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Abstract— Two-phase cooling offers superior heat dissipation
compared to conventional single-phase cooling methods.
Nevertheless, the occurrence of critical heat flux (CHF) during
boiling introduces reliability concerns, potentially leading to
system failure. To improve system reliability, optical imaging is
employed to analyze and monitor cooling systems without
disrupting the boiling dynamics. These methods involve analyzing
images of the boiling process to identify boiling regimes and
evaluate heat flux. However, current optical-based methods are
limited to static images, thereby missing out on the valuable
temporal information captured by high-speed imaging. Inspired
by the successful integration of temporal information in other
fields, this work aims to exploit the temporal information from
transient pool boiling captured via high-speed imaging for
enhanced heat flux monitoring. For this purpose, two frameworks,
comprising six different machine-learning models, have been
developed for a comparative analysis. Specifically, the first
framework includes two models that use static images for
monitoring, serving as a representation of existing methodologies
and a benchmark against which the second framework is
measured. The remaining four models within the dynamic image-
based framework (the 2" framework) leverage sequences of
images to capture temporal information. To evaluate the
advantage of incorporating temporal information, transient
boiling experiments were conducted to construct the dataset. A
comparative analysis confirmed that temporal information
significantly enhances the accuracy of the developed heat flux
monitoring models. Among these models, the developed principal
components (PCA)-convolutional neural network (CNN) stands
out with a superior determination coefficient of 97.4% and a mean
absolute percentage error of 7.0%, achieving an excellent balance
between monitoring accuracy and computational efficiency.

Index Terms— Computer vision, condition monitoring, heat flux,
image sequence, machine learning, pool boiling.

[. INTRODUCTION

HE need for high heat dissipation cooling systems is
rapidly growing due to the increasing prevalence of
high-power electronics, data centers [11,
microelectronics [2], or electric vehicles [3]. Boiling allows for
higher heat dissipation while maintaining a relatively low
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superheat in the nucleate boiling regime when compared to
other air or liquid single-phase cooling systems. However, the
usage of such boiling-based cooling systems (two-phase
cooling systems) is limited by instabilities, such as the critical
heat flux (CHF). When the heat flux reaches the CHF, a vapor
layer covers a large portion of the heat exchange surface and
acts as an insulator resulting in a rapid decline in heat transfer
efficiency [4]. Consequently, the temperature can increase
hundreds of degrees in a matter of seconds which can lead to
overheating or burnout [5]. Therefore, it is crucial to maintain
proper monitoring of the system.

Currently, there are serval ways to address the CHF
situation: 1) developing micro-scale modifications to the
heating surface's structure; 2) predict the CHF; and 3)
maintaining proper monitoring of boiling systems. The first
method aims to increase CHF to enhance safety margins and
power limits. Haas et al. [6] investigated the influence of serval
surface modification processes on CHF for Zircaloy-4 tubes.
They find that, as the pressure and mass flow rate increase, the
CHF can be up to 29% higher with surface-structured tubes
featuring microchannels, porous layers, and oxide layers
compared to smooth tubes. Lee and Mudawar [7] conducted
subcooled flow boiling experiments in a microchannel heat sink
using Hydrofluoroether 7100 as the working fluid. They find
that CHF was triggered by the formation of a vapor blanket
along the micro-channel walls. In this work, a system
technology was developed to modify existing CHF correlations
to more accurately account for the unique characteristics of
microchannel heat sinks. The second method aims to provide a
prediction value CHF in advance so as to avoid safety risks.
Mudawar et al. [8] developed artificial neural network (ANNs)
for CHF prediction in flow boiling, utilizing data from both
microgravity conditions aboard the international space station
and earth gravity. They analyzed a comprehensive dataset from
the flow boiling and condensation experiment and
demonstrated that the ANNs outperformed existing correlations
highlighting its potential to enhance predictive capabilities in
flow boiling applications under varied gravitational conditions.
The third method aims to monitor heat flux so as to give
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advanced warning and avoid thermal runaways. Dunlap et al.
[9] proposed a machine learning framework for monitoring heat
flux of pool boiling using acoustic signals. It was found that the
fast Fourier transform-Gaussian process regression model is the
most promising, exhibiting high accuracy and the lowest
computational cost.

Additional complexities arise when trying to monitor
boiling heat transfer. Escalating or oscillating heat loads induce
transient boiling and are prevalent in several important
applications. In the case of reactivity-initiated accidents, the
heat load in nuclear reactors rise exponentially to trigger CHF
during transient boiling [10], [11]. The high-frequency
switching of microelectronic and power modules contributes to
oscillating heat loads in power grids and electric vehicles [12],
[13] resulting in device failure. Transient boiling is also
prevalent in space applications, for example the use of
cryogenics for thermal management or propulsion [14].
Motivated by the need for improving safety margins and
optimizing heat transfer for these applications, further research
is needed. Steady state data alone is insufficient for fully
understanding transient boiling (e.g., different heat transfer
mechanisms, notably higher CHF values) [15]. Therefore,
transient boiling experiments and analysis are crucial. Two
categories of transient boiling (i.e., fast and slow) exist. There
are marked differences between the two, such as boiling
regimes or CHF triggering mechanisms [16], [17]. Fast
transient boiling occurs over milliseconds such that bubbles
nucleating on the heating surface may not be able to depart as
typical in the nucleate boiling regime. Instead, the bubbles
merge and directly form a vapor layer [18]. Slow transient
boiling involves gradual changes in heat load and is commonly
seen in normal operation of the aforementioned applications.
Although both types are relevant and important to study, slow
transient boiling is studied in this work. Several complexities
arise when trying to study transient boiling, including managing
high temperatures and implementing high-frequency sensors
(e.g., thermocouples, high speed cameras) for fast and accurate
measurements.

