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Deep and Decentralized Multi-Agent Coverage of a
Target with Unknown Distribution

Hossein Rastgoftar

Abstract—This paper proposes a new architecture for multi-
agent systems to cover an unknown distributed target quickly and
safely and in a decentralized manner. The inter-agent communi-
cation is organized by a directed graph with a fixed topology and
We model agent coordination as a decentralized leader-follower
problem with time-varying communication weights. Given this
problem setting, we first present a method for converting the
communication graph into a neural network, where an agent
can be represented by a unique node of the communication
graph but multiple neurons of the corresponding neural network.
We then apply a mass-centric strategy to train time-varying
communication weights of the neural network in a decentralized
fashion. This implies that the observation zone of every follower
agent is independently assigned by the follower based on positions
of its in-neighbors. By training the neural network, we can ensure
safe and decentralized multi-agent coverage control. Despite the
target is unknown to the agent team, we provide a proof for
convergence of the proposed multi-agent coverage method. The
functionality of the proposed method is validated by a large-scale
multi-copter team covering distributed targets on the ground.

Index Terms—Large-Scale Coordination, Multi-Agent Cover-
age, and Decentralized Control.

I. INTRODUCTION

Multi-agent coverage has received a lot of attention from
the control community over the past few years. Multi-agent
coverage has many applications, such as wildfire management
[1], [2], border security [3], agriculture [4], [5], and wildlife
monitoring [6]. A variety of coverage approaches have been
proposed by the researchers that are reviewed in Section I-A.
A. Related Work

Sweep [7], [8] and Spiral [9], [10] are two available methods
used for single-vehicle coverage path planning, while Vehicle
Routing Problem [11], [12] is widely used for multi-agent cov-
erage path planning. Stability and convergence of diffusion-
based multi-agent coverage are studied in Ref. [13]. Decen-
tralized multi-agent coverage using local density feedback is
achieved by applying the discrete-time mean-field model in
Ref. [14]. Multi-agent coverage conducted by unicycle robots,
that is guided by a single leader, is investigated in Ref.
[15], where the authors propose to decouple coordination and
coverage modes. Adaptive decentralized multi-agent coverage
is studied in [16], [17]. Ref. [18] offers a multiscale analysis
of multi-agent coverage control that provides the convergence
properties in continuous time. Human-centered active sensing
of wildfire by unmanned aerial vehicles is studied in Ref. [2].
Ref. [19] suggests applying the k-means algorithm for the
planning of zone coverage by multiple agents. Reinforcement

H. Rastgoftar is with the Department of Aerospace and Mechanical
Engineering, University of Arizona, Tucson, AZ, 85721 USA e-mail: hrast-
goftar@arizona.edu.

Learning-(RL-)-based multi-agent coverage control is investi-
gated by Refs. [4], [20]–[23].

Authors in [20], [24]–[27] used the Vononoi-based approach
for covering a distributed target. This widely accepted ap-
proach considers multi-agent coverage by 𝑁 agents, defined by
setV = {1, · · · , 𝑁}, and decomposes search (coverage) domain
C ⊂ R𝑛 by defining Voronoi partition
𝑉𝑖 (q) =

{
q ∈ C : ∥q− r𝑖 ∥2 ≤ ∥q− r 𝑗 ∥2, ∀ 𝑗 ∈ V \ {𝑖}

}
, ∀𝑖 ∈V,

(1)
where r𝑖 ∈ C is the position of agent 𝑖 ∈ V. The coverage cost
is then defined by

𝐻 (q) = 1
2

∑︁
𝑖∈V

∫
𝑉𝑖 (q)
∥q− r𝑖 ∥𝜌 (q) 𝑑q, (2)

where the proof for multi-agent coverage convergence is avail-
able. Note that most of the available work uses the Lyapunov
Theorem to provide the proof for the convergence guarantee,
where they model every agent 𝑖 ∈ V by a single integrator
dynamics. Voronoi-based coverage in the presence of obstacles
and failures is presented as a leader-follower problem in Ref.
[24]. Ref. [28] experimentally evaluates the functionality of
the Voronoi-based and other multi-agent coverage approaches
in urban environments.

B. Contributions

Voronoi-based control [20], [24]–[27] is a main approach
for multi-agent coverage widely studied by the control com-
munity. Voroni-based cell decomposition requires positions
of all agents to assign the Voroni-based zone allocated to
individual agents. As a result, achieving a truly decentral-
ized coverage may be difficult or at least computationally
expensive, if possible. This paper develops a method for
decentralized multi-agent coverage of a distributed target with
an unknown distribution that is specified by a discrete set. We
propose to define inter-agent communications by a deep neural
network (DNN), which is called coverage neural network,
with time-varying weights that are obtained such that coverage
convergence is ensured. To this end, the paper establishes
specific rules for structuring the coverage neural network and
proposes a mass-centric approach to train the DNN weights
at any time 𝑡 that specify inter-agent communication among
the agent team. Although the target is unknown to the agent
team, we prove that the weights ultimately converge to unique
values that quantify target distribution in the motion space.
The functionality of the proposed coverage method will be
validated by simulating aerial coverage conducted by a team of
quadcopter agents. Compared to the existing work, this paper
offers the following novel contributions:
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Contribution 1: The paper develops a method for decen-
tralized partitioning and coverage of an unknown distributed
target, with discrete positions in R𝑛, where 𝑛 = 2,3 is the
dimension of the motion space. Compared to the Voronoi-
based approach [20], [24]–[27], the proposed DNN-based
multi-agent coverage does not apply the Voronoi-based par-
titioning by using Eq. (1), based on the current positions of
the agents. Indeed, the DNN structure, specifying inter-agent
communications, is fixed and assigned based on the agents’
initial positions.
Contribution 2: The proposed multi-agent coverage approach
learns the inter-agent communication weights in a forward
manner as opposed to the existing neural network learning
method, which trains weights by combining forward and
backward iterations [29]. To be more precise, every neuron
represents an agent, with the output specifying the agent’s
actual position, where the DNN weights of every non-input
layer are solely assigned based on the outputs of the connected
neurons of the previous layer in real time. More specifically,
weights input to a hidden layer are assigned based on the (i)
outputs of the previous layer and (i) target data information
independently measured by observing the neighboring envi-
ronment. We provide proof of convergence for the proposed
learning approach.
Contribution 3: We propose an algorithmic approach for
structuring inter-agent communications based on the agent
team initial formation arbitrarily distributed in R𝑛 such that
the communication graph can be converted to a DNN. The
proposed approach classifies agents as leaders and followers
and ensures that every follower agent communicates with
𝑛 + 1 in-neighbors, where the in-neighbor agents form a 𝑛-
D simplex enclosing the follower. The DNN structure remains
time-invariant but the DNN weights are time-varying.
C. Outline

The remainder of the paper is organized as follows: The
problem statement and formulation are given in Section II.
The paper methodology is presented in Section III. Assuming
every agent is a quadcopter, the multi-agent network dynamics
are obtained in Section IV, followed by simulation results in
Section V, and a conclusion in Section VII.

II. PROBLEM STATEMENT AND FORMULATION

We consider a team of 𝑁 agents identified by set V =

{1, · · · , 𝑁} and classify them into the following three groups:
1) “boundary” agents identified by V𝐵 =

{
𝑏1, · · · , 𝑏𝑁𝐵

}
are distributed along the boundary of the agent team
configuration;

2) a single “core” agent identified by singleton V𝐶 is an
interior agent; and

3) follower agents defined by V𝐼 =V \ (V𝐵

⋃V𝐶 ) are all
located inside the agent team configuration.

Note that V can be expressed as V =V𝐵

⋃V𝐶

⋃V𝐼 , where
V𝐵, V𝐶 , and V𝐼 are disjoint subsets of V, i.e. V𝐵

⋂V𝐶 = ∅,
V𝐶

⋂V𝐼 = ∅, and V𝐼

⋂V𝐵 = ∅. Inter-agent communication
among the agents are defined by graph G (V,E) where E ⊂
V ×V defines edges of graph G and each edge represents
a unique communication link. More specifically, if ( 𝑗 , 𝑖) ∈ E,
then 𝑖 accesses the position of 𝑗 ∈ V.

Definition 1. We define
N(𝑖) = { 𝑗 ∈ V : ( 𝑗 , 𝑖) ∈ E} , ∀𝑖 ∈ V . (3)

as the set of in-neighbors of agent 𝑖 ∈ V.

