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Abstract 

Toolpath design plays a significant role in determining the efficiency of Additive Manufacturing 

(AM) processes. Traditional toolpath optimization methods frequently depend on empirical 

methods, which may not adequately account for the complex dynamics of the printing process. 

This study introduces a novel reinforcement learning (RL) approach, leveraging Proximal Policy 

Optimization (PPO), to optimize toolpath generation with a particular focus on reducing energy 

consumption. A custom-built environment was created, simulating the toolpath planning scenario 

as a discrete grid space, where an RL agent representing the printing nozzle learns to navigate and 

optimize its path. The RL agent, implemented using Proximal Policy Optimization (PPO), was 

trained on grids of increasing complexity (10x10 and 25x25) using two reward systems: a default 

system and an energy-optimized system based on a custom energy model. The energy model 

penalizes energy-intensive vertical and diagonal movements while rewarding horizontal 

movements. Results from training showed that the energy-optimized model achieved a significant 

reduction in energy consumption without compromising toolpath efficiency. On the 10x10 grid, 

energy consumption decreased from 92.7 𝑘𝑊𝑚𝑠  to 83.5 𝑘𝑊𝑚𝑠 , while on the 25x25 grid, it 

dropped from 400.2 𝑘𝑊𝑚𝑠 to 395.4 𝑘𝑊𝑚𝑠. Statistical analysis using paired t-tests confirmed 

these reductions with p-values of 0.00, demonstrating the effectiveness of incorporating energy 

constraints in RL training for AM. This research highlights the potential of RL in improving the 

sustainability and efficiency of AM processes through intelligent toolpath design. 

Keywords: additive manufacturing, reinforcement learning, toolpath optimization, sustainable 

manufacturing  

1 Introduction  

Additive Manufacturing (AM), commonly known as 3D printing, has transformed the 

manufacturing industry, showing significant growth and innovative potential. The global market 

size of the market was $20.37 billion in 2023 and is expected to grow at a Compound Annual 

Growth Rate (CAGR) of 23.3% from 2023 to 2030. This rapid expansion is driven by the 

widespread adoption of AM across various industries, including healthcare, aerospace, and 

automotive, where it is used for applications ranging from prototyping to the manufacturing of 

complex, lightweight parts [1].  

Optimizing energy usage in AM is crucial for enhancing the efficiency and sustainability 

of the production process. Factors influencing energy consumption include the type of materials 

used, the toolpath generation, build orientation and other specific parameters of the AM process. 

Efficient toolpath generation is crucial for reducing energy consumption by minimizing non-



productive movements of the print head where no material is deposited, thus significantly lowering 

the energy needed to drive the motors. Furthermore, optimizing motor acceleration and 

deceleration is key to reducing energy consumption by ensuring smoother transitions and 

minimizing energy spikes linked to abrupt speed changes [2], [3].  

The adoption of artificial intelligence (AI) algorithms to optimize printing parameters for 

better surface finish, strength, and energy efficiency is gaining traction among AM researchers. 

Malviya and Desai (2019) proposed a machine learning based computational framework for build 

orientation optimization with the aim of maximizing resistance to failure under prescribed loading 

conditions [4]. They employed a single hidden layer Artificial Neural Network (ANN) and 

Bayesian optimization algorithm in their research. Vahabili and Rahmati (2017) developed an AI 

methodology to improve the quality of AM products by estimating surface roughness distribution 

in advance [5]. They optimized an ANN using trial and error and evolutionary algorithms and 

integrated it with particle swarm optimization (PSO) and imperialist competitive algorithm (ICA) 

to create the PSOICA algorithm. This enhanced the ANN's speed and accuracy in estimating 

surface roughness for Fused Deposition Modelling (FDM) parts. Pazhamannil et al. (2021) used 

an ANN to predict the tensile strength of PLA models made with FDM [6]. They used the Taguchi 

L9 orthogonal array to design experiments and tested how nozzle temperature, layer thickness, and 

infill speed affected tensile strength. The ANN, trained with this data, achieved a high accuracy of 

99.9% and was validated with confirmation experiments, showing predictions within a 5% error 

margin. They found that lower layer thickness and higher nozzle temperatures improved tensile 

strength, while infill speed had negligible impact. This study demonstrated the ANN's usefulness 

in optimizing FDM process parameters.  

