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 Abstract— Two-phase cooling offers superior heat dissipation 

compared to conventional single-phase cooling methods. 

Nevertheless, the occurrence of critical heat flux (CHF) during 

boiling introduces reliability concerns, potentially leading to 

system failure. To improve system reliability, optical imaging is 

employed to analyze and monitor cooling systems without 

disrupting the boiling dynamics. These methods involve analyzing 

images of the boiling process to identify boiling regimes and 

evaluate heat flux. However, current optical-based methods are 

limited to static images, thereby missing out on the valuable 

temporal information captured by high-speed imaging. Inspired 

by the successful integration of temporal information in other 

fields, this work aims to exploit the temporal information from 

transient pool boiling captured via high-speed imaging for 

enhanced heat flux monitoring. For this purpose, two frameworks, 

comprising six different machine-learning models, have been 

developed for a comparative analysis. Specifically, the first 

framework includes two models that use static images for 

monitoring, serving as a representation of existing methodologies 

and a benchmark against which the second framework is 

measured. The remaining four models within the dynamic image-

based framework (the 2nd framework) leverage sequences of 

images to capture temporal information. To evaluate the 

advantage of incorporating temporal information, transient 

boiling experiments were conducted to construct the dataset. A 

comparative analysis confirmed that temporal information 

significantly enhances the accuracy of the developed heat flux 

monitoring models. Among these models, the developed principal 

components (PCA)-convolutional neural network (CNN) stands 

out with a superior determination coefficient of 97.4% and a mean 

absolute percentage error of 7.0%, achieving an excellent balance 

between monitoring accuracy and computational efficiency. 

 
Index Terms— Computer vision, condition monitoring, heat flux, 

image sequence, machine learning, pool boiling.  

 

I. INTRODUCTION 

HE need for high heat dissipation cooling systems is 

rapidly growing due to the increasing prevalence of 

high-power electronics, data centers [1], 

microelectronics [2], or electric vehicles [3]. Boiling allows for 

higher heat dissipation while maintaining a relatively low 
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superheat in the nucleate boiling regime when compared to 

other air or liquid single-phase cooling systems. However, the 

usage of such boiling-based cooling systems (two-phase 

cooling systems) is limited by instabilities, such as the critical 

heat flux (CHF). When the heat flux reaches the CHF, a vapor 

layer covers a large portion of the heat exchange surface and 

acts as an insulator resulting in a rapid decline in heat transfer 

efficiency [4]. Consequently, the temperature can increase 

hundreds of degrees in a matter of seconds which can lead to 

overheating or burnout [5]. Therefore, it is crucial to maintain 

proper monitoring of the system.  

Currently, there are serval ways to address the CHF 

situation: 1) developing micro-scale modifications to the 

heating surface's structure; 2) predict the CHF; and 3) 

maintaining proper monitoring of boiling systems. The first 

method aims to increase CHF to enhance safety margins and 

power limits. Haas et al. [6] investigated the influence of serval 

surface modification processes on CHF for Zircaloy-4 tubes. 

They find that, as the pressure and mass flow rate increase, the 

CHF can be up to 29% higher with surface-structured tubes 

featuring microchannels, porous layers, and oxide layers 

compared to smooth tubes. Lee and Mudawar [7] conducted 

subcooled flow boiling experiments in a microchannel heat sink 

using Hydrofluoroether 7100 as the working fluid. They find 

that CHF was triggered by the formation of a vapor blanket 

along the micro-channel walls. In this work, a system 

technology was developed to modify existing CHF correlations 

to more accurately account for the unique characteristics of 

microchannel heat sinks. The second method aims to provide a 

prediction value CHF in advance so as to avoid safety risks. 

Mudawar et al. [8] developed artificial neural network (ANNs) 

for CHF prediction in flow boiling, utilizing data from both 

microgravity conditions aboard the international space station 

and earth gravity. They analyzed a comprehensive dataset from 

the flow boiling and condensation experiment and 

demonstrated that the ANNs outperformed existing correlations 

highlighting its potential to enhance predictive capabilities in 

flow boiling applications under varied gravitational conditions. 

The third method aims to monitor heat flux so as to give 
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advanced warning and avoid thermal runaways. Dunlap et al. 

[9] proposed a machine learning framework for monitoring heat 

flux of pool boiling using acoustic signals. It was found that the 

fast Fourier transform-Gaussian process regression model is the 

most promising, exhibiting high accuracy and the lowest 

computational cost. 

Additional complexities arise when trying to monitor 

boiling heat transfer. Escalating or oscillating heat loads induce 

transient boiling and are prevalent in several important 

applications. In the case of reactivity-initiated accidents, the 

heat load in nuclear reactors rise exponentially to trigger CHF 

during transient boiling [10], [11]. The high-frequency 

switching of microelectronic and power modules contributes to 

oscillating heat loads in power grids and electric vehicles [12], 

[13] resulting in device failure. Transient boiling is also 

prevalent in space applications, for example the use of 

cryogenics for thermal management or propulsion [14]. 