Traditional thermal monitoring uses thermocouples to
measure temperature gradients and calculate heat flux using
Fourier’s law [19], [20], [21], [22]. This method is limited by
thermal diffusion. Also, the use of intrusive sensors (i.c.,
thermocouples) can interfere with boiling and make
replacements difficult. Transverse thermoelectric heat flux
sensors provide non-intrusive measurement [23], [24]
However, they have limited frequency response and are
sensitive to electromagnetic interference, which limits its
applications in power electronics. Transient boiling also adds to
the challenge of monitoring boiling heat flux. Therefore, there
is an urgent demand for a high-frequency, non-intrusive, and
non-electrical method to measure transient boiling heat flux in
high-power-density electronic systems.

High-speed optical imaging has been explored in boiling
characterization [25]. In this field, traditional image analysis
and, more recently, computer vision techniques have been used
for both qualitative and quantitative boiling analysis.
Conventional image processing techniques have been used to

determine bubble properties (i.e., bubble diameter, count,
departure, nucleation density, etc.) [26] and estimate void
fraction [27]. Machine learning-aided computer vision
techniques have been implemented with boiling image data to
characterize bubble dynamics [28], [29], identify boiling
regimes [30], [31] and flow regimes [32], detect dry spots [33],
predict heat transfer coefficients [34] and heat flux [35]. Hobold
et al. [35] used image data from a nucleate boiling experiment
to train a multi-layer perceptron (MLP) and a convolutional
neural network (CNN) for heat flux prediction. The multi-layer
perceptron uses images transformed through principal
component analysis as model input and the convolutional
model directly takes raw images as input. Their test results
suggest that the principal components and convolutional layers
can encode boiling heat transfer mechanism information that
exists within the boiling images. Scariot et al. [36] used steady-
state boiling images to train a traditional CNN for boiling heat
flux measurement. Experimental results demonstrate that CNN
exhibits lower prediction errors under high heat flux conditions.
They attribute this phenomenon to the higher frequency of
bubble departure at a high heat flux state. Suh et al. [37]
proposed a CNN and Mask R-CNN [38] hybrid method to
extract deep features and physical features (like bubble size and
count) simultaneously. Then, the fused features are used for
heat flux prediction. Experiments proved that their method
overtook some existing methods like MLP and CNN. Heo [39]
used image sequences recorded at several different heat fluxes
as input to train a classification model, and it is tested at heat
fluxes seen outside the training set. Each set of training images
acquired under a specific heat flux serves as a class. The final
prediction is the weighted average of the heat flux of each class,
with the weights derived from the output of the network's
softmax layer. It's worth noting that this approach relies on
steady-state boiling data, rendering it unsuitable for continuous
heat flux monitoring. However, these majority of the above-
mentioned models only rely on static images and consequently
do not account for the temporal information present within the
continuous boiling images.

To sum up, optical high-speed imaging is a promising
technique for high-frequency, non-intrusive cooling system
monitoring. However, current methods have the following
shortcomings.

1) They primarily focus on static frames, neglecting the
dynamic  information captured by  high-speed
photography.

2) The training and testing of many of these models relied
solely on images obtained from steady-state boiling
conditions, which means they are not suitable for
transient boiling and CHF warning.

3) Most of the existing methods are constructed as
classification models that require images obtained at
extremely small heat flux intervals as input to achieve
high prediction accuracy. Consequently, monitoring
transient boiling heat flux effectively becomes
challenging for these models.

Different from the neglect of temporal information in

thermal monitoring research, many other fields have achieved



success by incorporating temporal data from image sequences
and integrating spatial-temporal information for predictions.
Temporal-based machine learning models are used in
applications such as the medical field [40], [41], environmental
data prediction [42], dendrite growth in electrochemical
systems [43], or defect detection [44], [45], [46]. Kim et al.[47]
used different sets of features including temporal and spatial
data for urban growth modeling and found that their random
forest model with spatiotemporal and accessibility covariates
achieved the highest accuracy. Rahman et al. [41] used the
convolutional long short-term memory architecture to predict
biological age from physical activity data. Knaak et al. [48]
combined spatial and temporal information to classify defects
on welds by using sequences of images in a convolutional
neural network-gated recurrent unit model. By using the spatial-
temporal information, their developed model achieves an F1
score of 95.1. Therefore, inspired by the fields mentioned
above, we present a framework equipped with the capability to
extract temporal-spatial information and perform heat flux
regression. The contribution of this paper can be summarized
as follows.

