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1. INTRODUCTION

Efficient movement through the water is important for
biological and engineered systems. Current literature in-
dicates that cetaceans (orcas, dolphins, and whales), may
be more efficient across their range of thrust production
than engineered propellers. For ceteaceans, propulsive ef-
ficiencies have been estimated to reach as high as 90%,
and may maintain efficiencies above 80% across their en-
tire range of speeds. In contrast, propellers are around
70% at their most efficient point. Cetaceans also produce
about four times more thrust than mechanical propellers
for the power exerted (Fish and Lauder, 2006). However,
the mechanisms behind efficient movement of underwater
biological systems are not well understood, in part because
the kinematic information in a wild and free-swimming
environment is limited to animal kinematics.

In managed marine environments, kinematic data ex-
tracted from camera data have been used to supplement
kinematic measurements. For bottlenose dolphins, existing
research has combined measured speed and kinematics
of the fluke (amplitude, frequency, angle of attack) with
hydrodynamic models to estimate external forces acting
on the animals, such as drag and thrust (Fish, 1993; Fish
and Rohr, 1999; Schultz and Webb, 2002). Particle image
velocimetry has also been used to estimate thrust created
⋆ This work was supported by a Contribution Agreement with
the Department of Fisheries and Oceans Canada (DFO), and the
National Science Foundation under Grant No. 2238432.

by swimming bottlenose dolphins (Fish et al., 2014). More
recently, per-stroke thrust and power has been studied
with a Pacific white-sided dolphin in high-speed propulsion
using camera-based tracking and drag estimates from com-
putational models (Tanaka et al., 2019). However, because
these approaches use video data to measure kinematics the
analysis is limited to a few strokes when the animal is in
the camera’s field of view. As such, there currently exists
a significant gap in our knowledge about the mechanical
work performed by dolphins during extended periods of
swimming and daily life.

The studies on cetacean swimming dynamics are challeng-
ing, because the animals spend a significant portion of
their active time underwater and out of visual range. More-
over, most of the cetaceans oscillate their fluke through
the water to propel in the marine environment. The lift-
based thrust force and drag force acted on the moving
body are hardly feasible for direct measurement. A reliable
solution to this challenge is the bio-logging tag. Bio-logging
tags (Gabaldon et al., 2022) that collect kinematic data
(speed, acceleration, position at the surface, orientation,
depth) enable the researchers to measure high resolution
movement data in managed and wild settings. Although
animal kinetics can not be directly measured with these
systems, we can infer the mechanical work and power
from these measurements by leveraging the hydro-dynamic
model based on kinematic information. Tag-based kine-
matic measurements of animal movement provide new in-
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sights into the energetic cost, swimming gait and behavior
of the animals.

Modeling approaches that use kinematic measurements
from bio-logging tags to estimate swimming kinetics are
key to the investigation of cetacean swimming biome-
chanics. A common approach has been to estimate en-
ergetic costs of swimming using proxies such as overall
dynamic body acceleration (Wilson et al., 2006). This
approach has been developed and tested with terrestrial
animals and free-diving sea lions where direct measure-
ments of metabolic cost via respirometry have been pos-
sible (Fahlman et al., 2008; Halsey et al., 2009; Wilson
et al., 2006, 2020). Experimental validation of the relation-
ship between acceleration, mechanical work, and energetic
cost remains limited for free-swimming cetaceans (Van
Der Hoop et al., 2014; Williams et al., 1993; Yazdi et al.,
1999). Without calibration (which is seldom possible on
large marine animals), comparisons between individuals
are unlikely to be accurate and comparisons across differ-
ent behaviors within an individual may not hold. To date,
most existing research has focused on bio-mechanics dur-
ing steady state swimming where animals use a continuous
fluking-gait to maintain their speed through the water.
These studies indicate that animals modulate consistent-
speed (CS) swimming speed by increasing fluking fre-
quency but not amplitude (Fish, 1993). Further, animals
select average swimming speeds that minimize steady state
cost of transport (COT) (Gabaldon et al., 2022). However,
these studies have not included costs associated with tran-
sient behavior required to reach steady state or to move
between swimming speeds.