Integrating AI algorithms in toolpath optimization offers a promising solution for 

enhancing AM efficiency. Instead of using a static pre-generated toolpath, using AI algorithms can 

create and adjust the next moves in real-time during the manufacturing process to minimize non-

productive movements considering the dynamical changes during a process, thus resulting a true 

and realistic energy optimization strategy. RL is a revolutionary tool in AI used to optimize 

toolpath generation in AM. The study conducted by Mozaffar et al. (2020) highlights the 

effectiveness of RL in toolpath design, especially in environments with dense reward structures 

[7]. RL algorithms continuously enhance toolpaths by learning from each print job, refining 

predictions, and adjustments for future tasks. RL stands out due to its ability to adapt the toolpath 

in real-time, resulting in reduced energy consumption and enhanced efficiency of the AM process. 

Moreover, RL algorithms improve with each print job, allowing for a progressively better 

performance over time. This continuous learning process enables RL to refine its predictions and 

adjustments, leading to more efficient and sustainable manufacturing practices [8].  

2 Methodology 

2.1 Reinforcement Learning Algorithm 

RL is a machine learning methodology in which an AI agent learns to make decisions by 

interacting with an environment to achieve a predefined objective. The agent receives feedback in 

the form of rewards and penalties, which it uses to enhance its decision-making abilities over time. 

This reinforcement learning approach is most appropriate for cases where an optimal solution has 

not been predetermined. RL algorithms exhibit superior adaptability compared to other machine 

learning algorithms, enabling them to promptly and effectively respond to real-time changes in the 



environment. This attribute is advantageous in dynamic and unpredictable conditions. RL agents 

continuously learn and improve during each interaction with the environment, leading to a 

progressively enhanced performance over time. 

Some prominent RL algorithms are Q-learning, SARSA (State-Action-Reward-State-

Action), Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO). Q-Learning is an 

algorithm that aims to determine the optimal action to take in each state by learning the value of 

each action in each state. It is considered an off-policy algorithm. SARSA, on the other hand, is 

an on-policy algorithm that updates the Q-values based on the action taken by the agent. 

DQN combines Q-Learning with deep neural networks to effectively handle state spaces with high 

dimensions. PPO, on the other hand, is an advanced policy gradient method that effectively 

manages the trade-off between exploration and exploitation, resulting in consistent and reliable 

performance improvements. 

The PPO algorithm was selected for this study due to its capacity to manage complex 

observation spaces and its reliable performance across various environments. This research 

employs the multi-layer perceptron (MLP) model from StableBaselines3 for the neural network 

architecture. The MLP model is specifically designed for the PPO algorithm. This architecture 

employs multiple layers to effectively process complex input data from the environment. Each 

layer of the MLP is meticulously designed to transform the input data through non-linear 

activations, allowing the network to learn and generalize from complex sensory input. 

Modifications were implemented to the original PPO algorithm to accommodate noisy 

observations and to facilitate dynamic transitions between various environments during training. 

The modifications were executed to establish a more authentic and resilient model capable of 

adjusting to variations in the printing environment. The revised loss function includes the original 

PPO loss components—clipped surrogate objective, value function loss, and entropy bonus—

while incorporating noise and dynamic environment switching mechanisms. The adjusted loss 

function is expressed as: 

𝐿𝐶𝐿𝐼𝑃+𝑉𝐹+𝑆(𝜃, 𝜂𝑡 , 𝑒𝑡) = 𝔼𝑡[𝐿𝑡
𝐶𝐿𝐼𝑃(𝜃, 𝜂𝑡, 𝑒𝑡) − 𝑐1𝐿𝑡

𝑉𝐹(𝜃, 𝜂𝑡, 𝑒𝑡) + 𝑐2𝑆[𝜋𝜃](𝑠𝑡
𝑒𝑡)] (1) 