Motivated by the need for improving safety margins and 

optimizing heat transfer for these applications, further research 

is needed. Steady state data alone is insufficient for fully 

understanding transient boiling (e.g., different heat transfer 

mechanisms, notably higher CHF values) [15]. Therefore, 

transient boiling experiments and analysis are crucial. Two 

categories of transient boiling (i.e., fast and slow) exist. There 

are marked differences between the two, such as boiling 

regimes or CHF triggering mechanisms [16], [17]. Fast 

transient boiling occurs over milliseconds such that bubbles 

nucleating on the heating surface may not be able to depart as 

typical in the nucleate boiling regime. Instead, the bubbles 

merge and directly form a vapor layer [18]. Slow transient 

boiling involves gradual changes in heat load and is commonly 

seen in normal operation of the aforementioned applications. 

Although both types are relevant and important to study, slow 

transient boiling is studied in this work. Several complexities 

arise when trying to study transient boiling, including managing 

high temperatures and implementing high-frequency sensors 

(e.g., thermocouples, high speed cameras) for fast and accurate 

measurements. 

Traditional thermal monitoring uses thermocouples to 

measure temperature gradients and calculate heat flux using 

Fourier’s law [19], [20], [21], [22]. This method is limited by 

thermal diffusion. Also, the use of intrusive sensors (i.e., 

thermocouples) can interfere with boiling and make 

replacements difficult. Transverse thermoelectric heat flux 

sensors provide non-intrusive measurement [23], [24] 

However, they have limited frequency response and are 

sensitive to electromagnetic interference, which limits its 

applications in power electronics. Transient boiling also adds to 

the challenge of monitoring boiling heat flux. Therefore, there 

is an urgent demand for a high-frequency, non-intrusive, and 

non-electrical method to measure transient boiling heat flux in 

high-power-density electronic systems. 

High-speed optical imaging has been explored in boiling 

characterization [25]. In this field, traditional image analysis 

and, more recently, computer vision techniques have been used 

for both qualitative and quantitative boiling analysis. 

Conventional image processing techniques have been used to 

determine bubble properties (i.e., bubble diameter, count, 

departure, nucleation density, etc.) [26]  and estimate void 

fraction [27]. Machine learning-aided computer vision 

techniques have been implemented with boiling image data to 

characterize bubble dynamics [28], [29], identify boiling 

regimes [30], [31] and flow regimes [32], detect dry spots [33], 

predict heat transfer coefficients [34] and heat flux [35]. Hobold 

et al. [35] used image data from a nucleate boiling experiment 

to train a multi-layer perceptron (MLP) and a convolutional 

neural network (CNN) for heat flux prediction. The multi-layer 

perceptron uses images transformed through principal 

component analysis as model input and the convolutional 

model directly takes raw images as input. Their test results 

suggest that the principal components and convolutional layers 

can encode boiling heat transfer mechanism information that 

exists within the boiling images. Scariot et al. [36] used steady-

state boiling images to train a traditional CNN for boiling heat 

flux measurement. Experimental results demonstrate that CNN 

exhibits lower prediction errors under high heat flux conditions. 

They attribute this phenomenon to the higher frequency of 

bubble departure at a high heat flux state. Suh et al. [37] 

proposed a CNN and Mask R-CNN [38] hybrid method to 

extract deep features and physical features (like bubble size and 

count) simultaneously. Then, the fused features are used for 

heat flux prediction. Experiments proved that their method 

overtook some existing methods like MLP and CNN. Heo [39] 

used image sequences recorded at several different heat fluxes 

as input to train a classification model, and it is tested at heat 

fluxes seen outside the training set. Each set of training images 

acquired under a specific heat flux serves as a class. The final 

prediction is the weighted average of the heat flux of each class, 

with the weights derived from the output of the network's 

softmax layer. It's worth noting that this approach relies on 

steady-state boiling data, rendering it unsuitable for continuous 

heat flux monitoring. However, these majority of the above-

mentioned models only rely on static images and consequently 

do not account for the temporal information present within the 

continuous boiling images.  

To sum up, optical high-speed imaging is a promising 

technique for high-frequency, non-intrusive cooling system 

monitoring. However, current methods have the following 

shortcomings.  

1) They primarily focus on static frames, neglecting the 

dynamic information captured by high-speed 

photography.  

2) The training and testing of many of these models relied 

solely on images obtained from steady-state boiling 

conditions, which means they are not suitable for 

transient boiling and CHF warning.  

3)  Most of the existing methods are constructed as 

classification models that require images obtained at 

extremely small heat flux intervals as input to achieve 

high prediction accuracy. Consequently, monitoring 

transient boiling heat flux effectively becomes 

challenging for these models.  

Different from the neglect of temporal information in 

thermal monitoring research, many other fields have achieved 
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success by incorporating temporal data from image sequences 

and integrating spatial-temporal information for predictions. 

