despite numerous proposals for direct dTEC modulation mechanisms by ULF waves (Pilipenko
et al., 2014), no mechanism has yet been conclusively established. Recently, Wang et al. (2020) have reported a
storm‐time event where duskside ionospheric density was modulated by ULF waves in the Pc5 range. Pc5‐
modulated density variations observed from radar data were used to infer modulated precipitating electrons
over an energy range of ∼1–500 keV and an altitude range of ∼80–200 km. Higher‐energy precipitating electrons
deposit their energy and induce impact ionization at lower altitudes, whereas lower‐energy electrons do so at
higher altitudes. The authors postulated that the precipitation and density perturbations are likely due to electron
pitch‐angle scattered into the loss cone by ULF‐modulated very low frequency whistler‐mode waves.

This postulation of whistler‐driven dTEC is supported by extensive observations and models that demonstrate that
ULF waves often coexist with and modulate whistler‐mode waves (Coroniti & Kennel, 1970; W. Li, Thorne,
et al., 2011; W. Li, Bortnik, Thorne, Nishimura, et al., 2011; Watt et al., 2011; Jaynes et al., 2015; Xia et al., 2016,
2020; X.‐J. Zhang et al., 2019; X. J. Zhang et al., 2020; X. Shi et al., 2022; L. Li et al., 2022, 2023). The
modulation of the whistler‐mode wave growth is potentially attributed to compression‐induced ambient thermal
or resonant hot electron density variations (W. Li, Bortnik, Thorne, Nishimura, et al., 2011; Xia et al., 2016, 2020;
X.‐J. Zhang et al., 2019; X. J. Zhang et al., 2020), resonant electron anisotropy variations (W. Li, Thorne,
et al., 2011; Watt et al., 2011), and nonlinear resonant effects from periodic magnetic field configuration vari-
ations (L. Li et al., 2022; L. Li et al., 2023). The periodic excitation of whistler‐mode waves at ULF wave fre-
quencies leads to periodic electron precipitation, which drives pulsating auroras (e.g., Jaynes et al., 2015; Miyoshi
et al., 2010; Nishimura et al., 2010) and potentially explains many previously reported dTEC modulations at ULF
frequencies (Pilipenko et al., 2014; Watson, Jayachandran, Singer, et al., 2016; Zhai et al., 2021).

However, it is challenging to establish a direct link between magnetospheric drivers and ionospheric dTEC during
ULF modulation events due to several complicating factors: (a) the path‐integrated nature of dTEC, which
strongly depend on the satellite‐to‐receiver raypath elevation (e.g., Jakowski et al., 1996; Komjathy, 1997), (b)
inherent phase shifts due to coexisting propagation and modulation effects (Watson et al., 2015), particularly
when conjugate observations are misaligned or not synchronized, and (c) the dynamic and turbulent nature of the
auroral ionosphere (Kelley, 2009). Direct evidence linking dTEC to magnetospheric drivers is yet to be identified.

In this study, conjugate observations from the THEMIS spacecraft and the GPS receiver at Fairbanks, Alaska
(FAIR) allow us to identify the driver of GPS dTEC as magnetospheric electron precipitation induced by ULF‐
modulated whistler‐mode waves. Figure 1 illustrates the physical picture emerging from these magnetically
conjugate magnetospheric and ionospheric observations of ULF waves, modulated whistler‐mode waves, elec-
tron precipitation, and dTEC.

In what follows, Section 2 describes data sets and models employed to estimate whistler‐driven precipitation and
resulting dTEC. Section 3 presents a detailed analysis and cross‐correlation between observed and modeled
dTEC. Section 4 discusses the geophysical implications and applications of our results, which are followed by the
main conclusions.

2. Data and Methodology
We derive 1‐s TEC measurements from phase and pseudorange data collected by the GPS receiver at FAIR during
15:06–16:36 UT on 3 July 2013, processed at the Jet Propulsion Laboratory using the GipsyX and Global
Ionospheric Mapping software (Bertiger et al., 2020; Komjathy et al., 2005). Phase‐based TEC measurements are
leveled using pseudorange delays for each phase‐connected data collection. We focus on links between FAIR and
GPS satellites with pseudo random noise numbers 40, 43, and 60, referred to as GPS40, GPS43, and GPS60,
whose ionospheric pierce points at 300 km altitude are within 200 km proximity to FAIR, or pierce points at
150 km within 100 km proximity to FAIR, to ensure relatively high elevation angles and thus better observation
geometry to resolve dTEC.