1) A temporal-spatial framework is proposed. In this
framework, high-speed imaging data from transient pool
boiling are used as inputs and regression architectures are
employed in the construction of machine learning
models. The developed regression models are adopted to
account for the continuously changing heat flux present
in transient boiling.

2) A detailed comparison between the two types of pool
boiling image mining framework (i.e., static image
regression and sequential image regression) is presented
to elucidate the impact of temporal information captured
in high-speed imaging. Specifically, six different types of
transient boiling heat flux regression models are
generated. Among them, two models utilize only static
images as input, while the others utilize image sequences.
The static image-based models are used as baselines to
investigate how the temporal data contained in image
sequences affects model performance.

3) In-depth analysis is done on the top-performing model to
determine the effect of dataset generation parameters
(i.e., sampling rate and sequence length). Additionally,
the computational time required for heat predictions is
analyzed to assess the feasibility of visualization-based
real-time heat flux monitoring and to demonstrate the
trade-off achieved by the proposed models in terms of
accuracy and efficiency.

The rest of the paper is structured as follows. Section II
provides a detailed explanation of the proposed framework and
boiling experiment. Section III delves into the test results and
presents the comparison discussion. Lastly, Section IV offers
conclusions and outlines the plan for future research.

II. METHODOLOGY

Multiple regression models were trained and tested for
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Fig.1. The developed data processing and heat flux regression models. Top panel is the static models for comparison study and the bottom panel is the
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predicting heat flux from image data. This section describes the
experimental setup for collecting data, the processes used to
generate multiple datasets for the models, and the model
architecture for both frameworks (i.e., static and sequential).
Fig.1 shows the differences between the model types including
datasets and feature extraction methods. All the regression
models were written in Python using open-source libraries,
Scikit-Learn [49] and TensorFlow [50].

TABLE 1
EXPERIMENTS USED FOR TRAINING, TESTING, AND VALIDATION OF
MODELS.
Experiment Usage CHF Vapor Time from 0-CHF
Escape?
El Training 136.186 Yes 175.66
E2 Training 137.34 Yes 51.43
E3 Training 112.20 No 94.48
E4 Training 107.41 No 84.33
E5 Training 100.89 No 74.53
E6 Training 97.77 No 73.48
E7 Training 109.38 No 85.03
E8 Training 106.49 No 81.88
E9 Training 104.71 Yes 77.68
El0 Validation 113.07 Yes 92.38
Ell Testing 98.12 No 70.68
Chiller ..jg Q
[ % High speed
T B camera\ . 200
tt _H_.;{_, Y [
. v ‘/ <1804 Temperature
Boiling chamber * Z— 160 Data
Thermocouple, _— ’E 140
Bubble e H]
— % % 120
i?:g:'r‘\ Cartridge £ " 100
[=1] 0 100 200
£ Time, t(s)
;g Fourier’s law
o 50
fa
% 0 Calculated
% 2 Heat flux
; 10
2

=]

0 100
Time, t(s)

Fig.2. Transient boiling experimental setup and heat flux calculation.

A. Data Collection and Manipulation

Nucleate regime data collected from 11 separate slow
transient pool boiling experiments (detailed in Table 1) were
used for the training and testing of machine learning models.
For the machine learning models, nine of the experiments were
used for training, one was used for validation, and one was used
for testing. The experimental set up is shown in Fig.2 A single
experiment consisted of using immersion heaters to first heat a
pool of deionized water to its saturation point. Then heating a
lcm-by-1cm polished copper block submerged in the pool. The
copper block was heated with nine cartridge heaters (Omega
Engineering HDC19102) which were connected to a DC power
supply (Magna-Power SL200-7.5). A voltage and current
corresponding to a power well above the theoretical critical heat
flux were applied to the cartridge heaters. For example, in an
experiment with plain copper surface with theoretical CHF of

110 W/cm? (based on Zuber’s limit) a power of 150 W might
be applied. This is to ensure the critical heat flux is reached
accounting for deviations from the theoretical CHF and losses
from power to applied heat flux. After reaching the CHF (as
identified by temperature spikes), the cartridge heaters were
manually turned off within 3 seconds. Four T-type
thermocouples, with a 3125 Hz sampling, were mounted in the
side of copper block at equally spaced known heights. The heat
flux at the surface was calculated using Fourier’s law (g =
—kVT ) under a quasi-steady state assumption. Where the
temperature gradient was approximated using linear regression
of the four temperature profiles. Taking into account the
uncertainty from the thermocouple accuracy, thermocouple
location, and linear approximation, the nucleate regime heat
flux is estimated to be within 10W/cm?. Owing to the relatively
large thermal inertia of the copper block, transient effects on the
heat flux prediction are shown to be negligible in the nucleate
boiling regime [51]. A Phantom VEO 710L high-speed camera
was mounted on the outside of the chamber to capture boiling
images at a rate of 150 frames per second (fps). A more detailed
description of the experimental facility and testing procedures
can be found in [52], [53].