Where 𝜂𝑡 represents the noise added to the observation at each timestep 𝑡, and 𝑒𝑡 indicates 

the environment that the agent is currently interacting with. The modified clipped surrogate 

objective function, 𝐿𝐶𝐿𝐼𝑃(𝜃),  is given as: 

𝐿𝐶𝐿𝐼𝑃(𝜃, 𝜂𝑡, 𝑒𝑡) = 𝔼𝑡[min(𝑟𝑡(θ)𝐴̂𝑡
𝜂,𝑒

, 𝑐𝑙𝑖𝑝(𝑟𝑡(θ), 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡
𝜂,𝑒

, )]  (2) 

The probability ratio denoted as 𝑟𝑡 is defined as the ratio of the policy 𝜋𝜃(𝑎𝑡
𝜂
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𝜂
) is the probability of selecting action, a, given state, s, 

under the policy 𝜋𝜃 based on the noisy observation, 𝜂. The advantage estimate, 𝐴̂𝑡
𝜂,𝑒

, is calculated 

as the difference between the expected return following the action and the value of the state.  

The formula for the advantage estimation in PPO is given by: 

𝐴̂𝑡
𝜂,𝑒

= 𝛿𝑡
𝜂,𝑒

+ (𝛾𝜆)𝛿𝑡+1
𝜂,𝑒

+ ⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1
𝜂,𝑒

 (3) 

Where: 

𝛿𝑡
𝜂,𝑒

= 𝑅𝑡 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) 



𝛾 is the discount factor, which adjusts the importance of future rewards 

𝜆 is the trace decay parameter, which influences the weighting of future rewards 

𝑉(𝑠) is the value function estimating the expected return from state 𝑠 

𝑅𝑡 is the reward received after taking an action at time 𝑡. 

The surrogate objective is restricted by a clip function to stay within the range of [1 − 𝜖, 1 + 𝜖], 
where 𝜖 is a hyperparameter called the clip range.  

The value function is given as:  

𝐿𝑉𝐹(𝜃) = (𝑉𝜃(𝑠𝑡) − 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

)
2
 (4) 

This loss function is made up of 𝑉𝜃(𝑠𝑡), which is the predicted value of state at time t under 

the current policy, and 𝑉𝑡
𝑡𝑎𝑟𝑔𝑒𝑡

, which is the target value for the state at time t. 

An entropy bonus is also calculated to encourage action variation and prevent premature 

policy convergence. This methodical approach to calculating loss forms the foundation of the 

adaptive learning process, ensuring that every instance contributes to improving the agent's 

performance in navigating intricate toolpath environments. 

𝑆[𝜋𝜃](𝑠𝑡) is the entropy of the policy 

The data generated after each episode is crucial for calculating the loss function. This 

includes the observed grid, the agent's position, the signed distance function (SDF), gradients, 

sensor readings, and information about the nearest goal. This data allows for the assessment of the 

agent's actions through the advantage estimate, which determines if the actions taken were superior 

to what was statistically expected. This serves as the foundation of the policy loss component, 

which is crucial for updating the agent's decision-making policy. In addition, the mean squared 

error between the predicted and actual rewards helps improve the accuracy of our model's value 

predictions. This is achieved by integrating it through the value function loss. 

2.2 Training Procedure 

To enhance toolpath generation using RL, a custom environment was developed with 

OpenAI's Gym framework to simulate the print nozzle and print bed grid. The print nozzle operates 

within an 8-direction discrete action space, and the observation space includes the nozzle's position, 

the SDF of the grid, the position, and the distance to the nearest print cell. This setup offers a 

thorough state representation for the RL algorithm. The training environment was created using a 

tailor-made polygon generator which generated a series of connected polygons, which were then 

converted into grid arrays. In these arrays, cells representing print areas were marked as ‘1’ while 

empty spaces were marked with ‘0’. To introduce a broad range of variations, 1,000 random grids 

were generated for each grid size. 