The pierce point of 300 km altitude is selected based on the measured F2‐region peak density height hmF2 from
the ground‐based ionosonde located at the Eielson station (64.66°N, 212.03°E) in Supporting Information S1.
While the background density peaks at ∼ 300 km in the F2 region, the modulation of dTEC may be located at
lower altitudes. Thus, we also present results using an ionosphere pierce point at 150 km altitude. The obtained
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TEC is expressed in TEC units (TECU), that is, 1016 electrons/m2. The slant TEC is converted to VTEC using the
standard mapping function (e.g., Mannucci et al., 1998). Measurements with elevation angles less than 30° are
excluded to reduce multipath effects (Jakowski et al., 1996). The VTEC data are then detrended to get dTEC using
a fourth‐order Butterworth lowpass filter. The low pass filter has a cutoff period of 25 min, to focus on ULF‐
related perturbations and reduce contributions from medium‐ and large‐scale traveling ionosphere disturbances
(Hunsucker, 1982).

We use the following data sets from THEMIS E (Angelopoulos, 2008): electron energy and pitch‐angle distri-
butions measured by the Electrostatic Analyzers instrument in the energy range of several eV up to 30 keV
(McFadden et al., 2008), DC vector magnetic field at spin resolution (∼3 s) measured by the Fluxgate Magne-
tometers(Auster et al., 2008), electric and magnetic field wave spectra within 1 Hz–4 kHz, measured every ∼8 s
by the Digital Fields Board, the Electric Field Instrument, and the search coil magnetometer (Bonnell et al., 2008;
Cully, Ergun, et al., 2008; Le Contel et al., 2008). Background electron densities are inferred from spacecraft
potentials (Bonnell et al., 2008; Nishimura et al., 2013). We also use ground‐based magnetometer measurements
every 1 s from the College (CMO) site operated by the United States Geological Survey Geomagnetism Program
and from the Fort Yukon (FYKN) site operated by the Geophysical Institute at the University of Alaska.

THEMIS observations of electron distributions and wave spectra allow us to calculate the precipitating flux of
electrons scattered into the loss cone by whistler‐mode waves using quasilinear diffusion theory (Kennel &
Engelmann, 1966; Lyons, 1974). For whistler‐mode wave normals θ < 45°, we use a validated analytical formula
of bounce‐averaged electron diffusion coefficients from Artemyev et al. (2013). For small pitch angle αeq

approaching the loss cone αLC, the first‐order cyclotron resonance provides the main contribution to the bounce‐
averaged diffusion rate:

〈Dαeqαeq
〉 ≃

πB2
w Ωceqωm

4γB2
eqΔω(pϵmeq)

13/9T(αLC) cos2
αLC

×
ΔλR,N(1 + 3sin2λR)

7/12
(1 − ω̄)

|γω̄ − 2γω̄2 + 1‖1 − γω̄|4/9 , (1)

with Bw indicating the wave amplitude, ωm the mean wave frequency, Δω the frequency width, ω̄ = ωm/Ωce the
normalized frequency, Ωce and Ωceq the local and equatorial electron cyclotron frequency, γ the relativistic factor,
p the electron momentum, ϵmeq = Ωpe/Ωceq

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ωm/Ωceq

√
where Ωpe is the plasma frequency, T(αeq) the bounce

Figure 1. Schematic diagram showing coordinated observations from THEMIS and FAIR of (a) modulation of whistler‐mode waves near the magnetic equator by ULF
waves, electron pitch‐angle scattering into the loss cone, and precipitation into the ionosphere (red arrows) induced by modulated whistler‐mode waves; and (b) the
modulated electron precipitation with energies of ∼0.1–30 keV deposits their energies at altitudes between ∼100–400 km and induces modulated impact ionization and
dTEC having amplitudes as large as ∼0.5 TECU and spanning scales of ∼5–100 km. This dTEC modulation was captured by the signal from GPS43, which has a high
elevation, but was overlooked by the signal from GPS40, which has a relatively lower elevation.
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period, λR the latitude of resonance, and ΔλR,N the latitudinal range of resonance (see details in Artemyev
et al. (2013)). The precipitating differential energy flux within the loss cone can be estimated as x(E)J(E, αLC) ,
where

x(E) = 2∫

1

0
I0 (Z0τ)τdτ/I0 (Z0), (2)

being the index of loss cone filling, J(E, αLC) is the electron differential energy flux near the loss cone, I0 is the

modified Bessel function with an argument Z0 ≃ αLC/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈Dαeqαeq

〉 ⋅ τloss

√
(Kennel & Petschek, 1966), and τloss is

assumed to be half of the bounce period.