Temporal-based machine learning models are used in 

applications such as the medical field [40], [41], environmental 

data prediction [42], dendrite growth in electrochemical 

systems [43], or defect detection [44], [45], [46]. Kim et al.[47] 

used different sets of features including temporal and spatial 

data for urban growth modeling and found that their random 

forest model with spatiotemporal and accessibility covariates 

achieved the highest accuracy. Rahman et al. [41] used the 

convolutional long short-term memory architecture to predict 

biological age from physical activity data. Knaak et al. [48] 

combined spatial and temporal information to classify defects 

on welds by using sequences of images in a convolutional 

neural network-gated recurrent unit model. By using the spatial-

temporal information, their developed model achieves an F1 

score of 95.1. Therefore, inspired by the fields mentioned 

above, we present a framework equipped with the capability to 

extract temporal-spatial information and perform heat flux 

regression. The contribution of this paper can be summarized 

as follows. 

1) A temporal-spatial framework is proposed. In this 

framework, high-speed imaging data from transient pool 

boiling are used as inputs and regression architectures are 

employed in the construction of machine learning 

models. The developed regression models are adopted to 

account for the continuously changing heat flux present 

in transient boiling. 

2) A detailed comparison between the two types of pool 

boiling image mining framework (i.e., static image 

regression and sequential image regression) is presented 

to elucidate the impact of temporal information captured 

in high-speed imaging. Specifically, six different types of 

transient boiling heat flux regression models are 

generated. Among them, two models utilize only static 

images as input, while the others utilize image sequences. 

The static image-based models are used as baselines to 

investigate how the temporal data contained in image 

sequences affects model performance. 

3) In-depth analysis is done on the top-performing model to 

determine the effect of dataset generation parameters 

(i.e., sampling rate and sequence length). Additionally, 

the computational time required for heat predictions is 

analyzed to assess the feasibility of visualization-based 

real-time heat flux monitoring and to demonstrate the 

trade-off achieved by the proposed models in terms of 

accuracy and efficiency. 

The rest of the paper is structured as follows. Section II 

provides a detailed explanation of the proposed framework and 

boiling experiment. Section III delves into the test results and 

presents the comparison discussion. Lastly, Section IV offers 

conclusions and outlines the plan for future research.  

II. METHODOLOGY 

Multiple regression models were trained and tested for 

 
Fig.1. The developed data processing and heat flux regression models.  Top panel is the static models for comparison study and the bottom panel is the 
proposed temporal-spatial framework based sequential models for heat flux regression.  



4 

 

predicting heat flux from image data. This section describes the 

experimental setup for collecting data, the processes used to 

generate multiple datasets for the models, and the model 

architecture for both frameworks (i.e., static and sequential). 

Fig.1 shows the differences between the model types including 

datasets and feature extraction methods. All the regression 

models were written in Python using open-source libraries, 

Scikit-Learn [49] and TensorFlow [50]. 

 

 

 

A. Data Collection and Manipulation  

Nucleate regime data collected from 11 separate slow 

transient pool boiling experiments (detailed in Table 1) were 

used for the training and testing of machine learning models. 

For the machine learning models, nine of the experiments were 

used for training, one was used for validation, and one was used 

for testing. The experimental set up is shown in Fig.2 A single 

experiment consisted of using immersion heaters to first heat a 

pool of deionized water to its saturation point. Then heating a 

1cm-by-1cm polished copper block submerged in the pool. The 

copper block was heated with nine cartridge heaters (Omega 

Engineering HDC19102) which were connected to a DC power 

supply (Magna-Power SL200-7.5). A voltage and current 

corresponding to a power well above the theoretical critical heat 

flux were applied to the cartridge heaters. For example, in an 

experiment with plain copper surface with theoretical CHF of 

110 W/cm2 (based on Zuber’s limit) a power of 150 W might 

be applied. This is to ensure the critical heat flux is reached 

accounting for deviations from the theoretical CHF and losses 

from power to applied heat flux. After reaching the CHF (as 

identified by temperature spikes), the cartridge heaters were 

manually turned off within 3 seconds. Four T-type 

thermocouples, with a 3125 Hz sampling, were mounted in the 

side of copper block at equally spaced known heights. The heat 

flux at the surface was calculated using Fourier’s law (𝑞 =
−𝑘∇𝑇 ) under a quasi-steady state assumption. Where the 

temperature gradient was approximated using linear regression 

of the four temperature profiles. Taking into account the 

uncertainty from the thermocouple accuracy, thermocouple 

location, and linear approximation, the nucleate regime heat 

flux is estimated to be within 10W/cm2. Owing to the relatively 

large thermal inertia of the copper block, transient effects on the 

heat flux prediction are shown to be negligible in the nucleate 

boiling regime [51]. A Phantom VEO 710L high-speed camera 

was mounted on the outside of the chamber to capture boiling 

images at a rate of 150 frames per second (fps). A more detailed 

description of the experimental facility and testing procedures 

can be found in [52], [53].  