A. Neural Network Representation of Inter-Agent Communi-
cation

The reference (initial) configuration of the agents is used
to specify the graph G (V,E), which can be represented
by a deep neural network with 𝑀 + 1 layers. We use set
M = {0, · · · , 𝑀} to define the layer identification numbers.
Therefore, set V can be expressed as

V =
⋃
𝑙∈M
V𝑙 , (4)

where V0 through V𝑀 are disjoint subsets of V. We useW0,
W1, · · · , W𝑀 to identify the neurons of layers 0 through 𝑀

of the coverage neural network, andW𝑙 and V𝑙 are related by

W𝑙 =

{
V𝑙 𝑙 ∈ {0, 𝑀}
W𝑙−1

⋃V𝑙 𝑙 ∈M \ {0, 𝑀}
. (5)

Note that W0 =V0 =V𝐵

⋃V𝐶 defines neurons that uniquely
represent boundary and core agents. Also, V0 = V𝐵

⋃V𝐶

defines the leader agents and V \V0 defines the follower
agents. N(𝑖) = ∅, if 𝑖 ∈ V0 is a leader.

Definition 2. For every neuron 𝑖 ∈ W𝑙 at layer 𝑙 ∈ M \ {0},
I(𝑖, 𝑙) ∈ W𝑙−1 defines those neurons of W𝑙−1 that are con-
nected to 𝑖 ∈ W𝑙 . Assuming the agent team forms an 𝑛-
dimensional configuration in a three-dimensional motion space
(𝑛 = 2,3), we use the following key rules to define I(𝑖, 𝑙) for
every 𝑖 ∈W𝑙 and 𝑙 ∈M \ {0}:

|I(𝑖, 𝑙) | =


1 If 𝑖 ∈W𝑙−1

⋂W𝑙 and 𝑙 ∈M \ {0}
𝑛+1 If 𝑖 ∈W𝑙 −W𝑙−1 and 𝑙 ∈M \ {0}
𝑛+1 If 𝑖 ∈W𝑀

0 If 𝑖 ∈W0

. (6)

(a) (b)

Fig. 1: (a) Graph G (V,E) representing the
coverage neural network that consists of three
layers (M = {0,1,2}), where V = V0

⋃V1
⋃V2,

V = {1, · · · ,26}, V0 = {1,2, · · · ,6}, V1 = {7,11,15,19,23},
and V2 = {8,9,10,12,13,14,16,17,18,20,21,22,24,25,26}.
(b) Neural network representation of the communication
graph G.

We note that N(𝑖) and I(𝑖, 𝑙) can be related by∧
𝑙∈M\{0}

∧
𝑖∈W𝑙\W𝑙−1

(I(𝑖, 𝑙) =N(𝑖)) . (7)

For better clarification, we consider an agent team with
𝑁 = 26 agents identified by set V = {1, · · · ,26}, where the
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team forms a two-dimensional configuration (𝑛 = 2) shown in
Fig. 3 (a). The inter-agent communications shown in Fig. 3 (a)
can be represented by the neural network of Fig. 3 (b) with
three layers M = {0,1,2}. In this example, W0 = {1, · · · ,6},
defining the boundary and core leaders, has no in-neighbors,
and W2 = {8,9,10,12,13,14,16,17,18,20,21,22,24,25,26},
defining followers, each has three in-neighbors. Also,
{7,11,15,19,23} ∈ W1 each has three in-neighbors, but the
remaining neurons of {1, · · · ,6} ∈W1 that are repeated in layer
0 each have one in-neighbor.

Fig. 2: Activation functions, inputs and outputs of neurons of
the coverage neural network. (Left): An example neuron in
𝑖 ∈W0. (Right): An example neuron 𝑖 ∈ in layer 𝑙 ∈M \ {0}

B. Differential Activation Function

The DNN neurons represent agents, where each neuron
receives the agent’s desired position as the input and returns
the agent’s actual position as the output. Therefore, unlike
the available neural network, neurons of the coverage neural
network are operated by differential activation functions given
by {

¤x𝑖 = f𝑖 (x𝑖 ,u𝑖)
r𝑖 = h𝑖 (x𝑖)

, 𝑖 ∈W𝑙 , 𝑙 ∈M . (8)

In Eq. (8), x𝑖 ∈ R𝑛𝑥,𝑖 and u𝑖 ∈ R𝑛𝑢,𝑖 denote the state vector and
the control of neuron 𝑖, respectively, and h𝑖 : R𝑛𝑥,𝑖 → R3, f𝑖 :
R𝑛𝑥,𝑖 → R𝑛𝑥,𝑖 , and g𝑖 : R𝑛𝑥,𝑖 → R𝑛𝑥,𝑖×𝑛𝑢,𝑖 are smooth functions
(See Fig. 2).

Note that neuron 𝑖 ∈W𝑙 represents agent 𝑖 ∈ V where the
the nonlinear differential activation function, given by Eq. (8),
is indeed the dynamics of agent 𝑖 ∈ V. Therefore, the output
of neuron 𝑖, denoted by r𝑖 ∈ R3×1 is the actual position of
agent 𝑖 at time 𝑡. The input of neuron 𝑖 is indeed the desired
trajectory of agent 𝑖 ∈ V and obtained by

r𝑖,𝑑 (𝑡) =
{

p𝑖 (given) 𝑖 ∈W0∑
𝑗∈I(𝑖,𝑙) 𝑤𝑖 𝑗 (𝑡)r 𝑗 (𝑡) 𝑖 ∈W𝑙 , 𝑙 ∈M \ {0}

, (9)

where p𝑖 is a desired constant position for leader agent 𝑖 ∈ V0
(V0 =W0). Also, 𝑤𝑖, 𝑗 (𝑡) > 0 is the time-varying communica-
tion weight between 𝑖 ∈W𝑙\W𝑙−1 and 𝑗 ∈ I(𝑖, 𝑙), and satisfies
the following constraint:∧

𝑙∈M\{0}

∧
𝑖∈W𝑙\W𝑙−1

©­«
∑︁

𝑗∈I(𝑖,𝑙)
𝑤𝑖, 𝑗 (𝑡) = 1ª®¬ , ∀𝑡. (10)

C. Objectives

Given above problem setting, this paper offers a DNN-
based method for optimal coverage of target set D with
distribution that is unknown to the agent team. To achieve

this objective, we assume that positions of boundary and core
leaders, defined by V0, are known, and solve the following
three main problems:

1) Problem 1–Establishing Inter-Agent Communica-
tion: The communication graph G (V,E) needs to be
structured such that it can be converted to the a neural
network with the properties specified above. We propose
an algorithmic approach to obtain graph G (V,E) based
on the initial configuration of the agent team.

2) Problem 2–Abstract Representation of Target: We
develop a mass-centric approach in Section III-B to
abstractly represent target by position vectors p1 through
p𝑁 that are considered as agents’ final desired positions.

3) Problem 3–Decentralized Target Acquisition: We pro-
pose a forward method to train the the DNN weights,
and assign control input u𝑖 such that actual position
r𝑖 converges to the desired position p𝑖 in a decentral-
ized fashion, for every 𝑖 ∈ V \W0. By decentralized
convergence, we imply that agent 𝑖 ∈ V \W0 does
not know global position p𝑖 but actual position r𝑖 (𝑡)
asymptotically converges to p𝑖 , as 𝑡→∞.

III. METHODOLOGY

We consider an agent team that is contained by a convex
polytope with vertices that are occupied by 𝑁𝐵 boundary
leader agents 𝑏1 through 𝑏𝑁𝐵

. This convex polytope, defined
by the boundary agents, is called leading polytope. The agent
team applies the DNN-based coverage method to cover a
distributed target that is specified by finite and discrete set
D = {1, · · · , 𝑛𝑑}, where d𝑖 ∈ R3×1 is the position of target
data 𝑖 ∈ D. Set D defines 𝑛𝑑 entities, where agents can use
their onboard sensors to identify each target data (entity). For
example, in search and rescue operations, the target set D
can represent 𝑛𝑑 persons affected by a tragedy on the ground,
which can be pinpointed by heat from the drones’ onboard
sensors. The agents team can be made up of 𝑁 multicopter
drones.
Assumption 1. The target set D is contained by the leading
polytope with vertices that are known and considered as
desired positions of boundary agents. However, the target
distribution inside the leading polytope is unknown to the
agent team.

