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We introduce a field-theory framework in which fields transform under the little group, rather than
the Lorentz group, specific to each particle type. By utilizing these fields, along with spinor products
and the x factor, we construct a field-theory action that naturally reproduces the vertices of the
Constructive Standard Model (CSM). This approach eliminates unphysical components, significantly
reduces the degrees of freedom compared to traditional field theory, and offers deeper insights
into the power of constructive amplitudes. Our action is momentum-conserving, Lorentz-invariant,
Hermitian, and non-local. We also discuss this as a framework for developing new constructive field
theories, discussing their essential properties and potential applicability in renormalization theory
and non-perturbative calculations.
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I. INTRODUCTION

Originally, constructive theory was developed from the
ground up, based purely on the properties of the S ma-
trix: its analyticity, unitarity, and its behavior under
Lorentz transformations and other symmetry transfor-
mations. Amplitudes were constructed based on these
properties, without reference to fields or field theory,
leading to questions about the necessity and importance
of the field concept. Two pinnacles of this work were
the discovery of an extremely simple expression involv-
ing one term for the maximally helicity-violating ampli-
tude for any number of gluons [1], and a recursion rela-
tion that allowed the construction of any amplitude by
gluing together three-point vertices, provided the ampli-
tude could be shown to vanish as the complex parameter,
used to complexify the momenta, was taken to infinity
[2]. Later, [3] showed how to extend these methods in a
natural way to massive theories with any spin. Following
this, the complete set of three-point and four-point ver-
tices of the Constructive Standard Model (CSM) were
described [4, 5] and the CSM was shown to be pertur-
batively unitary, a complete set of four-point amplitudes
were calculated and validated against Feynman diagrams
[6], the C++ package SPINAS was created [7], allowing
convenient and efficient phase-space calculations of con-
structive amplitudes, and many other calculations were
performed [8–22].

On the other hand, if a momentum shift could not
be found, it appeared that an additional “contact” term
was needed to achieve the correct result. However, in a
renormalizable theory such as the Standard Model (SM),
additional contact terms beyond those found in Feynman
diagrams seem to contradict its renormalizability, where
there should only be a finite number of adjustable param-
eters. Moreover, every four-point amplitude in the CSM
has been calculated and found to agree with Feynman
diagrams, despite the fact that neither contact terms be-
yond the three CSM four-point vertices nor any momen-
tum shifts were needed or used for any of the calculations
[6, 7].

In fact, initial suggestions for momentum shifts for

mailto:nchris3@ilstu.edu


2

eēµ̄µ did not result in a vanishing amplitude when the
complex parameter was taken to infinity [17], which ap-
peared to indicate that a contact term was necessary.
However, once all the on-shell identities were discovered
and applied, it became clear that a contact term was not
needed [20]. Later, momentum shifts were discovered
that did make the amplitudes vanish in the appropri-
ate limit [21, 22], thereby clarifying why the constructive
amplitude worked and agreed with Feynman diagrams.

Moreover, the discovery of a momentum shift was
never required for Feynman diagrams, presumably be-
cause they were based on a field theory [32], which in-
herently possessed the desired properties for construct-
ing scattering amplitudes. As long as the traditional
field theory satisfies certain properties such as locality,
Lorentz invariance, symmetry invariance, and Hermitic-
ity, and the perturbation theory is unitary, its conse-
quences are expected to be consistent, allowing direct
comparison with experimental results.

Furthermore, traditional field theory allows for the
renormalization of fields, along with other parameters of
the theory, which is essential for canceling the infinities
that arise in two-point functions. In constructive ampli-
tudes, the formal proof of renormalizability has yet to
be established. Nevertheless, the consistent agreement
between constructive amplitudes and Feynman diagrams
suggests that the theory is renormalizable, meaning that
only a finite number of infinities would need to be ad-
dressed. However, the absence of fields in constructive
theory introduces a challenge in understanding how these
infinities are formally canceled.

Another significant advantage of the field-theory ap-
proach in particle physics is its ability to facilitate non-
perturbative calculations. In particular, the action can
be embedded in a functional integral, which can then be
discretized on a lattice. Constructive methods, in con-
trast, have so far been limited to perturbative calcula-
tions, and embedding them in a lattice framework has
not yet been achieved.

Given this background, it is natural to consider
whether a field-theory action can be developed for con-
structive calculations, thereby harnessing the benefits
and insights that field theory provides. Such an ap-
proach could offer an alternative criterion for determining
whether an amplitude can be derived from the vertices.
Moreover, introducing a field theory for constructive am-
plitudes could provide a more robust theoretical basis
for renormalization, particularly if all infinities can be
canceled using the fields and parameters of the theory.
Additionally, embedding this field theory in a functional
integral and placing it on the lattice might offer advan-
tages over traditional lattice field theory, similar to the
benefits seen in constructive perturbation theory.

Previous attempts to find a field theory for construc-
tive calculations began with traditional field theory [23–
31]. However, our goal is a ground-up construction of
field theory based on its fundamental properties: mo-
mentum conservation, Lorentz invariance, symmetry in-

variance, Hermiticity, and unitarity of the perturbation
theory. Whether these criteria are sufficient for ensuring
causality remains to be proven. Nevertheless, if the per-
turbative amplitudes derived from the CSM continue to
agree exactly with Feynman diagrams, we can at least
assert that the CSM is causal. This suggests that other
field theories constructed with similar principles might
also be causal, perhaps with some additional criteria yet
to be discovered.

To be clear, locality was never a requirement. Rather,
it satisfied our intuitions that forces should not act
through a distance, and it was sufficient, along with the
other properties, to achieve causality. In the past, there
wasn’t sufficient reason to pursue non-local field theories
of the type described here. However, in the present con-
text with constructive rules, which are non-local, agree-
ing exactly with Feynman diagrams, it is clear that it is
time to rethink this expectation.

In this paper, we present a field theory for the CSM
in terms of fields that are minimal and never contain
unphysical components. We achieve this by introduc-
ing fields that transform under the little group from the
outset, rather than the Lorentz group. This approach
aligns with the fact that particles transform under the
little group, not the Lorentz group. (The momentum
still transforms under the Lorentz group; here, we refer
to the degrees of freedom of the particle and field.) We
formulate our theory in momentum space, which is natu-
ral given its connection with known constructive vertices
and because the corresponding spacetime action, which
requires a Fourier transform, has yet to be fully devel-
oped for constructive theory.

One limitation of our action is that the electroweak
symmetry is broken from the beginning. We do not yet
have a complete understanding of the Higgs mechanism
within this field theory and aim to clarify this in future
work. Additionally, we cannot currently explain the rela-
tionship between the couplings of the triple-gluon vertex
and the gluon-quark vertices. We consider these limi-
tations as deficiencies in the current constructive field
theory, but we remain hopeful that these challenges can
be addressed in future research.

The importance of this field-theory formulation goes
beyond the CSM. If constructive calculations can be ob-
tained directly from a non-local field-theory action, as-
suming all the required properties are met, then there
is no reason we cannot construct new theories beyond
the Standard Model directly in a non-local field-theory
framework, as described here, without relying on their
connection to Feynman diagrams. We can simply write
the action, analogous to the approach in traditional field
theory, determine its vertices, calculate its amplitudes,
and compare these with experimental results. This non-
local field theory would stand on its own as a model for
particle physics, offering definite predictions at the same
level of rigor and consistency as those obtained through
local field theory. Whether this conjecture is correct will
require further research, but it presents an exciting av-
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enue to pursue.

The remainder of this paper has the following struc-
ture. In Sec. II, we introduce the non-local field-theory
action for the CSM. We begin by introducing fields
for all the particles, their Lorentz transformations and
their Hermitian conjugates. We follow this with the
quadratic part of the action, which gives the propaga-
tors, in Sec. IIA. In Sec. II B, we describe the three-
point field interactions for all-massless fields. We include
the interactions with massless quarks and leptons, since
sometimes taking their massless limit is useful. Following
this, in Sec. II C, we give the interactions between pho-
tons, gluons and gravitons with massive fields. The Higgs
and the W and Z interactions are described in Sec. IID,
only after the electroweak symmetry is broken. We dis-
cuss what features of the Higgs mechanism can currently
be seen from this non-local field theory in Sec. II E, and
discuss possible ways to make further progress in this im-
portant area. In all these subsections, we also show that
the action is Hermitian. In Sec. III, we conclude.

We have also included several appendices. In App. A,
we attempt to motivate our field theory construction.
This discussion will also review the little-group transfor-
mations and describe the Lorentz transformation of the
fields. We begin with a very short analogy with Newton’s
Law in App. A 1. Following this, we review the proper-
ties of a single-particle state and its little-group transfor-
mations in App. A 2. Traditional field theory with the
embedding of particles in Lorentz-transforming fields is
discussed very briefly in App. A 3. Our discussion of the
little-group transforming fields and their basic properties
is discussed in App. A 4. Lorentz transformations are de-
scribed in greater detail in App. A 5, wherein we discuss
the pertinent details of the generators of Lorentz transfor-
mations. We follow this with a description of the helicity
spinors and the spin spinors, and their transformation
properties under both the Lorentz group and the little-
group in App. A 6. Finally, everything is put together to
obtain Lorentz invariants and little-group invariants in
App. A 7. It is in this last sub-section that we put every-
thing together and describe the requirements for writing
symmetry invariant action terms. We also introduce x

and x̃ here, and we discuss the naive power counting of
the interactions.

In App. B, we discuss locality and why our field theory
is non-local. We begin with an example of a local field
theory in App. B 1. Next, we consider a simple field
theory with momentum in the denominator and show
that it is non-local in App. B 2. Finally, we show that
a field theory with spinor products is also non-local in
App. B 3.

We have also included App. C, showing how the ver-
tices and propagators come from the field-theory action
in two examples. We first work out the triple-gluon ver-
tex in App. C 1. This is followed by the W -lepton vertex
in App. C 2.

II. THE ACTION

In order to write a field theory action for the parti-
cles of the CSM, we will first need to introduce fields for
each of the particles. We have discussed this in detail in
App. A, which relies significantly on Ref. [32], however,
we summarize some relevant aspects here. Our objective
is to introduce fields that do not contain unphysical de-
grees of freedom and to write free quadratic as well as
interaction cubic and quartic action terms for them in a
minimal way. We expect that this field theory will result
in the perturbative rules in constructive theory, using the
spinors and their products.

Traditionally, the formulation of a field theory action
begins in position space. This approach has historical
roots, as fields like the electromagnetic field were origi-
nally developed in spatial terms. It also facilitates the
construction of a local theory, which is considered desir-
able both because it aligns with the intuition that in-
teractions should not occur over a distance and because
it simplifies the construction of causal theories. How-
ever, the action could equally be formulated in momen-
tum space. In many ways, this is more natural for parti-
cle physics, where experiments typically involve particles
with definite momenta rather than positions. Moreover,
if momentum conservation is respected in every term and
if all explicit momenta appear polynomially, then the ac-
tion in momentum space will be equivalent to a local
action in position space. This equivalence holds for tra-
ditional field theory, from which Feynman diagrams are
derived.

Constructive interactions, however, while conserving
momentum, are inherently non-local (see App. B). De-
spite this, they appear to be causal, as they have consis-
tently agreed with Feynman diagrams for the amplitudes
calculated so far, including all tree-level four-point ampli-
tudes in the Standard Model [6]. To clarify, locality was
never a strict requirement for causality, but local theories
have been both causal and straightforward to construct.
For this reason, non-local particle field theories of the
type described here were not extensively explored in the
past. However, with the growing importance of construc-
tive calculations and their intrinsic non-locality, it is now
time to explore non-local actions in detail.

This paper aims to formulate a complete non-local ac-
tion for the CSM. Since the known constructive ampli-
tude rules are formulated in momentum space, it is more
straightforward to begin there and, eventually, work back
to position space. While the exact form of the construc-
tive field theory in position space remains unknown, this
work will lay the foundation for its future discovery.

To determine the properties of the fields in our the-
ory, we must first understand the transformation prop-
erties of their corresponding particle excitations. The
fields should transform in the same manner as the quan-
tum states of the particles they represent, as reviewed in
App. A 2. Generally speaking, the quantum state of a
particle transform to a linear combination of the quan-
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tum states for that particle at the new momentum, where
the coefficients are determined by representations of the
little-group.

For massless particles, this transformation occurs un-
der the helicity little group, where each helicity trans-
forms independently, each within its own invariant sub-
space. For example, positive and negative helicity pho-
tons transform separately and do not mix under Lorentz
transformations, a property also shared by massless neu-
trinos, gluons, and gravitons. Neutrinos, for instance,
exist as distinct states – a negative helicity neutrino and
a positive helicity anti-neutrino – each transforming inde-
pendently. Similarly, positive and negative helicity glu-
ons and gravitons are distinct states. Therefore, their
corresponding fields should reflect these properties, with
each helicity represented by a single field degree of free-
dom and those separate helicity fields should not mix
under Lorentz transformations.

In particular, this means that we will not use vector
fields for photons and gluons; we will not use second-
rank tensor fields for gravitons; and we will not use
Dirac or Weyl spinor fields for neutrinos. Not only would
such fields introduce unphysical degrees of freedom, but
they would necessitate the invention of gauge symmetries
for photons and gluons, and diffeomorphism symmetry
for gravitons. Moreover, the components of these fields
would transform under the full Lorentz group, rather
than the little group, and mix their degrees of freedom,
thereby having different transformation properties than
the particles they are meant to represent.

Therefore, here, we introduce the following fields,
and we give their Lorentz transformations, copied from
Eqs. (A17) through (A21),

U(⇤)G±(p)U�1(⇤) = e
±i2!

G
±(p̄) (1)

U(⇤)g±(p)U�1(⇤) = e
±i!g±(p̄) (2)

U(⇤)�±(p)U�1(⇤) = e
±i!

�
±(p̄) (3)

U(⇤)f±(p)U�1(⇤) = e
±i 1

2!f
±(p̄) (4)

U(⇤)f̄±(p)U�1(⇤) = e
±i 1

2! f̄
±(p̄), (5)

where ⇤ is a Lorentz transformation, p̄ = ⇤p, U(⇤) is
the quantum Lorentz transformation, ! = !(⇤, p) de-
pends on the Lorentz transformation and the momen-
tum, G

± represents a graviton field with helicity ±2,
g
± represents a gluon field with helicity ±1 (with the

color-adjoint index suppressed), �± represents a photon
field with helicity ±1, and f

± and f̄
± represent a mass-

less fermion and antifermion, respectively, with helicity
± 1

2
(with any other quantum indices suppressed). Other

quantum numbers such as charge and color are not af-
fected by Lorentz transformation.

Massive particles transform under the spin little group,
with massive fermions transforming according to the
spin- 1

2
representation. For instance, the electron has

two states – spin up and spin down – and similarly, the
positron also has two states. Notably, there are no sep-
arate chirality states for the electron itself; chirality ap-

pears only in the context of its interactions with other
particles, such as the W and Z bosons. The electron, like
all massive leptons and quarks, therefore, has just two
states, not four. Consequently, Dirac fields, which pos-
sess four degrees of freedom, include unphysical degrees
of freedom. This discrepancy arises because Dirac fields
transform under representations of the full Lorentz group
rather than the spin little group. In this work, we avoid
introducing unphysical degrees of freedom for fermions by
constructing fields that transform solely under the spin
group, not under the chiral group. Specifically, we intro-
duce a fermion field f

I(p) and an antifermion field f̄
I(p),

where I denotes the spin index with two possible values.
As we will demonstrate, this choice does not preclude us
from writing chiral interactions.

The W and Z bosons transform under spin-1 represen-
tations of the spin little group. Although it would be
possible to introduce a new index for this purpose, it is
more convenient to use a symmetric combination of two
spin- 1

2
indices to form a spin-1 field. Therefore, for the

W, W̄ , and Z bosons, we introduce the fields W
IK
, W̄

IK,
and Z

IK, where the indices IK are understood to be
symmetrized. In fact, we explicitly symmetrize these in-
dices in the quadratic terms of the action, which leads to
symmetrized propagators. This symmetrization suffices
for perturbation theory, but in non-perturbative calcula-
tions, the interactions involving the W, W̄ , and Z boson
spin indices should also be explicitly symmetrized. We
discuss the subtleties of introducing the spin-1 fields in
this way at the end of Sec. A 4.

The Lorentz transformation properties of these fields
are governed by the following equations, as derived in
Eqs. (A23) through (A28):

U(⇤)h(p)U�1(⇤) = h(p̄) (6)

U(⇤)f I(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

K

f
K(p̄) (7)

U(⇤)f̄ I(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

K

f̄
K(p̄) (8)

U(⇤)ZIK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

Z
LM(p̄)

(9)

U(⇤)W IK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

W
LM(p̄)

(10)

U(⇤)W̄ IK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

W̄
LM(p̄),

(11)

where ~J are the generators of the spin little group, ~! =
~!(⇤, p) depends on the Lorentz transformation and on
the momentum, and h(p) is the scalar field for the Higgs.

Now that we have defined our fields, the next step
is to construct an action that meets several key crite-
ria: it must conserve momentum, be Lorentz invariant,
Hermitian, causal, and, of course, consistent with Feyn-
man diagrams. Momentum conservation is straightfor-
ward to implement by including a momentum-conserving
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delta function in every term. Achieving Lorentz invari-
ance, however, requires more consideration. Each field
transforms according to an !(⇤, p) factor, which depends
on both the Lorentz transformation and its momentum.
This dependency prevents the cancellation of the trans-
formation factors solely among the fields, except in the
quadratic case where the momenta are the same. To en-
sure Lorentz invariance in interaction terms, we must also
introduce non-field terms that also transform under the
little group representations. These are the spinor prod-
ucts used in constructive calculations. Simplified from
Eqs.(A160) through (A165), these spinor products trans-
form as follows:

hiji = e
� i

2 (!i+!j)h̄ij̄i (12)

[ij] = e
+

i
2 (!i+!j) [̄ij̄] (13)

hijiK = e
� i

2!i

⇣
e
i~!j · ~J

⌘ K

L

h̄ījiL (14)

[ij]I = e
+

i
2!j

⇣
e
i~!i· ~J

⌘ I

L

[̄ij̄]L (15)

hijiIK =
⇣
e
i~!i· ~J

⌘ I

L

⇣
e
i~!j · ~J

⌘ K

M

h̄ījiLM (16)

[ij]IK =
⇣
e
i~!i· ~J

⌘ I

L

⇣
e
i~!j · ~J

⌘ K

M

[̄īj]LM, (17)

where these spinors are defined in App. A 6, their prod-
ucts are defined in App. A 7, and the bars represent the
spinors at the transformed momenta.

The importance of these spinor products is that they
also transform under the little group at the new mo-
menta, according to whether the momenta are massless
(helicity) or massive (spin). By combining fields with
spinor products such that the helicity transformations
for each massless momentum cancels and all spin indices
are contracted between fields and objects of the same mo-
mentum, we ensure that all little group transformations
cancel, thereby achieving Lorentz invariance. When an
action satisfies these conditions – namely, that the he-
licities for each massless momentum sum to zero and all
spin indices are contracted between objects of the same
momentum – it is considered manifestly Lorentz invari-
ant in the context of constructive field theory. This ap-
proach replaces the contraction of Lorentz indices and
closed fermion chains (and the use of covariant deriva-
tives) in traditional field theory.

An important property of the spinors that form the
spinor products is their transformation under the chiral
components of the Lorentz group (see App.A 6). Specif-
ically, the angle spinors hi|, |ii, hi|I, and |iiI transform
under the left-chiral group, while the square spinors
[i|, |i], [i|I, and |i]I transform under the right-chiral group.
This chiral behavior also applies to spinors with lower
spin indices. The use of these spinor products in con-
structing interactions determines the chirality of those
interactions. Interactions that are symmetric between
angle and square spinors are non-chiral and include
most interactions within the CSM. In contrast, chiral
interactions, such as the W- and Z-boson interactions

with fermions, involve different coefficients for angle and
square spinors. This distinction will be explored further
in Sec.II D.

The fields and spinor products are sufficient for many
interactions. However, when a vertex involves one mass-
less field and two massive fields of the same mass – such as
in the interactions involving photons, gluons, and gravi-
tons – we require an additional non-field object. This
necessity arises because the two helicity spinors for these
momenta, |ii and |i], are not linearly independent in
this case. In fact, they are proportional, as shown in
Eqs. (A176) and (A177):

xij |li =
(pj � pi)

2m
|l] (18)

x̃ij |l] =
(pj � pi)

2m
|li, (19)

where mi = mj = m, ml = 0 and pi + pj + pl = 0.
Therefore, in these interactions, we will use xij and x̃ij

in place of |li and |l]. Despite this substitution, we can
still cancel the helicity transformations of the massless
fields because xij and x̃ij transform as [from Eqs. (A184)
and (A185)]:

xij = e
i!l x̄ij (20)

x̃ij = e
�i!l ¯̃xij , (21)

where !l = !(⇤, pl) and the bar represents that x̄ and
¯̃x are at the transformed momenta. That is, x and x̃

transform as helicity +1 and �1, respectively, and can be
used to cancel the helicity transformations of the photon,
gluon and graviton fields.