The images and corresponding heat flux calculations were
used as input and label data for the machine-learning models.
The types of models can be divided into two frameworks based
on how the input data is structured, static and sequential
models. Static framework refers to a single input image
corresponding to a single heat flux value. Sequential framework
refers to a sequence of images corresponding to a single heat
flux value. To prepare the data for the models, initially, all
grayscale images were resized to 200 by 200. To account for
the different sampling rates of the camera and thermocouples,
linear interpolation was used to approximate the heat flux value
corresponding to the time of each image capture. Data for both
types of frameworks were processed differently. For the static
framework, each image and corresponding heat flux value was
used as inputs and labels. For the sequential framework,
datasets of overlapping image sequences were generated using
a rolling sampling method. For each sequence of images, the
heat flux approximation that corresponded to the last image in
the sequence was used as the output label. For the sequential
datasets, the sampling rate and sequence length were also
altered for the model parametric study.

B. Static Models

Two different types of static regression models are
presented here. The first is a convolutional neural network
(CNN). This model used the raw boiling image as input for
predicting the heat flux. The hyperband tuner from the keras
tuner library was used for choosing the optimal set of
hyperparameters to achieve the best validation loss. This library
allows for the user to define the range of model and algorithm
hyperparameters to test over. Several different models with
different combinations of parameters are tested and the optimal
parameters are chosen. The parameter sweep technique is
introduced here to choose the filters, kernels, strides, and
learning rate. The range of the sweep, step for iterating over



range, and best parameters for the CNN model are given in
appendix Table Al.1 and Al.2. The best parameters are the
ones used in the actual model.

The next model paired principal component analysis (PCA)
for feature extraction with an MLP for regression. The model is
referred to as StaticPCA. PCA is an unsupervised method
commonly used for data reduction. Essentially, it works by
defining a new basis of eigenvectors for the images. Each image
is then described as the coefficients of a linear combination of
a specified amount of the new basis vectors. These coefficients
are referred to as principal components (PCs). Fig.3a shows the
first 25 eigenvectors for a single boiling image. These image
PCs and eigenvectors were generated using the
sklearn.decomposistion.PCA class fit with the training images.
Fig.3b shows two original boiling images (left) and the
corresponding reconstructed images using the 25 eigenvectors
(right). Fig.3c shows the cumulative explained variance vs the
number of PCs where

. . variance(true—pred)
explained variance =1 — - P €Y
variance (true)

Additional analysis of the performance of the staticPCA model
with different quantities of PCs was also performed in the
results section. The number of PCs used ranged from 1 to 900.
The keras tuner was used for a parameter sweep to choose the
number of neurons for the model using 900 PCs as input. This
model architecture and range of parameter sweep is shown in
Table A2.1 and A2.2.
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Fig.3. PCA of boiling images. (a) First 25 PCs; (b) Two representative
images and reconstructed image; (¢) cumulative variance vs number of pcs.

C. Sequential Models

Four types of sequential models were trained and tested. For
all the sequential models, each image in a sequence (as
described in the data collection and manipulations section) was
first converted to a select number of PCs. Initially, all the
models were trained with a sequential dataset with 40 PCs, an
image sequence length of 200, and an image sampling rate of
150 fps. The first model was a multilayer perceptron. To use
this model each sequence of PCs was flattened into a single
dimensional array for input. This model is referred to as
SeqPCA. The hyperparameter sweep range and best model are
shown in Table A3.1 and A3.2. The next model used was a long
short-term memory (LSTM) model. For this model, each
sequence of PCs was used as input. The hyperparameter sweep
range and best model are shown in Tables A4.1 and A4.2. The
third model uses a CNN for regression and is referred to as
PCA-CNN. First, each sequence of PCs was converted into a
three-dimensional vector of shape (number of PCs, sequence

length, 1). This vector was then used as input to the
convolutional layers. The parameter sweep was used to
determine what kernels, filters, and strides were best. The
hyperparameter sweep range and best model are shown in
Table AS5.1 and AS.2. Due to the high performance of this
model, more analysis was done on it with differing dataset
parameters (i.e., sampling rate, number of PCs, and sequence
length). The last model was similar to the previous one, with
the only difference being that each sequence of PCs was
converted to frequency intensities using the fast Fourier
transform. This cut down the size of the input to the
convolutional layers to (number of PCs, sequence length/2, 1).
This model is referred to as PCA-FFT-CNN and the
hyperparameter sweep range and best model is given in Table
A6.1 and A6.2.