Assumption 2. Boundary leader agents form an 𝑛−𝐷 poly-
tope in R𝑛, thus, the boundary agents’ desired positions must
satisfy the following rank condition:

rank
( [

p𝑏2 −p𝑏1 · · · p𝑏𝑁𝐵
−p𝑏1

] )
= 𝑛 (11)

If Assumption 2 is satisfied, the leading polytope, de-
fined by the boundary agents, can be decomposed into 𝑁𝐿

disjoint 𝑛-dimensional simplexes all sharing the core agent,
defined by V𝐶 . We use 𝑐𝑏1 ,𝑏2 , · · · ,𝑏𝑁𝐵

∈ V to identify the

core agent, i.e. V𝐶 =

{
𝑐𝑏1 ,𝑏2 , · · · ,𝑏𝑁𝐵

}
. These leading sim-

plex cells are identified by set L = {1, · · · , 𝑁𝐿}, where S𝑖 ={
ℎ𝑖,1, · · · , ℎ𝑖,𝑛, 𝑐𝑏1 ,𝑏2 , · · · ,𝑏𝑁𝐵

}
defines vertices of simplex cell

𝑖 ∈ L and∧
𝑖∈L

(
rank

( [
pℎ𝑖,1 −p𝑁𝐵+1 · · · pℎ𝑖,𝑛 −p𝑁𝐵+1

] )
= 𝑛

)
. (12)
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Remark 1. Note that ℎ𝑖,1, · · · , ℎ𝑛,𝑖 ∈ S𝑖 \V𝐶 are the boundary
agents which in turn implies that∧

𝑖∈L
((S𝑖 \V𝐶 ) ⊂ V𝐵) . (13)

Also, W0 =V0 can be expressed as follows:
W0 =

⋃
𝑖∈L
S𝑖 . (14)

For better clarification, the 2-D (𝑛 = 2) agent team config-
uration shown in Fig. 1 is a pentagon with vertices occupied
by boundary agents 𝑏1 = 1, 𝑏2 = 2, 𝑏3 = 3, 𝑏4 = 4, and 𝑏5 = 5.
The pentagon can be decomposed into 𝑁𝐿 = 5 triangles, all
sharing the agent 𝑐1,2,3,4,5 = 6. Vertices of these triangular
cells are defined by S1 = {1,2,6}, S2 = {2,3,6}, S3 = {3,4,6},
S4 = {4,5,6}, and S5 = {5,1,6}.
Assumption 3. Every agent 𝑖 ∈V \V0 has 𝑛+1 in-neighbors,
therefore, ∧

𝑙∈M\{0}

∧
𝑖∈V𝑙

( |N (𝑖) | = 𝑛+1) . (15)

Assumption 3 implies that the DNN structure holds the
following properties:∧

𝑙∈M\{0}

∧
𝑖∈W𝑙\W𝑙−1

( |I(𝑖, 𝑙) | = 𝑛+1) , (16a)∧
𝑙∈M\{0}

∧
𝑖∈W𝑙

⋂W𝑙−1

( |I(𝑖, 𝑙) | = 1) . (16b)

In this paper, we use V, V𝑙 , and N(𝑖) when we refer to
actual agents. On the other hand, we use W, W𝑙 , and I(𝑖, 𝑙)
when we refer to the neurons representing actual agents.
Assumption 4. The in-neighbors of every agent 𝑖 ∈ V \W0
defined by N(𝑖) = { 𝑗1, · · · , 𝑗𝑛+1} forms an 𝑛-D simplex. This
condition can be formally specified as follows:∧

𝑙∈M\{0}

∧
𝑖∈V𝑙

(
rank

( [
p 𝑗2 −p 𝑗1 · · · p 𝑗𝑛+1 −p 𝑗1

] )
= 𝑛

)
. (17)

Indeed Assumption 3 is a necessary condition for Assump-
tion 4. If Assumptions 3 and 4 are satisfied, the desired
position of an agent 𝑖 ∈ V𝑙 , for 𝑙 ∈ M \ {0}, can be uniquely
expressed as a weighted sum of its in-neighbors, defined by
N(𝑖) = I(𝑖, 𝑙), where the weights are all unique at any time
𝑡. This property will be used in Section III-C to obtain the
training weights of the DNN in a forward manner.

Definition 3. For every agent 𝑖 ∈ V \W0,
C̄𝑖 =

{∑
𝑗∈I(𝑖,𝑙) 𝜎𝑗p 𝑗 : 𝜎𝑗 ≥ 0 and

∑
𝑗∈I(𝑖,𝑙) 𝜎𝑗 = 1

}
, 𝑖 ∈, 𝑙 ∈M,

(18a)
C𝑖 (𝑡) =

{∑
𝑗∈I(𝑖,𝑙) 𝜎𝑗r 𝑗 (𝑡) : 𝜎𝑗 ≥ 0 and

∑
𝑗∈I(𝑖,𝑙) 𝜎𝑗 = 1

}
, 𝑖 ∈, 𝑙 ∈M,

(18b)
define the convex hulls specified by “desired” and “actual”
positions of agent 𝑖’s in-neighbors, respectively.

Definition 4. We define
C =

⋃
𝑙∈M\{0}

⋃
𝑖∈W𝑙\W𝑙−1

C̄𝑖 (19a)

C =
⋃

𝑙∈M\{0}

⋃
𝑖∈W𝑙\W𝑙−1

C𝑖 (𝑡) (19b)

as the coverage zone that encloses all data points defined by
set D.

By considering Definition 3, we can express set D as

D =
⋃

𝑖∈I(𝑖,𝑙)
D̄𝑖 or D =

⋃
𝑖∈I(𝑖,𝑙)

D𝑖 (𝑡),

where D̄𝑖 =
{
𝑗 ∈ D : d 𝑗 ∈ C̄𝑖

}
(20)

is the target set that is “desired” to be searched by follower
agent 𝑖 ∈ V \V0 whereas

D𝑖 (𝑡) =
{
𝑗 ∈ D : d 𝑗 ∈ C𝑖 (𝑡)

}
(21)

is a subset of D that is “actually” searched by follower agent
𝑖 ∈ V \V0 at time 𝑡. Note that D̄𝑖 and D𝑖 (𝑡) are enclosed by
the convex hulls C̄𝑖 and C𝑖 (𝑡), respectively.
Assumption 5. We assume that D̄𝑖 ≠ ∅ and D𝑖 (𝑡) ≠ ∅, at any
time 𝑡, for every 𝑖 ∈ V \W0.

Assumption 5 implies that every simplex C𝑖 and C̄𝑖 must
at least contain one target data. This assumption is indeed
required to archive multi-agent coverage of an unknown dis-
tributed target in a truly decentralized fashion.

Algorithm 1 Structuring DNN based on initial formation

1: Get: Initial (reference) position of every agent 𝑖 ∈ V.
2: Outcome: Structuring Graph G (V,E) such that it can be

converted to a deep neural network.
3: Assign boundary agents V𝐵.
4: Assign core leader agent 𝑐 (V𝐵).
5: Specify leading simplexes S1 through S𝑁𝐿

.
6: Define O = S1∪ · · · ∪S𝑁𝐿

.
7: 𝑐ℎ𝑒𝑐𝑘 = 0 and 𝑙 = 0.
8: while 𝑐ℎ𝑒𝑐𝑘 = 0 do
9: 𝑙← 𝑙 +1.

10: V𝑙 = ∅.
11: X = ∅.
12: for Every H in O do
13: Specify CONT (H) using Definition 6.
14: if CONT (H) ≠ ∅ then
15: Assign mentee agent 𝑐(H) using Definition 7.
16: Define in-neighbors of 𝑐(H): N (𝑐(H)) =H .
17: X ←X⋃H .
18: V𝑙←V𝑙

⋃ {𝑐(H)}.
19: end if
20: end for
21: if X = ∅ then
22: 𝑐ℎ𝑒𝑐𝑘 = 1.
23: 𝑀 = 𝑙 −1.
24: else
25: O ←X.
26: end if
27: end while
28:

A. Inter-Agent Communication Structure

Inter-agent communication structure, defined by a DNN, is
obtained based on the reference (initial) configuration of the
agent team where agent 𝑖 ∈ V is positioned at a𝑖 ∈ R𝑛. To
structure the DNN, we propose Algorithm 1 to divide agents
into 𝑀 +1 groups, defined by V0 through V𝑀 , and obtain in-
neighbor set N(𝑖) ⊂ W𝑙−1, for every 𝑙 ∈ M \ {0}, such that
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the properties specified in Section II and the introduction of
Section III are all met.

Definition 5. We use H (H ⊂ V) to define 𝑛 + 1 agents in
R𝑛 positioned at vertices of an 𝑛-D simplex in R𝑛.

Definition 6. Set CONT (H) (CONT (H) ⊂ V) defines all
agents that are inside the convex hull specified by H . To be
more precise, H defines 𝑛 + 1 agents at vertices of an 𝑛-D
simplex enclosing CONT (H).