With an energy distribution of precipitating electrons within 0.1–30 keV, we estimate the impact ionization rate
altitude profile using the parameterization model developed by Fang et al. (2010), covering isotropic electron
precipitation from 100 eV up to 1 MeV. This model, derived through fits to first‐principle model results, allows
efficient ionization computation for arbitrary energy spectra. Atmospheric density and scale height data were
obtained from the NRLMSISE‐00 model (Picone et al., 2002). We model dTEC resulting from whistler‐induced
electron precipitation by integrating ionization rates over altitude and time, adopting an 8‐s integration period to
align with the temporal resolution of THEMIS wave spectra data. Although our analysis does not concern
equilibrium densities and omits recombination and convective effects, this has little impact because we focus on
relative dTEC due to short‐time precipitation. It takes nearly 60 s for the background ionosphere to relax to an
equilibrium density solution for 10‐keV precipitation and longer for lower energies (e.g., Kaeppler et al., 2022).
Our estimated dTEC also closely match observed dTEC values, underscoring the effectiveness of our modeling
approach despite its approximation.

3. Results
On 3 July 2013, from 15:06 to 16:36 UT, the THEMIS E spacecraft flew westward over the FAIR GPS receiver
station, coming within ∼20 km relative to FAIR when mapped to 300 km altitude. The space‐ground observations
have a close spatial and temporal alignment, allowing us to link between magnetospheric and ionospheric pro-
cesses along the field line. The event occurred at L ∼ 7, outside the plasmapause of Lpp ∼ 5.4 (based on THEMIS
E densities near 17:00 UT), near the magnetic local time (MLT) of 4.5 hr, and during a geomagnetic quiet time
with Kp ∼ 1 and AE ∼ 200 nT. Figure 2a illustrates the trajectories of THEMIS E and the ionosphere pierce points
of GPS40, GPS43, and GPS60 near FAIR, mapped to 300 km altitude. The position of THEMIS E is mapped
along the field line to the ionosphere using the Tsyganenko T96 model (Tsyganenko, 1995) but the GPS satellites
are mapped using line of sight. Of these GPS satellites, the GPS43 pierce points, moving eastward, were nearest to
both the FAIR and THEMIS E footprints, exhibiting close longitudinal alignment. A notable conjugacy, marked
by the bright red segment from 15:37 to 16:11 UT, occurred when the footprints of THEMIS E and GPS43 pierce
points were within ∼100 km to each other and FAIR (Figure 2j). In Supporting Information S1, we also present
the configuration when the satellites and their pierce points are mapped to an altitude of 150 km. This adjustment
does not significantly alter the geometry of our conjunction event, but it does slightly reduce the scale of the
satellite footpaths near FAIR.

Figures 2b–2d present THEMIS observations of whistler‐mode waves. The observed wave frequencies were in
the whistler lower band, spanning ∼ 0.2–0.5Ωce, with a mean frequency ωm ∼ 0.35Ωce, and Δω ∼ 0.15Ωce,
where the electron cyclotron frequency fce ∼ Ωce/2π ∼ 2.15 kHz. Figure 2d shows that whistler‐mode wave
amplitudes Bw range from several pT to over 100 pT, measured at 8‐s cadence (black curve) and smoothed with 2‐
min moving averages (red curve). Short‐term oscillations in Bw on the order of tens of seconds were observed atop
more gradual variations of several minutes. We use smoothed or averaged Bw to estimate electron precipitation.
Although direct waveform data for resolving whistler‐mode wave normals were absent, we can infer wave
normals based on the measured whistler spectra properties of E/cB ≪ 1 (see Supporting Information S1) as well
as from previous statistical whistler observations in the nightside equatorial plasma sheet (Agapitov et al., 2013;
Meredith et al., 2021; W. Li, Bortnik, Thorne, & Angelopoulos, 2011). The whistlers propagate quasi‐parallel to
the magnetic field, with an assumed Gaussian wave normal width of Δθ ∼ 30° and a latitudinal distribution
within ±30°.
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Figures 2e–2h display the measured plasma sheet field‐aligned (α ∼ [0°, 22.5°]) electrons from 50 eV up to
25 keV, calculated diffusion rates 〈Dαeqαeq