Now that we have all the pieces we need to achieve
Lorentz invariance, we also need to consider the Hermi-
tian conjugates of both the fields and the non-field ob-
jects in order to achieve Hermiticity. From Eqs. (A29)
through (A39), the fields satisfy:

⇥
G

±(p)
⇤†

= G
⌥(p) (22)

⇥
g±a (p)

⇤†
= g⌥a (p) (23)

⇥
�
±(p)

⇤†
= �

⌥(p) (24)
⇥
q
i±(p)

⇤†
= q̄

⌥
i (p) (25)

⇥
l
±(p)

⇤†
= l̄

⌥(p) (26)
⇥
⌫
�(p)

⇤†
= ⌫̄

+(p) (27)
⇥
Z

IJ(p)
⇤†

= ZJI(p) (28)
⇥
W

IJ(p)
⇤†

= W̄JI(p) (29)
⇥
q
iI(p)

⇤†
= q̄iI(p) (30)

⇥
l
I(p)

⇤†
= l̄I(p) (31)

[h(p)]† = h(p), (32)

where q is a quark, l is a lepton, a is the adjoint QCD in-
dex and i is the fundamental (or anti-fundamental) QCD
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index, and lowering a spin index on the left raises it on
the right.

The spinor products are also related by hermitian con-
jugation. They satisfy, for example, [see Eqs. (A190)
through (A192)]:

hiji† = [ji] (33)
hiIjJi† = [jJiI] (34)
hiIjJi† = [jJiI]. (35)

In summary, the order is reversed, angle and square
brackets are interchanged, and spin indices are lowered
and raised. Finally, x and x̃ satisfy

x
†
ij = x̃ji, (36)

from Eq. (A193). With these rules, we can construct
action terms that are Hermitian.

A complete understanding of causality is beyond the
scope of this work and will require further study of non-
local actions such as the ones presented here. We hope to
contribute to this understanding in the future. However,
we expect this CSM action to be causal because it should
agree with Feynman diagrams for every amplitude. This
is an ongoing work, but the results so far are promising
in this regard.

A. Quadratic Terms

In constructive amplitudes, the propagator is always
an identity on the helicities or spins and any other quan-
tum numbers of the particles coming from each side di-
vided by the Feynman denominator (p2 �m

2) (at tree-
level). Therefore, the quadratic part of the action is the
inverse of this with the field’s helicity or spins matched
and summed over. So, for the gravitons, gluons, photons,
massless quarks, and massless leptons, we have:

S2m=0 =

Z
d
4
p1d

4
p2

(2⇡)4
�
4(p1 + p2)p

2

1

h
G

+(p1)G
�(p2)

+ g+a (p1)g
�
a (p2) + �

+(p1)�
�(p2)

+ q̄
+

i (p1)q
i�(p2) + q̄

�
i (p1)q

i+(p2)

+ l̄
+(p1)l

�(p2) + l̄
�(p1)l

+(p2) + ⌫̄
+(p1)⌫

�(p2)
i
.

(37)

We have considered massless quarks and charged lep-
tons for illustrative purposes. We will give them masses
shortly. At times, it is convenient to consider massless
first generation quarks and charged leptons.

We can easily generalize this to massless fields of any
helicity between 0 and ±2. We can see that this con-
tribution to the action is Hermitian, as each term is in-
dividually Hermitian. For example,

⇥
q̄
i+(p1)q

�
i (p2)

⇤†
=

q̄
i+(p2)q

�
i (p1). However, the momentum integral is sym-

metric over the momenta, and the dummy momenta can

be interchanged, returning us to the original term. We
also see that the action is Lorentz invariant since each
field transforms oppositely under the helicity little group.

For massive fields, the fields have symmetric spin-1
2

indices and the mass squared is subtracted from the mo-
mentum squared, but otherwise, the action is analogous:

S2m 6=0 =

Z
d
4
p1d

4
p2

(2⇡)4
�
4(p1 + p2)

h1
2

�
p
2

1
�m

2

h

�
h(p1)h(p2)

+
1

2

�
p
2

1
�M

2

Z

�
ZIJ(p1)

1

2

�
�
I

K
�
J

L
+ �

I

L
�
J

K

�
Z

KL(p2)

+
�
p
2

1
�M

2

W

�
W̄IJ(p1)

1

2

�
�
I

K
�
J

L
+ �

I

L
�
J

K

�
W

IJ(p2)

+
�
p
2

1
�m

2

q

�
q̄iI(p1)q

iI(p2) +
�
p
2

1
�m

2

l

�
l̄I(p1)l

I(p2)
i
,

(38)

where we have explicitly symmetrized over the spin in-
dices for the Z and W bosons (the antisymmetric spin-
index fields are not propagated).

Once again, we can see that this can be generalized
to any spin by increasing the number of symmetrized
spin- 1

2
indices. Moreover, this action is Hermitian.

For example,
⇥
W̄IJ(p1)W IJ(p2)

⇤†
= W̄IJ(p2)W IJ(p1) and

⇥
q̄iI(p1)qiI(p2)

⇤†
= q̄iI(p2)qiI(p1). This action is also

Lorentz invariant, since the spin indices are contracted
and the fields transform oppositely under the spin lit-
tle group. (The little group transformations that keep p

unchanged, also keep �p unchanged.)
We can see that, in constructive field theory, all

fields have the same mass dimension, whether bosons or
fermions of any helicity or spin. By inspection, the inte-
gration, delta function and momentum squared or mass
squared contribute +6 to the mass dimension; therefore,
the mass dimension of the field is always �3.

Furthermore, we see that the quadratic action is al-
ways local as all the momenta are polynomial and in the
numerator. See App. B for a discussion of this property.

Another important feature of the quadratic term,
which warrants additional emphasis, is that for both
massless and massive fields of any helicity or spin, our
kinetic and mass terms directly connect the helicity or
spin of the field with a delta function. This direct con-
nection results in a propagator that maintains a delta
function between helicities or spins throughout all steps
of a constructive amplitude calculation. By the end of the
calculation, after all on-shell identities have been applied
and the amplitude is allowed to go off shell, the helicity
spinors and spin spinors for intermediate states are en-
tirely removed, leaving no internal helicities or spins to
connect. Crucially, at no point in the process are the he-
licities or spins of internal lines not connected by a delta
function. This is a key property that contributes to the
simpler and more efficient amplitude expressions.

Moreover, it is important to note that in constructive
field theory, the quadratic terms – and consequently the
propagators – are completely and uniquely determined,
leaving no room for ambiguity. This is in stark con-
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trast to traditional field theory, where propagators are
uniquely defined on-shell as delta functions on the polar-
izations, but off-shell, there is significant ambiguity [33],
especially for fields with spin greater than 1. In con-
structive field theory, however, there is only one possible
form for the quadratic term and propagator. This form
is uniquely determined to consistently connect helicities
and spins, without deviation.

This behavior appears to be fundamentally connected
to the non-local nature of the interactions. Either, all
the propagator numerators are on-shell and connect he-
licities and spins and the interactions are non-local, as
in constructive field theory, or all the propagator numer-
ators are (usually) off shell and only connect the polar-
izations when on shell and the interactions are local, as
in traditional field theory. However, we must admit, it
remains unclear why our field theory, in isolation, would
require the application of on-shell identities. Addressing
this unresolved question is crucial for future progress in
constructive field theory.

B. The Massless 3-Point Action

We will begin with the interactions of massless parti-
cles, including the gluon, the photon and the neutrino.
We will also include the quarks and charged leptons for
illustration and to support treating the first generation as
massless. There are only 3-point vertices for all-massless
particles. We begin with non-graviton interactions. The
action is

S3m=0 =
p
2

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

gs

2
g+a (p1)fabc

✓
h12i3

h23ih31ig
+

b (p2)�
[23]3

[12][31]
g�b (p2)

◆
g�c (p3)

� gsq̄
i+(p1)T

j
ai

✓
h12i2

h31i g+a (p2) +
[23]2

[31]
g�a (p2)

◆
q
�
j (p3)

+ gsq̄
i�(p1)T

j
ai

✓
h23i2

h31i g+a (p2) +
[12]2

[31]
g�a (p2)

◆
q
+

j (p3)

� eQf f̄
+(p1)

✓
h12i2

h31i �
+(p2) +

[23]2

[31]
�
�(p2)

◆
f
�(p3)

+ eQf f̄
�(p1)

✓
h23i2

h31i �
+(p2) +

[12]2

[31]
�
�(p2)

◆
f
+(p3)

#

(39)

where gs is the strong coupling, e is the charge of the
positron, eQf is the charge of f , the subscripts a, b and c

are QCD adjoint indices and j and i are the fundamental
and conjugate-fundamental indices. If f is a quark, then
it also has a fundamental index, which is contracted with
the anti-fundamental index of the antiquark.

A natural, immediate question is what relates the cou-
plings of each of these terms. The terms on a single row
are related by Hermiticity, and we will show this below.

The third and fourth rows are related by the vectorial na-
ture of quantum chromodynamics (QCD), while the fifth
and sixth are related by the vectorial nature of the pho-
ton. In fact, when the fermions are massive, the two rows
for the gluon or the photon come from the same massive
vertex [4], giving us another way of understanding why
these are related. However, we do not yet know how to
relate the coupling of the triple-gluon term on the second
row with the gluon-quark terms on the third and fourth
rows without making reference to gauge field theory, with
its accompanying unphysical field components. We also
cannot relate the coupling between different quarks with-
out reference to gauge field theory. Since we would like to
understand this relationship from the ground up, without
reference to gauge field theory, we consider this a current
deficiency of constructive amplitudes. However, we do
note that this action matches the vertices described in
[4], with the relative sign between the two triple-gluon
vertices being a possible exception. Nevertheless, since
Hermiticity is a required property, we consider this rela-
tive sign to be correct and expect this to be confirmed in
more complex amplitude calculations.

We can see that this action is Lorentz invariant. The
little group transformation for each field is cancelled by
the little group transformation of the helicity spinor with
the same momentum. A consequence of this is that the
spinor products might appear to have the opposite helic-
ities of what we might naively expect. For example, the
coefficient for g+g+g� has h12i3/(h23ih31i) rather than
the [12]3/([23][31]) that we might expect for a vertex with
two positive and one negative helicity gluon. However,
as we show in App. C, the three-point amplitude M++�

actually pulls out �[12]3/([23][31]) from the second term
with two negative helicity and one positive helicity gluon
fields. So, the helicity structure of these action terms
does give the correct constructive vertices.

We can see that the action is dimensionless by consid-
ering the mass dimension of the fields and spinor prod-
ucts. This action has three momentum integrals and a
momentum-conserving delta function, contributing +8 to
the mass dimension. Each term has three fields, con-
tributing -9 to the mass dimension and each term has one
more spinor product in the numerator than in the denom-
inator, contributing +1 to the mass dimension. All to-
gether, therefore, this action is dimensionless. The mass
dimension of the spinor products is discussed in App. A 7.

We also note that these vertices are non-local. The
presence of spinor products in the vertex leads to non-
polynomial momenta, which lead to non-local terms in
position space. Moreover, for these action terms, we can
rewrite the vertex in a way that the spinor products only
occur in the numerator. When we do this, we will be
left with simple momentum products in the denominator
for every term. For example, if we consider the photon-
lepton vertex h12i2/h31i, we can multiply the numerator
and denominator by [13], giving h12i2[13]/(2p1 ·p3). The
presence of momenta in the denominator is also a sign of
non-locality. See App. B for further discussion.
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If we take the Hermitian conjugate of our massless in-
teraction action, we have:

S†
3m=0

=
p
2

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

gs

2
g+c (p3)fabc

✓
� h32i3

h21ih13ig
+

b (p2) +
[21]3

[32][13]
g�b (p2)

◆
g�a (p1)

� gsq̄
j+(p3)T

i
aj

✓
h32i2

h13i g+a (p2) +
[21]2

[13]
g�a (p2)

◆
q
�
i (p1)

+ gsq̄
j�(p3)T

i
aj

✓
h21i2

h13i g+a (p2) +
[32]2

[13]
g�a (p2)

◆
q
+

i (p1)

� eQf f̄
+(p3)

✓
h32i2

h13i �
+(p2) +

[21]2

[13]
�
�(p2)

◆
f
�(p1)

+ eQf f̄
�(p3)

✓
h21i2

h13i �
+(p2) +

[32]2

[13]
�
�(p2)

◆
f
+(p1)

#
,

(40)

where we have reversed the order of the fields as part of
the Hermitian conjugation. We have also interchanged
the two terms on each row, for convenience. We next
make the replacement p1  ! p3 everywhere as well as
a ! c on the second row, and i ! j on the third and
fourth rows, to obtain Eq. (39), where we have also used
the antisymmetry of fabc to put the color-adjoint indices
back in cyclic order.

We will also consider the gravitational action, focusing
on the massless fields in this subsection. All gravitational
terms are divided by the Planck mass MP . We have

SGm=0 =
1

MP

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

1

2
G

+(p1)

✓
h12i6

h23i2h31i2G
+(p2) +

[23]6

[12]2[31]2
G

�(p2)

◆
G

�(p3)

+ g+a (p1)
✓
h12i4

h31i2G
+(p2) +

[23]4

[31]2
G

�(p2)

◆
g�a (p3)

+ �
+(p1)

✓
h12i4

h31i2G
+(p2) +

[23]4

[31]2
G

�(p2)

◆
�
�(p3)

� f̄
+(p1)

✓
h12i3h23i
h31i2 G

+(p2) +
[23]3[12]

[31]2
G

�(p2)

◆
f
�(p3)

+ f̄
�(p1)

✓
h23i3h12i
h31i2 G

+(p2) +
[12]3[23]

[31]2
G

�(p2)

◆
f
+(p3)

+ ⌫̄
�(p1)

✓
h23i3h12i
h31i2 G

+(p2) +
[12]3[23]

[31]2
G

�(p2)

◆
⌫
+(p3)

#
.

(41)

This action can be seen to be Hermitian in the same
way as S3m=0. Under Hermitian conjugation, the terms
in each row are transformed into each other and each
row is Hermitian independent of the others. Also, sim-
ilarly to S3m=0, we can understand the relationship of
the couplings for the fifth and sixth rows as being due
to the “vectorial” nature of the graviton, or the fact that

they come from massive vertices that contribute to both
rows [4]. However, otherwise, we cannot explain the fact
that the couplings on all the rows are the same, with-
out reference to a diffeomorphism-invariant action, with
its accompanying unphysical graviton-field components.
Once again, we consider this a current deficiency of con-
structive amplitudes.

This action is Lorentz invariant for the same reason
as the previous one. The helicity transformation of each
field is cancelled by the helicity transformation of the
spinors with the same momentum. Moreover, all the
action terms of this section are non-local. We can see
this by the presence of spinor products in the expression.
Finally, this action is dimensionless. The momentum
integrals and delta function contribute +8 to the mass
dimension, the fields contribute -9, the spinor products
contribute +2, and the entire action is divided by the
Planck mass, contributing -1. All together, the mass di-
mension is, therefore, zero.

The perturbation theory resulting from the field theory
in this subsection will result superficially in all the dia-
grams (excluding those with four-point vertices) present
in Feynman diagrams. This may seem like a problem
for massless amplitudes since their spinor-product struc-
ture can come from a single diagram. Although this
is true, each diagram does give important information
about the propagator denominators and the associated
quantum numbers such as color and electric charge. This
is true even in the massive theory as we saw in four-point
amplitudes including gggg, qq̄gg and ff̄�W [6].

C. Gluons, Photons and Gravitons with Massive
Fields

When the fields that interact with the gluons, photons
and gravitons are massive, we must add spin indices, use
massive spinors and introduce the x factor. For the gluon
and photon, we have:

S(g/�)ff =
p
2

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

+ gsq̄
i
I
(p1)T

j
ai

⇣
x̃31[31]

JIg+a (p2)

+ x31h31iJIg�a (p2)
⌘
qjJ(p3)

+ eQf f̄I(p1)
⇣
x̃31[31]

JI
�
+(p2)

+ x31h31iJI��(p2)
⌘
fJ(p3)

+
e

MW
W̄IJ(p1)

⇣
x̃31[31]

KI[31]LJ�+(p2)

+ x31h31iKIh31iLJ��(p2)
⌘
WKL(p3)

#
,

(42)

where the spin indices on the spin-1 boson fields are as-
sumed symmetrized, as always. When doing perturba-
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tion theory, it is not necessary to explicitly symmetrize
them, since the symmetrized propagator effectively sym-
metrizes the vertices. However, on the lattice, the spin
indices must be explicitly symmetrized, in order to get
correct results. This is necessary to remove the antisym-
metric, spin-0 part of the fields from contributing. The
high-energy limit of the fermion terms in S(g/�)ff gives
the fermion terms in the action in Eq. (39) [4].

We can see that this action is Hermitian by taking the
Hermitian conjugate, giving:

S†
(g/�)ff =

p
2

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

+ gsq̄
jJ(p3)T

i
aj

⇣
x̃13[13]IJg+a (p2)

+ x13h13iIJg�a (p2)
⌘
q
I

i(p1)

+ eQf f̄
J(p3)

⇣
x̃13[13]IJ�

+(p2)

+ x13h13iIJ��(p2)
⌘
f
I(p1)

+
e

MW
W̄

LK(p3)
⇣
x̃13[13]IK[13]JL�

+(p2)

+ x13h13iIKh13iJL��(p2)
⌘
W

JI(p1)

#
,

(43)

where we have interchanged the order of the terms on
each row. We now make the label changes 1  ! 3 and
i �! j. On the second and third rows, we make the
change I  ! J, while on the fourth row, we make the
change I  ! L and J  ! K. We also use the fact that
raising and lowering spin indices results in a sign change
(e.g.AI

BI = �AIB
I), but we have an even number of

contracted spin indices in each row. Therefore, we can
raise and lower all the spin indices with no sign change.
After all this, we have returned back to the original action
in Eq. (42).

This action is Lorentz invariant. The helicity trans-
formation of the gluons and photons is cancelled by the
helicity transformation of x and x̃, while the spin trans-
formations of the massive fields is cancelled by the spin
transformation of the massive spin spinors of the same
momenta. This action is not local. We can see this by
noting the presence of x, x̃ and the spinor products. This
action is dimensionless. The mass dimension of the mo-
mentum integrals and the delta function is +8, the fields
contribute -9, the x contributes 0, and the spinor prod-
ucts and mass give +1, for a total of zero. The couplings
for each Hermitian pair are related by Hermiticity, of
course, but they are otherwise not related to other cou-
plings, within the current constructive framework.

The contribution to the action for the graviton inter-

acting with massive fields is

SGm 6=0 =
1

MP

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

+m
2

hh(p1)
⇣
x̃
2

31
G

+(p2) + x
2

31
G

�(p2)
⌘
h(p3)

+mf f̄I(p1)
⇣
x̃
2

31
[31]JIG+(p2)

+ x
2

31
h31iJIG�(p2)

⌘
fJ(p3)

+ W̄IJ(p1)
⇣
x̃
2

31
[31]KI[31]LJG+(p2)

+ x
2

31
h31iKIh31iLJG�(p2)

⌘
WKL(p3)

+
1

2
ZIJ(p1)

⇣
x̃
2

31
[31]KI[31]LJG+(p2)

+ x
2

31
h31iKIh31iLJG�(p2)

⌘
ZKL(p3)

#
.

(44)

The Hermitian conjugate of this action is

S†
Gm 6=0

=
1

MP

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

+m
2

hh(p3)
⇣
x̃
2

13
G

+(p2) + x
2

13
G

�(p2)
⌘
h(p1)

+mf f̄
J(p3)

⇣
x̃
2

13
[13]IJG

+(p2)

+ x
2

13
h13iIJG�(p2)

⌘
f
I(p1)

+ W̄
LK(p3)

⇣
x̃
2

13
[13]IK[13]JLG

+(p2)

+ x
2

13
h13iIKh13iJLG�(p2)

⌘
W

JI(p1)

+
1

2
Z

LK(p3)
⇣
x̃
2

13
[13]IK[13]JLG

+(p2)

+ x
2

13
h13iIKh13iJLG�(p2)

⌘
Z

JI(p1)

#
.

(45)

After switching 1  ! 3 throughout, I  ! J on the
third and fourth rows, I  ! L and J  ! K on the
fifth through eighth rows, and raising and lowering the
spin indices, we return to Eq. (44), showing this action
is Hermitian.