Definition 7. Given H ,

𝑐(H) = argmin
𝑗∈CONT(H)

(∑︁
ℎ∈H
∥aℎ −a 𝑗 ∥

)
(22)

is the agent belonging to CONT (H), at the closest distance
from every member of H , and called mentee of H .

Definition 8. Given H , as vertices of an 𝑛-D simplex in R𝑛,
and 𝑐(H) as the mentee of H ,
EXPAND (H , 𝑐(H)) =H1 (H , 𝑐(H)) ∪ · · · ∪H𝑛+1 (H , 𝑐(H))

(23)
decomposes the convex hull defined by H into 𝑛+1 cells all
sharing vertex 𝑐(H), where H 𝑗 defines 𝑛 + 1 vertices of the
𝑗-th simplex cell of H , for 𝑗 = 1, · · · , 𝑛+1.

For better clarification, Fig. 3(a) shows reference configura-
tion of an agent team in a 2-D motion space (𝑥−𝑦 plane) where
H = {10,15,18} defines agents at vertices of a 2-D simplex
(triangle). Set CONT (H) = {1,5,12,16} defines the agents
contained by this triangle. As seen, 𝑐(H) = 5 is the mentee
of H . Also, EXPAND ({10,15,18} ,5) =H1∪H2∪H3, where
H1 = {10,18,5}, H2 = {18,15,5}, and H3 = {15,10,5}.

We apply Algorithm 1 to obtain set E, as graphically shown
in 3(b), given an arbitrary initial distribution of the agent
team. We then convert the communication graph shown in
Fig. 3(a) into the coverage neural network of Fig. 3(c) with
4 layers identified by set M = {0,1,2,3}, where W0 = V0
(defining the boundary and core leaders) has no in-neighbors,
W1 =W0

⋃V1,W2 =W1
⋃V2, andW1 =V3. Note thatW0

identifies the neurons that represent boundary agents.

B. Abstract Representation of Target Locations

We use the approach presented in Algorithm 2 to abstractly
represent target set D by position vectors p1, · · · , p𝑁 , given
(i) desired positions of boundary and core agents, denoted by
p𝑏1 through p𝑏𝑁𝐵+1

, (ii) the edge set E, and (iii) target set
D, as the input. Note that p𝑖 is considered the global desired
position of 𝑖 ∈ V \V0, but no follower 𝑖 ∈ V \V0 knows p𝑖 .
The desired position of 𝑖 ∈ V \V0 is obtained by

p𝑖 =

∑
ℎ∈D̄𝑖

dℎ��D̄𝑖

�� , ∀𝑖 ∈ V \V0, (24)

where D̄𝑖 , defined by Eq. (20), is a target data subset that is
enclosed by C̄𝑖 and defined by Eq. (18a).

Given desired positions of every follower agent 𝑖 ∈ V \V0
and every in-neighbor agent 𝑗 ∈ N (𝑖), 𝜛𝑖, 𝑗 > 0 defines the
desired communication weight between 𝑖 ∈ V \W0 and
𝑗 ∈ N (𝑖), and is obtained by solving 𝑛 + 1 linear algebraic
equations provided by

(a) (b)

(c)

Fig. 3: (a) Graphical representation of a 2-D simplex (tri-
angle) with vertices defined by H = {11,15,18}, where
CONT (H) = {1,5,12,16} specifies all agents contained by
this triangle and 𝑐(H) = 5 is the mentee of H . (b) An agent
team with an arbitrary initial formation in a 2-D motion space
and the corresponding communication graph obtained by Al-
gorithm 1. (c) The DNN corresponding to the communication
graph shown in Fig. 3 (b).

Algorithm 2 Assignment of followers’ “desired” communica-
tion weights and “desired” positions.

1: Get: Dataset D; set W0, · · · , W𝑀 ; and graph G (V,E).
2: Obtain: Desired position of every agent 𝑖 ∈ V \W0 and

desired communication weights.
3: for 𝑙 ∈M \ {0} do
4: for 𝑖 ∈ do
5: Obtain D̄𝑖 by using Eq. (20).
6: Choose p𝑖 as the geometric centroid of D̄𝑖 .
7: Get desired positions of in-neighbor agents I(𝑖, 𝑙).
8: Compute desired communication weights by (25).
9: end for

10: end for

p𝑖 =
∑︁

𝑗∈I(𝑖,𝑙)
𝜛𝑖, 𝑗p 𝑗 , 𝑖 ∈ V𝑙 , 𝑙 ∈M, (25a)

∑︁
𝑗∈I(𝑖,𝑙)

𝜛𝑖, 𝑗 = 1, 𝑖 ∈ V𝑙 , 𝑙 ∈M . (25b)

Definition 9. We define desired communication weight matrix
𝚪 where 𝚪 =

[
Γ𝑖 𝑗 (𝑡)

]
∈ R𝑁×𝑁 is non-negative, and its (𝑖, 𝑗)

entry is given by

Γ𝑖 𝑗 =

{
𝜛𝑖, 𝑗 𝑖 ∈ V \V0, 𝑗 ∈ N (𝑖)
0 otherwise

. (26)

Proposition 1. Constant desired weight 𝜛𝑖, 𝑗 is unique for
every agent 𝑖 ∈ V \W0 with in-neighbor 𝑗 ∈ N (𝑖) if the target
set D is time-invariant.
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Proof. If D is time-invariant, then p𝑖 is constant for every
𝑖 ∈ V. Because in-neighbors of every agent 𝑖 ∈ V \W0 are
positioned at vertices of 𝑛-D simplex, Eqs. (25a) and (25b)
provides 𝑛+1 linear algebraic equations with 𝑛+1 unknowns
𝜛𝑖, 𝑗 that are uniquely determined.

C. Learning the DNN Weights

For a decentralized coverage, it is necessary that every
follower agent 𝑖 ∈ V𝑙 , represented by a neuron in layer 𝑙 ∈
M\{0}, chooses control u𝑖 ∈ R𝑛𝑢×1, based on actual positions
of the in-neighbor agents N (𝑖), such that r𝑖 (𝑡) stably tracks
r𝑖,𝑑 (𝑡) defined by Eq. (9). To assign r𝑖,𝑑 (𝑡), communication
weight 𝑤𝑖, 𝑗 (𝑡) between agent 𝑖 ∈ V𝑙 and every in-neighbor
agent 𝑗 ∈ N (𝑖) needs to be learned at any time 𝑡.

We use a “forward” method to obtain the followers’ com-
munication weights (train the DNN weights) at any time 𝑡.
This means that communication weights of layer 𝑙 ∈ M \ {0}
neurons are assigned before communication weights of layer
𝑙 + 1 ∈ M \ {0, 𝑀} neurons. To implement this “forward”
method, communication weights of every agent 𝑖 ∈ V𝑙 are
assigned such that the desired position r𝑖,𝑑 is at the geometric
centroid

c𝑖 (𝑡) =
∑

ℎ∈D𝑖 (𝑡 ) dℎ (𝑡)
|D𝑖 (𝑡) |

, 𝑖 ∈ V𝑙 , 𝑙 ∈M \ {0} , (27)

of all target data defined by D𝑖 at any time 𝑡. Note that target
data points defined by D𝑖 are all contained by 𝑛-D simplex
C𝑖 (𝑡), where vertices of C𝑖 (𝑡) are occupied by actual positions
of N (𝑖)’s agents. Therefore, c𝑖 (𝑡) is inside C𝑖 (𝑡) at any time
𝑡 and communication of agent 𝑖 ∈ V𝑙 with in-neighbor 𝑗 ∈
N (𝑖), denoted by 𝑤𝑖, 𝑗 (𝑡), is unique and obtained by solving
the following 𝑛+1 algebraic equations [30]:

c𝑖 (𝑡) =
∑︁

𝑗∈I(𝑖,𝑙)
𝑤𝑖, 𝑗 (𝑡)r 𝑗 (𝑡), 𝑖 ∈ V𝑙 , 𝑙 ∈M, (28a)

∑︁
𝑗∈I(𝑖,𝑙)

𝑤𝑖, 𝑗 (𝑡) = 1, 𝑖 ∈ V𝑙 , 𝑙 ∈M . (28b)

To be more precise, communication weights obtained by
Eq. (28) are unique because N(𝑖)’s agents are positioned at
vertices of 𝑛-D simplex in R𝑛. Also, agent 𝑖’s communication
weights are all positive because the geometric centroid c𝑖 (𝑡)
is inside C𝑖 (𝑡) at any time 𝑡 (the proofs for uniqueness and
positiveness of followers’ communication weights under 𝑛-D
polyhedralization are provided in Refs. [30], [31]).