III. RESULTS AND DISCUSSION

A. Model performance

After training and testing the six different models, their
performance was compared using the test data. Two different
metrics were used to compare the models, determinate
coefficient (R?) and mean absolute percentage error (MAPE).
Here, they are defined as

S (true;—pred;)?
R*=1- Z?=i(truei—mean)2 (2)
1 «n |truej—pred;|

MAPE = ; i=1 |tT—uei| (3)
Both of these metrics describe how well the models are able to
predict the heat flux. The R? score is a measurement of how
closely the model fits the data. Ideally, the R? score would be
close to one indicating the model fits the data well. The MAPE
is a measure of how much a prediction would on average vary
from the true value. A lower percentage error is desired and

indicates the prediction is close to the true value on average.

Fig.4a shows the R? score for all six models (static and
sequential models) on the testing data. With respect to the R?
score, all the sequential models performed better than the static
models. Of the static models, the highest-performing model was
the Static PCA with an R? score of 0.858. However, the higher
R? score of the SeqPCA, 0.916, implies that the temporal
information carried by the image sequences improves the heat
flux mapping capabilities. From these values, it can further be
seen that the PCA-CNN model had the best performance with a
R? score of 0.974. Fig.4b shows the MAPE for all of the
models. The models with the lowest MAPE are the SeqPCA,
PCA-LSTM, PCA-FFT-CNN, and PCA-CNN with values of
10%, 7.8%, 9.7%, and 7% respectively. When comparing
StaticPCA to SeqPCA, a significant decrease in MAPE is
observed, further demonstrating that the model based on image
sequences outperforms the one based on static images in terms
of predictive accuracy.

The static image method directly extracts features from
each frame. Compared to StaticPCA, CNN, as a representative
network, has a similar R? and lower MAPE. This result
indicates that CNN has better nonlinear feature extraction
capability than StaticPCA. However, when comparing the static
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Fig.5. Plots of predicted heat flux vs true heat flux label for two static
regression (a, b) and four sequential regression (c-f) models.

CNN with the image sequence-based PCA-CNN, it can be seen
that the latter outperforms the former in both metrics. This is
because PCA-CNN retains the powerful nonlinear feature
extraction capability of CNN while having better temporal
information extraction ability. Additionally, the introduction of
PCA reduces the noise interference in the input data.
Comparing PCA-FFT-CNN with PCA-CNN, it can be found
that the introduction of frequency domain information even
deteriorates the accuracy of heat flux regression. These
frequency domain features increase the difficulty for CNN in
extracting deep abstract features. LSTM is mainly used for
processing sequential data and is good at capturing temporal
dependencies and long-term relationships. However, LSTM is
not as efficient as CNN in extracting spatial features from
images. Therefore, the R? and MAPE metrics of PCA-LSTM
are inferior to those of PCA-CNN.

Fig.5 shows plots of predicted vs true heat flux values for
all the models. Ideally, each point would lie on the diagonal
black line indicating that each prediction is the same as the true
heat flux. These plots are shown to verify the quantitative
comparisons shown in Fig.4. From these plots, it can be seen
that the PCA-CNN model appears to follow the diagonal line
the closest with less variation as the previously discussed R?
score and MAPE comparison would suggest. Compared to
models that use only static images, the image sequences-based
models exhibit smaller prediction variances, indicating they
possess greater stability in monitoring heat flux.

More interestingly, it can be observed from Fig.5 (b to f)
that at lower heat flux levels, the predictions of these models
show an obvious deviation from the actual values especially for
SeqPCA. As the heat flux increases, the precision of prediction
improves. This phenomenon is consistent with the research
conducted by Scariot et al.,[36] which suggests that bubble
activity diminishes at lower heat flux levels. The essence of heat
flux monitoring via optical imaging lies in uncovering the
relationship between bubble dynamics and heat flux. Therefore,
diminished bubble activity at lower heat fluxes contributes to
decreased accuracy in optical imaging-based monitoring.
However, as the heat flux escalates, bubble activity intensifies,
thereby swiftly improving the model’s precision. On the other
hand, PCA is a linear dimensionality reduction method which
capture features that have a linear relationship with the input
while reducing signal noise. However, it may lose some
nonlinear features that are crucial during low heat flux phases.
These lost features can be particularly important during low
heat flux phases, leading to larger prediction errors. From the
comparison of (a) and (b), it can be seen that when using CNN
on static images, the predictions did not show significant
deviations under low heat flux conditions, whereas using PCA
did. This phenomenon indicates that at lower heat flux, boiling
is dominated by numerous isolated bubbles. At this stage, there
is a higher-order nonlinear relationship between the bubbles
and heat flux. In small-area pool boiling conditions, as the heat
flux increases to a certain point, the isolated bubbles merge into
mushroom-shaped formations. During this mushroom-shape
phase, bubble changes are more stable, and the nonlinear
relationship with heat flux is of a lower order than during the
isolated bubble boiling phase, resulting in smaller regression
errors. This viewpoint is further supported by the comparison
of (c) and (d, e, f). Fig.5 (c) shows the prediction results using
only PCA for dimensionality reduction followed by a shallow
MLP for regression, whereas figures (d, e, f) use deeper
networks and more advanced nonlinear feature extraction
methods after PCA. These networks better mitigate the errors
caused by linear extraction in PCA during low heat flux phases.
Additionally, it can be found that when using SeqPCA, the
prediction results under low heat flux showed better
monotonicity compared to Static PCA. This also demonstrates
that the proposed spatiotemporal framework can better capture
the temporal relationships between boiling images at adjacent
heat flux.