We also see this action contribution is Lorentz invari-
ant. All the spin indices are contracted appropriately
and the helicity transformation of the graviton is can-
celled by the helicity transformation of x and x̃. It is
non-local due to the presence of spinor products and x

and x̃. It is dimensionless. The momentum integrals and
delta function contribute +8, the fields contribute -9, x
and x̃ contribute 0 and the Planck scale contributes -1,
for a total of -2 before including the masses and spinor
products. The Higgs line contains a mass squared making
its line dimensionless. The fermion line has a linear mass
and one spinor product resulting in dimensionless terms.
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The W and Z lines have two spinor products, leaving
their lines dimensionless as well. We also see that the
high-energy limit of the terms results in the action of
Eq. (41) [4]. The couplings are only related within Her-
mitian pairs. Otherwise, constructive theory does not yet
relate them to each other.

D. The Higgs and Weak Action

We begin with the Higgs self interactions.

Sh =� em
2

h

2MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8

h(p1)h(p2)h(p3)�
4(p1 + p2 + p3)

� e
2
m

2

h

16M2

W s2W

Z
d
4
p1d

4
p2d

4
p3d

4
p4

(2⇡)12

h(p1)h(p2)h(p3)h(p4)�
4(p1 + p2 + p3 + p4).

(46)

This action is trivially Hermitian since the Higgs field
is real. It is Lorentz invariant since the Higgs field is a
singlet under the spin little group. It is also local since
there are no momenta in the vertex in any form. This is
the only local interaction in the CSM. It is dimensionless.
On the first integral, the momentum integrals and delta
function contribute +8, the fields -9 and the masses +1.
On the second integral, the contributions are +12 for
the momentum integrals and delta function and -12 for
the fields. In fact, this action is exactly equal to the
Higgs self-interaction action in traditional field theory.
As a consequence, this is the only action terms where
the couplings could currently be related to each other,
by writing the Higgs field as an electroweak doublet with
a symmetry-breaking potential that leads to these terms.

The interaction between the Higgs and the other mas-
sive fields is given by

Shf/b =�
e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

mf

2
h(p1)f̄I(p2)

�
h32iJI + [32]JI

�
fJ(p3)

+ h(p1)h23iIK[23]JL
⇣
W̄IJ(p2)WKL(p3)

+
1

2
ZIJ(p2)ZKL(p3)

⌘#

+
e
2

2M2

W s2W

Z
d
4
p1d

4
p2d

4
p3d

4
p4

(2⇡)12
�
4(p1 + p2 + p3 + p4)

1

2
h(p1)h(p2)h34iIK[34]JL

⇣
W̄IJ(p3)WKL(p4)

+
1

2
ZIJ(p3)ZKL(p4)

⌘
. (47)

The Hermitian conjugate of this action is

S†
hf/b =�

e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

mf

2
h(p1)f̄

J(p3) (h23iIJ + [23]IJ) f
I(p2)

+ h(p1)h32iLJ[32]KI

⇣
W̄

LK(p3)W
JI(p2)

+
1

2
ZLK(p3)ZJI(p2)

⌘#

+
e
2

2M2

W s2W

Z
d
4
p1d

4
p2d

4
p3d

4
p4

(2⇡)12
�
4(p1 + p2 + p3 + p4)

1

2
h(p1)h(p2)h43iLJ[43]KI

⇣
W̄

LK(p4)W
JI(p3)

+
1

2
Z

LK(p4)Z
JI(p3)

⌘
. (48)

For the first integral, we make the replacement 2 ! 3,
while we make the replacement 3  ! 4 on the second
integral. On the fermion terms, we interchange I ! J,
while on the weak boson terms, we interchange I  ! L
and J ! K. We also lower and raise all the contracted
spin indices. Since there are an even number of them
per term, there is no sign change. This brings us back to
Eq. (47), so this action is Hermitian.

Since the spin transformation of the fields is cancelled
by the spin transformation of the spinors, this action is
Lorentz invariant. This action is generally non-local due
to the presence of spinor products. The total mass di-
mension is zero. For the first integral, the momentum
integrals and delta function contribute +8, the fields -9
and MW -1. Addtionally, the fermion line has a mass and
a spinor product, cancelling the other contributions. The
weak boson lines contain two spinor products, bringing
the total to zero. On the second integral, the momentum
integrals and delta function contribute +12, the fields
contribute -12, MW contributes -2 and the two spinor
products contribute +2, for a total of zero.

We do not explicitly symmetrize the spin indices on
the W and Z bosons here because in perturbation the-
ory, the symmetrization of the indices on the propagator
are sufficient to induce a symmetrization of the interac-
tions. However, when non-perturbative calculations are
performed, on the lattice for example, then these inter-
action terms must be explicitly symmetrized.

The interaction between the weak bosons and the
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fermions is given by

S(W/Z)f =
e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)
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⌫̄
+(p1)lI(p2)WKL(p3)[32]

KIh13iL

� l̄I(p1)⌫
�(p2)W̄KL(p3)h13iIL[32]K

+ ūI(p1)dJ(p2)WKL(p3)h23iJL[31]KI

+ d̄I(p1)uJ(p2)W̄KL(p3)[31]
KIh23iJL

� 1p
2
f̄I(p1)fJ(p2)ZKL(p3)

�
gLf h23iJK[31]LI + gRf [23]

JKh31iLI
�
#
.

(49)

This action contribution is our first to be chiral. We
can see this because it is not symmetric between angle
and square spinors. As discussed in the introduction to
this section and in App. A 6, the angle spinors trans-
form under the left-chiral part of the Lorentz group, while
the square spinors transform under the right-chiral part.
(The Lorentz transformations are cancelled in the spinor
products between the spinors, but the chirality of the in-
teractions is still a consequence.) At first, naively, this
appears to give the opposite chirality for the interactions.
However, as we show in detail in App. C 2, this does
give the correct chirality for vertices. For example, for
the negative-helicity neutrino, anti-lepton, W̄ boson am-
plitude it gives [32]JIh13iK, where the negative-helicity
neutrino is particle 1 and represented by h1|, which trans-
forms under the left-chiral group and the charged anti-
lepton is represented by |2]I, which transforms under the
right-chiral group. The chirality of the vertex and the
amplitude are determined by the interaction with the
opposite-helicity fields. We also saw this in the case of
the triple-gluon vertex, as discussed in detail in App. C 1.
This is a general property of the constructive action. The
quantum numbers of the fields are the opposite of those
in the vertex and amplitudes. This is necessary to cancel
the symmetry transformations and obtain a symmetry-
invariant action. However, due to the way the vertices
come from the action, they are correct.

The relative sign on the neutrino term is required
to satisfy Hermiticity. Moreover, the massless limit of
the up-quark interaction would produce similarly signed
terms, as can be seen in Ref. [4]. The Hermitian conju-

gate is

S†
(W/Z)f =

e

MW sW
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d
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4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

"

� ⌫̄+(p2)lI(p1)WLK(p3)[31]LIh23iK
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+ ū

J(p2)d
I(p1)W

LK(p3)h13iIK[32]LJ
+ d̄

J(p2)u
I(p1)W̄

LK(p3)[32]LJh13iIK

� 1p
2
f̄
J(p2)f

I(p1)Z
LK(p3)

�
gLf [32]KJh13iIL + gRf h32iKJ[13]IL

�
#
,

(50)

where we have interchanged the second and third rows
and the fourth and fifth rows. We next switch 1  ! 2,
I  ! J and K  ! L. After this, we raise and lower
the spin indices. This will result in a minus sign on the
W -lepton terms since there are an odd number of spin
indices, but there won’t be a sign change on the other
terms since there are an even number of spin indices in
those cases. With these changes, the Hermitian conju-
gate comes into agreement with Eq. (49), so this action
is Hermitian.

This action is Lorentz invariant as the helicity of the
neutrino fields cancels with the helicity of the helicity
spinors of the same momentum and all the spin indices
are contracted among objects with the same momentum.
This action is non-local because of the spinor products.
The mass dimension is zero, as usual because the mo-
mentum integrals and delta function contribute +8, the
fields -9, the spinor products +2 and MW -1, for a total
of zero.

The action for the triple-vector-boson interaction is
given by

SZWW =
�ep

2MZsW

Z
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4
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MZ

+
[12]IKh23iLMh31iNJ + h12iIK[23]LM[31]NJ

MW

#
.

(51)
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The Hermitian conjugate of this action is

S†
ZWW =

�ep
2MZsW
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4(p1 + p2 + p3)
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JI(p1)Z
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#
,

(52)

where we have switched the first and second terms on
each row and we have also switched the third and fourth
rows. We next interchange 1  ! 2, I  ! K, J  ! L
and M  ! N. We also raise and lower the spin indices
and use the symmetry of the spin indices on the W and
W̄ to bring it back to the form of Eq. (51).

This action is Lorentz invariant as all the spin indices
are contracted with objects of the same momenta. It is
non-local due to the spinor products. It is dimensionless
because the momentum integrals and delta function con-
tribute +8, the fields -9, the masses -2 and the spinor
products +3.

E. An Incomplete Higgs-Like Mechanism for the
CSM

In this subsection, we outline our current understand-
ing of the Higgs mechanism in the CSM. As we will
demonstrate, there are clear indications of the Higgs
mechanism at work (see also Ref. [19]). However, the
mechanism remains incomplete, particularly if we insist
on avoiding the introduction of unphysical degrees of
freedom. While it might be possible to begin with the
Higgs field, Dirac fields, and vector gauge fields – along
with their unphysical components – and then deconstruct
them to extract the relevant pieces for the action de-
scribed in the previous subsection, this approach contra-
dicts the principles of constructive theory and the goals
of this paper. Therefore, we will focus solely on what can
be achieved without unphysical degrees of freedom, and
highlight where the current understanding falls short. A
significant challenge we face is the inability to explain
how to decouple the Goldstone bosons from interactions
with fields that have non-zero spin. Despite this lim-
itation, we will proceed by provisionally excluding the
Goldstone bosons to make progress, considering only the
vacuum expectation value (vev) and the remaining Higgs
field in the following discussion.

Since the Higgs action is local and identical with the
traditional Higgs field-theory action, it has the same po-
tential and the same vev. We will not review it from

the position-space point of view, which can be found in
textbooks [34]. We will simply take for granted that, af-
ter developing a vev, and after removing the Goldstone
bosons, the Higgs doublet can be written, in momentum
space (after Fourier transformation),

�(p) =
1p
2

✓
0

v(2⇡)4�4(p) + h(p)

◆
, (53)

where
R d4p

(2⇡)4 v(2⇡)
4
�
4(p)eip·x = v, our vev in position

space. We also note that each term has the same mass
dimension of �3.

We can now insert this into the action that includes �.
We begin with the pure-Higgs-doublet action.
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†(p3)�(p4). (54)

We can see that this action is manifestly Hermitian and
Lorentz invariant, as usual. Inserting Eq. (53), we have
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where we have thrown away non-dynamical constant
terms. The linear terms cancel and the quadratic terms
combine to give the result we have shown. Plugging in
the well-known values,

µ = mh (56)

v =
2MW sW

e
(57)

� =
e
2
m

2

h

4M2

W s2W

, (58)

we obtain Eq. (46). We note that, here, the Goldstone
bosons cancel in Eq. (54) and there is no need for a gauge
transformation for this result.

We now turn to the Higgs-fermion action terms. The
case of the leptons presents a significant challenge due
to the differing transformation properties of the massive
charged leptons and the massless neutrinos under the lit-
tle group. Specifically, the charged lepton, being massive,
carries a spin index, while the neutrino, being massless,
does not. As a result, combining them into a single elec-
troweak doublet would produce an object that does not
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transform uniformly under the little group. This discrep-
ancy is a fundamental issue in the context of the con-
structive Higgs mechanism, where we avoid introducing
unphysical degrees of freedom. Currently, this presents
a notable deficiency in our understanding, and overcom-
ing this obstacle is an area we hope to address in future
work. In contrast, the quarks do not face this issue, and
they can be combined into doublets. We present their
potential action below:

S�q = �
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where, as usual,

�̃(p) = i�2�
⇤(p) =
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v(2⇡)4�4(p) + h(p)

0

◆
, (60)

and we have again removed the Goldstone bosons. Unlike
the pure Higgs action in Eq. (54), we cannot explain the
absence of the Goldstone bosons here, without reference
to a gauge transformation, another current deficiency.

The Hermitian conjugate of this action is
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where we have interchanged the second and third rows
and the fourth and fifth rows. Next, we interchange
2  ! 3 and I  ! J and raise and lower the spin in-
dices. This brings us back to Eq. (59), so this action is
Hermitian.

If we insert the Higgs doublet from Eqs.(53) and (60),
we can reproduce the interaction term from Eq.(47). In
fact, switching the angle and square brackets in this ac-
tion would also yield the correct interaction term. How-
ever, this approach fails to produce the correct mass

term for the fermions, highlighting two critical issues.
First, the mass term appears only to the first power here,
whereas it should be squared in the quadratic part of the
action [see Eq. (38)]. Second, the quadratic term for the
fermions includes the spinor product (h32iJI + [32]JI),
which is absent in the correct quadratic action for the
fermions. This discrepancy marks another significant de-
ficiency in the Higgs action for the CSM.

One possible workaround would be to remove the
spinor products, which would correct the mass term but
at the expense of producing an incorrect interaction term.
Moreover, considering any interaction term, the spinor
products are necessary to cancel the little-group trans-
formations, as the momenta of the fields are not identi-
cal before the Higgs attains a vev. Thus, removing the
spinor products seems poorly motivated. This deficiency
in the Higgs mechanism as applied to the CSM requires
further investigation and clarification.

Our final action involves the Higgs doublet and the
weak bosons. However, we cannot include the photon
because it transforms under the helicity little group, un-
like the Z boson, which transforms under the spin lit-
tle group. This difference in transformation properties
means that we cannot construct a unified field that incor-
porates both the Z boson and the photon (representing
the neutral bosons of SU(2) ⇥ U(1) ) while preserving
a consistent transformation under the little group, with-
out introducing unphysical degrees of freedom. Since the
goal of this paper is to explore what can be achieved with-
out adding such unphysical components, this limitation
prevents us from combining these fields.

Additionally, it is important to note that there is no in-
teraction between the Higgs and the photon in this frame-
work [4, 5], contrary to what is observed in Feynman di-
agrams derived from standard gauge field theory. As a
result, we cannot construct an action that would generate
such a vertex. Therefore, we will attempt to build our
action term with the Z boson alone in the diagonal en-
try of the weak matrix, even though this approach is not
correct. Nonetheless, this exercise will provide further
insights into this interaction. With this, we have:
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After an initial expansion, we have
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Completing the expansion and integrating over the delta
functions, we have
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The mass term is clearly incorrect. It does not include
the masses and, instead, contains spinor products. Even
if we replaced the spinor products with a mass squared, it
would still be wrong because it would incorrectly equate
the masses of the W and Z bosons. This outcome should
not be surprising given the way we constructed this term.
Since we did not use the Higgs mechanism to break
SU(2)⇥U(1)! U(1)EM, there is no reason to expect it
to differentiate between the W and Z bosons.

On the other hand, this construction did yield the cor-
rect form for the vertices with the Higgs, including the
correct coupling constant. This is particularly impres-
sive considering that the three-point vertices were derived
purely from symmetry arguments [4], while the four-point
vertices were designed to achieve perturbative unitarity
[5]. The fact that the correct interaction structure and
coupling constants emerge from this flawed post-vev ac-
tion suggests that it could offer valuable insights into the
development of the correct action terms in future work.

A further potential issue we observe is that our cur-
rent construction seems to predict that the signs of the
three-point and four-point Higgs vertices with the mas-
sive vector bosons are the same. However, in [5], these
signs were found to be opposite. This discrepancy could
be viewed from two perspectives, that could be related.

On the one hand, it may reflect an incomplete under-
standing of the signs involved in the constructive diagram
procedure. Specifically, we used a positive sign for all our
propagators, +i/(p2�m

2). If the propagator sign should
have been negative, then the sign of the four-point ver-
tex would flip, aligning with the result of our Higgs-like
toy calculation here. We think this is possible consider-
ing the signs of the propagators for Feynman diagrams
are not all the same. We maintained a consistent sign
for our propagators because, at the time, we lacked a
guiding principle to choose one sign over the other, and
there was no distinct propagator structure – other than
quantum-number-preserving delta functions – to differ-
entiate them. Moreover, we did not have a field-theory
action from which to derive these signs. Our approach
was constructive, built from the ground up, relying solely
on symmetries at the level of individual propagators and
vertices. This approach was not sufficient to definitively
determine these signs.

From a perturbation theory perspective, the way to
resolve this issue is to work through a larger number of
diagrams using a fixed set of rules and identify the rule set
that yields the correct scattering amplitudes. We plan to
undertake this in future calculations. However, achiev-
ing a complete understanding of constructive field theory
that can fix these signs based on an underlying principle
would not only resolve this issue but also provide a more
fundamental understanding of these signs.

Another perspective on this issue might stem from
our incomplete understanding of the Higgs mechanism
within the CSM. With a fully developed Higgs mecha-
nism, we might indeed find that the two vertices have
opposite signs. Additionally, it’s important to note that,
in traditional field theory, the quadratic terms for the
W,Z , and Higgs bosons – which give rise to the prop-
agators – along with their interaction terms, all orig-
inate from the same two action terms [schematically,
� 1

4
Fµ⌫F

µ⌫
and (Dµ�)

†
D

µ� ]. This suggests that, with
a complete understanding of the weak symmetry and its
breaking within the constructive action, all these signs
and their relationships would naturally emerge, eliminat-
ing any ambiguity. Therefore, it is crucial to pursue a
comprehensive Higgs mechanism within the CSM action
in future research.

As we have stated, the Higgs mechanism in construc-
tive field theory remains incompletely understood, par-
ticularly when adhering to the constraint of excluding
any unphysical degrees of freedom. We have attempted
to highlight the specific challenges this approach encoun-
ters. The primary difficulty lies in the non-unified trans-
formation under the little group of fields that should ide-
ally be combined into multiplets under the electroweak
group. To put it another way, we lack separate SU(2)-
and U(1)-boson fields that transform under a single rep-
resentation of the little group, which could then combine
into the massive W - and Z-boson fields (transforming
under spin) and the photon field (transforming under he-
licity). This misalignment complicates the differentiation
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between the W and Z bosons.
Moreover, we are currently unable to explain how to

remove the Goldstone bosons, as this would seemingly
require a gauge symmetry – something we aim to avoid
in this framework. Finally, we do not yet have a unified
action that simultaneously provides the kinetic terms,
masses, and interaction terms. The action either includes
spinor products that are inappropriate for mass terms
or correctly generates mass terms but lacks the spinor
products necessary for interaction terms.

Before concluding this section, we will briefly discuss
two potential approaches that might help overcome these
limitations. One approach, which aligns with our pref-
erence, involves adhering strictly to our goal of not in-
troducing any unphysical degrees of freedom. To achieve
this, we would likely need to start with massless fields for
all the electroweak bosons, with all fields transforming
under helicity. Then, after the Higgs acquires a vev, we
could combine the massless helicity-±1 W and Z bosons
with the Goldstone bosons to form the final massive W

and Z spin-1 bosons. A crucial part of this approach
would be to demonstrate that these final combined fields
transform correctly under spin. Importantly, in this sce-
nario, the photon would never possess unphysical degrees
of freedom.

Alternatively, we could follow a more traditional ap-
proach, where the massless fields are embedded within
larger spin-1 fields that transform under spin (with two
symmetrized spin indices). This approach would presum-
ably necessitate adding a gauge symmetry to eliminate
the negative effects of unphysical degrees of freedom. In
this framework, the photon would initially be embedded
in a spin-1 field, alongside the Z boson. However, to
ensure that the final theory contains only physical de-
grees of freedom – after electroweak symmetry breaking
and the absorption of the Goldstone bosons into the W

and Z bosons – the spin-1 photon field would need to be
decomposed into its helicity components, with the un-
physical spin-0 field removed. While this route might be
easier to implement, it comes at the cost of introducing
unphysical degrees of freedom, at least temporarily.