〉, estimated loss cone filling x(E), and precipitating electron energy
fluxes. Although 〈Dαeqαeq

〉 and x(E) increase at lower energies, the precipitating energy fluxes peak between 1 and
10 keV, exhibiting similar modulations as seen in the smoothed whistler‐mode wave amplitude Bw. Electron

Figure 2. (a) Configuration of THEMIS E (black curve), GPS40, GPS43, and GPS60 satellites (green, purple, and blue
curves), and the FAIR receiver (black star) in geographic coordinates, with THEMIS and GPS mapped onto 300 km altitude
using T96 field tracing (THEMIS) or line of sight projection (GPS). The plus symbol indicates the start of the footpath. (b–e)
THEMIS E magnetic field spectrogram, electric field spectrogram, whistler‐mode wave amplitudes, and field‐aligned (0°–
22.5°) electron energy spectrogram. (f) Bounce‐averaged electron diffusion rates. (g) Index of loss cone filling. (h) Whistler‐
driven precipitating electron energy spectrogram. (i) Comparison of whistler‐driven model dTEC (red curve) and GPS43‐
observed dTEC (black curve). (j) Great‐circle distances between THEMIS‐E footpath (red curve) and GPS43 raypath (black
curve) at IPP of 300 km relative to the FAIR station.
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precipitation fluxes below ∼200 eV are absent due to an energy threshold for
electron cyclotron resonance interaction, with the lower limit primarily
determined by the ratio Ωpe/Ωce (∼3 in our case).

Figure 2i compares modeled (red) and directly measured dTEC (black) from
the GPS43 signal, revealing a nearly one‐to‐one phase correlation from 15:37
to 16:11 UT. This period of close correlation coincides with the conjunction
of THEMIS E, GPS43, and FAIR, where their relative distances were within
∼ 100 km (Figure 2j). Outside this conjugacy period and further away from
the FAIR station, the correlation decreases. Observed peak‐to‐peak ampli-
tudes of dTEC reached ∼0.5 TECU, which is typical, though not extreme, for
the nightside auroral region. This particular event occurred during quiet
conditions; other events during storms may have much larger dTEC modu-
lation amplitudes (e.g., Watson et al., 2015), though more challenging to
have such reliable conjunction, especially given uncertainties in magnetic
field mapping during storms (e.g., C.‐L. Huang et al., 2008).

Figure 3 underscores the critical role of observation geometry and timing in
detecting phase correlations between modeled and measured dTEC across
three GPS satellites. Despite all three satellites having raypath elevation an-
gles >40°—reducing the likelihood of multi‐path effects (e.g., Jakowski
et al., 1996)—only the GPS43 elevation reached 80° above the FAIR station
zenith (Figure 3a). During the conjugacy period, the pierce points of GPS40
and GPS60 were distanced from FAIR by more than 200 km, while GPS43's
pierce points remained within 100 km, coming within 20 km at its closest
point (Figure 3b). Figures 3c and 3d reveal that the modeled dTEC (red curve)

aligns poorly with GPS40 and GPS60 dTEC (blue and magenta curves), but a significant cross‐correlation (∼0.8)
emerges with GPS43 dTEC (black) during the conjugacy period. Before and after the conjunction, dTEC phase
shifts reduce the cross‐correlation to −0.15 and 0.68, respectively. Given the near‐parallel longitudinal alignment
of GPS43 pierce points and THEMIS E footprints (Figure 2a), the measured dTEC (black) potentially reflects
both temporal and spatial/longitudinal modulations. These findings suggest that to reliably identify the electron
precipitation responsible for dTEC requires precise spacecraft spatial alignment, optimal timing, and high raypath
elevations.