The images and corresponding heat flux calculations were 

used as input and label data for the machine-learning models. 

The types of models can be divided into two frameworks based 

on how the input data is structured, static and sequential 

models. Static framework refers to a single input image 

corresponding to a single heat flux value. Sequential framework 

refers to a sequence of images corresponding to a single heat 

flux value. To prepare the data for the models, initially, all 

grayscale images were resized to 200 by 200. To account for 

the different sampling rates of the camera and thermocouples, 

linear interpolation was used to approximate the heat flux value 

corresponding to the time of each image capture. Data for both 

types of frameworks were processed differently. For the static 

framework, each image and corresponding heat flux value was 

used as inputs and labels. For the sequential framework, 

datasets of overlapping image sequences were generated using 

a rolling sampling method. For each sequence of images, the 

heat flux approximation that corresponded to the last image in 

the sequence was used as the output label. For the sequential 

datasets, the sampling rate and sequence length were also 

altered for the model parametric study. 

B. Static Models 

Two different types of static regression models are 

presented here. The first is a convolutional neural network 

(CNN). This model used the raw boiling image as input for 

predicting the heat flux. The hyperband tuner from the keras 

tuner library was used for choosing the optimal set of 

hyperparameters to achieve the best validation loss. This library 

allows for the user to define the range of model and algorithm 

hyperparameters to test over. Several different models with 

different combinations of parameters are tested and the optimal 

parameters are chosen. The parameter sweep technique is 

introduced here to choose the filters, kernels, strides, and 

learning rate. The range of the sweep, step for iterating over 

TABLE 1 

 EXPERIMENTS USED FOR TRAINING, TESTING, AND VALIDATION OF 

MODELS. 

Experiment Usage CHF 
Vapor 

Escape? 
Time from 0-CHF 

E1 Training 136.186 Yes 175.66 

E2 Training 137.34 Yes 51.43 

E3 Training 112.20 No 94.48 

E4 Training 107.41 No 84.33 

E5 Training 100.89 No 74.53 

E6 Training 97.77 No 73.48 

E7 Training 109.38 No 85.03 

E8 Training 106.49 No 81.88 

E9 Training 104.71 Yes 77.68 

E10 Validation 113.07 Yes 92.38 

E11 Testing 98.12 No 70.68 

 

 
Fig.2. Transient boiling experimental setup and heat flux calculation. 
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range, and best parameters for the CNN model are given in 

appendix Table A1.1 and A1.2. The best parameters are the 

ones used in the actual model.  

The next model paired principal component analysis (PCA) 

for feature extraction with an MLP for regression. The model is 

referred to as StaticPCA. PCA is an unsupervised method 

commonly used for data reduction. Essentially, it works by 

defining a new basis of eigenvectors for the images. Each image 

is then described as the coefficients of a linear combination of 

a specified amount of the new basis vectors. These coefficients 

are referred to as principal components (PCs). Fig.3a shows the 

first 25 eigenvectors for a single boiling image. These image 

PCs and eigenvectors were generated using the 

sklearn.decomposistion.PCA class fit with the training images. 

Fig.3b shows two original boiling images (left) and the 

corresponding reconstructed images using the 25 eigenvectors 

(right). Fig.3c shows the cumulative explained variance vs the 

number of PCs where 

𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 1 −
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡𝑟𝑢𝑒−𝑝𝑟𝑒𝑑)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑡𝑟𝑢𝑒)
(1)  

Additional analysis of the performance of the staticPCA model 

with different quantities of PCs was also performed in the 

results section. The number of PCs used ranged from 1 to 900. 

The keras tuner was used for a parameter sweep to choose the 

number of neurons for the model using 900 PCs as input. This 

model architecture and range of parameter sweep is shown in 

Table A2.1 and A2.2. 

C. Sequential Models 

Four types of sequential models were trained and tested. For 

all the sequential models, each image in a sequence (as 

described in the data collection and manipulations section) was 

first converted to a select number of PCs. Initially, all the 

models were trained with a sequential dataset with 40 PCs, an 

image sequence length of 200, and an image sampling rate of 

150 fps. The first model was a multilayer perceptron. To use 

this model each sequence of PCs was flattened into a single 

dimensional array for input. This model is referred to as 

SeqPCA. The hyperparameter sweep range and best model are 

shown in Table A3.1 and A3.2. The next model used was a long 

short-term memory (LSTM) model. For this model, each 

sequence of PCs was used as input. The hyperparameter sweep 

range and best model are shown in Tables A4.1 and A4.2. The 

third model uses a CNN for regression and is referred to as 

PCA-CNN. First, each sequence of PCs was converted into a 

three-dimensional vector of shape (number of PCs, sequence 

length, 1). This vector was then used as input to the 

convolutional layers. The parameter sweep was used to 

determine what kernels, filters, and strides were best. The 

hyperparameter sweep range and best model are shown in 

Table A5.1 and A5.2. Due to the high performance of this 

model, more analysis was done on it with differing dataset 

parameters (i.e., sampling rate, number of PCs, and sequence 

length). The last model was similar to the previous one, with 

the only difference being that each sequence of PCs was 

converted to frequency intensities using the fast Fourier 

transform. This cut down the size of the input to the 

convolutional layers to (number of PCs, sequence length/2, 1). 