However, it is important to note that even if we intro-
duce a gauged symmetry in the weak sector, its role in
constructive field theory may differ from that in tradi-
tional gauge theory. In traditional gauge theory, gauged
symmetries are required to cancel the effects of unphysical
degrees of freedom and to ensure the consistency of the
theory. In constructive field theory, while a gauge sym-
metry could potentially provide deeper insights into the
relationships between couplings, its necessity may not be
as clear-cut since the fields are constructed to transform
correctly from the outset. Nonetheless, if the photon is
embedded in a spin-1 field, gauge symmetry might still
play a crucial role in maintaining the consistency of the
theory.

With either approach, a crucial aspect will be under-
standing how the mass terms in the action can avoid
spinor products, while the interaction terms include the

necessary spinor products. Additionally, to gain a bet-
ter understanding of the Higgs mechanism, it seems in-
creasingly likely that we will need to Fourier transform
the constructive action into position space and perform
the relevant operations there. This presents its own set
of challenges, which we discuss in App. B 3. Finally,
achieving a full understanding of the electroweak sector
and its symmetry breaking will likely provide valuable
insights into the relationships between the couplings of
different vertices in constructive theories. This will be
particularly relevant for the weakly coupled fields, but it
may also shed light on the coupling constants governing
quark-gluon interactions and their consistency with the
triple-gluon vertex.

III. CONCLUSIONS

We have developed a complete field-theory action for
the CSM, ensuring that the fields introduced for all parti-
cles transform under the same little-group representation
as the particles themselves. A key outcome of this ap-
proach is that no unphysical degrees of freedom are intro-
duced for any of the particles, whether they are massless
or massive. In the CSM, this applies to massless helicity-
±1 fields (the photons and gluons), massless helicity-±2
fields (gravitons), and massive spin-1 fields (the W and Z

bosons). Additionally, it includes both massless and mas-
sive fermions (neutrinos, charged leptons, and quarks).
Unlike in traditional field theory, where the fields for
these particles carry unphysical degrees of freedom, the
constructive field-theory framework eliminates them en-
tirely. This results in a significant reduction in the num-
ber of field degrees of freedom compared to traditional
local field theory.

In order to achieve Lorentz invariance in our action,
we must introduce non-field objects that also transform
under the little group, thereby canceling the little-group
transformations of the fields. We demonstrate that these
objects are the spinor products and x from constructive-
amplitude theory, and we work out their full transfor-
mations. Furthermore, we show that for a contribution
to the action to be Lorentz invariant, the helicities of all
objects with the same momentum (both fields and non-
field objects) must sum to zero, and all spin indices must
be contracted among objects with the same momentum
(both fields and spinor products). Using these criteria,
we construct fully Lorentz-invariant action terms for the
CSM, a property we refer to as manifest Lorentz invari-
ance in a constructive action.

We formulated the action in momentum space and ex-
plicitly conserved momentum in every interaction by in-
cluding a momentum-conserving delta function. This ap-
proach is natural given that particle-physics experiments
typically focus on definite-momentum states rather than
definite-position states, and because the constructive ver-
tices are already defined in momentum space, not in po-
sition space. However, we believe that a complete under-



16

standing of the theory will eventually require a position-
space form of the action, and we plan to explore this
further in the future.

We detailed the Hermitian conjugates of both the fields
and non-field objects, demonstrating that our action is
Hermitian. Furthermore, we showed that Hermiticity im-
poses a relationship between the couplings of interactions
that are Hermitian conjugates of each other. However,
we also noted that the relationship between the couplings
in the triple-gluon interaction and the gluon-quark inter-
actions is not currently explained by constructive theory.
We consider this a significant deficiency and believe that
further investigation is needed to bring clarity to this im-
portant topic.

The Higgs and weak interaction terms were success-
fully introduced after electroweak symmetry breaking.
However, a complete description of the Higgs mechanism
within constructive field theory remains lacking, repre-
senting another significant deficiency that needs to be
addressed in the future. We proposed several approaches
to tackle this problem and suggested that it might be nec-
essary to formulate the action in position space to fully
resolve the issues related to this symmetry breaking.

We also outlined general features of constructive field
theories, including a basic power counting of the energy
growth of minimal interactions. Our focus was on ensur-
ing that the theory satisfies the essential requirements of
momentum conservation, Lorentz invariance, and Her-
miticity – properties that are necessary for any consis-
tent theory. While these are crucial, it is possible that
additional requirements are needed to ensure causality,
and we hope this can be further clarified in the future.
However, if the CSM produces results that exactly match
those of the traditional SM, as we believe it does, then the
CSM must be causal, given that the SM is causal. This
suggests that the set of properties we have identified is
nearly complete, if not entirely so, for causality.

On the other hand, ensuring renormalizability and per-
turbative unitarity will certainly require an additional
property. At the very least, this will involve a mechanism
that relates the couplings of all vertices involving fields
transforming under the same symmetry. In traditional
field theory, this role is played by gauge symmetry. How-
ever, gauge symmetry also typically leads to the presence
of many four-point vertices, such as the four-gluon ver-
tex, which are absent in constructive theory. Therefore,
whatever this additional property in constructive field
theory turns out to be, it must also prevent the emer-
gence of these four-point vertices.

A natural implication of this work is that, once the
remaining deficiencies are addressed, any new particle
model could be constructed directly as a constructive
field theory from the outset, without the need to begin
with a traditional local field theory. Theorists could start
with a set of symmetries and fields that transform under
them, and then write the constructive field-theory action
directly, incorporating all interactions that are invariant
under these symmetries, as well as those that conserve

momentum, are Lorentz invariant, Hermitian, and sat-
isfy any other necessary criteria. If the couplings are
weak and perturbative unitarity is satisfied, a perturba-
tion series will naturally follow. These fields will also be
important for understanding the renormalization of the
amplitudes as it allows the fields to be renormalized as
well as the other parameters of the theory. Furthermore,
this non-local field theory could, in principle, be placed
on the lattice to obtain non-perturbative results directly,
potentially leading to new insights from this lattice ap-
proach.

There is, of course, a trade-off between working with a
local field theory and the non-local field theory described
here. In perturbative calculations using constructive ver-
tices, expressions in terms of spinor products tend to be
simpler and more efficient to compute. However, this effi-
ciency comes with the requirement that all on-shell iden-
tities must be faithfully and completely applied. While
this leads to significant simplification of the final results –
a major advantage – missing even a single on-shell iden-
tity can render the result incorrect. In contrast, Feyn-
man diagrams do not require or permit the use of on-
shell identities, resulting in more complex final expres-
sions. However, this approach ensures that the ampli-
tude is correct at every intermediate step, regardless of
simplifications. The downside is that a typical Feynman
diagram result involves numerous interconnected compo-
nents, such as momenta and gamma matrices, leading to
a more complicated and less efficient phase-space calcu-
lation. Furthermore, individual diagrams are not physi-
cally meaningful; only gauge-invariant sets of diagrams,
often with large cancellations, are physically meaningful.

When performing lattice calculations, the primary ad-
vantage of using constructive field theory is the signifi-
cantly smaller number of field degrees of freedom to in-
tegrate over, along with the absence of a local symmetry
that would otherwise need to be managed. However, the
downside is that the field theory action is no longer lo-
cal, meaning that the integration must account for fields
at different spacetime points. Naturally, other benefits
and challenges – beyond those we have considered – may
emerge as lattice calculations are carried out.
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Appendix A: Motivation and Conventions

In this appendix, we aim to motivate the constructive
calculations and the action presented in this paper. We
begin by noting that the fields in traditional field theory
inherently include extra unphysical degrees of freedom,
which necessitates the introduction of a gauge symme-
try – a localized form of a physical global symmetry –
to cancel out these unphysical components. This also
requires multiplying the Feynman amplitude by polar-
ization vectors to extract the physical degrees of freedom
from the amplitude. To better understand this, we exam-
ine how single-particle quantum states transform under
Lorentz transformations, following the approach outlined
by Weinberg in Ref. [32], where further details can be
found.

We then describe our fields and review the spinor
products used in this article, which, unlike traditional
fields, do not possess any unphysical degrees of freedom
and therefore do not require a gauge symmetry to can-
cel them. This presents a more economical approach
to constructing a particle field theory. We also discuss
the spinors and their transformation properties under
Lorentz transformations, emphasizing that spinor prod-
ucts transform only under the Little Group. This char-
acteristic makes them particularly suitable for construct-
ing an action that exclusively contains physical degrees
of freedom in the fields.

1. A Metaphor with Newton’s Law

We begin with a quick metaphor involving Newton’s
law. Suppose we are trying to determine the position of
a particle under a constant force after some time t. Now,
imagine that we had not yet developed the concept of a
vector. However, we had already established the concept
of a second-rank tensor – an object with nine degrees of
freedom that transforms in a specific way under rotations.
Although this second-rank tensor has more components
than we need, we might discover that we could embed
the position, velocity, and force into second-rank tensors

in the following way:

rij(t) =

0

@
a(t) z(t) + !(t) �y(t) + ⌧(t)

�z(t) + !(t) b(t) x(t) + ⌘(t)
y(t) + ⌧(t) �x(t) + ⌘(t) c(t)

1

A

(A1)

vij(t) =

0

@
↵(t) vz(t) + �(t) �vy(t) +  (t)

�vz(t) + �(t) �(t) vx(t) + µ(t)
vy(t) +  (t) �vx(t) + µ(t) �(t)

1

A

(A2)

Fij =

0

@
✓ Fz + � �Fy + ✏

�Fz + �  Fx + ⇣

Fy + ✏ �Fx + ⇣ �

1

A . (A3)

To achieve this, we would need to add eighteen ex-
tra unphysical degrees of freedom – six to each tensor.
Despite this, we would find that the position, velocity,
and force all transform correctly under rotations. Since
the final position must transform properly, it must be
expressible as a linear combination of the tensors at the
initial time. The coefficients could be determined, up to
a numerical constant, through dimensional analysis. The
exact numerical constants could then be determined ei-
ther experimentally or by repeating the process for the
acceleration and integrating. The result would be:

rij(t) = rij(0) + vij(0)t+
1

2m
Fijt

2
. (A4)

While the final result would contain many extraneous
values that we would discard, the correct values for
x(t), y(t), and z(t) would emerge.

This approach seems unnecessarily wasteful. We might
wonder if there is a more efficient method – one that
avoids introducing unphysical degrees of freedom from
the outset and works exclusively with the physical de-
grees of freedom.

2. Single-Particle States

The single-particle states differ for massive and mass-
less particles. We begin with massless particles. It can
be shown that massless particles possess a well-defined
helicity that remains unchanged under Lorentz transfor-
mations. Even when a particle has two possible helicities,
these correspond to distinct states that do not mix under
Lorentz transformations. The components of the parti-
cle quantum states transform under the little group, and
under a Lorentz transformation, these transformations
can be block-diagonalized so that each helicity trans-
forms independently within its own block. This contrasts
with massive particles, where all spin states transform to-
gether within the same block.

Now, consider a massless particle with helicity h. If we
begin with a quantum single-particle state at a reference
momentum k,

 h(k), (A5)
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where k can be any light-like momentum [though a stan-
dard convention is to use k = (1, 0, 0, 1)], we can then
define the quantum state for any other momentum by
applying a standard boost that takes k directly to the
new momentum. Specifically, we have

p
p0 h(p) = U [L(p)] h(k), (A6)

where p
0 is the energy, U is the quantum Lorentz trans-

formation operator and

p = L(p)k, (A7)

where L(p) boosts k directly to p.
Now that we have defined the single-particle states for

any momentum, we can consider what happens to a gen-
eral single-particle state  h(p) under a Lorentz transfor-
mation p̄ = ⇤p. We expect that the state should trans-
form to  h(p̄), maintaining the same helicity, up to some
phase. Indeed, we find that

s
p̄0

p0
e
ih!(⇤,p) h(p̄) = U [⇤] h(p). (A8)

That is, the single-particle states transform under the
helicity little group, with the phase determined by the
Lorentz transformation, the momentum, and the helicity
of the particle. This phase satisfies

e
ih!(⇤,p) h(p̄) = U

⇥
⇤L(p)L�1(p̄)

⇤
 h(p̄), (A9)

where L
�1(p̄) takes p̄ ! k, L(p) takes k ! p, and ⇤

takes p ! p̄. In other words, U
⇥
⇤L(p)L�1(p̄)

⇤
is the

transformation that leaves the momentum of the quan-
tum particle state unchanged – it represents the quantum
little-group transformation.

Massive particles, unlike massless particles, have mul-
tiple spin states that transform together. While we can
align the spin along any direction, including the direction
of motion (often referred to as helicity), these spin states
will still mix with each other under a Lorentz transfor-
mation. The spin states of a massive particle are all
components of the same particle, and they generally mix
under Lorentz transformations when observed from dif-
ferent frames. In contrast, massless particles do not have
a spin degree of freedom that can be projected. Instead,
they possess a fixed helicity – an intrinsic property – that
remains invariant under Lorentz transformations and is
independent of any chosen axis or reference frame. Mass-
less particles with different helicities do not mix under
Lorentz transformations. The helicities of massive and
massless particle states are only superficially related.

For a massive particle state, we label the spin compo-
nent with I. If we begin with a quantum single-particle
state at a reference momentum k,

 I(k), (A10)

where k can be any time-like momentum corresponding
to the correct mass, though a convenient choice is the

particle’s rest frame, k = (m, 0, 0, 0), then, as before, we
can define the quantum state for any other momentum
by applying a standard boost that takes k directly to the
new momentum. Specifically, we define

p
p0 I(p) = U [L(p)] I(k), (A11)

where p = L(p)k, with this L(p) being different than the
L(p) in the massless case.

Now that we have defined the single-particle states, we
can once again consider the effect of a Lorentz transfor-
mation acting directly on the state. This transformation
will generally result in a linear combination of states at
the new momentum. This combination is governed by a
spin transformation:

s
p̄0

p̄0

�
e
i!J
� I

K
 K(p̄) = U [⇤] I(p), (A12)

where J
I

K
is the generator of spin transformations, ! =

!(⇤, p) depends on the Lorentz transformation and mo-
mentum, and p̄ = ⇤p. Although J could be the generator
for any spin representation, we focus here on the spin-
1

2
representation and we take higher spin as a totally

symmetric product representation. For example, spin-
1 states would have two symmetrized spin indices and
would transform under the product representation. The
spin transformation is determined by the Lorentz trans-
formation, the momentum, and the spin of the original
state. It satisfies:

�
e
i!J
� I

K
 K(p̄) = U

⇥
⇤L(p)L�1(p̄)

⇤
 I(p̄). (A13)

Once again, U
⇥
⇤L(p)L�1(p̄)

⇤
represents the quantum

little-group transformation, which leaves the momentum
of the state unchanged. In this case, the little group cor-
responds to spin.

With the single-particle states for both massless and
massive particles defined, we can now construct the am-
plitude as an inner product of in-states and out-states.
Each of these states can be treated as a direct product of
single-particle states, and because the particles begin and
end far apart, we can consider them as non-interacting.
Consequently, the amplitude will transform as the direct
product of single-particle states:

s
· · · p̄0i · · · p̄0j · · ·
· · · p0i · · · p0j · · ·

· · ·
�
e
i!iJ

� Ii

Ki
· · · eihj!j · · ·

M···Ki···hj ···(· · · , p̄i, · · · , p̄j , · · · ) =
U [⇤]M···Ii···hj ···(· · · , pi, · · · , pj , · · · ), (A14)

where p̄ = ⇤p. Notably, under a Lorentz transformation,
only the little-group transformations remain after shift-
ing to the new momenta. The amplitude transforms un-
der Lorentz transformations as a direct product of little-
group representations at the new momenta.

Our goal is to identify a set of objects that can be used
to construct this amplitude. These objects must trans-
form in a way that ensures the amplitude exhibits the
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correct transformation properties under Lorentz trans-
formations.

3. Traditional Field Theory

If we aren’t familiar with modern spinors, our initial
approach when looking for objects to construct ampli-
tudes would likely involve those that transform under
representations of the Lorentz group. Specifically, we
might begin with scalars, vectors, and higher-order ten-
sors. While it is not the purpose of this appendix to
review these details in depth – these can be found in Ref.
[32] – we will comment on the relevant features as they
pertain to our discussion.

Let’s focus on the photon again. As we mentioned ear-
lier, the photon has two distinct helicities that transform
independently within their own invariant subspaces. Un-
der a Lorentz transformation, each helicity picks up a
phase. However, when we examine the available objects,
none of them seem to fit this requirement. A scalar,
for instance, does not undergo a phase change under a
Lorentz transformation, so it cannot be used. The small-
est object that can accommodate the helicity transfor-
mation is a vector. However, a vector has four degrees of
freedom, rather than the two that we need for the pho-
ton. As a result, we are forced to include two additional
unphysical degrees of freedom.

This approach seems wasteful and uneconomical.
Moreover, under Lorentz transformations, the vector field
mixes its various components and does not keep them dis-
tinct. In fact, it turns out that the photon “vector” field
does not even transform as a vector. Under a Lorentz
transformation, the photon vector field transforms as fol-
lows [32]:

U(⇤)Aµ(x)U
�1(⇤) = ⇤⌫

µA⌫(⇤x) + @µ⌦(x,⇤). (A15)

We see that, in addition to the usual Lorentz transforma-
tion, there is an additional term that is a total derivative
of a scalar function. As a result, we can only use this
embedding of the photon if we include it in the action
in such a way that this extra total derivative piece can-
cels out. This requirement leads to the introduction of
a new symmetry, which, although not physical, is neces-
sary to avoid the problematic consequences of this em-
bedding. This newly invented symmetry is a local ver-
sion of the physical global symmetry, known as a gauge
symmetry. To obtain correct physical results, we must
strictly maintain this gauge symmetry at every step of
our calculations. The same holds true for the gluon.

Massive spin-1 particles, such as the W and Z bosons,
possess multiple spin states that are related under
Lorentz transformations. However, these particles still
have only three physical degrees of freedom. Tradition-
ally, we also embed them in a vector field, which neces-
sitates the addition of one unphysical degree of freedom.
Although the situation is slightly different from that of
the photon and gluon, a gauge symmetry, along with a

spontaneous symmetry breaking mechanism, is still re-
quired to obtain correct physical results.

Massive fermions, such as the electron, have two spin
states (spin + 1

2
and spin � 1

2
), and their antiparticles also

have two spin states. As we have discussed, the spins mix
with each other under Lorentz transformations. Unlike
gauge bosons, we do not require a new gauge symmetry
for each fermion, so it might seem that we have not in-
troduced any unphysical degrees of freedom. However,
we argue that unphysical degrees of freedom are indeed
present for fermions. Fermions are traditionally embed-
ded in Dirac spinors, which are a direct sum of a left-
chiral and a right-chiral spinor, and have four degrees of
freedom. (Even if we separate them into Weyl spinors,
the same degrees of freedom remain.)

It’s important to note that the chiral Lorentz group
SU(2)L ⇥ SU(2)R is locally isomorphic to the more fa-
miliar SO(3, 1) (the generators of the groups are lin-
early related). It is a covering group. The electron,
however, does not have chirality. As mentioned ear-
lier, it transforms under the little-group spin, which
is the diagonal subgroup of the chiral Lorentz group
[SU(2)spin ⇢ SU(2)L ⇥ SU(2)R]. While the interactions
of the electron possess chirality, the electron itself does
not. As a result, we are effectively adding two unphysical
degrees of freedom to the electron and two to the anti-
electron. Despite this, the Dirac field’s Lorentz transfor-
mations are consistent, meaning that, unlike the photon
and gluon, no additional gauge symmetries are required
for each Dirac fermion field. This observation applies to
all massive spin- 1

2
fermions: while traditional field theory

adds unphysical degrees of freedom for them, no addi-
tional gauge symmetries are necessary to accommodate
them.

Massless fermions, such as neutrinos, are also typically
embedded in Dirac spinors or Weyl spinors. In the case of
Dirac spinors, a projection operator is used for every in-
teraction to eliminate the contribution from the opposite
chirality. However, regardless of this, massless fermions
inherently possess only one helicity, while massless anti-
fermions possess the opposite helicity. This means that
even when using Weyl spinors and their conjugates, we
are still introducing an extra unphysical degree of free-
dom for each.