The modulation of dTEC, electron precipitation, and whistler‐mode wave amplitudes was linked to ULF wave
activities in the Pc3‐5 band (1.7–100 mHz). Figure 4a display the magnetic field perturbations measured by
THEMIS E in the mean field‐aligned coordinates, in which the parallel direction (‖, the compressional
component) is determined by 15‐min sliding averages of the magnetic field, the azimuthal direction (ϕ, the
toroidal component) is along the cross product of z and the spacecraft geocentric position vector, and the radial
direction (r, the poloidal component) completes the triad. Magnetic perturbations are obtained by subtracting the
15‐min mean field. During the conjunction, THEMIS E detected both compressional Pc5 waves (red curve) and
poloidal Pc3‐4 waves (blue curve). Figure 4b indicates that peaks in whistler‐mode wave amplitudes approxi-
mately align with troughs of compressional ULF waves, with fine‐scale whistler amplitudes primarily modulated
by poloidal Pc3‐4 waves (See Supporting Information S1). Strong Pc5 ULF waves were also recorded in the H‐
component magnetic field perturbations from magnetometers located at CMO and FYKN (Figures 4g and 4h),
displaying a similar pattern but with greater amplitudes at FYKN, located slightly north of FAIR. The discrepancy
between ground‐ and space‐measured Pc5 waves potentially results from the localized nature of THEMIS‐E
observations (X. Shi et al., 2022) and the screening/modification effects of ULF waves traversing the iono-
sphere (Hughes & Southwood, 1976; Lysak, 1991; Lessard & Knudsen, 2001; X. Shi et al., 2018). Our obser-
vations imply that the ionospheric dTEC were linked to ULF‐modulated whistler‐mode waves and the associated
electron precipitation (e.g., Coroniti & Kennel, 1970; W. Li, Thorne, et al., 2011; Xia et al., 2016; X. J. Zhang
et al., 2020; L. Li et al., 2023).

Figures 4b and 4c compare small‐scale/high‐frequency fluctuations of whistler‐mode wave amplitudes Bw and
dTEC, which was bandpass‐filtered within the frequency range of 5–200 mHz. The small‐scale dTEC fluctuations
exhibit similar wave periods to Bw fluctuations, evidently intensifying during the conjugacy period, yet lacking a

Figure 3. (a) Raypath elevation angles of GPS40 (green curve), GPS43
(black curve), and GPS60 (magenta curve). (b) Distances between THEMIS
E footpath and GPS satellite pierce points relative to FAIR, displayed in the
same format as Figure 1j. (c) Comparison between whistler‐driven model
dTEC and observed dTEC from GPS40 and GPS60, which were not in good
conjunction with THEMIS or FAIR. (d) Comparison between whistler‐
driven model dTEC and GPS43‐observed dTEC. The cross‐correlation
coefficients are −0.15, 0.76, and 0.68 during intervals before, during, and
after conjunction, respectively.
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clear phase correlation seen with larger scale perturbations in Figure 3d. Figure 4d shows the rate of TEC index
(ROTI), that is, the standard deviation of the rate of TEC (ROT) (Pi et al., 1997), where
ROT = (dTEC(t + τ) − dTEC(t))/τ with τ = 10 s, ROTI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈ROT2〉 − 〈ROT〉2

√
using 200‐s sliding aver-

ages. Significant increases in ROTI were observed within the region of whistler‐driven TEC perturbations.
However, in our case the GPS signal fluctuations were predominantly refractive, as negligible fluctuations were
detected at frequencies above 0.1 Hz (McCaffrey & Jayachandran, 2017, 2019; Nishimura et al., 2023).

Figures 4e and 4f compare the wavelet spectrograms of whistler‐mode wave Bw and dTEC, displaying concurrent
increases in wave power for both in the frequency range of ∼3 mHz up to tens of mHz. Figures 4i–4k present a
more detailed amplitude spectra comparison before, during, and after conjunction. Notably, only during the
conjunction, whistler‐mode wave amplitudes and dTEC share similar power spectral density distributions in the
1–∼30 mHz range. The peaks in whistler spectra were slightly and consistently larger than those in dTEC spectra
within 3–20 mHz by factors of 1.05–1.2 with an average of 1.15, aligning with expected Doppler shift effects on
ionospheric TEC measurements. The Doppler shift results from relative motion of GPS raypath (with pierce point
velocities of ∼46 m/s at 300 km altitude in our case) and propagating TEC structures (typically with velocities of

several hundred m/s) (Watson, Jayachandran, & MacDougall, 2016): fcor = fobs (1 +
vipp ⋅ vstruct

|vstruct |
2 ) , where fcor is the

frequency corrected for relative motion. Watson, Jayachandran, and MacDougall (2016) found that 89% of their
statistical events required a correction factor of 1.2 or less for the Doppler shift, consistent with our observations.
The agreement between dTEC and whistler amplitude spectra supports that the observed dTEC resulted from
electron precipitation induced by whistler‐mode waves.