Furthermore, the StaticPCA model for this initial
comparison used 900 PCs so to check how added PCs will



affect the performance, the StaticPCA model was trained with
different amounts of PCs. Fig.6 shows how the R> and MAPE
vary with different numbers of PCs (up to 900 PCs) for the
StaticPCA models. It is seen that as the number of PCs
increases, the R? score generally increases and the MAPE
generally decreases until they begin to level off.
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Fig.7. (a) R? for different sequence lengths and number of PC’s using the
PCA-CNN model architecture (b) representative plots of predicted heat
flux vs heat flux label.

One primary goal of this work was to determine the
differences in the model accuracy when using solely spatial
information and when incorporating temporal data. Fig.7 shows
how the R? value changes with different amounts of spatial and
temporal information. The PCA-CNN model was used for this
test. Fig.7a shows how the R? varies as the amount of spatial
(number of PCs) and temporal information (sequence length)

changes. From this plot, it is seen that in general as the sequence
length increases, the R? score increases too. On the other hand,
when the sequence length at 10, the prediction performance
increase with increase of the number of PCs. However, when
the sequence length higher than 40, the increase of the number
of PCs do not affect the prediction performance. This
phenomenon indicates both the spatial and temporal
information influence the prediction, but their importance is
different at different given conditions. Fig.7b shows plots of
true labels vs predicted labels for the models corresponding
with the four corners of the plot in Fig.7a. When comparing
these predictions vs true plots, it is seen that from left to right
the prediction points decrease in sparsity or, in other words, the
predictions more closely reside on the diagonal line such that
the heat flux predictions are closer to the labels. Similar to the
spatial data, the R? score increases as more temporal data is
added. It is also seen that the R? score for the temporal data
surpasses that of the spatial data. Based on the above
discussion, it can be concluded that incorporating temporal
information significantly enhances the model's stability and
accuracy in predicting heat flux. This improvement can be
attributed to the capture of dynamic bubble features, an
inference also validated by the research from Won's lab [54].

B. Parametric Study of PCA-CNN Model

Among the tested machine learning models, the PCA-CNN
model was found to feature a high R? score and a relatively low
MAPE and is thus selected as the base model to investigate the
role of sequence length and sampling rate. The goal of this
parametric study is to see which sequence length and sampling
rate yield the most optimal performance of the model. To
understand how the sequence length and consequently how the
temporal length impacts the results, downsampled datasets
corresponding to sampling rates of 150, 75, 50 30, 25, and 15
fps were used to train the PCA-CNN model with different
sequence lengths. Fig.8 shows the test results. Fig.8a shows the
R? score vs sequence length for different sampling rates. It can
be seen that as the sequence length increases in general so does
the R? for all sampling rates. Fig.8b shows the same data as 8a
but is converted to the temporal length instead. The smaller
sampling rates cover more time with fewer images than larger
sampling rates. The temporal length is calculated by

Sequence Length

tseq =

Sampling Rate )

By doing this, it is observed that all the sampling rates except
15 fps collapse into a single line. This implies that, down to a
certain sampling rate, if a sequence of images covers the same
amount of time, they will have similar performance. This trend,
however, is not carried out forever; at a specific sampling rate,
the rate will be too low and as a result, the image sequences will
lose important information used in the predictions. Fig.8¢
shows the MAPE vs sequence length for the different artificial
sampling rates. It can be seen that in general, the MAPE
decreases as the sequence length increases. Fig.8d shows the
same data as Fig.8¢ but converted to temporal length. Similar
to the R? score data, the results for 25 fps and higher sampling
rates begin to collapse to around the same value while the
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results for the 15-fps data lie above the rest. This result reveals
that if the sequence of images with a sampling rate of at least
25 fps covers almost 3.4 s of time, the model will yield very
high heat flux prediction accuracy. Beyond this length of
sequence sample, the performance becomes saturated and
additional time information will not significantly improve the
model prediction accuracy. Additionally, short sequence
lengths are shown to have poor performance, which further
shows the importance of additional temporal information.
These results also indicate that image sequences captured at 15
fps may not cover sufficient detailed information on bubble
dynamics for accurate heat flux predictions. As such, there may
exist a critical sampling rate between 15 fps and 25 fps.
Therefore, if the same accuracy can be made with lower
sampling rates or fewer images it can lead to processing speed
improvement and camera cost reduction. It should be noted that
these experiments are based on slow transient boiling
experiments, so these findings are not expected to hold for
faster ramp up times.

C. Prediction Time of Static Image and Sequence Models

Fig.9 shows the prediction time of boiling heat flux using
trained static image models (time per image) and image
sequence models (time per image sequence) base models. All
the models were tested on the same computer with a 12" Gen

Intel Core 19-12900k processor and 2 GeForce RTX 3090 GPUs.