Once our traditional field theory is constructed, we
can generate Feynman rules and compute scattering am-
plitudes. However, since Feynman amplitudes are con-
structed using Lorentz representations, they inherently
transform under direct products of Lorentz representa-
tions. As a result, we must contract the Feynman am-
plitude with polarization vectors that extract the correct
helicities and spins from the amplitude. In other words,
the Feynman amplitude still contains many unphysical
degrees of freedom, and we cannot directly square it and
sum over the Lorentz and Dirac indices. We must first
isolate the physical degrees of freedom – namely, the he-
licities and spins of the external particles – before squar-
ing and summing over them. For example, the scattering
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amplitude can be schematically written as:

M···Ii···hj ··· = · · · ✏Iiµi
(pi) · · · ✏hj

µj
(pj)M̃···µi···µj ···, (A16)

where M̃ is the Feynman amplitude that transforms un-
der a direct product of Lorentz representations. In this
example, for clarity, we have used the case of a spin-1
massive boson, such as a W or Z boson, and a helicity-
±1 boson, such as a photon or gluon. However, the same
procedure applies to fermions. The Feynman amplitude
would involve a product of gamma matrices that trans-
form under the SU(2)L ⇥ SU(2)R Lorentz transforma-
tion. To extract the physical spin components, we mul-
tiply on the left and right of every fermion chain by the
“polarization” vectors ū

I(p) and u
I(p) for particles, and

v̄
I(p) and v

I(p) for antiparticles. See Ref. [33] for a de-
tailed discussion of all the polarization vectors for spin
up to 2.

4. Constructive Fields

In constructive theory, we do not use fields that trans-
form under Lorentz representations. Instead, we employ
fields that transform under the little group – spin for mas-
sive particles and helicity for massless particles. Since
we do not introduce any extra unphysical degrees of free-
dom, we expect no subtleties in their transformations.
These fields transform exactly as their particle excita-
tions do. Accordingly, we introduce the following fields
and their corresponding Lorentz transformations. For
massless particles, we have:

U(⇤)G±(p)U�1(⇤) = e
±i2!

G
±(p̄) (A17)

U(⇤)g±(p)U�1(⇤) = e
±i!g±(p̄) (A18)

U(⇤)�±(p)U�1(⇤) = e
±i!

�
±(p̄) (A19)

U(⇤)f±(p)U�1(⇤) = e
±i 1

2!f
±(p̄) (A20)

U(⇤)f̄±(p)U�1(⇤) = e
±i 1

2! f̄
±(p̄), (A21)

where f is a massless fermion, and the transformation
phase ! depends on the Lorentz transformation and the
initial momentum !(⇤, p). Any other quantum numbers,
such as those related to QCD or electric charge, remain
unchanged under a Lorentz transformation.

We can see that if the helicities of the fields with the
same momentum in a product sum to zero, the product
will be invariant under helicity transformations. For a
simple concrete example, consider a term arising from
the quadratic part of the action for photons:

U(⇤)�+(p1)�
�(p2)U

�1(⇤) = �
+(p̄1)e

+i!
e
�i!

�
�(p̄2)

= �
+(p̄1)�

�(p̄2), (A22)

as expected, where we have used the fact that there is
a momentum conserving delta function that equates the
two phase angles, !2 = !1 = !. More complex products

will behave similarly, as long as the helicity contributions
of the transformations for each momentum sum to zero.

For massive fields, the transformations are given by:

U(⇤)h(p)U�1(⇤) = h(p̄) (A23)

U(⇤)f I(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

K

f
K(p̄) (A24)

U(⇤)f̄ I(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

K

f̄
K(p̄) (A25)

U(⇤)ZIK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

Z
LM(p̄)

(A26)

U(⇤)W IK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

W
LM(p̄)

(A27)

U(⇤)W̄ IK(p)U�1(⇤) =
⇣
e
i~!· ~J

⌘ I

L

⇣
e
i~!· ~J

⌘ K

M

W̄
LM(p̄),

(A28)

where ~! depends on the Lorentz transformation and the
momentum, ~!(⇤, p), and ~J are the generators of the
little-group spin. Once again, all other quantum num-
bers remain unaffected by the Lorentz transformation.

We will describe these transformations in greater detail
shortly. To understand the invariance of products with
contracted spin indices, we need to introduce the gen-
erators for spin, exponentiate them, and then consider
products with contracted spin indices. It is important to
emphasize that in our framework, fermion fields trans-
form under spin and possess only two degrees of freedom
each, in contrast to traditional field theory. The W and
Z bosons have two symmetrized spin indices, leaving only
the three physical spin-1 degrees of freedom. To avoid in-
troducing extra unphysical degrees of freedom, it is nec-
essary to symmetrize their indices in all action terms. We
have done this explicitly in our quadratic terms, which
should be sufficient for perturbative calculations. How-
ever, if this action is placed on a lattice, it is necessary
to explicitly symmetrize the interactions as well. We will
come back to these spin-1 fields after discussing the spin
transformations.

It may seem that the conjugate fields should transform
under the conjugate spin representation. This is correct,
but it is important to note that conjugation lowers the
spin index. In the transformations provided so far, we
have given the transformation laws for fields and conju-
gated fields with upper spin indices. The same principle
applies to massless fields: conjugation flips the helicity,
but the Lorentz transformation we provided corresponds
to the helicity of the conjugated field. To clarify this
point, and because it is necessary for understanding the
Hermiticity of the action, we now specify the conjugation
of the fields. The Hermitian conjugates of the fields are
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given by:

⇥
G

±(p)
⇤†

= G
⌥(p) (A29)

⇥
g±a (p)

⇤†
= g⌥a (p) (A30)

⇥
�
±(p)

⇤†
= �

⌥(p) (A31)
⇥
q
i±(p)

⇤†
= q̄

⌥
i (p) (A32)

⇥
l
±(p)

⇤†
= l̄

⌥(p) (A33)
⇥
⌫
�(p)

⇤†
= ⌫̄

+(p) (A34)
⇥
Z

IJ(p)
⇤†

= ZJI(p) (A35)
⇥
W

IJ(p)
⇤†

= W̄JI(p) (A36)
⇥
q
iI(p)

⇤†
= q̄iI(p) (A37)

⇥
l
I(p)

⇤†
= l̄I(p) (A38)

[h(p)]† = h(p), (A39)

where we have interchanged the order of the spin indices
on the W and Z, although they are symmetric, so this
has no effect. If the spin indices are lowered on the left,
then they are raised on the right.

When we examine the list of Hermitian conjugates,
we notice that for all charged fields, Hermitian conjuga-
tion transforms the field into its antifield, with the op-
posite helicity or lowered (or raised) spin. This behavior
is essential for maintaining both Hermiticity and symme-
try invariance in the action, starting from the quadratic
terms. Interestingly, this property extends to massless
neutral fields as well. Hermitian conjugation transforms
these fields into their opposite-helicity counterparts. The
parallel between massless neutral fields and charged fields
is particularly striking in constructive field theory.

Additionally, massless fields of opposite helicity exhibit
distinct interactions with other particles, dictated by
their helicities. These interactions are Hermitian conju-
gates of each other, analogous to the behavior of charged
particles, where the field and antifield (with opposite he-
licity) are interchanged. Furthermore, the propagators of
massless particles feature a particle of one helicity prop-
agating in one direction, while its counterpart, with the
opposite helicity, propagates in the opposite direction
– again, similarly to the behavior of charged particle-
antiparticle pairs on propagator lines.

This stands in contrast to traditional field theory,
where opposite-helicity neutral particles are embedded
together within a single Lorentz-representation field, that
is self conjugate. In particular, A†

µ = Aµ, g†aµ = gaµ, and
G

†
µ⌫ = Gµ⌫ . As a result, photons, gluons, and gravi-

tons interact with other particles through a single uni-
fied interaction, and their Feynman propagators do not
differentiate between opposite directions of propagation.

When considering the relationship between helicity
states, it is common terminology to refer to massless neu-
trinos of opposite helicity, ⌫� and ⌫̄+, as antiparticles of
each other. Extending this terminology, photons, gluons,

and gravitons with opposite helicity could similarly be
called antiparticles of one another, as they exhibit the
same behavior under Hermitian conjugation, and similar
behavior under CP , in their interactions, and in their
propagators. However, if we instead define antiparticles
as those obtained by reversing the charge while preserv-
ing the same helicity or spin – as occurs under the C

operator – we see that the photon is its own antiparticle,
with C�

±
C

�1 = ��± [32] aligning with common termi-
nology for the photon, and that massless neutrinos do
not have antiparticles. Similar considerations apply to
gluons and gravitons. Regardless of the definition used,
constructive field theory treats these fields in a manner
more closely aligned with the physical particles they rep-
resent than traditional field theory does.

In Appendix A3 of [7], we detailed the generators for
spin transformations as part of our validation of the
SPINAS package. In this subsection, we review those
generators, exponentiate them for the full transforma-
tions, and discuss invariance when spin indices are con-
tracted.

The generators of spin are given by:

J
(3) J

K
=
�1
2

✓
1 0
0 �1

◆
(A40)

J
(+) J

K
= �ei�

✓
0 0
1 0

◆
(A41)

J
(�) J

K
= �e�i�

✓
0 1
0 0

◆
, (A42)

where these operators act on upper spin indices (from
the right in matrix notation). For lower spin indices, the
generators are:

J
(3)K

J
=

1

2

✓
1 0
0 �1

◆
(A43)

J
(+)K

J
= e

i�

✓
0 1
0 0

◆
(A44)

J
(�)K

J
= e

�i�

✓
0 0
1 0

◆
. (A45)

It is important to note that the spin generators act-
ing on lower indices form the conjugate representation
when compared with those acting on upper indices. This
relationship can be seen by recalling that the conjugate
representation is given by J̄ = �J⇤, which satisfies:

⇥
J̄
i
, J̄

j
⇤
=
⇥
J
i⇤
, J

j⇤⇤

=
⇥
J
i
, J

j
⇤⇤

=
�
i✏

ijk
J
k
�⇤

= i✏
ijk

J̄
k
. (A46)

In terms of the raising and lowering generators, this
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becomes:

J̄
3 = �J3⇤ (A47)

J̄
± = J̄

1 ± iJ̄
2

= �
�
J
1⇤ ± iJ

2⇤�

= �
�
J
1 ⌥ iJ

2
�⇤

= �J⌥⇤
. (A48)

Thus, the generators acting on lower indices indeed
correspond to the conjugate representation of those act-
ing on upper indices. Moreover, the generators acting
on lower spin indices can be obtained from those acting
on upper spin indices by raising and lowering the indices
using the ✏IJ and ✏IJ tensors. This relationship arises be-
cause SU(2) is pseudoreal, meaning that the conjugate
representation is linearly related to the original represen-
tation.

To explicitly demonstrate the exponentiation of our
spin generators without delving too deeply into the de-
tailed exponentiation of each generator, we will use the
fact that the choice of generator axis can be aligned with
the rotation axis. For convenience, we will call this axis
the z-axis. Although we perform the calculation with
this specific choice of axes, the result is more general.

Exponentiating J
3, we have:

e
i!J3

=
X

n=0

(i!)n

n!

�
J
3
�n

=
X

n=0

(�1)n

(2n)!

⇣
!

2

⌘2n
+ i2J3

X

n=0

(�1)n

(2n+ 1)!

⇣
!

2

⌘2n+1

= cos
⇣
!

2

⌘
+ i2J3 sin

⇣
!

2

⌘

=

✓
cos
�
!
2

�
⌥ i sin

�
!
2

�
0

0 cos
�
!
2

�
± i sin

�
!
2

�
◆
,

(A49)

where we have split the sum into its even and odd parts
on the second line and used the fact that (J3)2 =

�
1

2

�2.
The extra factor of 2 in front of the J

3 is because we
have an extra division of 2 inside the sum. The sign on
the last row depends on whether this transformation is
acting on upper spin indices (upper sign) or lower spin
indices (lower sign). Therefore, the full rotation in spin
space is given by:

⇣
e
i!J3

⌘ I

K

=

✓
e
�i!

2 0
0 e

+i!
2

◆ I

K

(A50)

⇣
e
i!J3

⌘I
K

=

✓
e
+i!

2 0
0 e

�i!
2

◆I

K

=

⇣
e
i!J3

⌘ I

K

�†
. (A51)

We can now observe the impact of a spin transforma-
tion on a product with a contracted spin index, where

the momentum is the same so that the phase ! is the
same. As a concrete example, let’s consider a quadratic
term, as it appears in the quadratic part of the action.
For simplicity, we will focus on a fermion field with one
spin index. The transformation is given by:

U(⇤)f̄I(p1)f
I(p2)U

�1(⇤)

= f̄K(p̄1)
⇣
e
i!J3

⌘K
I

⇣
e
i!J3

⌘ I

L

f
L(p̄2)

= f̄K(p̄1)f
L(p̄2), (A52)

as expected, where we have used the fact that there is
a momentum-conserving delta function that equates the
two phase angles, !2 = !1 = !. Since we chose the
axes without loss of generality, this result holds for any
rotation.

Furthermore, the same principle applies to more com-
plex action terms involving multiple fields and spinor
products. As long as all the spin indices are contracted
between objects with the same momentum, the spin trans-
formations cancel out in pairs, ensuring invariance under
the transformation.

We have emphasized multiple times that our field the-
ory does not introduce any extra unphysical degrees of
freedom. However, there is an important caveat that
must be discussed, regarding the spin structure of the
W and Z bosons. Although it is true that symmetriz-
ing their spin-1

2
indices leaves only the spin-1 degrees of

freedom, and symmetrizing the propagators is sufficient
to remove the antisymmetric spin-0 piece from perturba-
tion theory, we must be more careful when considering
non-perturbative calculations. We must also symmetrize
the interaction terms. Moreover, integrating over all pos-
sible field configurations for the W and Z bosons should
also only consider symmetric field configurations for ef-
ficiency, even if the antisymmetric field configurations
don’t contribute.

On the other hand, strictly speaking, the functional in-
tegral formulation of quantum mechanics integrates over
all possible field configurations, including the antisym-
metric spin-0 configurations for these fields, which may
raise concerns. However, it is important to note that
our formulation of these fields using two spin-1

2
indices is

merely a shorthand for the spin-1 fields, which inherently
have only one spin-1 index.

In order to clarify this, we introduce a spin-1 index
N, which runs over the values �1, 0 and 1. Since the
interaction of this field must be Lorentz invariant and, as
we will see, requires the contraction of this spin-1 index
with the spin- 1

2
indices of spinor products, we need a

tensor to connect these spins. Therefore, we define:

PIJ

N =

8
>>>>>><

>>>>>>:

N, I, J = 1, 1

2
,

1

2
1

N, I, J = 0, 1

2
,� 1

2

1p
2

N, I, J = 0,� 1

2
,

1

2

1p
2

N, I, J = �1,� 1

2
,� 1

2
1

else 0,

(A53)
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and its conjugate with its spin indices raised and low-
ered, which contain the Clebsch-Gordon coefficients. Us-
ing this tensor, we define our fields with two spin- 1

2
in-

dices as follows:

Z
IJ = PIJ

NZ
N (A54)

W
IJ = PIJ

NW
N (A55)

W̄
IJ = PIJ

NW̄
N
. (A56)

The fields with a single spin-1 index are the quantum
fields we actually introduce, and they truly do not possess
any unphysical degrees of freedom. However, whenever
these fields are used in an interaction, they must be con-
tracted with a symmetric combination of spin- 1

2
indices

from the spinor products. The tensor PIJ

N is necessary to
achieve this contraction. On the other hand, since PIJ

N
and the field always appear together, we use the short-
hand notation of writing the field with two spin- 1

2
indices.

As an example of how this works, we consider the
quadratic term. We note that a product of two of these
tensors gives:

PM
IJ

1

2

�
�
I

K
�
J

L
+ �

I

L
�
J

K

�
PKL

N =
1

2

�
PM
IJ
PIJ

N + PM
IJ
PJI

N

�

= �
M
N . (A57)

Therefore, the quadratic terms for both Z
IJ bosons and

W
IJ bosons give the correct quadratic terms for Z

N and
W

N, since using this result in Eq. (38) results in:

1

2

�
p
2

1
�M

2

Z

�
ZIJ(p1)

1

2

�
�
I

K
�
J

L
+ �

I

L
�
J

K

�
Z

KL(p2)

=
1

2

�
p
2

1
�M

2

Z

�
ZN(p1)Z

N(p2) (A58)
�
p
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1
�M

2

W

�
W̄IJ(p1)

1

2

�
�
I

K
�
J

L
+ �

I

L
�
J

K

�
W

IJ(p2)

=
�
p
2

1
�M

2

W

�
W̄N(p1)W

N(p2). (A59)

In summary, although we use a symmetric combination
of spin-1

2
indices for our Z- and W -boson fields, this is

merely a shorthand for the fields ZN and W
N. Therefore,

we maintain our assertion that no unphysical degrees of
freedom are introduced for any of the fields, including the
Z and W bosons. The use of two spin- 1

2
indices is purely

a notational convenience. Moreover, this procedure can
be generalized to any spin.

On a practical level, as long as we explicitly symmetrize
the propagator, as we have done, and symmetrize the
interactions in non-perturbative calculations, the anti-
symmetric component will not contribute. However, in
the functional integral, strictly speaking, we should inte-
grate over Z

N
,W

N, and W̄
N to ensure that no unphys-

ical degrees of freedom are introduced. Nevertheless, if
preferred, all Z

IJ, W IJ and W̄
IJ can be replaced, using

Eqs. (A54) through (A56), completely removing even the
hint of unphysical degrees of freedom.

Before leaving this subsection, we note that we have
simply defined all our fields with the properties they

should have. We do not think there are any issues with
our definitions. However, in principle, we should follow
[32] and build up the field properties based on the cre-
ation and annihilation operators for single-particle states
and the requirements of causality. Since Weinberg as-
sumes locality from an early point in his discussion, and
he works in position space, we would need to derive the
analogous properties without the assumption of locality
and also in momentum space. We think this would make
an interesting and instructive exercise and would like to
pursue it in the future. However, it is beyond the scope
of the present article.

5. Lorentz Transformations

To construct interaction terms in our action, we need
to consider how to combine fields that transform under
the little group. For quadratic terms, which give rise to
propagators, the process is straightforward: we can pair
fields of opposite helicity or combine a massive field with
its conjugate, contracting the spin indices. We have al-
ready established that these terms are Lorentz invariant.
However, when we move on to interaction terms, addi-
tional elements are required for several reasons.

First and foremost, the momenta of the fields in an
interaction are generally not identical, resulting in differ-
ent phase angles !i = !(⇤, pi) for each field. These phase
angles cannot cancel each other out unless they act on ob-
jects with the same momentum, which already presents
a fundamental and sufficient challenge. However, there is
an secondary issue: in some interactions, the spin indices
and helicity transformations of the fields cannot be made
to cancel each other out, even in principle. Consider, for
example, the cubic interaction involving a W boson, a
charged lepton, and a neutrino. The W boson field has
two spin indices, the charged lepton field has one spin
index, and the neutrino field has no spin indices but in-
stead transforms under helicity. In this case, it is not
even possible to contract the indices of these fields, let
alone cancel their transformations, without introducing
additional components. Therefore, to construct Lorentz-
invariant interaction terms, we must introduce non-field
objects that transform under the little group to effec-
tively cancel the transformations of the fields.

In traditional field theory, fields transform under
Lorentz representations rather than little-group represen-
tations, necessitating the use of non-field objects that
also transform under Lorentz representations to con-
struct invariant terms. For this purpose, we employed
the covariant derivative D

µ and the Dirac gamma matri-
ces �µ and �5, which allowed us to form products that
are Lorentz invariant. However, in the context of con-
structive field theory, we now need to identify analogous
objects that transform under little-group representations
to maintain invariance while working with our fields.

One way to approach the challenge of forming Lorentz-
invariant interaction terms in constructive field theory
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is by considering how we represent momentum. Tra-
ditionally, momentum is represented by the four-vector
p
µ, which naturally incorporates the four degrees of free-

dom of the momentum, with one-to-one correspondence.
However, this is not the only possible representation. An-
other way to represent momentum is through a Hermitian
2⇥2 matrix, which also contains four degrees of freedom
(two along the diagonal and two on the off-diagonals).
There are two convenient embeddings of momentum into
these matrices:

p↵�̇ =

✓
p
0 + p

3
p
1 � ip

2

p
1 + ip

2
p
0 � p

3

◆

=

✓
E + pc✓ ps✓e

�i�

ps✓e
i� E � pc✓

◆
(A60)

p
↵̇� =

✓
p
0 � p

3 �p1 + ip
2

�p1 � ip
2

p
0 + p

3

◆

=

✓
E � pc✓ �ps✓e�i�

�ps✓ei� E + pc✓

◆
, (A61)

where the signs of the spatial momenta are flipped with
upper Lorentz indices; E is the energy, p = |~p| is the mag-
nitude of the vector momentum, c✓ = cos(✓), s✓ = sin(✓),
✓ is the polar angle, and � is the azimuthal angle; and we
will explain the need for the different indices (undotted
and dotted) shortly. In this notation, the Lorentz indices
↵ and �̇ take two values each. The convenience of this
definition is that the determinant is equal to the mass
squared

det(p) = m
2
, (A62)

and that they are related to the well-known Pauli sigma
matrices.