The average Doppler shift factor of ∼1.15 obtained from Figure 4j allows us to estimate the plasma drift velocity
from v→struct ∼ v→ipp/0.15 ≃300 m/s at the pierce point of 300 km altitude or 150 m/s at 150 km altitude. The
spatial scales of the small‐scale dTEC in Figure 4c can be estimated from ds = (

⃒
⃒ v→struct

⃒
⃒ −

⃒
⃒ v→ipp

⃒
⃒) dt. The

Figure 4. (a) THEMIS E magnetic field perturbations in the mean‐field‐aligned coordinates, exhibiting compressional‐ (red) and poloidal‐mode (blue) variations.
(b) THEMIS E whistler‐mode wave amplitudes. The measured amplitudes are shown in black and smoothed in red. (c) dTEC bandpass filtered within 5–200 mHz.
(d) ROTI from 200‐s sliding window ensemble averaging. (e) Wavelet spectrogram of whistler‐mode waves. (f) Wavelet spectrogram of GPS43 dTEC. (g) Ground‐
based magnetic field H component perturbations in 1.7–100 mHz from the Fort Yukon station. (h) Ground‐based magnetic H component perturbations in 1.7–100 mHz
from the College station. (i–k) Comparisons of dTEC (orange curves) and whistler‐mode wave amplitude fluctuation spectra (gray curves) in 1–60 mHz measured before
(k), during (j), and after (k) the conjugacy period.
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resulting wavelengths are ∼10–30 km at the pierce point of 300 km altitude or
∼ 5–15 km at 150 km altitude. In contrast, the larger‐scale dTEC shown in
Figure 3d have wavelengths of ∼ 100 km at 300 km altitude or ∼ 50 km at
150 km altitude. When mapped to the magnetosphere, the small‐scale dTEC
modulations correspond to a magnetospheric source region of ∼150–700 km,
while larger‐scale dTEC modulations suggest a source region of ∼ 1,000–
2,500 km. These scales align with prior observations of the transverse scale
sizes of chorus elements and their source regions (Agapitov et al., 2017, 2018;
Santolík et al., 2003) and also with the azimuthal wavelengths of high‐m
poloidal ULF waves (Yeoman et al., 2012; X. Shi et al., 2018; Zong
et al., 2017).

Figure 5 indicates that the electron precipitation, induced by ULF‐modulated
whistler‐mode waves, can cause significant increases in ionospheric ioniza-
tion rate or column density, leading to dTEC of ∼0.36 TECU with a moderate
whistler amplitude of Bw ∼ 25 pT. Given that large‐amplitude whistler‐mode
waves exceeding several hundred pT frequently occur in the inner magne-
tosphere (Cattell et al., 2008; Cully, Bonnell, & Ergun, 2008; Agapitov
et al., 2014; Hartley et al., 2016; R. Shi et al., 2019), we anticipate even larger
dTEC from such whistler activities. We defer a statistical study including
storm time events and the potential connection with scintillation (e.g.,
McCaffrey & Jayachandran, 2019; Nishimura et al., 2023) for the future. In
addition, the primary energy range of precipitation spans from ∼100 eV to ∼

30 keV, contributing to density variations between ∼90–∼400 km (Berland
et al., 2023; Fang et al., 2010; Katoh et al., 2023).

4. Discussion
Various mechanisms have been proposed that link ULF waves to dTEC and ionospheric disturbances in general
(Pilipenko et al., 2014). Although dTEC might arise from direct ULF wave effects through convective and
divergent flows, MHD Alfvén‐mode waves do not directly alter plasma density. Furthermore, mode‐converted
compressional waves, if present due to Hall currents, are evanescent in the ionosphere (Lessard & Knud-
sen, 2001), resulting in negligible TEC perturbations (Pilipenko et al., 2014).