The training process followed a curriculum learning approach which involved gradually 

increasing the complexity of the grids on which the RL agent was trained. The initial phase of 

training was carried out on 10x10 grids that divide the 2D manufacturing space into 10 rows by 

10 column square grids, as shown in Figure 1(b). This provides a discretized environment to allow 

the agent to efficiently grasp fundamental navigation and decision-making strategies. This smaller 

grid size was ideal for laying the foundation for the agent’s behavior, enabling it to develop a base 



policy without being overwhelmed by the complexity of higher dimensioned grids. Upon 

achieving proficiency with the 10x10 grids, the agent was transitioned to the 25x25 grids, as shown 

in Figure 1(a). These larger grids introduced a higher level of complexity and demand more 

sophisticated decision-making strategies. The 25x25 grids challenged the agent’s ability to adapt 

its learned policy to more intricate scenarios, further enhancing its navigation abilities. Each grid 

was subjected to 60 episodes of simulation, and the training was performed using a batch size of 

4096.  

For each grid dimension, two distinct models were trained: one with energy penalties 

during training and the other without. The use of a dual-model method allows for a direct 

comparison of how energy constraints affect the optimization of toolpaths. This approach provides 

valuable information on the advantages and disadvantages of incorporating energy considerations 

in the toolpath generating process. 

  

Figure 1: Grid resolutions. (a) 25x25 grid resolution; (b) 10x10 grid resolution. Yellow 

color marks the grids where AM deposition is required. 

2.3 Reward mechanism 

The reward mechanism implemented in the RL model was designed to optimize both path 

efficiency and energy consumption during the toolpath generation process. Two distinct reward 

mechanisms were utilized: the default reward system and an energy-based reward system. 

2.3.1 Default reward system 

In the default reward system, the RL agent is primarily rewarded for visiting print cells on 

the grid. A substantial reward is given to the agent if it completes the entire grid without exceeding 

the maximum number of allowed steps. In contrast, penalties are imposed when the agent revisits 

previously visited cells or moves into empty cells. This reward structure encourages the agent to 

minimize redundant movements, avoid inefficient detours, and complete the print task within the 

defined constraints.  

(a) (b) 



2.3.2  Energy-based reward system 

This reward system employs the same strategy of the default reward system while 

employing an additional strategy which focuses on energy consumption and is based on an energy 

model specific to the FDM printing developed by Somade [3]. This model distinguishes between 

movements along the X-axis and Y-axis, highlighting that Y-axis and diagonal motions require 

more energy than X-axis movements due to the greater energy required by the Y-axis motor and 

the increased energy demands from sudden acceleration. Consequently, movements along the X-

axis receive rewards, with successive movements being progressively rewarded, thereby 

incentivizing the agent to formulate energy-efficient toolpaths that emphasize X-axis movements. 

On the other hand, penalties were awarded to diagonal and vertical movements to reflect the higher 

energy costs associated with these motions. 

3 Results 

The performance of the RL models was evaluated by analyzing toolpath efficiency and 

energy consumption. Toolpath efficiency was utilized as a crucial metric to assess the performance 

of the RL models. This is the ratio of the theoretical minimum number of printing steps (i.e. directly 

taken as the total grids to fill in.) to the actual steps taken by the RL agent. Higher toolpath 

efficiency represents that the RL model can complete the task in fewer steps. Energy consumption 

is based on our previously developed energy model for a FDM printing process that differentiates 

the X-axis motion from the Y-axis motion. In our energy model, Y-axis motion consumes more 

energy [3]. To assess the impact of energy penalties on the training of the reinforcement learning 

model, a paired t-test was conducted. The null hypothesis assumed that there is no significant 

difference in the mean values of toolpath efficiency and energy consumption between the energy 

model and the default model. 

In our preliminary experiment, 4 RL-models were trained in total: 10x10 grid trained 

without energy penalties, 10x10 grid trained with energy penalties, 25x25 grid trained without 

energy penalties, and 25x25 grid trained with energy penalties. The performance of these four 

trained models is compared.  

 

3.1 Toolpath Efficiency 

In the 10x10 grid resolution, the agent achieved an average toolpath efficiency of 83% for 

the energy model and 82.5% for the default model, as illustrated in Figure 2.  