Our next step is to understand how Lorentz transfor-
mations act on this matrix form of momentum. We an-
ticipate that the transformation will involve two 2 ⇥ 2
matrices, each acting on one of the Lorentz indices. To
do this in general, we need to find the set of transforma-
tions that preserve the determinant, which corresponds
to the mass. We find that the momentum matrix trans-
forms as follows:

p
0
↵�̇

= ⇤ �
1
2↵
⇤⇤ !̇

1
2 �̇

p�!̇ (A63)

p
0�̇↵ = ⇤⇤�̇

1
2 !̇
⇤ ↵

1
2 �p

!̇�
, (A64)

where ⇤ 1
2

is the defining representation of the Lorentz
group SL(2,C), and ⇤⇤

1
2

is the conjugate representation.
The group SL(2,C) consists of complex 2 ⇥ 2 matrices
with unit determinant, possessing six degrees of freedom
– corresponding to three rotations and three boosts. This
group is a covering group for SO(3, 1) and shares the
same Lie algebra.

Given that this representation is complex, ⇤ 1
2

and ⇤⇤
1
2

are not related by a similarity transformation, necessitat-
ing the use of different Lorentz indices – hence the un-
dotted and dotted indices. It is important to note that

SO(3, 1) itself does not have a two-dimensional represen-
tation. This is because a 2⇡ rotation in SO(3, 1) is always
equivalent to the identity, whereas all two-dimensional
representations of SL(2,C) require a 4⇡ rotation to re-
turn to the identity. This distinction highlights the na-
ture of SL(2,C) as a double cover of SO(3, 1), where
each element of SO(3, 1) corresponds to two elements in
SL(2,C).

A special set of SL(2,C) generators, acting on lower
Lorentz indices, are given and validated in [7]. For con-
venience, we repeat them here:

J (3) �
↵ =

�1
2

✓
c✓ s✓e

�i�

s✓e
i� �c✓

◆
(A65)

J (+) �
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�e�⌘

2

✓
�s✓ e

�i�(c✓ � 1)
e
i�(c✓ + 1) s✓

◆
(A66)

J (�) �
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�e⌘

2

✓
�s✓ e

�i�(c✓ + 1)
e
i�(c✓ � 1) s✓

◆
(A67)

J (3) �̇
↵̇ =

1
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✓
c✓ e
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s✓

e
�i�
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◆
(A68)

J (+) �̇
↵̇ =

e
⌘

2

✓
�s✓ e

i�(c✓ + 1)
e
�i�(c✓ � 1) s✓

◆
(A69)

J (�) �̇
↵̇ =

e
�⌘

2

✓
�s✓ e

i�(c✓ � 1)
e
�i�(c✓ + 1) s✓

◆
(A70)

where

⌘ =
1

2
ln

✓
E + p

E � p

◆
, (A71)

in the massive case. This representation of generators
is aligned with the particle’s momentum (its orienta-
tion and magnitude). We can see that these genera-
tors satisfy the SU(2) algebra,

⇥
J (+)

,J (�)
⇤
= 2J (3) and⇥

J (3)
,J (±)

⇤
= ±J (±). In fact, as we will soon see, this

is because these are the generators of the little-group spin
for time-like momenta, that act on the Lorentz space.

In the massless case J (3) is unchanged. However, we
will not need J (±). This is because J (3) is a representa-
tion of helicity, and not a member of spin, in this case.
Indeed, for massless fields, we will only need J (3) in this
form, and will not use J (±) at all. While normalized ver-
sions of these operators would still belong to SL(2,C),
they would not be part of the little group for light-like
momenta and are therefore not of interest in this context.

We note that the generators with dotted indices are
related to those with undotted indices by J (3) �̇

↵̇ =

�
h
J (3) �

↵

i⇤
and J (±) �̇

↵̇ = �
h
J (⌥) �

↵

i⇤
, as expected for

a conjugate representation. The generators acting on
upper Lorentz indices are given by raising and lowering
these Lorentz indices with the antisymmetric epsilon ten-
sor, which is numerically the same as the tensor used to
raise and lower spin indices. These generators are given
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by:
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Once again, we will only need J (3) in the massless case.
To determine the action of these generators on the mo-

mentum, we need to exponentiate them. In order to
keep this section simple, we will only consider a rota-
tion around the axis of the momentum, meaning we will
only exponentiate J (3) here. However, the result we find
will be more general, as we will discuss below. As with
the spin generators, we find that

�
J (3)

�2
=
�
1

2

�2, leading
to the expression e

i!J 3

= cos
�
!
2

�
+ i2J 3 sin

�
!
2

�
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results in:
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Consequently, we find that:
⇣
e
i!J 3
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↵

⇣
e
i!J 3

⌘ ⌘̇

�̇
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That is, these generators possess the special property of
leaving the momentum unchanged. The generator J (3)

is responsible for rotations around the momentum’s axis,
which will leave the momentum unchanged, whether mas-
sive or massless. However, J (1) and J (2) only corre-
spond with spatial rotations in the rest frame of the par-
ticle. In other frames, they are more complicated, but

still have the property that they do not change the mo-
mentum. Generally speaking, these operators should not
be thought of as generators of spatial rotation. Rather,
they are the generators of spin, which act on Lorentz in-
dices, whereas, the generators of spin introduced in the
last subsection act on spin indices. Although they act on
different “spaces” (Lorentz versus spin), they are genera-
tors of the same group.

As we have seen, the Lorentz spin generators we have
discussed so far are specific to each particle, and are
aligned with the particle’s momentum. These spin gen-
erators will be used in the next subsection. However, in
order to understand the Lorentz invariance of the action
and handle general Lorentz transformations, it is also es-
sential to consider the generators of spatial rotations that
are fixed and independent of any particle’s momentum.

For this purpose, we introduce the following fixed rep-
resentation of the Lorentz rotation generators:
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✓
0 1

2
1

2
0

◆
J(1)↵̇

�̇
=

✓
0 � 1

2

� 1

2
0

◆
(A87)

J(2) �̇
↵̇ =

✓
0 � i

2
i
2

0

◆
J(2)↵̇

�̇
=

✓
0 � i

2
i
2

0

◆
. (A88)

These generators are valid for both massive and massless
momenta. They are also generators of SU(2) however,
strictly speaking, they are not generators of the little
group, except in special cases.

To fully understand Lorentz invariance, we also need to
consider the group elements generated by exponentiation
of the rotation generators. Without loss of generality, we
will choose the z-axis as the rotation axis. The group
element corresponding to a rotation by an angle !̄ around
the z-axis is given by:

e
i!̄J3

= cos
⇣
!̄

2

⌘
+ i2J3 sin

⇣
!̄

2

⌘
. (A89)

Therefore,
⇣
e
i!̄J3

⌘ �

↵
=

✓
e
�i !̄

2 0
0 e

+i !̄
2

◆
(A90)

⇣
e
i!̄J3

⌘ �̇

↵̇
=

✓
e
+i !̄

2 0
0 e

�i !̄
2

◆
(A91)

⇣
e
i!̄J3

⌘↵
�
=

✓
e
+i !̄

2 0
0 e

�i !̄
2

◆
(A92)

⇣
e
i!̄J3

⌘↵̇
�̇
=

✓
e
�i !̄

2 0
0 e

+i !̄
2

◆
. (A93)
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From this, we observe that if Lorentz indices are con-
tracted, the product remains Lorentz invariant under ro-
tations. For instance, consider two objects A↵ and B

↵

that transform under ⇤ 1
2
. The contracted product of

these objects transforms as:

A
0
↵B

0↵ = A�

⇣
e
i!̄J3

⌘ �

↵

⇣
e
i!̄J3

⌘↵
�
B

� = A↵B
↵
. (A94)

We can confirm that this representation yields the cor-
rect rotation of the momentum around the z-axis, with-
out loss of generality. For a rotation by an angle !̄, we
find:
⇣
e
i!̄J3

⌘ ⇣

↵

⇣
e
i!̄J3

⌘ ⌘̇

�̇
p⇣⌘̇ =

✓
E + pc✓ ps✓e

�i(�+!̄)

ps✓e
i(�+!̄) E � pc✓

◆
.

(A95)

We now turn to the Lorentz boosts, which, like the ro-
tations, can be derived from the condition that det(p) =
m

2 is unchanged. Interestingly, despite this general
derivation, the boosts exhibit a straightforward relation-
ship with the generators of rotations. Specifically, we
find:

K = ±iJ, (A96)

where the upper sign corresponds to undotted indices,
and the lower sign corresponds to dotted indices. This
result naturally satisfies the Lorentz algebra:

[Jj , Jk] = i✏jklJl (A97)
[Jj ,Kk] = i✏jklKl (A98)
[Kj ,Kk] = �i✏jklJl. (A99)

As we can see, in contrast to the rotation generators, the
boost generators do not form a closed subalgebra on their
own.

Exponentiating the generator gives the corresponding
group element. As with rotations, we align our z-axis
along the direction of the boost, without loss of gener-
ality. However, unlike rotations, the square of our boost
generator flips signs, yielding �

�
1

2

�2. Otherwise, follow-
ing a similar logic, we obtain:

e
i⌘K3

= cosh
⇣
⌘

2

⌘
⌥ 2J3 sinh

⇣
⌘

2

⌘
. (A100)

Consequently, we have:

⇣
e
i⌘K3

⌘ �

↵
=

✓
e

⌘
2 0
0 e

� ⌘
2

◆
(A101)

⇣
e
i⌘K3

⌘ �̇

↵̇
=

✓
e

⌘
2 0
0 e

� ⌘
2

◆
(A102)

⇣
e
i⌘K3

⌘↵
�
=

✓
e

�⌘
2 0
0 e

⌘
2

◆
(A103)

⇣
e
i⌘K3

⌘↵̇
�̇
=

✓
e
� ⌘

2 0
0 e

⌘
2

◆
. (A104)

Therefore, products with contracted Lorentz indices are
also invariant under boosts. For example,

A
0
↵B

0↵ = A�

⇣
e
i⌘K3

⌘ �

↵

⇣
e
i⌘K3

⌘↵
�
B

� = A↵B
↵
. (A105)

We will also confirm that we get the expected boosts in
a simple example, where we choose the boost direction to
be the z�direction, without loss of generality. We have

⇣
e
i⌘K3

⌘ ⇣

↵

⇣
e
i⌘K3

⌘ �̇

�̇
p⇣�̇ =

✓
Ē + p̄c✓̄ p̄s✓̄e

�i�

p̄s✓̄e
i� Ē � p̄c✓̄

◆
,

(A106)

where

Ē ± p̄c✓̄ = (E ± pc✓)e
±⌘ (A107)

p̄s✓̄ = ps✓, (A108)

leading to

Ē = E cosh(⌘) + pc✓ sinh(⌘) (A109)
p̄c✓̄ = E sinh(⌘) + pc✓ cosh(⌘), (A110)

as expected for a boost.
This is a good point to talk about the chiral group

SU(2)L ⇥ SU(2)R. Noticing that the generators for
boosts and rotations are related in Eq. (A96), we see
that we can combine them to form

A =
1

2
(J� iK) (A111)

B =
1

2
(J+ iK) . (A112)

These generators satisfy two separate closed SU(2) alge-
bras,

[Aj ,Ak] = i✏jklAl (A113)
[Bj ,Bk] = i✏jklBl (A114)
[Aj ,Bk] = 0. (A115)

In fact, for undotted and dotted indices, we find

A �
↵ = J �

↵ (A116)
B �
↵ = 0 (A117)

A �̇
↵̇ = 0 (A118)

B �̇
↵̇ = J �̇

↵̇ (A119)

This is the chiral form of the Lorentz group. Representa-
tions of A are said to be left chiral, while representations
of B are right chiral. We see that the undotted indices
transform under the left-chiral group, while dotted in-
dices transform under the right-chiral group.

Even so, it should be remembered that a rotation on its
own will transform under both A and B at the same time.
The same is true for boosts. Only a special combination
of rotations and boosts, ~⌘ = ±i~✓, would transform purely
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under one or the other. However, physical boosts and
rotations are real. Nevertheless, this group will be crucial
for understanding chiral interactions in constructive field
theory.

Before concluding this subsection, it is important to
emphasize again that these Lorentz operators do not act
directly on our fields. Instead, our fields transform under
the little group, which corresponds purely to helicity and
spin representations, rather than under the full Lorentz
group representations. In particular, they have spin in-
dices (or no index in the massless case). They do not
have Lorentz indices. This is a significant distinction
from traditional field theory, where fields do transform
under Lorentz group representations, and the Lorentz
operators act directly on them and their Lorentz indices.
Despite this difference, we will still require the Lorentz
representations to construct Lorentz-invariant terms in
the action.

6. Helicity and Spin Spinors

As we discussed at the beginning of the previous sub-
section, in order to construct field theory action terms,
we need non-field objects that transform under the lit-
tle group that can be combined with the fields to create
Lorentz invariants. Since the fields transform with differ-
ent phase angles !i = !(⇤, pi), the little-group transfor-
mations can not cancel directly between the fields. More-
over, as a further example, we considered the interaction
of a W boson, a charged lepton and a neutrino. Be-
tween the three of these, we have three spin indices and
one helicity transformation, with no way to even naively
pair them up. Since these transformations cannot be
cancelled purely among these fields, we need to multiply
these with non-field objects that also transform under
spin and helicity and cancel their transformations.

In order to build this up naturally, we will begin with
a massless momentum, which can be written:

p↵�̇ = 2E
✓

c
2

cs
⇤

cs ss
⇤

◆
(A120)

p
↵̇� = 2E

✓
ss

⇤ �cs⇤
�cs c

2

◆
, (A121)

where c = cos
�
✓
2

�
and s = sin

�
✓
2

�
e
i�. As expected

for a light-like momentum, the determinant of these are
zero. This means that these matrices are rank one and,
therefore, their rows (or columns) are linearly dependent.
Consequently, these matrices can be factorized as a prod-
uct of a 2⇥ 1 column and a 1⇥ 2 row.

Focusing first on pi↵�̇ , we call the column |ii↵ and the
row [i|�̇ , where i represents the i

th momentum. This
notation is shorthand for |ii = |pii and [i| = [pi|. With
this, we can express pi↵�̇ as:

pi↵�̇ = |ii↵[i|�̇ . (A122)

Considering that |ii↵ transforms under the undotted
representation of the Lorentz group SL(2,C) and [i|�̇ un-
der the dotted (conjugate) representation, we expect that
[i| will be related to the conjugate of |ii. Furthermore,
they should cary the parts of the momentum equally. In-
spection leads us to:

|ii↵ =
p
2E
✓

c

s

◆
(A123)

[i|�̇ =
p
2E
✓

c

s
⇤

◆
. (A124)

If we raise the Lorentz indices with the epsilon tensor,
we have:

hi|↵ =
p
2E
✓

s

�c

◆
(A125)

|i]�̇ =
p
2E
✓

s
⇤

�c

◆
, (A126)

which is just what we need for:

p
↵̇�
i = |i]↵̇hi|� . (A127)

We refer to these as helicity spinors, a term whose
significance will become clearer shortly. The Lorentz in-
dex on angle spinors is always undotted and lower on
right-angle spinors but upper on left-angle spinors, while
the Lorentz index on square spinors is always dotted and
lower on left-square spinors but upper on right-square
spinors. This notation will allow us to leave the Lorentz
index implicit when there is no ambiguity.

To understand how these spinors transform under
Lorentz transformations, we might initially guess that the
transformation of the spinor is given by |1̄i↵ = ⇤ �

1
2↵

|1i� ,
where p̄ = ⇤p. However, this naive guess is not entirely
accurate. Let us clarify this with a specific example.

Consider a rotation by an angle !̄ around the z-axis.
In this case, the only change to the momentum is the
azimuthal angle, which shifts to � + !̄. However, if we
apply this rotation to the spinor, we find:
⇣
e
i!̄J3

⌘ �

↵
|ii� =

p
2E
✓

ce
�i !̄

2

se
i !̄
2

◆
6=
p
2E
✓

c

se
i!̄

◆
.

(A128)

Instead, we observe:
⇣
e
i!̄J3

⌘ �

↵
|ii� = e

�i !̄
2 |̄ii↵, (A129)

where p̄i = ⇤pi. We recognize this as a helicity transfor-
mation on the right side. We see that the angle helicity
spinors transform as helicity-� 1

2
objects under Lorentz

transformation. It turns out that square helicity spinors
transform as helicity-+ 1

2
objects.

In order to develop this generally without going
through every example, we define these spinors by a stan-
dard boost from a standard set of spinors, |ki and [k|.
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Therefore,

|ii↵ = L 1
2
(pi)

�
↵ |ki� (A130)

[i|↵̇ = L
⇤
1
2
(pi)

�̇
↵̇ [k|�̇ , (A131)

where L(p) is the standard boost discussed in App. A 2.
We can now see that a Lorentz transformation acting on
this gives:

⇤ �
1
2↵

|ii� = ⇤ �
1
2↵

L 1
2
(pi)

�
� L

�1
1
2
(p̄i)

✏
� |̄ii✏ (A132)

⇤⇤ �̇
1
2 ↵̇

[i|�̇ = ⇤⇤ �̇
1
2 ↵̇

L
⇤
1
2
(pi)

�̇

�̇
L
⇤�1
1
2

(p̄i)
✏̇
�̇ [̄i|✏̇. (A133)

We have seen the Lorentz transformation on the right
in Eq. (A9). It is the Lorentz transformation that takes
p̄i ! k ! pi ! p̄i. Therefore, it is a transformation that
leaves the momentum unchanged. In the present massless
case, it is a rotation around the axis of the momentum.
The generator for this transformation is J (3) given in
Eqs. (A65) and (A68). Therefore, we find:

⇤ �
1
2↵

|ii� =
⇣
e
i!iJ 3

⌘ �

↵
|̄ii� (A134)

⇤⇤ �̇
1
2 ↵̇

[i|�̇ =
⇣
e
i!iJ 3

⌘ �̇

↵̇
[̄i|�̇ , (A135)

where !i = !(⇤, pi) is the same function of the Lorentz
transformation and momentum as in App. A 2.

Moreover, we can see that |ii and [i| are eigenstates of
J (3), with

J (3)|ii = �1

2
|ii (A136)

J (3)[i| = +
1

2
[i|. (A137)

Consequently,

⇤ �
1
2↵

|ii� = e
�i

!i
2 |̄ii↵ (A138)

⇤⇤ �̇
1
2 ↵̇

[i|�̇ = e
+i

!i
2 [̄i|↵̇. (A139)

Lorentz transformation takes these helicity spinors to the
spinors with the new momentum, multiplied by a phase
and helicity equal to ⌥ 1

2
for the angle and square spinors.

These spinors will be very useful for building Lorentz
invariants with fields.

We could have approached this process in reverse,
starting from the desired transformation properties de-
scribed in Eqs. (A134) through (A139). However, de-
riving the correct form from the momentum structure
led us naturally to the right spinor form. For the spin
spinors, however, we will take a different approach. Here,
we will begin by specifying the transformation properties
we want, informed by the insights gained from the mass-
less case, and then work our way back to the momentum.

As we begin the search for massive spinors, in order to
make the notation more economical in the future, we will
find it useful boldface the index on massive spin spinors

in order to distinguish them from the massless helicity
spinors, which will not be boldfaced.

Looking back at Eqs. (A12) and (A13), we recognize
that the property we seek in our massive spinors is that,
under a Lorentz transformation, they should transform
according to the spin representation at the new momen-
tum. Specifically, we want to construct a spin spinor,
denoted with a spin index, that transforms as follows:

⇤ �
1
2↵

|iiI� =
⇣
e
i~!i· ~J

⌘ �

↵
|̄iiI� =

⇣
e
i~!i· ~J

⌘ I

K

|̄iiK↵ (A140)

⇤⇤ �̇
1
2 ↵̇

[i|I
�̇
=
⇣
e
i~!i· ~J

⌘ �̇

↵̇
[̄i|I

�̇
=
⇣
e
i~!i· ~J

⌘ I

K

[̄i|K↵̇ , (A141)

where ~!i = ~!(⇤, pi), ~J are the generators of spin given
in Eqs. (A65) through (A70) and ~J are the generators of
spin given in Eqs. (A40) through (A42). In particular,
~J are the generators that do not change the momentum.
They result in transformations that take p̄i ! k ! pi !
p̄i and correspond to the transformations on the right of

⇤ �
1
2↵

|iiI� = ⇤ �
1
2↵

L 1
2
(pi)

�
� L

�1
1
2
(p̄i)

✏
� |̄iiI✏ (A142)

⇤⇤ �̇
1
2 ↵̇

[i|I
�̇
= ⇤⇤ �̇

1
2 ↵̇

L
⇤
1
2
(pi)

�̇

�̇
L
⇤�1
1
2

(p̄i)
✏̇
�̇ [̄i|I✏̇, (A143)

where we define

|iiI↵ = L 1
2
(pi)

�
↵ |kiI� (A144)

[i|I↵̇ = L
⇤
1
2
(pi)

�̇
↵̇ [k|I

�̇
, (A145)

and k is a standard momentum for the paricle, typically
the rest momentum.