The vertical component of the E→ × B→ drift associated with ULF waves can induce vertical bulk motion of
ionospheric plasma with a drift velocity vz = Ey cos I/ B0, where I is the local magnetic inclination. This vertical
transport can alter the altitude‐dependent recombination rate, thereby contributing to electron density or TEC
modulations (Pilipenko et al., 2014; Poole & Sutcliffe, 1987). These effects are potentially important in mid-
latitude and equatorial regions (Yizengaw et al., 2018; Zou et al., 2017) but are expected to be less significant at
high latitudes where the magnetic inclination is large. In our case, the magnetic inclination angle is such that
cos I ∼ 0.2, and the magnetic perturbations are only a few nT, resulting in electric field perturbations Ey < 1 mV/
m (Yizengaw et al., 2018). Based on similar estimations from Pilipenko et al. (2014), the resulting changes in
dne/ ne or dTEC/TEC are only 0.04%, corresponding to dTEC of <0.01 TECU given a background TEC of ∼20
TECU. This level of dTEC is insignificant compared with the observed 0.5 TECU. Moreover, the timescales of
TEC changes due to recombination rate changes associated with vertical plasma motion are typically longer than
1 hr (Heelis et al., 2009; Maruyama et al., 2004; Yizengaw et al., 2006), which are much larger than the ULF
modulation timescales of several minutes observed in our case. Therefore, the observed ULF‐modulated high‐
latitude dTEC are unlikely to be explained by vertical plasma transport and recombination rate changes in the
F region.

The periodic horizontal drift of ULF waves could produce noticeable TEC modulation across a horizontal density
gradient, via the advection term v→ ⋅ ∇ ne (Pilipenko et al., 2014; Poole & Sutcliffe, 1987; Waters & Cox, 2009).
This modulation may be enabled by a pre‐existing east‐west density gradient, which was suggested to produce
TEC modulation of ∼2% with 5 nT magnetic perturbations near the terminator (Waters & Cox, 2009). However,
our event was on the nightside, away from the terminator. The advection may arise from a latitudinal density

Figure 5. Ionization rate altitude profiles calculated at three time stamps of
15:38:00, 15:45:01, and 15:53:11 UT, corresponding to whistler‐mode wave
amplitudes of Bw = 24.5 pT (red curve), 3.0 pT (gray curve), and 19.9 pT
(orange curve). The dTEC were calculated by integrating ionization rates over
altitude and time (8s). The dashed lines mark the peak deposition altitudes of
100 eV, 500 eV, 1 keV, 10 keV, and 30 keV precipitating monoenergetic
electrons.
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gradient coupled with ULF E→ × B→ drifts. Pilipenko et al. (2014) estimated that this latitudinal advection could
contribute to dTEC/TEC of ∼ 0.1% at auroral latitudes, corresponding to dTEC ∼ 0.02 TECU in our case. In
general, Poole and Sutcliffe (1987) theoretically derived the advection‐induced TEC modulation as dTEC/
TEC ∼ 2Ey/ωB0L, where L is the horizontal gradient scale. If we take Ey ∼ 1 mV/m, ω ∼ 10−2 s−1, L ∼ 30 km,
the resulting dTEC/TEC is only 0.17%. Thus, ULF‐induced horizontal transport also cannot explain our observed
dTEC modulation of ∼0.5 TECU.

A non‐linear “feedback instability” mechanism may modify ULF wave dynamics, causing field‐aligned current
striations and significant bottom‐side ionospheric density cavities and gradients (Lysak, 1991; Streltsov &
Lotko, 2008). Furthermore, in the presence of pre‐existing larger‐scale density gradients, ULF‐induced plasma
flows may result in gradient drift instabilities and density striations and irregularities with scale sizes less than ∼

10 km (Basu et al., 1990; Gondarenko & Guzdar, 2004; Kelley, 2009; Keskinen & Ossakow, 1983; Nishimura
et al., 2021; Spicher et al., 2015). Additionally, electron precipitation and Joule heating are important factors to
consider in the auroral region (e.g., Deng & Ridley, 2007; Meng et al., 2022; Sheng et al., 2020).