 



 

Figure 2: Path efficiency of RL models on 10x10 grids 

 For the default model and the energy model, the toolpath efficiency significantly reduced 

to 79.37% and 79.26% respectively on the 25x25 grid resolution, as shown in Figure 3.  

 

Figure 3: Path efficiency of RL models on 25x25 grids 

A paired t-test for the mean scores of the toolpath efficiency of both models on the 10x10 

grids gave a mean difference of 0.45, with a p-value of 0.12 (refer to Table 1). This shows there is 

no statistically significant difference in the toolpath efficiency of both models. In the comparison 

of the toolpath efficiency of the models on the 25x25 grids, the t-test also showed no significant 
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difference as the p-value obtained was 0.19 with a mean difference of -0.23. The statistical results 

indicate that the RL models are effective in generating toolpaths at a decent level of toolpath 

efficiency. The inclusion of energy penalties during training has no substantial impact on toolpath 

efficiency. The t-test results demonstrate no notable difference in efficiencies between the default 

and energy models for both grid sizes.  

Table 1: Paired T-test results for path efficiency  

Grid 

resolution 

Estimation for Paired 
Difference  

Test 

Mean StDev T-value P-value 

10x10 0.45 1.09 1.56 0.12 

25x25 -0.23 3.92 -1.30 0.19 

 

3.2 Energy Consumption  

This is a critical metric in evaluating the effectiveness of the RL models. The energy 

consumption of the toolpaths was computed using the energy consumption estimation model [3]. 

The energy consumption was measured for models trained with and without energy penalties to 

determine the impact of incorporating the energy penalties during training. For the 10x10 grid 

resolution, the default model has an average energy consumption of 92.7 𝑘𝑊𝑚𝑠. In contrast, the 

energy-optimized model exhibited a reduced average energy consumption of 83.5 𝑘𝑊𝑚𝑠 , as 

highlighted in Figure 4. 

 

Figure 4: Energy consumption of RL models on 10x10 grids 

In the 25x25 grid resolution, the default model attained an average energy consumption of 

400.2 𝑘𝑊𝑚𝑠 , whereas the energy-optimized model highlighted enhanced efficiency with a 

reduced average consumption of 395.4 𝑘𝑊𝑚𝑠 as depicted in Figure 5. 
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Figure 5: Energy consumption of RL models on 25x25 grids 

In the statistical analysis of energy consumption across two grid resolutions for the RL 

models, notable disparities were found in the energy usage. In the 10x10 grid, the analysis showed 

a significant reduction in energy consumption by the energy-optimized model compared to the 

default model. The mean difference was −9.2 𝑘𝑊𝑚𝑠, which was statistically significant with a p-

value of 0.00. Continuing in the 25x25 grid, the energy model consistently showed lower 

consumption compared to the default, with an average difference of −4.8 𝑘𝑊𝑚𝑠. This confirms 

substantial energy savings, as indicated by a p-value of 0.00, as shown in Table 2. These findings 

demonstrate the effectiveness of incorporating energy penalties into the model to decrease overall 

energy usage. 

Table 2: Paired T-test results for energy consumption  

Grid 

resolution 

Estimation for Paired 
Difference  

Test 

Mean StDev T-value P-value 

10x10 -9.19 5.56 -23.37 0.00 

25x25 -4.78 15.92 -6.70 0.00 

4 Conclusion 

This study highlights the potential of incorporating advanced machine learning techniques 

into manufacturing processes as the AM industry continues to grow. The evaluation of models 

trained with and without energy penalties showed significant improvement in energy efficiency, 

highlighting the effectiveness of the PPO algorithm. The results indicate that RL significantly 

optimizes toolpath efficiency. By incorporating energy penalties into the RL agent's training, the 

efficiency of the generated toolpaths remains largely unaffected. However, this approach does lead 

to a reduction in energy consumption for the toolpaths.  This distinction emphasizes the efficiency 

of RL in optimizing energy usage during the toolpath generation process while still maintaining 

the overall efficiency of the toolpath. 
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