Definition 10. We define weighted communication matrix

𝚲(𝑡) = −I+W(𝑡), (29)

where W(𝑡) =
[
𝑊𝑖 𝑗 (𝑡)

]
∈ R𝑁×𝑁 is non-negative, and its (𝑖, 𝑗)

entry is given by

𝑊𝑖 𝑗 (𝑡) =
{
𝑤𝑖, 𝑗 (𝑡) 𝑖 ∈ V \V0, 𝑗 ∈ N (𝑖)
0 otherwise

. (30)

Theorem 1. Assume every agent 𝑖 ∈ V chooses control input
u𝑖 such that r𝑖 (𝑡) asymptotically tracks r𝑖,𝑑 (𝑡), defined by
Eq. (9). Then, r𝑖 (𝑡) asymptotically converges to the desired
position p𝑖 for every 𝑖 ∈ V.

Proof. If every agent 𝑗 ∈ V0 asymptotically tracks r 𝑗 ,𝑑 (𝑡),
then, actual position r 𝑗 converges to p 𝑗 because r 𝑗 ,𝑑 (𝑡) = p 𝑗 is
constant per Eq. (9). Then, for every 𝑖 ∈W1 \W0, vertices of
the simplex C̄𝑖 , belonging to W0, asymptotically converge to
the vertices C̄𝑖 , where C̄𝑖 and C𝑖 enclose target data subsets D̄𝑖

and D𝑖 , respectively. This implies that r𝑖,𝑑 (𝑡), defined as the
geometric centroid of D𝑖 (𝑡) asymptotically converges to p𝑖 for
every 𝑖 ∈W1. By extending this logic, we can say that this con-
vergence is propagated through the feedforward network. As
the result, for every agent 𝑖 ∈W𝑙 and layer 𝑙 ∈M\{0}, vertices
of simplex C𝑖 (𝑡) asymptotically converge to the vertices of C̄𝑖 ,
which in turn implies that r𝑖,𝑑 (𝑡) asymptotically converges to
p𝑖 . This also implies that r𝑖 asymptotically converges to p𝑖

per the theorem’s assumption.

IV. MULTI-AGENT COVERAGE DYNAMICS, STABILITY
ANALYSIS, AND CONVERGENCE

In this section, we will assume that each agent is a
quadcopter and apply the input-state feedback linearization
described in [32], [33] for trajectory tracking using the block
diagram depicted in Fig. 4. Therefore, the quadcopter dynam-
ics presented in [32], [33] are used to operate the neurons of
the DNN.

Fig. 4: The block digram of the control system of every
quadcopter 𝑖 ∈ V.

A. Quadcopter Dynamics and Trajectory Tracking

To model quadcopter motion, we use 𝑥𝑖 , 𝑦𝑖 , and 𝑧𝑖 to define
quadcopter 𝑖’s position components. We also use 𝜙𝑖 , 𝜃𝑖 , and
𝜓𝑖 to define the roll, pitch, and yaw angles, where the 3-2-1
Euler angle standard is applied to characterize the orientation
of quadcopter 𝑖 ∈ V. Additionally, the thrust force magnitude
produced by the quadcopter 𝑖 ∈ V is denoted by 𝑝𝑖 at time 𝑡.
The dynamics of quadcoper 𝑖 ∈ V is presented in the form of
Eq. (8), where f𝑖 (x𝑖 ,u𝑖) = F (x𝑖) +G (x𝑖)u𝑖 , for every 𝑖 ∈ V,

x𝑖 =
[
𝑥𝑖 𝑦𝑖 𝑧𝑖 ¤𝑥𝑖 ¤𝑦𝑖 ¤𝑧𝑖 𝜙𝑖 𝜃𝑖 𝜓𝑖

¤𝜙𝑖 ¤𝜃𝑖 ¤𝜓𝑖 𝑝𝑖 ¤𝑝𝑖
]𝑇

u𝑖 =
[
𝑢1,𝑖 𝑢2,𝑖 𝑢3,𝑖 𝑢4,𝑖

]𝑇
, (31)
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F (x𝑖) =



¤𝑥𝑖
¤𝑦𝑖
¤𝑧𝑖

𝑝𝑖
𝑚
(sin𝜙𝑖 sin𝜓𝑖 + cos𝜙𝑖 cos𝜓𝑖 sin𝜃𝑖)

𝑝𝑖
𝑚
(cos𝜙𝑖 sin𝜓𝑖 sin𝜃𝑖 − sin𝜙𝑖 cos𝜓𝑖)

𝑝𝑖
𝑚

cos𝜙𝑖 cos𝜃𝑖 −9.81
¤𝜙𝑖
¤𝜃𝑖
¤𝜓𝑖

0
0
0
¤𝑝𝑖
0



, (32)

G (x𝑖) =
[
g1 g2 g3 g4

]
=


09×1 09×3
03×1 I3

0 01×3
1 01×3

 , (33)

By defining transformation x𝑖 →
(
r𝑖 , ¤r𝑖 , ¥r𝑖 , r̈𝑖 ,𝜓𝑖 , ¤𝜓𝑖

)
, we can

use the input-state feedback linearization approach presented
in [32] and convert the quadcopter dynamics to the following
external dynamics [32], [34]:

Ær𝑖 = v𝑖 , (34a)

¥𝜓𝑖 = 𝑢𝜓,𝑖 , (34b)

where v𝑖 is related to the control input of quadcopter 𝑖 ∈ V,
denoted by u𝑖 , by [35]

v𝑖 = M1,𝑖u𝑖 +M2,𝑖 , (35)

with

M1,𝑖 =


𝐿g1

𝐿3
f 𝑥𝑖 𝐿g2

𝐿3
f 𝑥𝑖 𝐿g3

𝐿3
f 𝑥𝑖 𝐿g4

𝐿3
f 𝑥𝑖

𝐿g1
𝐿3

f 𝑦𝑖 𝐿g2
𝐿3

f 𝑦𝑖 𝐿g3
𝐿3

f 𝑦𝑖 𝐿g4
𝐿3

f 𝑦𝑖
𝐿g1

𝐿3
f 𝑧𝑖 𝐿g2

𝐿3
f 𝑧𝑖 𝐿g3

𝐿3
f 𝑧𝑖 𝐿g4

𝐿3
f 𝑧𝑖

𝐿g1
𝐿f𝜓𝑖 𝐿g2

𝐿f𝜓𝑖 𝐿g3
𝐿f𝜓𝑖 𝐿g4

𝐿f𝜓𝑖

 ∈ R
14×14,

(36a)

M2,𝑖 =
[
𝐿4

f 𝑥𝑖 𝐿4
f 𝑦𝑖 𝐿4

f 𝑧𝑖 𝐿2
f𝜓𝑖

]𝑇 ∈ R14×1. (36b)

where the entries of M1,𝑖 and M2,𝑖 are the Lie derivative
terms.

In this paper, we assume that the desired yaw angle is zero
at any time 𝑡, and therefore, we choose

𝑢𝜓,𝑖 = −𝑘5,𝑖 ¤𝜓𝑖 − 𝑘6,𝑖𝜓𝑖 , (37)

where 𝑘5,𝑖 and 𝑘6,𝑖 are both positive. Hence, we can assume
that 𝜓𝑖 (𝑡) = 0 at any time 𝑡, and as a result, the quadcopter
𝑖 ∈ V can be modeled by Eq. (34a). Here, we propose to
choose v𝑖 as follows:

v𝑖 = −𝑘1,𝑖 r̈𝑖 − 𝑘2,𝑖 ¥r𝑖 − 𝑘3,𝑖 ¤r𝑖 + 𝑘4,𝑖
(
r𝑖,𝑑 − r𝑖

)
, 𝑖 ∈ V, (38)

where r𝑖,𝑑 (𝑡) is defined by Eq. (9).