The prediction times include preprocessing time for PCA
transformation and FFT when used. One thing to note is that the
time for the sequential models only includes the processing time
for one image PCA transformation. Due to the overlapping
image sequences, as each sequence is made using a stride of 1
then only the newest image would need to be converted to PCs
and the previous transformed images can be used for the
complete sequence. The CNN and PCA-LSTM models require
the longest prediction times. The fastest models for prediction

flux monitoring that relies on high-speed imaging.

IV. CONCLUSION

In this work, two machine learning frameworks are
developed for heat flux predictions using static images and
image sequences, respectively. Each framework has
incorporated a variety of feature extraction and regression
methods to optimize the prediction accuracy. Based on the
experiment results the following conclusion can be draw:

1) The proposed temporal-spatial framework based
sequential models have better overall performance when
compared with the static models. Among the sequential
models, the PCA-CNN is found to have best
performance with a high R2 value of 0.974, low MAPE
of 7%, and low prediction time.

2) As the temporal length of image sequences increases, the
predictions become more accurate shown by a higher R?
and lower MAPE.

3) The effect of the sampling rate on the heat flux
prediction is unpronounced for sampling rates beyond
15 fps. This observation indicates that the dynamic
features of the bubbles at this frequency band are most
critical to heat transfer.

Overall, this work highlights the role of temporal
information of bubble dynamics in boiling heat transfer and
identifies the sampling rate range needed for accurate heat flux
predictions. The analysis of the prediction time confirms the
viability of real-time boiling heat flux monitoring using the
proposed PCA-equipped image sequence models. It should be
noted that this work is built upon the combination of a heating
structure of polished plain copper and deionized water.
However, initial conditions like the heating surface structure,
fluid character, and heating rate may influence the transient
boiling procedures. In the future work, a deeper investigation
will be conducted to find out whether and how these conditions
impact the heat flux prediction based on the temporal-spatial
framework.



APPENDIX

TABLE Al.1
STATIC CNN MODEL ARCHITECTURE WHERE ALL HYPERPARAMETERS (HP#)
ARE FOUND IN BEST COLUMN IN TABLE A1.2.

TABLE A3.1
MODEL ARCHITECTURE FOR SEQ-PCA MODEL WITH DATASET
CORRESPONDING TO 40 PCS AND 200 SEQUENCE LENGTH WHERE ALL
HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A3.2.

Layer (type) Output  Filters Kernel Strides Neurons Activation
Input (200,200,1) - - - - -
Conv2d (198,198,62) hpl hp2 hp3 - hp4
Max Pooling  (65,65,62) - hp5 hp6 - -
Dropout (0.2)  (65,65,62) - - - - -
Conv2D (61,61,162) hp7 hp8 hp9 - hp4
Max Pooling  (20,20,162) - hpl0  hpll - -
Conv2D (6,6,282) hpl2 hpl3  hpl4 - hp4
Global average

Pooling (282) B . B ) )
Dropout (0.2) (282) - - - - -
Dense (501) - - - hpl5 hpl6
Dense (301) - - - hpl7 hpl6
Dense (1) - - - 1 -

Layer (type) Output Shape Neurons Activation
Input (8000) -
Dense (500) hpl Relu
Dropout (0.2) (500) - -
Dense (1300) hp2 Relu
Dense (50) hp3 Relu
Dense (1850) hp4 Relu
Dropout (0.2) (1850) - -
Dense (1) 1 -
TABLE A3.2

HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR SEQ-
PCA MODEL WITH DATASET CORRESPONDING TO 40 PCs AND 200 SEQUENCE

TABLE Al.2
HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR STATIC
CNN REGRESSION AFTER PARAMETER SWEEP.

Variable Min Max Stride Options Best
hpl 32 400 10 - 63
hp2 3 5 2 - 3
hp3 1 3 2 - 1
hp4 - - - ‘relu’,’tanh’ Relu
hp5 2 6 2 - 6
hp6 1 4 2 - 3
hp7 32 500 10 - 162
hp8 3 5 2 - 5
hp9 1 3 2 - 1

hpl10 2 6 2 - 4
hpl1 1 4 2 - 3
hpl2 32 300 10 - 282
hp13 3 5 2 - 3
hpl4 1 4 2 - 3
hpl15 1 1000 100 - 501
hpl6 - - - ‘relu’, ‘tanh’ Relu
hpl7 1 1000 100 - 301
TABLE A2.1

MODEL ARCHITECTURE FOR THE STATIC PCA MODEL USING 900 PCS WHERE
ALL HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A2.2.

LENGTH.

Variable Min Max Stride Best
hpl 100 3000 100 500
hp2 100 2000 100 1300
hp3 50 2000 100 50
hp4 50 2000 100 1850

TABLE A4.1

MODEL ARCHITECTURE FOR PCA-LSTM MODEL WITH DATASET
CORRESPONDING TO SEQUENCE LENGTHS OF 200 AND 40 PCS WHERE ALL
HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A4.2.