This model is referred to as PCA-FFT-CNN and the 

hyperparameter sweep range and best model is given in Table 

A6.1 and A6.2. 

III. RESULTS AND DISCUSSION 

A. Model performance 

After training and testing the six different models, their 

performance was compared using the test data. Two different 

metrics were used to compare the models, determinate 

coefficient (R2) and mean absolute percentage error (MAPE). 

Here, they are defined as 

 𝑅2 = 1 −
∑ (𝑡𝑟𝑢𝑒𝑖−𝑝𝑟𝑒𝑑𝑖)2𝑛

𝑖=1

∑ (𝑡𝑟𝑢𝑒𝑖−𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

(2) 

 𝑀𝐴𝑃𝐸 =
1

𝑛
 ∑

|𝑡𝑟𝑢𝑒𝑖−𝑝𝑟𝑒𝑑𝑖|

|𝑡𝑟𝑢𝑒𝑖|

𝑛
𝑖=1 (3) 

Both of these metrics describe how well the models are able to 

predict the heat flux. The R2 score is a measurement of how 

closely the model fits the data. Ideally, the R2 score would be 

close to one indicating the model fits the data well. The MAPE 

is a measure of how much a prediction would on average vary 

from the true value. A lower percentage error is desired and 

indicates the prediction is close to the true value on average.   

Fig.4a shows the R2 score for all six models (static and 

sequential models) on the testing data. With respect to the R2 

score, all the sequential models performed better than the static 

models. Of the static models, the highest-performing model was 

the Static PCA with an R2 score of 0.858. However, the higher 

R2 score of the SeqPCA, 0.916, implies that the temporal 

information carried by the image sequences improves the heat 

flux mapping capabilities. From these values, it can further be 

seen that the PCA-CNN model had the best performance with a 

R2 score of 0.974. Fig.4b shows the MAPE for all of the 

models. The models with the lowest MAPE are the SeqPCA, 

PCA-LSTM, PCA-FFT-CNN, and PCA-CNN with values of 

10%, 7.8%, 9.7%, and 7% respectively. When comparing 

StaticPCA to SeqPCA, a significant decrease in MAPE is 

observed, further demonstrating that the model based on image 

sequences outperforms the one based on static images in terms 

of predictive accuracy.  

The static image method directly extracts features from 

each frame. Compared to StaticPCA, CNN, as a representative 

network, has a similar R² and lower MAPE. This result 

indicates that CNN has better nonlinear feature extraction 

capability than StaticPCA. However, when comparing the static 

 
Fig.3. PCA of boiling images. (a) First 25 PCs; (b) Two representative 

images and reconstructed image; (c) cumulative variance vs number of pcs. 
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CNN with the image sequence-based PCA-CNN, it can be seen 

that the latter outperforms the former in both metrics. This is 

because PCA-CNN retains the powerful nonlinear feature 

extraction capability of CNN while having better temporal 

information extraction ability. Additionally, the introduction of 

PCA reduces the noise interference in the input data. 

Comparing PCA-FFT-CNN with PCA-CNN, it can be found 

that the introduction of frequency domain information even 

deteriorates the accuracy of heat flux regression. These 

frequency domain features increase the difficulty for CNN in 

extracting deep abstract features. LSTM is mainly used for 

processing sequential data and is good at capturing temporal 

dependencies and long-term relationships. However, LSTM is 

not as efficient as CNN in extracting spatial features from 

images. Therefore, the R² and MAPE metrics of PCA-LSTM 

are inferior to those of PCA-CNN. 

Fig.5 shows plots of predicted vs true heat flux values for 

all the models. Ideally, each point would lie on the diagonal 

black line indicating that each prediction is the same as the true 

heat flux. These plots are shown to verify the quantitative 

comparisons shown in Fig.4. From these plots, it can be seen 

that the PCA-CNN model appears to follow the diagonal line 

the closest with less variation as the previously discussed R2 

score and MAPE comparison would suggest. Compared to 

models that use only static images, the image sequences-based 

models exhibit smaller prediction variances, indicating they 

possess greater stability in monitoring heat flux.  

More interestingly, it can be observed from Fig.5 (b to f) 

that at lower heat flux levels, the predictions of these models 

show an obvious deviation from the actual values especially for 

SeqPCA. As the heat flux increases, the precision of prediction 

improves. This phenomenon is consistent with the research 

conducted by Scariot et al.,[36] which suggests that bubble 

activity diminishes at lower heat flux levels. The essence of heat 

flux monitoring via optical imaging lies in uncovering the 

relationship between bubble dynamics and heat flux. Therefore, 

diminished bubble activity at lower heat fluxes contributes to 

decreased accuracy in optical imaging-based monitoring. 