B. Multi-Agent Coverage Stability and Convergence

The quadcopter dynamics can be represented by the external
dynamics of the quadcopter team, given by Eq. (34a) since the
quadcopter dynamics is input-state feedback linerizable [32],
[34]. Therefore, the network dynamics of the quadcopter team
is obtained by [32], [35]

𝑑

𝑑𝑡

©­­­«

Y
¤Y
¥Y
Ÿ


ª®®®¬ = AMQS


Y
¤Y
¥Y
Ÿ

 +BMQSZ, (39)

where Y = vec
( [

r1 · · · r𝑁
]𝑇 )

,

Z = vec
( [

p1 · · · p𝑁

]𝑇 )
,

AMQS =


03𝑁×3𝑁 I3𝑁 03𝑁×3𝑁 03𝑁×3𝑁
03𝑁×3𝑁 03𝑁×3𝑁 I3𝑁 03𝑁×3𝑁
03𝑁×3𝑁 03𝑁×3𝑁 03𝑁×3𝑁 I3𝑁

I3 ⊗ (K4𝚲(𝑡)) −K3I3𝑁 −K2I3𝑁 −K1I3𝑁

 ,
BMQS =

[
09𝑁×3𝑁

I3 ⊗ (K4L)

]
,

K 𝑗 = diag
(
𝑘 𝑗 ,1, · · · , 𝑘 𝑗 ,𝑁

)
, 𝑗 = 1,2,3,4,

I3𝑁 ∈ R3𝑁×3𝑁 is the identity matrix, 03𝑁×3𝑁 ∈ R3𝑁×3𝑁 is
a zero-entry matrix, “⊗” is Kronecker product symbol, and
“vec” is the matrix vectorization operator. Also, L =

[
𝑙𝑖 𝑗

]
∈

R𝑁×𝑁 is defined by

𝑙𝑖 𝑗 =

{
1 𝑖 ∈ V1, 𝑗 ∈ N (𝑖)
0 otherwise

. (40)

The quadcopter team collective dynamics, given by Eq. (39),
is linear and time-varying because 𝚲(𝑡) = −I +W(𝑡) and
W(𝑡) ∈ R𝑁×𝑁 is a time-varying weight matrix. Therefore, it
is difficult to choose control gain matrices K1 through K4 to
ensure stability of quadcopter team coordination if we consider
dynamics Eq. (39) for analysis. In order to tackle this problem,
we first use Theorem 2 below to convert dynamics (39) to a set
of chained linear time-invariant dynamics with bounded inputs.
Then, we provide conditions on the stability and convergence
of the agent team dynamics in Theorem 4.
Definition 11. Assuming |V𝑙 | = 𝑁𝑙 , for every 𝑙 ∈ M, O𝑙
assigns a unique order number to every V𝑙’s agent, where
𝑁−1 = 0. The order number of agent 𝑖 ∈ V𝑙 is denoted by 𝑜𝑖 ,
where 𝑜𝑖 = O𝑙 (𝑖), for every 𝑙 ∈M.

Definition 12. We define transformation matrix Q𝑙 =

[
𝑄𝑙

𝑖 𝑗

]
∈

R𝑁𝑙×𝑁 with (𝑖, 𝑗) entry

𝑄𝑙
𝑖 𝑗 =

{
1 𝑗 = O𝑙 (𝑖), 𝑖 ∈ V𝑙

0 else
, 𝑙 ∈M . (41)

We note that
Q𝑙Q𝑇

𝑙 = I𝑁𝑙
, ∀𝑙 ∈M, (42)

where I𝑁𝑙
∈ R𝑁𝑙×𝑁𝑙 is the identity matrix.

Definition 13. We define
Z̄𝑙 = (I3 ⊗Q𝑙)Z ∈ R3𝑁𝑙×1, 𝑙 ∈M, (43)

as the vector aggregating desired position components of all
agents defined by V𝑙 when agents’ order numbers are defined
by O𝑙 , for every 𝑙 ∈M.

Definition 14. We define
Ȳ𝑙 = (I3 ⊗Q𝑙)Y ∈ R3𝑁𝑙×1, 𝑙 ∈M, (44)

as the vector aggregating actual position components of all
agents defined by V𝑙 when agents’ order numbers are defined
by O𝑙 , for every 𝑙 ∈M.
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Definition 15. We define

S̄𝑙 =

[
Ȳ𝑇
𝑙
¤̄Y𝑇
𝑙
¥̄Y𝑇
𝑙
¨̄Y𝑇
𝑙

]𝑇
∈ R12𝑁𝑙×1, 𝑙 ∈M, (45)

to aggregate components of position, velocity, acceleration,
and jerk of every agent belonging to V𝑙 when agents’ order
numbers are defined by O𝑙 , for every 𝑙 ∈M.

Definition 16. We define
W̄𝑙 (𝑡) = Q𝑙W(𝑡)

[
Q𝑇

𝑙−1 · · · Q𝑇
0
]
, 𝑙 ∈M \ {0} , (46)

as the actual weight matrix aggregating actual communica-
tion weights between V𝑙’s agents and other agents belonging
to V0∪ · · · ∪V𝑙−1, for every 𝑙 ∈M \ {0}.

𝑊̄ 𝑙
𝑜𝑖𝑜 𝑗

=

{
𝑊𝑖 𝑗 (𝑡) 𝑖 ∈ V𝑙 , 𝑗 ∈ N (𝑖) ⊂ V𝑙−1

0 otherwise
, 𝑙 ∈M \ {0} .

(47)

Remark 2. Matrix W̄𝑙 ∈ R𝑁𝑙×(𝑁0+···+𝑁𝑙−1 ) is non-negative for
𝑙 ∈M \ {0}, and sum of the entries of every row of W̄𝑙 is 1.

Definition 17. We define
𝚪̄𝑙 = Q𝑙𝚪

[
Q𝑇

𝑙−1 · · · Q𝑇
0
]
, 𝑙 ∈M \ {0} , (48)

as the desired weight matrix aggregating desired com-
munication weights between V𝑙’s agents and other agents
belonging to V0∪ · · · ∪V𝑙−1, for every 𝑙 ∈M \ {0}.

Definition 18. We define
K̄𝑙,ℎ = Q𝑙KℎQ𝑇

𝑙 ∈ R
𝑁𝑙×𝑁𝑙 , 𝑙 ∈M, ℎ = 1, · · · ,4, (49)

as a diagonal matrix aggregating the ℎ-th control gains applied
by V𝑙’s agents, where 𝑜𝑖 = O𝑙 (𝑖) is the order number of 𝑖 ∈ V𝑙

and the (𝑜𝑖 , 𝑜𝑖) entry of K̄𝑙,ℎ is denoted by 𝐾
𝑙,ℎ
𝑜𝑖𝑜𝑖 and given

by
𝐾 𝑙,ℎ
𝑜𝑖𝑜𝑖

= 𝑘𝑖,ℎ, 𝑖 ∈ V𝑙 , 𝑙 ∈M, ℎ = 1, · · · ,4. (50)

Remark 3. Given Q0 and L, defined by Eqs. (41) and (40),
respectively, the following relation holds:

Q0LQ𝑇
0 = I𝑁0 . (51)

Definition 19. We define

R̄𝑙 =
©­­«I3 ⊗


Q𝑙−1
...

Q0


ª®®¬Y. (52)

Theorem 2. The agent team collective dynamics can be
converted to { ¤̄S𝑙 = A𝑙S̄𝑙 +B𝑙Ū𝑙

Ȳ𝑙 = C𝑙S̄𝑙

, ∀𝑙 ∈M (53)

where S̄𝑙 ∈ R12𝑁𝑙×1 is state vector, Ȳ𝑙 ∈ R3𝑁𝑙×1 is the output
vector, and

Ū𝑙 =

{
Z̄𝑙 𝑙 = 0 ∈M(
I3 ⊗ W̄𝑙

)
R̄𝑙 𝑙 ∈M \ {0}

(54)

is the input vector. Also,

A𝑙 =


03𝑁𝑙×3𝑁𝑙

I3𝑁𝑙
03𝑁𝑙×3𝑁𝑙

03𝑁𝑙×3𝑁𝑙

03𝑁𝑙×3𝑁𝑙
03𝑁𝑙×3𝑁𝑙

I3𝑁𝑙
03𝑁𝑙×3𝑁𝑙

03𝑁𝑙×3𝑁𝑙
03𝑁𝑙×3𝑁𝑙

03𝑁𝑙×3𝑁𝑙
I3𝑁𝑙

−I3 ⊗ K̄𝑙,4 −I3 ⊗ K̄𝑙,3 −I3 ⊗ K̄𝑙,2 −I3 ⊗ K̄𝑙,1

 , 𝑙 ∈M,

(55a)

B𝑙 =

[
09𝑁𝑙×3𝑁𝑙

I3 ⊗ K̄𝑙,4

]
, 𝑙 ∈M, (55b)

C𝑙 =
[
I3𝑁𝑙

03𝑁𝑙×9𝑁𝑙

]
, 𝑙 ∈M, (55c)

I3 ∈ R3×3 and I3𝑁𝑙
∈ R3𝑁𝑙×3𝑁𝑙 are identity matrices;

03𝑁𝑙×9𝑁𝑙
∈ R3𝑁𝑙×9𝑁𝑙 , 09𝑁𝑙×3𝑁𝑙

∈ R9𝑁𝑙×3𝑁𝑙 , 03𝑁𝑙×3𝑁𝑙
∈

R3𝑁𝑙×3𝑁𝑙 , and 09𝑁𝑙×9𝑁𝑙
∈ R9𝑁𝑙×9𝑁𝑙 are zero-entry matrices.