In particular, from Eqs. (A140) and (A141), we want
our spinors to satisfy

⇣
J (j)

⌘ �

↵
|iiI� =

⇣
J
(j)
⌘ I

K

|iiK↵ (A146)
⇣
J (j)

⌘ �̇

↵̇
[i|I

�̇
=
⇣
J
(j)
⌘ I

K

[i|K↵̇ , (A147)

and similarly for upper Lorentz indices, where j stands
for any of 3,+ or �. That is, we seek to build non-field
objects that transform under the little-group spin. We
want them to live in both Lorentz “space” (with a Lorentz
index) and in spin “space” (with a spin index). However,
since it is the same spin, which is to say, the same little
group, the generators of spin in both “spaces” should have
the same effect on these objects.

Moreover, since the square spinor transforms under the
conjugate representation of SL(2,C), it should be the
conjugate of the angle spinor. Since it is the conjugate,
we expect the spin index to lower (or raise) under conju-
gation. Consequently, we look for a solution that satisfies

[i|↵̇I =
�
|iiI↵
�⇤

. (A148)

Finally, we would also like our spinors to give the momen-
tum when multiplied with the spin indices contracted,

pi↵�̇ = |iiI↵[i|�̇I (A149)

p
↵̇�
i = |i]↵̇

I
hi|�I. (A150)
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Altogether, these are the defining properties for the spin
spinors, to which we look for a solution.

We will write these spinors as a matrix where the
Lorentz index gives the row and the spin index gives the
column. In order to find these efficiently, we use the prop-
erty that the massless limit should give the helicity spinor
in one column (where the spin matches the helicity) and
zero in the other. It seems reasonable that

p
2E should

be replaced with
p
E + p in one column and

p
E � p in

the other. A quick search for a spin spinor that satisfies
these properties yields:

|iiI↵ =

✓ p
E + p c �

p
E � p s

⇤
p
E + p s

p
E � p c

◆
(A151)

[i|�̇I =
✓ p

E + p c �
p
E � p sp

E + p s
⇤ p

E � p c

◆
. (A152)

All the other massive spin spinors can be obtained from
these by raising and lowering the Lorentz and spin indices
using the epsilon tensor, and have been given elsewhere
[3–5, 7, 11, 17]. These references give many of their prop-
erties and we will not recount them all here. We will sim-
ply focus on the properties relevant to the construction
of a Lorentz invariant action.

7. Lorentz Invariants

We have already noted that products with the Lorentz
indices contracted have the property that the Lorentz
transformations cancel [see Eqs. (A94) and (A105)].
Therefore, we can immediately see that this applies
to products of spinors, with their Lorentz indices con-
tracted. This includes spinor products with momenta
inserted. For example:

hiji = hi|↵|ji↵ = hi|↵⇤ �
1
2 ↵
⇤ ⌘

1
2�

|ji⌘ (A153)

[ij] = [i|↵̇|j]↵̇ = [i|↵̇⇤⇤ ↵̇
1
2 �̇
⇤⇤�̇

1
2 ⌘̇

|j]⌘̇ (A154)

hijiK = hi|↵|jiK↵ = hi|↵⇤ �
1
2 ↵
⇤ ⌘

1
2�

|jiK⌘ (A155)

[ij]I = [i|I↵̇|j]↵̇ = [i|I↵̇⇤⇤ ↵̇
1
2 �̇
⇤⇤�̇

1
2 ⌘̇

|j]⌘̇ (A156)

hijiIK = hi|↵I|jiK↵ = hi|↵I⇤ �
1
2 ↵
⇤ ⌘

1
2�

|jiK⌘ (A157)

[i|pl|ji = [i|↵̇p↵̇�l |ji� (A158)

= [i|↵̇⇤⇤ ↵̇
1
2 �̇
⇤⇤�̇

1
2 ⌘̇

p
⌘̇⇣
l ⇤


1
2 ⇣⇤

◆
1
2

|ji◆

hi|pl|j]K = hi|↵pl↵�̇ |j]
�̇K (A159)

= hi|↵⇤ �
1
2 ↵
⇤ ⌘

1
2�

pl⌘⇣̇⇤
⇤ ⇣̇
1
2 ̇
⇤⇤̇

1
2 ◆̇|j]

◆̇K

... ,

and many more, where ⇤ 1
2

could be a rotation, a boost,
or a combination. The Lorentz transformation cancels in
all these products.

In general, the Lorentz transformations will cancel in
any spinor product with spinors at the ends and any num-
ber of momenta in between, so long as the spinors are of
the same type (both angle or both square) if the number
of momenta is even or as long as the spnors are of oppo-
site type (one angle and one saquare) if the number of
momenta is odd.

We have also introduced a notation on the left,
where we drop the Lorentz indices since they are de-
termined uniquely from the bracket structure. Right-
angle spinors have lower undotted Lorentz indices, left-
angle spinors have upper undotted Lorentz indices, right-
square spinors have upper dotted Lorentz indices and
left-square spinors have lower dotted Lorentz indices.
The Lorentz indices on the momenta are determined by
the objects to their left and right, whether spinors or
other momenta.

We can now use the property that the Lorentz trans-
formations acting on the momenta give the transformed
momenta, for example p̄

�̇ = ⇤⇤�̇
1
2 ⌘̇
⇤ 

1
2 ⇣

p
⌘̇⇣
l . We can also

use the property of the spinors that a Lorentz transfor-
mation of them gives the spinors at the new momenta
times a little-group transformation [see Eqs. (A140) and
(A141)]. That is, for example, we find

hi|· · · pl · · ·|ji = e
� i

2 (!i+!j)h̄i|· · · p̄l · · ·|j̄i (A160)

[i|· · · pl · · ·|j] = e
+

i
2 (!i+!j) [̄i|· · · p̄l · · ·|j̄] (A161)

[i|· · · pl · · ·|ji = e
+

i
2 (!i�!j) [̄i|· · · p̄l · · ·|j̄i (A162)

hi|· · · pl · · ·|jiK = e
� i

2!i

⇣
e
i~!j · ~J

⌘ K

L

h̄i|· · · p̄l · · ·|̄jiL

(A163)

[i|I· · · pl · · ·|j] = e
+

i
2!j

⇣
e
i~!i· ~J

⌘ I

L

[̄i|L· · · p̄l · · ·|j̄]
(A164)

hi|I· · · pl · · ·|j]K =
⇣
e
i~!i· ~J

⌘ I

L

⇣
e
i~!j · ~J

⌘ K

M

h̄i|L· · · p̄l · · ·|̄jiM

(A165)
...,

where we have separate rotation parameters !i(⇤, pi) and
!j(⇤, pj) for each spinor because this parameter depends
on both the Lorentz transformation and on the momen-
tum of the particle. In summary, a spinor product in one
frame is equal to the spinor product in another frame
that is transformed by the little-group representations,
and this is exactly what we need to create Lorentz in-
variant action terms.

We are now in a position to consider action terms that
are Lorentz invariant and have the right mass dimen-
sion. We begin by calculating the required mass dimen-
sion of the non-field terms. As we showed in Sec. IIA,
all fields have a mass dimension of �3. Therefore, for
an n�field action term, the momentum integrals and the
momentum-conserving delta function contribute 4n � 4
to the total mass dimension of the term, while the fields



30

contribute �3n. Therefore, in order for the total action
term to be dimensionless, requires that the non-field part
contributes

d = 4� n. (A166)

This is equivalent to the well-known dimensionality of
the n-point amplitude.

Next, we know that we must contract all the spin in-
dices of the fields with spin indices on spin spinors with
the same momentum and we must have a product of he-
licity spinors that cancel the helicity transformations of
all the massless fields. [We cannot contract the spin in-
dices directly between fields or cancel the helicity trans-
formations directly between fields because they have dif-
ferent momenta and the phase angle !i = !(⇤, pi) is
different for each field.] Since each massive field has 2si
symmetrized spin indices, where si is the spin of the i

th

field, we will need
P

i 2si spin spinors. We will also needP
j 2|hj | helicity spinors to cancel the transformations of

the massless fields. We have also seen that each spinor
has mass dimension of 1

2
. All together, therefore, the

naive mass dimension of the spinors required is

d̃ =
X

i

si +
X

j

|hj |. (A167)

This is without any momentum insertions, which make
the dimension of the spinor products higher.

In some cases, this will match the required dimension
of the term in Eq. (A166). However, in cases where
it is not already equal, we must obtain the correct di-
mension in one of two ways. If there is more than one
massless field, then we can divide by spinor products
where both spinors are massless helicity spinors. This
works because the helicity transformation is a number
and division reverses its helicity transformation, namely
1/e±

i
2!i = e

⌥ i
2!i . We will come back to this shortly,

when we consider terms with only massless fields.
On the other hand, we can divide by a mass or scale.

If we do this, d̃ is the naive energy growth, or scaling law,
for this interaction and we find that the total power of
the masses (or scales) should be

d̃M = 4� n�
X

i

si �
X

j

|hj |, (A168)

or to write it in terms of the number of particles of each
spin or helicity up to two, we have

d̃M = 4� n� 1

2
n 1

2
� n1 �

3

2
n 3

2
� 2n2, (A169)

where n 1
2
+ n 3

2
must be even, since we must have an

even number of spinors to make spinor products where
the Lorentz transformations cancel. Therefore, we can
enumerate the naive mass (or scale) power required for
each action term that does not include division by he-
licity spinors and have done this in Table I. If there are
momentum insertions, d̃M will be lower to compensate.

n n0 n 1
2

n1 n 3
2

n2 d̃ d̃M

* 3 3 0 0 0 0 0 1
3 2 0 1 0 0 1 0

† 3 2 0 0 0 1 2 -1
* 3 1 2 0 0 0 1 0

3 1 1 0 1 0 2 -1
3 1 0 0 2 0 3 -2

* 3 1 0 2 0 0 2 -1
3 1 0 1 0 1 3 -2
3 1 0 0 0 2 4 -3

* 3 0 2 1 0 0 2 -1
† 3 0 2 0 0 1 3 -2

3 0 1 1 1 0 3 -2
3 0 1 0 1 1 4 -3

* 3 0 0 3 0 0 3 -2
† 3 0 0 2 0 1 4 -3

3 0 0 1 0 2 5 -4
3 0 0 0 0 3 6 -5

* 4 4 0 0 0 0 0 0
* 4 2 0 2 0 0 2 -2

TABLE I. Power of mass or scale for minimal interaction that
does not involve division by a helicity-spinor product and
does not include any momentum insertions. The first col-
umn marks whether the term is present in the CSM (*) or
the CSM with gravity (†). The second column gives the total
number of fields in the interaction. The next five columns give
the number of fields with spin or helicity equal to 0, 1

2 , 1,
3
2 or

2. The eigth column gives the naive energy-growth power for
the term and the ninth column gives the total power of the
masses or scales in the term. Three gluons and three gravitons
have a lower energy-growth power, d̃ = 1 and 2, respectively,
since they have division by spinor products, and only include
d̃M = 0 and �1, respectively, scale powers. We only include
the 4-point interactions present in the CSM.

Now that we know the general structure of an action
term, let us consider an example and show its Lorentz in-
variance. We will use the action for a W boson, a charged
lepton and a neutrino, which includes a nice mixture of
spin and helicity transformations. We will go through
this case slowly to make clear how the cancellation oc-
curs. We recall from Eq. (49) that half of this action
term is given by

S =
e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

⌫̄
+(p1)lI(p2)WKL(p3)[32]

KIh13iL. (A170)

A quantum Lorentz transformation U(⇤) only acts on
fields, therefore it will pass through anything that is not
a field, including our spinor products. So, as our first
step, we find

U(⇤)SU�1(⇤) =

e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

U(⇤)⌫̄+(p1)U
�1(⇤)U(⇤)lI(p2)U

�1(⇤)

U(⇤)WKL(p3)U
�1(⇤)[32]KIh13iL. (A171)
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We have already learned how our fields transform, in
Eqs. (A17) through (A21) and (A23) through (A28). Ap-
plying these transformations, we have

U(⇤)SU�1(⇤) =

e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

e
i
!1
2 ⌫̄

+(p̄1)
⇣
e
i~!2· ~J

⌘M
I

lM(p̄2)

⇣
e
i~!3· ~J

⌘N
K

⇣
e
i~!3· ~J

⌘O
L

WNO(p̄3)[32]
KIh13iL.

(A172)

In our next step, we can insert cancelling pairs of Lorentz
SL(2,C) transformations into our spinor products, as we
showed at the beginning of this subsection, resulting in

U(⇤)SU�1(⇤) =

e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

e
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2 ⌫̄

+(p̄1)
⇣
e
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⌘M
I

lM(p̄2)

⇣
e
i~!3· ~J

⌘N
K

⇣
e
i~!3· ~J

⌘O
L

WNO(p̄3)

[3|↵̇
⇣
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1
2

⌘ ↵̇

�̇
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1
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⌘�̇
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|2]⌘̇KIh1|↵

⇣
⇤ 1
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⌘�
↵

⇣
⇤ 1
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⌘ ⌘

�
|3iL⌘ .

(A173)

We know that the Lorentz transformations of the spinors
give the spinors at the new momentum times little-group
transformations, resulting in

U(⇤)SU�1(⇤) =

e

MW sW

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�
4(p1 + p2 + p3)

e
i
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2 ⌫̄

+(p̄1)
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e
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I

lM(p̄2)
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e
i~!3· ~J

⌘N
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e
i~!3· ~J
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WNO(p̄3)

⇣
e
i~!3· ~J

⌘ K

P
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e
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⌘ I

Q

[3̄2̄]PQ

e
�i

!1
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e
i~!3· ~J

⌘ L

R

h1̄3̄iR. (A174)

At this point, all the little-group transformations can-
cel among themselves. The momentum-conserving delta
function can be written in terms of the transformed mo-
menta and the integration variables can be transformed
to the new momenta, to obtain

U(⇤)SU�1(⇤) =

e

MW sW

Z
d
4
p̄1d

4
p̄2d

4
p̄3

(2⇡)8
�
4(p̄1 + p̄2 + p̄3)

⌫̄
+(p̄1)lI(p̄2)WKL(p̄3)[3̄2̄]

KIh1̄3̄iL

= S. (A175)

Just like traditional field theory is manifestly Lorentz
invariant if all the Lorentz indices are contracted (and
covariant derivatives are used), we also have manifestly
Lorentz invariant actions here if all the spin indices are
contracted among objects with the same momentum and
all the helicities (including fields and spinors) add to zero,
for each particle. Of course, the SL(2,C) Lorentz indices
must also be contracted, but that is implicit in the fact
that we only use spinor products between pairs of spinors.

Although we have covered the majority of interactions
with the rules we have thus far introduced, there is a
special case that we need to consider. If one of the fields
is massless and the other two are massive, with the same
mass, as in the case of photons, gluons and gravitons
interacting with massive fields, it turns out that we need
to introduce one more non-field term in order to obtain
non-trivial Lorentz-invariant interactions.

Normally, for each massless field, there are two linearly
independent helicity spinors, |li and |l], which can be
used to construct Lorentz invariant interactions. How-
ever, in the case of interactions with two fields of the
same mass, it turns out that these two helicity spinors
are proportional to each other [3, 17],

xij |li =
(pj � pi)

2m
|l] (A176)

x̃ij |l] =
(pj � pi)

2m
|li, (A177)

where mi = mj = m, ml = 0, pi + pj + pl = 0 and
x̃ = 1/x. We see that x is a proportionality factor.

If we were to rely solely on spinors for constructing the
vertex, we would not be able to distinguish between ver-
tices for positive and negative helicities – they would be
directly related. Since helicity spinors cannot be con-
tracted with themselves (hiii = [ii] = 0), they must
be contracted with the spinors of the other two parti-
cles. For concreteness, let’s consider a vertex involving a
fermion where the third field is massless. In this case, the
minimal vertex for the positive-helicity massless particle
would involve [31][23], while the minimal vertex for the
negative-helicity particle would involve h31ih23i.

However, we find that [31] = 1

2mx̃ h3|(p2 � p1)|1]. Us-
ing momentum conservation, p2 = �p1 � p3, and noting
that h3|p3 = 0, we obtain [31] = � 1

mx̃ h3|p1|1]. Addition-
ally, since p1|1] = �m|1i, we have [31] = xh31i, where
x = 1/x̃. Similarly, we find [23] = xh23i.

Thus, [31][23] = x
2h31ih23i. Since the factors x and x̃

will be present in the interactions regardless, it is prefer-
able to construct a definite vertex. Moreover, the vertex
can be constructed using x and x̃ alone, yielding well-
defined properties.

A representation of it can be obtained by multiply-
ing on the left with an opposite facing reference helicity
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spinor, h⇠| and [⇠|,

xij =
h⇠|(pj � pi)|l]

2mh⇠li (A178)

x̃ij =
[⇠|(pj � pi)|li

2m[⇠l]
. (A179)

Scattering amplitudes are independent of the choice for
|⇠i and |⇠], and it either takes on a definite form in terms
of other particles in the process or drops out completely
by the end of the calculation.

In three-field interactions, in this case, instead of us-
ing the helicity spinors, we should use x and x̃ to create
Lorentz invariant action terms. In order to do this, we
must determine how these factors transform, for which,
we can use our understanding of the transformation prop-
erties of spinors and momenta. We first insert cancelling
pairs of SL(2,C) transformations,

xij =
h⇠|↵⇤ �

1
2 ↵
⇤ ⌘

1
2�

(pj � pi)⌘⇣̇⇤
⇤ ⇣̇
1
2 ̇
⇤⇤̇

1
2 ◆̇

|l]◆̇

2mh⇠|�⇤ µ
1
2 �
⇤ ⌫

1
2µ

|li⌫
(A180)

x̃ij =
[⇠|↵̇⇤⇤ ↵̇

1
2 �̇
⇤⇤�̇

1
2 ⌘̇

(pj � pi)⌘̇⇣⇤ 
1
2 ⇣
⇤ ◆

1
2

|li◆

2m[⇠|�̇⇤⇤ �̇
1
2 µ̇
⇤⇤µ̇

1
2 ⌫̇

|l]⌫̇
. (A181)

Their Lorentz transformations give the same structure at
the new momenta, multiplied by little-group phases,

xij =
e

i
2 (�!⇠+!l)h⇠̄|(p̄j � p̄i)|l̄]
2me

i
2 (�!⇠�!l)h⇠̄ l̄i

(A182)

x̃ij =
e

i
2 (!⇠�!l)[⇠̄|(p̄j � p̄i)|l̄i
2me

i
2 (!⇠+!l)[⇠̄ l̄]

. (A183)

The !⇠ phase cancels in each and the !l phase combines
to give,

xij = e
i!l x̄ij (A184)

x̃ij = e
�i!l ¯̃xij . (A185)

We find that x and x̃ transform to the same objects at
the new momenta times a phase corresponding to helicity
+1 and �1, respectively. This is exactly what we need
to cancel the helicity transformation of the photons, glu-
ons, gravitons and other massless fields in this situation.
With this, we see that the interactions in Sec. II C are
all Lorentz invariant since the helicity transformations of
the massless fields are cancelled with the helicity trans-
formations of x and x̃.

Although, technically, x and x̃ contain a momentum
insertion and division by a mass, they are still considered
minimal as we cannot construct a more minimal interac-
tion without them. Nevertheless, we can see that their
energy growth still goes like E1 and, therefore, the formu-
las for d̃ and d̃M in Eqs. (A167) through (A169), are still
satisfied for interactions of this type. Consequently, the
power counting in Table I is valid for these interactions
as well.

Interactions where all the fields are massless are special
[3, 4]. First of all, each interaction can only involve angle
spinors or square spinors, but not both. Also, since the
helicity spinors only transform under helicity, their spinor
products can appear in both the numerator and denom-
inator. Furthermore, if none of the fields are gravitons,
there is no mass or scale, therefore, the correct mass di-
mension must be achieved directly with the spinor prod-
ucts alone.