However, as the heat flux escalates, bubble activity intensifies, 

thereby swiftly improving the model’s precision. On the other 

hand, PCA is a linear dimensionality reduction method which 

capture features that have a linear relationship with the input 

while reducing signal noise. However, it may lose some 

nonlinear features that are crucial during low heat flux phases. 

These lost features can be particularly important during low 

heat flux phases, leading to larger prediction errors. From the 

comparison of (a) and (b), it can be seen that when using CNN 

on static images, the predictions did not show significant 

deviations under low heat flux conditions, whereas using PCA 

did. This phenomenon indicates that at lower heat flux, boiling 

is dominated by numerous isolated bubbles. At this stage, there 

is a higher-order nonlinear relationship between the bubbles 

and heat flux. In small-area pool boiling conditions, as the heat 

flux increases to a certain point, the isolated bubbles merge into 

mushroom-shaped formations. During this mushroom-shape 

phase, bubble changes are more stable, and the nonlinear 

relationship with heat flux is of a lower order than during the 

isolated bubble boiling phase, resulting in smaller regression 

errors. This viewpoint is further supported by the comparison 

of (c) and (d, e, f). Fig.5 (c) shows the prediction results using 

only PCA for dimensionality reduction followed by a shallow 

MLP for regression, whereas figures (d, e, f) use deeper 

networks and more advanced nonlinear feature extraction 

methods after PCA. These networks better mitigate the errors 

caused by linear extraction in PCA during low heat flux phases. 

Additionally, it can be found that when using SeqPCA, the 

prediction results under low heat flux showed better 

monotonicity compared to Static PCA. This also demonstrates 

that the proposed spatiotemporal framework can better capture 

the temporal relationships between boiling images at adjacent 

heat flux. 

Furthermore, the StaticPCA model for this initial 

comparison used 900 PCs so to check how added PCs will 

 
Fig.5. Plots of predicted heat flux vs true heat flux label for two static 

regression (a, b) and four sequential regression (c-f) models.  

 

 
Fig.4. R2 and MAPE for all six regression models using the test data. 
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affect the performance, the StaticPCA model was trained with 

different amounts of PCs. Fig.6 shows how the R2 and MAPE 

vary with different numbers of PCs (up to 900 PCs) for the 

StaticPCA models. It is seen that as the number of PCs 

increases, the R2 score generally increases and the MAPE 

generally decreases until they begin to level off.   

One primary goal of this work was to determine the 

differences in the model accuracy when using solely spatial 

information and when incorporating temporal data. Fig.7 shows 

how the R2 value changes with different amounts of spatial and 

temporal information. The PCA-CNN model was used for this 

test. Fig.7a shows how the R2 varies as the amount of spatial 

(number of PCs) and temporal information (sequence length) 

changes. From this plot, it is seen that in general as the sequence 

length increases, the R2 score increases too. On the other hand, 

when the sequence length at 10, the prediction performance 

increase with increase of the number of PCs. However, when 

the sequence length higher than 40, the increase of the number 

of PCs do not affect the prediction performance. This 

phenomenon indicates both the spatial and temporal 

information influence the prediction, but their importance is 

different at different given conditions. Fig.7b shows plots of 

true labels vs predicted labels for the models corresponding 

with the four corners of the plot in Fig.7a.  When comparing 

these predictions vs true plots, it is seen that from left to right 

the prediction points decrease in sparsity or, in other words, the 

predictions more closely reside on the diagonal line such that 

the heat flux predictions are closer to the labels. Similar to the 

spatial data, the R2 score increases as more temporal data is 

added. It is also seen that the R2 score for the temporal data 

surpasses that of the spatial data. Based on the above 

discussion, it can be concluded that incorporating temporal 

information significantly enhances the model's stability and 

accuracy in predicting heat flux. This improvement can be 

attributed to the capture of dynamic bubble features, an 

inference also validated by the research from Won's lab [54]. 

B. Parametric Study of PCA-CNN Model 

Among the tested machine learning models, the PCA-CNN 

model was found to feature a high R2 score and a relatively low 

MAPE and is thus selected as the base model to investigate the 

role of sequence length and sampling rate. The goal of this 

parametric study is to see which sequence length and sampling 

rate yield the most optimal performance of the model. To 

understand how the sequence length and consequently how the 

temporal length impacts the results, downsampled datasets 

corresponding to sampling rates of 150, 75, 50 30, 25, and 15 

fps were used to train the PCA-CNN model with different 

sequence lengths. Fig.8 shows the test results. Fig.8a shows the 

R2 score vs sequence length for different sampling rates. It can 

be seen that as the sequence length increases in general so does 

the R2 for all sampling rates. Fig.8b shows the same data as 8a 

but is converted to the temporal length instead. The smaller 

sampling rates cover more time with fewer images than larger 

sampling rates. The temporal length is calculated by  

𝑡𝑠𝑒𝑞 =
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝑒𝑛𝑔𝑡ℎ

𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒
(4) 