Proof. The agent team dynamics (39) can be rewritten as
follows:

4∑︁
ℎ=1
(I3 ⊗Kℎ)

𝑑4−ℎY
𝑑𝑡4−ℎ

+ (I3 ⊗K4W(𝑡))Y+ (I3 ⊗K4L)Z = 0.

(56)
BecauseV0’s agents do not communicate with any other agent,

Q0W(𝑡) = 0𝑁0×𝑁 ∈ R𝑁0×𝑁 , 0 ∈M .

Also, entries of row ℎ of matrix L are all zero, if ℎ ∉V0. This
implies that

Q𝑙L(𝑡) = 0𝑁𝑙×𝑁 ∈ R𝑁𝑙×𝑁 , ∀𝑙 ∈M \ {0} .

Therefore, pre-multiplying Eq. (56), by I3 ⊗ Q𝑙 , Eq. (56)
simplifies to

4∑︁
ℎ=1
(I3 ⊗Q0Kℎ)

𝑑4−ℎY
𝑑𝑡4−ℎ

+ (I3 ⊗Q0K4L)Z = 0, 𝑙 = 0, (57a)

∑4
ℎ=1 (I3 ⊗Q𝑙Kℎ)

𝑑4−ℎY
𝑑𝑡4−ℎ

+ (I3 ⊗Q𝑙K4W(𝑡))Y = 0, 𝑙 ∈M \ {0} .
(57b)

When we use order number to sort agents, the following
relations hold:
(I3 ⊗Q0K4L)Z =

(
I3 ⊗

(
Q0K4Q𝑇

0 Q0LQ𝑇
0

))
(I3 ⊗Q0)Z

=
(
I3 ⊗ K̄0,4I𝑁0

)
Z̄0 =

(
I3 ⊗ K̄0,4

)
Z̄0,

(AA)

(I3 ⊗Q𝑙Kℎ)Y =

(
I3 ⊗

(
Q𝑙KℎQ𝑇

𝑙

)
(I3 ⊗Q𝑙)

)
Y

=
(
I3 ⊗ K̄𝑙,ℎ

)
Ȳ𝑙 ,

(BB)

(I3 ⊗Q𝑙K4W)Y =

(
I3 ⊗Q𝑙K4Q𝑇

𝑙 Q𝑙W
) (

I3 ⊗
[
Q𝑇

𝑙−1 · · · Q𝑇
0
] ) ©­­«I3 ⊗


Q𝑙−1
...

Q0


ª®®¬Y =

(I3 ⊗Q𝑙K4W)Y =

(
I3 ⊗Q𝑙K4Q𝑇

𝑙 Q𝑙W
[
Q𝑇

𝑙−1 · · · Q𝑇
0
] ) ©­­«I3 ⊗


Q𝑙−1
...

Q0


ª®®¬Y =

(
I3 ⊗ K̄𝑙,4W̄𝑙

)
R̄𝑙 .

(CC)

Therefore, by substituting (AA), (BB), and (CC), Eqs. (57a)
and (57b) simplify to

4∑︁
ℎ=1

(
I3 ⊗ K̄0,ℎ

) 𝑑4−ℎȲ0

𝑑𝑡4−ℎ
+

(
I3 ⊗ K̄0,4

)
Z̄𝑙 = 0, 𝑙 = 0, (58a)

∑4
ℎ=1

(
I3 ⊗ K̄𝑙,ℎ

) 𝑑4−ℎȲ𝑙

𝑑𝑡4−ℎ
+

(
I3 ⊗ K̄𝑙,4W̄𝑙 (𝑡)

)
R̄𝑙 = 0, 𝑙 ∈M \ {0} .

(58b)
Now, we can rewrite Eqs. (58a) and (58b) in the state space
form given by Eq. (53).

Note that the equilibrium set of the agent team dynamics,
given by Eq. (39), is achieved if the following condition holds:∧

𝑙∈M

∧
𝑖∈V𝑙

(
r𝑖 = r𝑖,𝑑

)
. (59)
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When we use Eq. (53) to model the agent team dynamics,
equilibrium is achieved if the following conditions hold:

Ȳ0 = Z̄0, (60a)∧
𝑙∈M\{0}

(
Ȳ𝑙 −

(
I3 ⊗ W̄𝑙

)
R̄𝑙

)
. (60b)

Theorem 3. At equilibrium condition, specified by Eqs. (60a)
and (60b), 𝑤𝑖, 𝑗 =𝜛𝑖, 𝑗 which in turn implies that W̄𝑙 = 𝚪̄𝑙 , for
every 𝑙 ∈M \ {0}.

Proof. For 𝑙 = 0 ∈ M, r𝑖,𝑑 = p𝑖 , therefore, we can conclude
that r 𝑗 ,𝑑 = p 𝑗 , for every 𝑗 ∈ V1, if r𝑖 = p𝑖 , for every 𝑖 ∈ V0.
This is because r 𝑗 ,𝑑 assigned by Eq. (27) is at the geometric
centroid of distribution of the data subset D 𝑗 (𝑡) and D 𝑗 = D̄ 𝑗

when r𝑖 = p𝑖 , for every 𝑖 ∈ V0, which in turn implies that r 𝑗 ,𝑑

converges to p 𝑗 for every 𝑗 ∈ V1. With the similar logic, we
can claim that r 𝑗 ,𝑑 = p 𝑗 for every agent 𝑗 ∈ V𝑙 , if r𝑖 = p𝑖 for
every agent 𝑖 ∈ V0∪ · · · ∪V𝑙−1, for 𝑙 ∈M \ {0}.

If r𝑖,𝑑 = r𝑖 = p𝑖 for every 𝑖 ∈V, communication weight 𝜛𝑖, 𝑗 ,
assigned by Eqs. (25a) and (25b), is identical to actual commu-
nication weight 𝑤𝑖, 𝑗 , assigned by Eqs. (28a) and (28b). This
implies that W = 𝚪 and W̄𝑙 = 𝚪̄𝑙 , for every 𝑙 ∈M \ {0}.

Theorem 4. Assume every agent 𝑖 ∈ V is modeled by dynam-
ics (34a), and chooses control input v𝑖 , with control gain 𝑘1,𝑖 ,
𝑘2,𝑖 , 𝑘3,𝑖 , and 𝑘4,𝑖 , such that matrices A0, A1, · · · , A𝑀 are all
Hurwitz. Then, r𝑖 (𝑡) asymptotically converges to the desired
position p𝑖 for every 𝑖 ∈ V.

Proof. Matrices A𝑙 and B𝑙 are time-invariant for every 𝑙 ∈M.
By choosing proper gain metrics K̄𝑙,ℎ, for every 𝑙 ∈ M and
ℎ = 1, · · · ,4, we can ensure that A𝑙 is Hurwitz. Additionally,
W̄𝑙 is non-negative and one-sum row, for every 𝑙 ∈M\{0} at
any time 𝑡 (see Remark 2). Therefore, we can guarantee that
the coverage dynamics (53) is Bounded Input Bounded Output
(BIBO) stable, which in turn implies that ∥S̄𝑙 (𝑡)∥ is bounded
at any time 𝑡, for every 𝑙 ∈M. Now, assuming A0 is Hurwitz,
Ȳ0→ Z̄0 as 𝑡→∞ which in turn implies ∥r𝑖 (𝑡) −p𝑖 ∥ → 0 as
𝑡→∞, for every 𝑖 ∈ V0. This also implies that W̄1→ 𝚪̄1 and
r 𝑗 ,𝑑→ p 𝑗 for every 𝑗 ∈ V1 per Theorem 3. By extending this
logic, we can prove that Ȳ𝑙 → Z̄𝑙 and W̄𝑙 → 𝚪̄𝑙 as 𝑡→∞, if
A0, · · ·A𝑙 are all Hurwitz, for every 𝑙 ∈M\{0}. This implies
that ∥r𝑖 (𝑡) −p𝑖 ∥ → 0 for every 𝑖 ∈ V𝑙 and 𝑙 ∈M.

We can apply pole placement to assign diagonal control gain
matrices K̄𝑙,ℎ for every ℎ ∈ {1, · · · ,4} and 𝑙 ∈M every matrix
Ā𝑙 is Hurwitz.