There are two non-zero possibilities, if the sum of the
helicities is ±1. The non-field terms that would multiply
these fields and cancel the helicity transformations of the
fields are

AP
i hi=�1 =h12i1+2h3h23i1+2h1h31i1+2h2 (A186)

AP
i hi=+1 =[12]1�2h3 [23]1�2h1 [31]1�2h2 . (A187)

A sum or difference of these will give a Hermitian action.
We can see examples of this in Sec. II B. Since there is
no mass or scale without gravity, we find that d̃ = 1 and
d̃M = 0 for all interactions of this type.

If the graviton is involved, then there is division by
one power of the Planck scale but, otherwise, the mass
dimension must be achieved with spinor products. Once
again, there are only two non-zero possibilities, which
occur when the sum of the helicities is ±2, resulting in
the non-field terms

AP
i hi=�2 =

1

MP
h12i2+2h3h23i2+2h1h31i2+2h2 (A188)

AP
i hi=+2 =

1

MP
[12]2�2h3 [23]2�2h1 [31]2�2h2 . (A189)

Once again, these will be combined in a sum in order to
achieve Hermiticity. Examples of these interactions can
also be found in Sec. II B. With gravity, we find d̃ = 2
and d̃M = �1.

The Hermitian conjugates of the spinor products has
been covered in [11]. But, we can see from our definitions
that

hiji† = [ji] (A190)
hiIjJi† = [jJiI] (A191)
hiIjJi† = [jJiI] (A192)

and so on. The order is reversed, angle and square brack-
ets are interchanged, and spin indices are lowered and
raised.

We will also need the Hermitian conjugate of x and
x̃. Using the representation with a reference spinor ⇠, we
have

x
†
ij =

✓
�h⇠|(pj � pi)|l]

2mh⇠li

◆†

= �hl|(pj � pi)|⇠]
2m[l⇠]

= � [⇠|(pi � pj)|li
2m[⇠l]

= x̃ji, (A193)
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where on the third row, we used the symmetry of
hl|(pj � pi)|⇠] and the antisymmetry of [Pij⇠] under re-
versal. We see that Hermitian conjugation interchanges
x and x̃ and interchanges the indices.

Given that we expect the CSM to be renormalizable –
based on the fact that the SM is renormalizable and we
anticipate that all matrix elements will be equal (though
this still requires proof) – we can use the CSM to hy-
pothesize some conditions for a general renormalizable
constructive theory.

The first observation is that none of the interactions
in the CSM contain a momentum insertion. By this, we
mean that none of the spinor products in the action terms
include a momentum between the spinors. For example,
we have spinor products of the form hiji, but not of the
form hi|pl|j], or [i|plpm|j], and so on. Furthermore, the
interactions in the CSM match the required massless in-
teractions in the high-energy limit [4]. Interactions that
do not include any additional momentum insertions and
have the correct massless limit are referred to as mini-
mal, and we conjecture that renormalizable constructive
models only contain minimal interactions.

Inserting additional momenta into an interaction
would require dividing by extra powers of a mass or scale,
effectively making such terms higher-dimensional inter-
actions. As in traditional field theory, we expect that
higher-dimensional interactions lead to an effective the-
ory. While the minimality of interactions seems necessary
for renormalizability, it is not sufficient on its own.

Additionally, upon examining Table I, we observe that
none of the CSM interactions involve a mass or scale with
a power less than -2. This suggests another potential
necessary condition for renormalizability. However, this
condition, along with minimality, is also not sufficient, as
some graviton interactions – which we expect to be non-
renormalizable – also respect this mass/scale constraint.

Regarding four-field interactions, the CSM includes
only those involving scalar fields, leading us to suspect
that this might be a general feature of renormalizable
theories. Furthermore, we do not expect interactions in-
volving five or more fields to be renormalizable.

In summary, while we have identified some potential
indicators of renormalizability, the complete set of neces-
sary and sufficient conditions remains an open question.
Further exploration and proof are required to fully deter-
mine these criteria.

Appendix B: Locality

One of the hallmark features of gauge field theory,
which gives rise to Feynman rules, is its manifest local-
ity. This has been considered a great triumph of modern
physics. In it, electromagnetism and gravity are not in-
stantaneous forces transmitted over a distance, but are
mediated by virtual quantum particles that act locally.

However, demanding locality along with Lorentz in-
variance came at a cost. It required the introduction of

unphysical degrees of freedom and the gauging of global
symmetries to counteract the adverse effects of these un-
physical degrees of freedom. As a result, contributions
to the amplitude were partitioned into gauge-invariant
subsets of diagrams, where significant and crucial cancel-
lations occurred. Importantly, each individual diagram
within a gauge-invariant subset was not physical on its
own – only the combined gauge-invariant subset repre-
sented a physical process.

This necessity made individual Feynman diagrams less
physically insightful and less computationally efficient.
Yet, this was the price of maintaining locality. Despite
these challenges, the trade-off was worthwhile because
Feynman diagrams enabled the calculation of any ampli-
tude, at least in principle, and have driven much of the
progress in theoretical particle physics since their incep-
tion.

On the other hand, if we aim to avoid introducing un-
physical degrees of freedom and their associated gauge
symmetries – and if we want every diagram to be trivially
gauge-invariant and physically meaningful – we must
abandon locality. Furthermore, a notable consequence
of working within a non-local theory is that it operates
as an on-shell theory during intermediate steps of the
calculation. However, while the final expressions in such
a theory are simpler and physical, it must be admitted
that there is a trade off. Missing even a single on-shell
identity can lead to incorrect results.

In this appendix, we will explore the non-locality of
our action.

1. A Simple Example of a Local Action

Let’s consider locality in a simple example, involving a
real scalar field. Rather than considering every possible
term, we will just consider a cubic interaction with an ex-
ample derivative structure as illustration. Other cases are
simple generalizations of this case. The position-space
action is given by

S�3 =

Z
d
4
x�@µ�(x)@

µ
�(x)@2�(x), (B1)

where � is dimensionful and this is a higher-dimensional
operator. However, this does not concern us here. Our
objective is to gain an understanding of how a local action
appears in momentum space. This action is local because
every part of the action occurs at the same integrated
position x.

In order to get to momentum space, we Fourier trans-
form, using

�(x) =

Z
d
4
p

(2⇡)4
�(p)eip·x, (B2)

where we have used the argument to specify whether this
is the original �(x) or its Fourier transform �(p). We will
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always write � with its argument and there will be no
confusion. Plugging this in, we have

S�3 =

Z
d
4
p1d

4
p2d

4
p3

(2⇡)12
�p1 · p2p23�(p1)�(p2)�(p3)
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p2d

4
p3

(2⇡)8
�p1 · p2p23�(p1)�(p2)�(p3)

�
4 (p1 + p2 + p3) . (B3)

The expression gives the 3-point Feynman vertex we
would use in this theory. We can see that local actions,
when written in momentum space have a momentum con-
serving delta function and all momenta are polynomial
and in the numerator of the vertex.

Although the inverse should be clear, since the actions
in the main body of this paper begin in momentum space,
we will go through the inverse of this operation for illus-
tration. The Fourier transform back to position space of
the field is given by

�(p) =

Z
d
4
x�(x)e�ip·x

. (B4)

Plugging this into our momentum-space action, we have
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We can now perform integration by parts for each
position-space coordinate separately, moving the deriva-
tives off the exponentials and onto the fields, giving

S�3 =
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x1d
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x2d

4
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(B6)

where we always assume our fields fall off quickly enough
at infinity to make the global boundary term vanish. We
next use the delta function to set p3 = �p1�p2, obtaining

S�3 =
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x1d
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Now, when we do the p1 and p2 integrals, we will obtain
two delta functions setting x2 = x3 and x3 = x1,

S�3 =
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d
4
x1d

4
x2d

4
x3�@1µ�(x1)@
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�(x3)

�
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Finally, performing two of the spatial integrals, we are
left with

S�3 =

Z
d
4
x�@µ�(x)@

µ
�(x)@2�(x), (B9)

our manifestly local and Lorentz invariant action. From
this example, we can see that when we begin with a man-
ifestly Lorentz invariant action in momentum space that
has polynomial momenta in the numerator, its Fourier
transform is a manifestly local and Lorentz invariant ac-
tion in position space.

Before moving to the next subsection, we will briefly
remark on the free part of our field-theory action for the
CSM. As we can see in Sec. II A, the momenta only ap-
pear polynomially in the numerator. The free part of
the action is local and can be easily Fourier transformed.
It gives a position-space action, whose classical Euler-
Lagrange equations are wave equations (with a mass) for
each helicity (spin).

This should make some sense. For the photon field,
this matches what we expect in vacuum. It also matches
Maxwell’s source-free equations for Aµ in Lorenz gauge.
For the gravitons, this only makes sense in the weak-field
approximation, where the interaction is ignored. For the
gluons, of course, we cannot ignore the interactions since
they are strongly coupled and asymptotically free. For
the massive fields, as expected, the wave travels slower
than the speed of light.

A full analysis of the Fourier transform of the field-
theory action for the CSM is beyond the scope of this
paper. We will come back to it in a future work.

2. Momenta in the Denominator Make the Action
Non-local

However, on the other hand, we may consider what
happens when there is momentum in the denominator.
For example, let’s begin with the momentum-space ac-
tion

S�4 =

Z
d
4
p1d

4
p2d

4
p3d

4
p4

(2⇡)12
�
4(p1 + p2 + p3 + p4)
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(p1 + p2)2
. (B10)

Let us Fourier transform this to position space. We have

S�4 =

Z
d
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x1d

4
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4
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4
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. (B11)
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We can easily do the p4 and p3 integrals, giving

S�4 =
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d
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x2d

4
x3�(x1)�(x2)�

2(x3)
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4
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. (B12)

We next make a change of variables to

k1 = p1 + p2 (B13)
k2 = p1 � p2, (B14)

giving

S�4 =
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d
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x1d

4
x2d
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x3�(x1)�(x2)�

2(x3)
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(B15)

Our next step is to do the k2 integral, giving us a delta
function in x1 � x2, resulting in

S�4 =

Z
d
4
x1d

4
x3�

2(x1)�
2(x3)

Z
d
4
k

(2⇡)4
e
�ik·(x1�x3)

k2
.

(B16)

The final momentum integral is the well-known Fourier
transform of the Feynman propagator DF (x1�x3), which
depends on the difference between the two space-time
locations. It is non-local.

S�4 =

Z
d
4
x1d

4
x3�

2(x1)�
2(x3)DF (x1 � x3). (B17)

If this were a fundamental vertex in the theory, and not
an s-channel amplitude, it would be a non-local vertex.
The same comment applies if the momentum in the de-
nominator were only p

2
1

rather than (p1+p2)2. We would
still have obtained a non-local vertex. Momenta in the
denominator give non-local interactions.

Suppose we had momentum in both the numerator and
the denominator, but they do not cancel. This time we
will consider a 3-point vertex to simplify the math. Con-
sider the action

S =

Z
d
4
p1d

4
p2d

4
p3

(2⇡)8
�p1 · p3

(p1 + p2)2
�(p1)�(p2)�(p3)

�
4 (p1 + p2 + p3) . (B18)

Inserting the Fourier transform of the fields, we have

S = �
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Integrating x1 and x2 by parts, in order to move the
derivatives onto the fields, gives

S = ��
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4
x2d
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Integrating over p3, we have

S = ��
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We next make the change of variables k1 = p1 + p2 and
k2 = p1 � p2, leading to

S = ��
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Performing the k2 integral, we find �4(x1�x2), resulting
in

S = ��
Z

d
4
x1d

4
x3 [@1µ�(x1)] [@

µ
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�(x1)]�(x3)
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Once again, we have the Fourier transform of the Feyn-
man propagator, giving us the non-local 3-point vertex

S =� �
Z

d
4
x1d

4
x3

[@1µ�(x1)] [@
µ
1
�(x1)]�(x3)DF (x1 � x3). (B24)

We see the general property that, momenta in the denom-
inator lead to non-local interactions, even in combination
with momenta in the numerator.

3. Spinor Products Make the Action Non-local

We can already observe that spinor products in the de-
nominator indicate non-locality. This non-locality arises
in the case of all-massless field interactions, such as those
described in Sec. II B. The helicity-spinor products that
appear in the denominator can be brought to the nu-
merator by multiplying by their Hermitian conjugates.
For example, 1/hiji can be rewritten as [ji]/(2pi · pj).
However, this transformation leaves momentum in the
denominator, which leads to a non-local interaction, as
we showed in the previous subsection.
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Therefore, let us consider the contributions to the ac-
tion where spinor products appear in the numerator. Our
goal here is not to find the full Fourier transform of the
constructive action – that is beyond the scope of this
paper. Instead, we aim to provide evidence that the ac-
tion is indeed non-local when spinor products are present,
even in the absence of explicit momenta in the denomi-
nator.

Generally speaking, if elements other than the e
ip·x

factor cannot be extracted from the integral, the result
will not yield a delta function that equates positions in
the spacetime integrals. In App. B 1, we demonstrated
that polynomial momenta in the numerator could be con-
verted into derivatives on position, allowing them to be
removed from the integral. This property enabled the ac-
tion to be written as a local interaction in position space.

However, in App. B 2, we showed that this was not
possible when momenta appeared in the denominator,
leading to non-local actions. In this subsection, we will
show that while some components can indeed be turned
into derivatives and extracted from the integrals, others
cannot, and these will lead to non-local interactions.

If the spinor is massless, then we see that it can be
written as [see Eqs. (A123) and (A124)],
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✓
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(B25)
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◆
. (B26)

If the spinor is massive, on the other hand, we can write
[see Eqs. (A151) and (A152)],
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where pi = |~pi|. For massive fields, to gain further in-
sight, we could also pull out a 1/

�
pi
p
Ei + pi

�
, resulting

in
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After removing 1/
p
Ei in the massless case and

1/
�
pi
p
Ei + pi

�
in the massive case, we see that every-

thing else in these spinors is polynomial in the momenta.

Therefore, we can turn everything that isn’t in the de-
nominator into derivatives and pull them out of the mo-
mentum integrals. At this point, we will be left with
momentum integrals that are schematically of the form

S =

Z
d
4
x1 · · · d4xn · · · h@i@kiK · · ·�i(xi) · · ·�k(xk)

K · · ·
Z

d
4
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e
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· · ·
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�
pk
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Ek + pk

�nk · · ·
, (B31)

where h@i@kiK represents, schematically, the parts of the
spinor products that are in the numerator and have been
turned into derivatives and pulled out of the momentum
integrals. The denominators, including factors of 1/

p
Ei

and 1/
�
pi
p
Ei + pi

�
for each massless and massive field,

respectively, are left inside the momentum integrals. The
remaining momentum integrals, which have powers of en-
ergy and momentum in the denominator, will result in
non-local contributions to the spacetime action. We will
fully pursue the non-local spacetime action in future re-
search.

Appendix C: Constructive Rules

In this appendix, we will review the process of going
from the action to the interaction vertices. We have no
intention of being exhaustive. We only consider a few
examples to illustrate the process.

1. Triple-Gluon Vertex

We begin by considering the interaction of three glu-
ons. The action terms for massless fields have the op-
posite helicity on the fields as in the spinor products.
This is required to have a Lorentz invariant action. We
would like to understand how the action terms lead to
the correct helicities for the amplitudes.

To be concrete, let’s work with the pure gluon action,

Sgg =

Z
d
4
p1d

4
p2

(2⇡)4
�
4(p1 + p2)p
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(C1)

coming from Eqs. (37) and (39). Let’s suppose we are
finding the 3-point amplitude for two positive helicity
and one negative helicity gluon with momenta k1, k2 and
k3, respectively. A quick look at the action may lead
us to believe that we would get h12i3/(h23ih31i), which



37

would be incorrect. But, in fact, as we will show in this
appendix, we get the correct [12]3/([23][31]).

We would like to calculate

iM̃++� = N
Z

dg+dg�g+d (k1)g
+

e (k2)g
�
f (k3)e

iSgg+iSggg ,

(C2)

where

N�1 =

Z
dg+dg�eiSgg . (C3)

In order to find this amplitude, we will introduce a
source J± for the gluon, and write
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so that Sgg = Sgg[0]. Now, the amplitude can be written
as
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Next, we can rewrite Sggg as
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This can also be pulled out of the gluon integral, giving
us

iM̃++� = lim
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We next go back to working on Sgg[J ]. We complete

the square, obtaining
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For convenience, we will split this into two pieces,

Sgg[J ] = S̄gg[J ] + SJJ , (C9)

where
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Before we continue with the amplitude, let’s take a
minute to find the propagator. We get it with two deriva-
tives acting on e

iSJJ , giving

lim
J!0

✓
�i �

�J +

b (�q1)

◆✓
�i �

�J�
b (�q2)

◆
e
iSJJ =

(�i)3

q2
1

(2⇡)4�4(q1 + q2). (C11)

After removing the momentum conserving delta function,
we have i/q

2.
Focusing back on the amplitude, we can pull SJJ out

of the gluon amplitude integral, leaving us with
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We next make a change of variables from g! g+J /p
2.

This change eliminates J from the integral, and we find

N
Z
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With this, we are left with
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At the moment, we are interested in the connected
tree-level amplitude. We begin by expanding the inter-
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action exponential and only keeping the first order term,
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To keep the equations more compact, we will begin with
the external derivatives. We begin with the derivative
with respect to J +

f (�k3). This derivative acting on SJJ
is
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resulting in
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The connected amplitude will come from all the external
derivatives acting on the exponential, therefore,
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At the end, we have to take J ! 0, so the derivatives
inside the interaction should only act on the J that are
outside the exponential at this point. We will begin with
the J (p1) derivative, giving
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where we have made the momenta in the spinor products
explicit to eliminate confusing label redundancy, and the
sign comes from the sign in front of the square-bracket
term in the action. Doing the other two derivatives leaves
us with
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where we have taken into account the fact that there are
two ways the derivatives can be taken by including the

factor of 2 (they give the same result). Finally, we ampu-
tate the external propagators (removing three factors of
i/k

2) and drop the momentum conserving delta function
[(2⇡)4�4(k1 + k2 + k3)] leaving
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This gives us the vertex that we should expect, based on
the action.

The opposite helicity combination gives
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Performing the derivatives gives
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resulting in the vertex
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as expected.

2. W Lepton Vertex

We will also consider an example with both massless
and massive fields by considering a neutrino interaction.
We will be more concise in this subsection, using the
features of the previous subsection. Suppose we would
like the 3-point amplitude at tree level for a neutrino,
electron and a W boson,
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ēI(p1)e

I(p2)

+ p
2

1
⌫̄
+(p1)⌫

�(p2) +
�
p
2

1
�M

2

W

�
W̄IJ(p1)W

IJ(p2)
i

(C27)
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come from Eqs. (37), (38) and (49).
We first introduce sources for the fields,
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We complete the square, giving
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ēI(p1) + J̄eI(p1)

� �
e
I(p2) + J I

e (p2)
�

+ p
2

1

�
⌫̄
+(p1) + J̄ +

⌫ (p1)
� �
⌫
�(p2) + J�

⌫ (p2)
�

� 1

(p2
1
�M2

W )
J̄W IJ(p1)J IJ

W (p2)

� 1

(p2
1
�m2

e)
J̄eI(p1)J I

e (p2)�
1

p2
1

J̄ +

⌫ (p1)J�
⌫ (p2)

i
.

(C30)

Therefore, the interaction action becomes
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Putting this all together, we have

M̃�IJK = (�i)3 lim
J!0
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at tree-level, where
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As before, we are interested in the connected amplitude,
so we use the external derivatives to pull out three factors

of J , leading to
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where there are two extra signs. The first is due to the Je

derivative passing through the J̄e, where Je is Grassman.
The second is due to the need to raise and lower one spin
index I. We need to raise and lower the spin indices
on JW , however, there are two, so the signs cancel each
other. Performing the derivatives inside the interaction
term, we have
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e
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where we get another minus sign from the J̄e derivative
passing through the J⌫ . After amputating and dropping
the momentum conserving delta function, we have the
vertex

iM�IJK =
�ie

MW sW
[32]JIh13iK, (C36)

which is the correct vertex for these particles.
If we had, instead, calculated the amplitude with a

positive-helicity antineutrino, we would have
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where this time, we get one extra sign from moving the
J⌫ derivative past the J̄⌫ . Performing the derivatives
and setting J ! 0, gives

M̃+IJK =
e
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where there is an extra sign from the relative sign be-
tween terms in the action, but no need to move a
fermionic J derivative past a fermionic J . This gives
the vertex

iM+IJK =
ie

MW sW
h23iIL[31]K, (C39)

as we would expect.
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