Layer (type) Output Shape Units/ Neurons Activation
Input (200, 40) -

LST™M (200, 590) hpl Tanh
Dropout (0.2) (200,590) -

LSTM (200,990) hp2 Tanh
LST™M (200, 490) hp3 Tanh
Dropout (0.2) (200,490) -

LSTM (200,930) hp4 Tanh
Dropout (0.2) (200,930) -

LST™M (200,190) hp5 Tanh
Dropout (0.2) (200,190) -

LSTM (560) hp6 Tanh
Dense (260) hp7 Relu
Dense (440) hp8 Relu
Dense (120) hp9 Relu
Dense (870) hp10 Relu
Dense (1) 1

TABLE A4.2

HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR PCA-
LSTM MODEL WITH DATASET CORRESPONDING TO SEQUENCE LENGTHS OF
200 AND 40 PCS.

Layer (type) Output Shape Neurons Activation
Input (900) - _
Dense (1700) hpl Relu
Dense (1000) hp2 Relu
Dense (100) hp3 Relu
Dense (800) hp4 Relu
Dense (600) hp5 Relu
Dense (1) 1 -
TABLE A2.2

HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR THE
STATIC PCA MODEL USING 900 PCS.

Variable Min Max Stride Best
hpl 100 2000 100 1700
hp2 100 2000 100 1000
hp3 100 2000 100 100
hp4 100 2000 100 800

hp5 100 2000 100 600

Variable Min Max Stride Best
hpl 10 1000 10 590
hp2 10 1000 10 990
hp3 10 1000 10 490
hp4 10 1000 10 930
hp5 10 1000 10 190
hp6 10 1000 10 560
hp7 10 1000 10 260
hp8 10 1000 10 440
hp9 10 1000 10 120
hp10 10 1000 10 870
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TABLE A6.2

HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR PCA-

FFT-CNN MODEL WITH DATASET CORRESPONDING TO 40 PCS AND 200

(HP#) ARE FOUND IN BEST COLUMN IN TABLE AS5.2. SEQUENCE LENGTH.
Layer Output Filters Kernel Strides Padding Neurons Activation Variable Min Max Stride Best
(type) Shape hpl 32 100 10 72
Input (200,40,1) - - - - - - hp2 3 5 2 3
Conv2D (66,13,72) hpl  hp2 hp3 None - Relu hp3 1 3 2 3
Dropout hp4 32 100 10 62
0.2) (66,13,72) - ) ) ) . ) hp5 3 5 2 3
Conv2D (66,13,72) hp4  hp5 hp6 Same - Relu hp6 1 3 2 1
Conv2D (22,5,92) hp7  hp8 hp9 Same - Relu hp7 32 100 10 42
Max hp8 3 5 2 3
Pooling (11392 - 2 ! Same - . hp9 1 3 2 1
Conv2D (11,3,62) hpl0 hpll hpl2  Same - Relu hpl10 32 100 10 42
Dropout hpll 3 5 2 5
0.2) (11,3,62) ) ) ) ) ) ) hpl12 1 3 2 1
Flatten (2046) - - - - - - hp13 1 1000 10 851
Dense (181) - - - - hpl13 Relu hpl4 1 1000 10 321
Dense 931) - - - - hpl4 Relu
Dense (1) - - - - 1 -

TABLE A5.2 REFERENCES

HYPERPARAMETER SWEEP RANGE AND SELECTED PARAMETERS FOR PCA-
CNN MODEL CORRESPONDING TO DATASET WITH 40 PCS AND 200 SEQUENCE

LENGTH
Variable Min Max Stride Best
hpl 32 100 10 72
hp2 3 5 2 3
hp3 1 3 2 3
hp4 32 100 10 72
hp5 3 5 2 5
hp6 1 3 2 1
hp7 32 100 10 92
hp8 3 5 2 5
hp9 1 3 2 3
hp10 32 100 10 62
hpll 3 5 2 3
hp12 1 3 2 1
hpl3 1 1000 10 181
hp14 1 1000 10 931
TABLE A6.1

MODEL ARCHITECTURE FOR PCA-FFT-CNN MODEL WITH DATASET

CORRESPONDING TO 40 PCS AND 200 SEQUENCE LENGTH WHERE ALL
HYPERPARAMETERS (HP#) ARE FOUND IN BEST COLUMN IN TABLE A6.2.
Layer Output
(type) Shape

Filters Kernel Strides Padding Neurons Activation

Input

Conv2D (34,14,72) hpl

Dropout
0.2)

Conv2D (34,14,62) hp4
Conv2D (34,14,42) hp7

Max
Pooling

Conv2D (17,7,42) hpl0 hpll

Dropout
0.2)
Flatten
Dense
Dense
Dense

(100,40,1)

(34,14,72)

(17,7,42)

(17,7,42)

(4998)

(851)

(321)
{1

hp3

hp6
hp9

hp12

None

Same
Same

Same

Same

Relu

Relu
Relu

Relu

Relu
Relu
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