V. SIMULATION RESULTS

We consider an agent team consisting of 57 quadcopters
with the reference configuration shown in Fig. 5, where we
use the model and trajectory control presented in Refs. [32],
[33] for multi-agent coverage simulation. Here quadcopters 1
through 4 defined by set V𝐵 = {1,2,3,4} are the boundary
leader agents; agent 5 defined by singleton V𝐶 = {5} is
the core leader; and the remaining agents defined by V𝐼 =

{6, · · · ,57} are followers.

TABLE I: Agents’ order numbers
𝑙 ∈ M 0 0 0 0 0 1 1 1 1 2
𝑖 ∈ V𝑙 1 2 3 4 5 6 19 32 45 7
O𝑙 (𝑖) 1 2 3 4 5 6 7 8 9 10

𝑙 ∈ M 2 2 2 2 2 2 2 2 2 2
𝑖 ∈ V𝑙 8 9 20 21 22 33 34 35 46 47
O𝑙 (𝑖) 11 12 13 14 15 16 17 18 19 20

𝑙 ∈ M 2 3 3 3 3 3 3 3 3 3
𝑖 ∈ V𝑙 48 10 11 12 13 14 15 16 17 18
O𝑙 (𝑖) 21 22 23 24 25 26 27 28 29 30

𝑙 ∈ M 3 3 3 3 3 3 3 3 3 3
𝑖 ∈ V𝑙 23 24 25 26 27 28 29 30 31 36
O𝑙 (𝑖) 31 32 33 34 35 36 37 38 39 40

𝑙 ∈ M 3 3 3 3 3 3 3 3 3 3
𝑖 ∈ V𝑙 37 38 39 40 41 42 43 44 49 50
O𝑙 (𝑖) 41 42 43 44 45 46 47 48 49 50

𝑙 ∈ M 3 3 3 3 3 3 3 - - -
𝑖 ∈ V𝑙 51 52 53 54 55 56 57 - - -
O𝑙 (𝑖) 51 52 53 54 55 56 57 - - -

A. DNN Structure

The inter-agent communications are directional and shown
by blue vectors in Fig. 5. The communication graph is defined
by G (V,E) and converted into the neural network shown in
Fig. 6 with four layers, thus, M = {0,1,2,3} (𝑀 = 3), and
V can be expressed as V =V0

⋃V1
⋃V2

⋃V3, where V𝑙 is
defined in Table I for every 𝑙 ∈ M. Note that 𝑁0 = |V0 | = 5,
𝑁1 = |V1 | = 4, 𝑁2 = |V2 | = 12, and 𝑁3 = |V3 | = 36. In Fig. 5,
the agents represented by W0, W1, W2, and W3 are colored
by cyan, red, green, and black, respectively.

Fig. 5: Reference Configuration of the quadcopter team in a
horizontal plane parallel to the 𝑥 − 𝑦 plane. The inter-agent
communication are directional and shown by blue arrays.

B. Abstract Representation of Target Data set

We apply the proposed coverage algorithm to cover elliptic,
multi-circle, and triangular zones, each specified by the corre-
sponding data set D, where D defines 500 data points shown
by green spots in Figs. 7 (a,b,c). As shown, each target set is
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Fig. 6: The feed-forward network used for specifying inter-
agent communication among the quadcopter team.

represented by 52 points positioned at p6 through p57, where
they are obtained by using the approach presented in Section
III-B. These points are shown by red in Figs. 7 (a,b,c).

C. Trajectory Tracking and Coverage Convergence

For simulation, we let every agent 𝑖 ∈ V use the same
control gain 𝑘1 = 𝑘1,𝑖 = 7, 𝑘2 = 𝑘2,𝑖 = 17.75, 𝑘3 = 𝑘3,𝑖 = 19.25,
and 𝑘4 = 𝑘4,𝑖 = 7.5. Therefore, gain matrices K1 = 7I57, K2 =
17.75I57, K3 = 19.25I57, and K4 = 7.5I57 are obtained. By
using Eq. (49),

K̄𝑙,ℎ = 𝑘ℎI𝑁𝑙
, 𝑙 ∈M, ℎ = 1, · · · ,4,

is obtained. Figure 8 shows the components of actual and
desired positions of quadcopters 13, 45, and 51 plotted versus
time overt time interval [0,20]𝑠, by solid black and dashed
red, respectively. As seen, the actual positions of these three
agents almost reached the desired positions at time 𝑡 = 12𝑠.
Figure 9 shows the time-varying communication weights of
agent 41 with its in-neighbors defined by N41 = {34,5,32}.
As shown, 𝑤41, 𝑗 (𝑡) converges to its desired value of 𝜛41, 𝑗 in
about 12 seconds for every 𝑗 ∈ N41. Decentralized coverage
convergence is also demonstrated in Fig. 10 by showing the
agent team configurations at different sample times when the
target data is by a finite and discrete set over the triangular
domain shown in Fig. 7 (c).

VI. DISCUSSION

The paper assumes that the target data set is discrete,
while available work on multi-agent coverage usually uses
continuous mass density functions to define target distribution
in the motion space. The proposed DNN-based can also
achieve a decentralized distributed coverage when the target
is defined by a smooth mass density function. For such a
problem, we first obtain target set D′ by uniform discretization
of the motion space. Then, we use the Gaussian distribution to
generate the intensity (mass density) function T :D′→ (0,1).
More specifically, we define D′ =

{
1, · · · , 𝑛′

𝑑

}
as 𝑛′

𝑑
nodes

uniformly distributed in the motion space, where node ℎ ∈ D′
is positioned at d′

ℎ
. The intensity function is then defined by

T (r) =
∑︁
ℎ∈D′
N

(
r;d′ℎ,𝚺

′
ℎ

)
, ∀𝑙 ∈ D′, (61)

(a)

(b)

(c)
Fig. 7: Desired (a) elliptic, (b) multi-circular, and (c) triangular
target distributions. The red spots are the abstract representa-
tion of the target sets by 52 nodes.

where N
(
r;d′

ℎ
,𝚺′

ℎ

)
is a multi-variate normal distribution

specified by mean vector d′
ℎ

and covariance matrix 𝚺′
ℎ
. Hence,

r̄𝑖 =

∫
C𝑖
T (r) 𝑑𝑆∫

C𝑖
T (r) 𝑑𝑆

(62)

is the geometric centroid of subset set D𝑖 (𝑡) ⊂ D, and the
DNN weights can be trained by solving sub-equations of Eq.
(25).

VII. CONCLUSION AND FUTURE WORK

We proposed a novel neural-network-based approach for
multi-agent coverage of a target with unknown distribution. We
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: (a,c,e) 𝑥 components of actual position of agents 13,
45, and 51 over time interval [0,20]𝑠 shown by solid black
curves. 𝑥 components of desired position of agents 13, 45, and
51 over time interval [0,20]𝑠 shown by dashed red curves.
(b,d,f) 𝑦 components of actual position of agents 13, 45, and
51 over time interval [0,20]𝑠 shown by solid black curves. 𝑦
components of desired position of agents 13, 45, and 51 over
time interval [0,20]𝑠 shown by dashed red curves.

developed a forward approach to train the weights of the cover-
age neural network such that: (i) the target is represented by a
finite number of points; (ii) the multi-agent system quickly and
decentralizedly converges to the designated points representing
the target distribution. The paper also developed a novel
approach for structuring inter-agent communication based on
agents’ reference configurations arbitrarily distributed in R𝑛.
For validation, we performed a simulation of multi-agent
coverage using a team of 57 quadcopters, each of which is
represented by at least one neuron of the coverage neural
network. The simulation results verified the fast and decentral-
ized convergence of the proposed multi-agent coverage, where
each quadcopter reached its designated position in about 12
seconds.

In this paper, we used the feedback linearization approach
to design a nonlinear trajectory tacking control, where the

Fig. 9: Communication weights of agent 41 with in-neighbor
agents 34, 5, and 32. The time varying communication weights
𝑤41,34 (𝑡), 𝑤41,5 (𝑡), and 𝑤41,32 (𝑡) converge to the desired
values 𝜛41,34, 𝜛41,5, and 𝜛41,32 in about 12 seconds.

eigen analysis method was applied to design the control gains.
The Lyapunov direct method can also be used to assure
stability and convergence of multi-agent coverage. Particularly,
the outcome of Theorem 4 can be extended to DNN-based
coverage by agents modeled by nonlinear dyanamics if u𝑖 is
chosen such that the global stability of trajectory tracking is
proven. For future work, we plan to extend the proposed DNN-
based approach to search targets with a distribution given
by a mass density function. Another future plan is to study
DNN-based coverage of dynamic targets by providing guar-
antee conditions for the stability of multi-agent coordination
and the decentralized convergence of the actual agent team
configuration to a desired time-varying configuration that best
represents a distributed target.
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