Detecting one‐to‐one phase correlation between ground‐based ULF waves and dTEC may be challenging, largely
due to ionospheric screening effects on ULF waves (Hughes & Southwood, 1976), with only a few exceptions
noted during storm times (Pilipenko et al., 2014; Wang et al., 2020). However, this correlation has been frequently
observed with spacecraft measurements of ULF waves (Watson et al., 2015; Watson, Jayachandran, Singer,
et al., 2016; Zhai et al., 2021), indicating that magnetospheric processes may play an important role in driving
ionospheric dTEC. Our findings support that magnetospheric whistler‐mode waves, modulated by ULF waves in
the Pc3–5 band, are responsible for these periodic dTEC through associated electron precipitation.

These results enhance our understanding of dTEC modulation by ULF waves, a topic widely discussed in the
literature (Pilipenko et al., 2014; Skone, 2009; Wang et al., 2020; Watson et al., 2015; Watson, Jayachandran,
Singer, et al., 2016; Zhai et al., 2021), and facilitates the integration of effects of magnetospheric whistler‐mode
waves into auroral dTEC models. Statistical modeling of whistler‐mode and ULF waves has been improving for
several decades (e.g., Agapitov et al., 2013; Artemyev et al., 2016; Claudepierre et al., 2010; Hartinger
et al., 2015, 2022, 2023; M. Hudson et al., 2004; Ma et al., 2020; McPherron, 1972; Sandhu et al., 2021; Shen
et al., 2021; Southwood & Hughes, 1983; Takahashi & Anderson, 1992; Tsurutani & Smith, 1974; Tyler
et al., 2019; W. Li, Bortnik, Thorne, & Angelopoulos, 2011; X. J. Zhang et al., 2020; Zong et al., 2017).
Leveraging these wave effects and the associated electron precipitation can enhance physics‐based modeling of
ionospheric dTEC by providing better specifications of high‐latitude drivers (Huba & Drob, 2017; Meng
et al., 2016, 2020; Ridley et al., 2006; Schunk et al., 2004; Sheng et al., 2020; Verkhoglyadova et al., 2020;
Zettergren & Snively, 2015). This wave‐driven precipitation provides the dominant energy input to the iono-
sphere among all types of auroral precipitation (e.g., Newell et al., 2009), thus critically contributing to dTEC at
high latitudes. As such, incorporating these magnetospheric phenomena is important for improving the accuracy
of ionospheric dTEC models. This incorporation potentially benefits both GNSS‐based applications and
magnetosphere and ionosphere coupling science.

5. Conclusions
We present a detailed case study of ionospheric dTEC, using magnetically conjugate observations from the
THEMIS spacecraft and the GPS receiver at Fairbanks, Alaska. This conjunction setup allows us to identify the
magnetospheric driver of the observed dTEC. Our key findings are summarized below:

• Combining in‐situ wave and electron observations and quasilinear theory, we have modeled the electron
precipitation induced by observed whistler‐mode waves and deduced ionospheric dTEC based on impact
ionization prediction. The cross‐correlation between our modeled and observed dTEC reached ∼0.8 during the
conjugacy period of ∼30 min but decreased outside of it.

• Observed peak‐to‐peak dTEC amplitudes reached ∼0.5 TECU, exhibiting modulations spanning scales of ∼5–
100 km. Within the modulated dTEC, enhancements in the rate of TEC index were measured to be ∼ 0.2
TECU/min.

• The whistler‐mode waves and dTEC modulations were linked to ULF waves in the Pc3‐5 band, featuring
concurrent compressional and poloidal mode fluctuations. The amplitude spectra of whistler‐mode waves and
dTEC also agreed from 1 mHz to tens of mHz during the conjugacy period but diverged outside of it.
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Thus, our results provide direct evidence that ULF‐modulated whistler‐mode waves in the magnetosphere drive
electron precipitation leading to ionospheric dTEC modulations. Our observations also indicate that to reliably
identify the electron precipitation responsible for dTEC requires precise spacecraft spatial alignment, optimal
timing, and high raypath elevations. Our findings elucidate the high‐latitude dTEC generation from magneto-
spheric wave‐induced precipitation, which has not been adequately addressed in physics‐based TEC models.
Consequently, theses results improve ionospheric dTEC prediction and enhance our understanding of
magnetosphere‐ionosphere coupling via ULF waves.
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