By doing this, it is observed that all the sampling rates except 

15 fps collapse into a single line. This implies that, down to a 

certain sampling rate, if a sequence of images covers the same 

amount of time, they will have similar performance.  This trend, 

however, is not carried out forever; at a specific sampling rate, 

the rate will be too low and as a result, the image sequences will 

lose important information used in the predictions. Fig.8c 

shows the MAPE vs sequence length for the different artificial 

sampling rates. It can be seen that in general, the MAPE 

decreases as the sequence length increases. Fig.8d shows the 

same data as Fig.8c but converted to temporal length. Similar 

to the R2 score data, the results for 25 fps and higher sampling 

rates begin to collapse to around the same value while the 

 
Fig.6. R2 and MAPE vs # of PCs for the StaticPCA model. 

 

 
Fig.7. (a) R2 for different sequence lengths and number of PC’s using the 

PCA-CNN model architecture (b) representative plots of predicted heat 

flux vs heat flux label. 
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results for the 15-fps data lie above the rest. This result reveals 

that if the sequence of images with a sampling rate of at least 

25 fps covers almost 3.4 s of time, the model will yield very 

high heat flux prediction accuracy. Beyond this length of 

sequence sample, the performance becomes saturated and 

additional time information will not significantly improve the 

model prediction accuracy. Additionally, short sequence 

lengths are shown to have poor performance, which further 

shows the importance of additional temporal information. 

These results also indicate that image sequences captured at 15 

fps may not cover sufficient detailed information on bubble 

dynamics for accurate heat flux predictions. As such, there may 

exist a critical sampling rate between 15 fps and 25 fps. 

Therefore, if the same accuracy can be made with lower 

sampling rates or fewer images it can lead to processing speed 

improvement and camera cost reduction. It should be noted that 

these experiments are based on slow transient boiling 

experiments, so these findings are not expected to hold for 

faster ramp up times.  

C. Prediction Time of Static Image and Sequence Models 

Fig.9 shows the prediction time of boiling heat flux using 

trained static image models (time per image) and image 

sequence models (time per image sequence) base models. All 

the models were tested on the same computer with a 12th Gen 

Intel Core i9-12900k processor and 2 GeForce RTX 3090 GPUs. 

The prediction times include preprocessing time for PCA 

transformation and FFT when used. One thing to note is that the 

time for the sequential models only includes the processing time 

for one image PCA transformation. Due to the overlapping 

image sequences, as each sequence is made using a stride of 1 

then only the newest image would need to be converted to PCs 

and the previous transformed images can be used for the 

complete sequence. The CNN and PCA-LSTM models require 

the longest prediction times. The fastest models for prediction 

time were the SeqPCA and PCA-CNN models. Comparisons 

indicate that utilizing PCA for image preprocessing enhances 

the efficiency of feature extraction while maintaining the 

accuracy and stability of predictions, making it suitable for heat 

flux monitoring that relies on high-speed imaging. 

IV. CONCLUSION 

 In this work, two machine learning frameworks are 

developed for heat flux predictions using static images and 

image sequences, respectively. Each framework has 

incorporated a variety of feature extraction and regression 

methods to optimize the prediction accuracy. Based on the 

experiment results the following conclusion can be draw: 

1) The proposed temporal-spatial framework based 

sequential models have better overall performance when 

compared with the static models. Among the sequential 

models, the PCA-CNN is found to have best 

performance with a high R2 value of 0.974, low MAPE 

of 7%, and low prediction time. 

2) As the temporal length of image sequences increases, the 

predictions become more accurate shown by a higher R2 

and lower MAPE. 

3) The effect of the sampling rate on the heat flux 

prediction is unpronounced for sampling rates beyond 

15 fps. This observation indicates that the dynamic 

features of the bubbles at this frequency band are most 

critical to heat transfer. 

Overall, this work highlights the role of temporal 

information of bubble dynamics in boiling heat transfer and 

identifies the sampling rate range needed for accurate heat flux 

predictions. The analysis of the prediction time confirms the 

viability of real-time boiling heat flux monitoring using the 

proposed PCA-equipped image sequence models. It should be 

noted that this work is built upon the combination of a heating 

structure of polished plain copper and deionized water. 

However, initial conditions like the heating surface structure, 

fluid character, and heating rate may influence the transient 

boiling procedures. In the future work, a deeper investigation 

will be conducted to find out whether and how these conditions 

impact the heat flux prediction based on the temporal-spatial 

framework.  

 
Fig.8.  R2 and MAPE vs sequence length and temporal sequence length for 

different image sampling rates. 

 

 
Fig.9. Prediction time for the six regression models. 
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TABLE A1.1 

STATIC CNN MODEL ARCHITECTURE WHERE ALL HYPERPARAMETERS (HP#) 

ARE FOUND IN BEST COLUMN IN TABLE A1.2. 

Layer (type) Output  Filters Kernel  Strides Neurons Activation 

Input (200,200,1) - - - - - 
Conv2d (198,198,62) hp1 hp2 hp3 - hp4 

Max Pooling (65,65,62) - hp5 hp6 - - 

Dropout (0.2) (65,65,62) - - - - - 
Conv2D  (61,61,162) hp7 hp8 hp9 - hp4 

Max Pooling (20,20,162) - hp10 hp11 - - 

Conv2D (6,6,282) hp12 hp13 hp14 - hp4 
Global average 

Pooling 
(282) - - - - - 

Dropout (0.2) (282) - - - - - 
Dense (501) - - - hp15 hp16 

Dense (301) - - - hp17 hp16 

Dense (1) - - - 1 - 

 
 TABLE A1.2 

 HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR STATIC 

CNN REGRESSION AFTER PARAMETER SWEEP. 

Variable Min Max Stride Options Best 

hp1 32 400 10 - 63 

hp2 3 5 2 - 3 

hp3 1 3 2 - 1 

hp4 - - - ‘relu’,’tanh’ Relu 

hp5 2 6 2 - 6 

hp6 1 4 2 - 3 

hp7 32 500 10 - 162 

hp8 3 5 2 - 5 

hp9 1 3 2 - 1 

hp10 2 6 2 - 4 

hp11 1 4 2 - 3 

hp12 32 300 10 - 282 

hp13 3 5 2 - 3 

hp14 1 4 2 - 3 

hp15 1 1000 100 - 501 

hp16 - - - ‘relu’, ‘tanh’ Relu 

hp17 1 1000 100 - 301 

 

TABLE A2.1 

MODEL ARCHITECTURE FOR THE STATIC PCA MODEL USING 900 PCS WHERE 

ALL HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A2.2. 

Layer (type) Output Shape Neurons Activation 

Input (900) - - 

Dense (1700) hp1 Relu 
Dense (1000) hp2 Relu 

Dense (100) hp3 Relu 

Dense (800) hp4 Relu 
Dense (600) hp5 Relu 

Dense (1) 1 - 

 

 TABLE A2.2 

 HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR THE 

STATIC PCA MODEL USING 900 PCS. 

Variable Min Max Stride Best 

hp1 100 2000 100 1700 

hp2 100 2000 100 1000 

hp3 100 2000 100 100 

hp4 100 2000 100 800 

hp5 100 2000 100 600 

 

TABLE A3.1 

MODEL ARCHITECTURE FOR SEQ-PCA MODEL WITH DATASET 

CORRESPONDING TO 40 PCS AND 200 SEQUENCE LENGTH WHERE ALL 

HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A3.2. 

Layer (type) Output Shape Neurons Activation 

Input (8000) -  

Dense (500) hp1 Relu 
Dropout (0.2) (500) - - 

Dense (1300) hp2 Relu 

Dense (50) hp3 Relu 
Dense (1850) hp4 Relu 

Dropout (0.2) (1850) - - 
Dense (1) 1 - 

 
 TABLE A3.2 

 HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR SEQ-

PCA MODEL WITH DATASET CORRESPONDING TO 40 PCS AND 200 SEQUENCE 

LENGTH. 

Variable Min Max Stride Best 

hp1 100 3000 100 500 

hp2 100 2000 100 1300 

hp3 50 2000 100 50 

hp4 50 2000 100 1850 

 

TABLE A4.1 

MODEL ARCHITECTURE FOR PCA-LSTM MODEL WITH DATASET 

CORRESPONDING TO SEQUENCE LENGTHS OF 200 AND 40 PCS WHERE ALL 

HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A4.2. 

Layer (type) Output Shape Units/ Neurons Activation 

Input (200, 40) -  

LSTM (200, 590) hp1 Tanh 
Dropout (0.2) (200,590) -  

LSTM (200,990) hp2 Tanh 

LSTM (200, 490) hp3 Tanh 
Dropout (0.2) (200,490) -  

LSTM (200,930) hp4 Tanh 
Dropout (0.2) (200,930) -  

LSTM (200,190) hp5 Tanh 

Dropout (0.2) (200,190) -  

LSTM (560) hp6 Tanh 

Dense (260) hp7 Relu 

Dense (440) hp8 Relu 
Dense (120) hp9 Relu 

Dense (870) hp10 Relu 

Dense (1) 1  

 

TABLE A4.2 

 HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR PCA-
LSTM MODEL WITH DATASET CORRESPONDING TO SEQUENCE LENGTHS OF 

200 AND 40 PCS. 

Variable Min Max Stride Best 

hp1 10 1000 10 590 

hp2 10 1000 10 990 

hp3 10 1000 10 490 

hp4 10 1000 10 930 

hp5 10 1000 10 190 

hp6 10 1000 10 560 

hp7 10 1000 10 260 

hp8 10 1000 10 440 

hp9 10 1000 10 120 

hp10 10 1000 10 870 
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