In this article, we leveraged the kinematic data from bio-
logging tags and a physics based modeling approach to
investigate the additional cost required to accelerate the
animal from rest to steady state swimming speeds during
a prescribed swimming task. Working with the team at
Dolphin Quest Oahu, animals were trained to wear bio-
logging tags and swim across their lagoon environment
over a range of speeds. Laps were segmented into periods
of active fluking (AF) that were autonomously identified
using features in the kinematic data recorded by the tag.
Periods of consistent-speed (CS) swimming were identi-
fied during AF period. Animal acceleration and speed
measurements were used with a model of the drag force
acting on the animal to estimate propulsive thrust, thrust
power, and COT during the trials. Average thrust power
and COT calculated during both AF and CS periods
to investigate the additional costs required to accelerate
the animal to steady state. New knowledge about these
transient periods of movement will lead to a better under-
standing of ceteacean swimming biomechanics, and is an
important step towards the experimental validation of the
relationship between acceleration, mechanical work, and
energetic cost for free-swimming cetaceans (Van Der Hoop
et al., 2014; Williams et al., 1993; Yazdi et al., 1999).

2. MATERIALS & METHODS

2.1 Data collection

Experiments were conducted at Dolphin Quest Oahu, HI,
with three bottlenose dolphins (Tursiops truncatus).The

dolphins were trained by the animal care specialists to per-
form a controlled swimming task while wearing biologging
tags (MTags) placed between the blow hole and dorsal fin.
Each lap started with the animal stationed at a floating
dock, Fig. 2. The animals then swam, underwater, around
an animal care specialist at the far side of the lagoon and
back to the floating dock. Lap distances were typically
35 m long (around 70 m out and back), and the animals
were trained to swim over a range of speeds. Depth, pitch
angle, forward acceleration and speed in body-fixed refer-
ence frame were used to identify swimming events and to
calculate the estimated thrust force during the trials.

MTags are persistently monitoring biologging tags with in-
ternal electronics built on the OpenTag3 platform (Logger-
head Instruments, Sarasota, FL, USA). Kinematic sensors
include: 3-axis accelerometer, 3-axis magnetometer, 3-axis
gyroscope, temperature sensor and pressure sensor. For-
ward water speed was measured using a secondary circuit
board with a 1-axis Hall-effect sensor, and a free-spinning
uni-axial magnetic micro-turbine mounted in line with the
tag fin. The tag attached to the animal for experiment is
presented in Fig 1.

Measurements of acceleration, geo-magnetism and angular
velocity were sampled at 50 Hz and further filtered using
Madgwick filter (Madgwick et al., 2010) to estimate orien-
tation (pitch, roll, and heading). The depth and forward-
speed were sampled at 5Hz from the pressure sensor and
turbine flow sensor and filtered using the method presented
in (Gabaldon, 2021, Chapter 3).

Fig. 1. An illustration of the simplified forces acting on
the animal during swimming, as well as kinematic
parameters measured by the tag.

2.2 Swimming dynamics

Estimated thrust power was calculated using the approach
presented in (Gabaldon et al., 2022). We assumed that the
animal can control buoyancy to balance the gravitational
force acting on the body, and combined the remaining
forces into net thrust and net drag. With balanced vertical
motion of the animals, we model the longitudinal motion
of the animals by:

m′acom = Fthrust + Fdrag,m
′ = m+madd, (1)

where m′ is the total effective mass and acom is the center-
of-mass (COM) acceleration of the animal. This total
effective mass is defined by the mass of the animal m

plus the added mass of fluid (Fossen, 2011) displaced by
the animal during movement. (Weihs, 2002) modeled the
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(a) Trail-swimming map (b) An illustration of the lagoon
environment at Dolphin Quest
Oahu. The MTag measurements
and estimations of a swimming
trial

Fig. 2. (Top) A round-trip swimming trial is segmented
into three periods of three types, which are A) active-
fluking B) consistent-speed C) glide. (Bottom) Mea-
surements of depth, forward-acceleration, speed and
torso pitching angle, during round-trip swimming
trial. Estimates of power and cost of transport dur-
ing round-trip swimming trial. Swimming periods are
highlighted.

added-mass for a swimming animal by madd = 0.2βρV ,
where ρ = 1030kg/m3 is the density of seawater and V is
the displacement volume of the animal by 3D modeling.
β is the ratio of drag force during active swimming versus
gliding. (Weihs, 2002) used the functional range of 1 <
β < 3. As explicit values of β are not known for these
dolphins and swimming conditions, we operates with the
assumption of β = 2 as a conservative estimate, such that
madd = 0.4ρV . Thrust power Pthrust is calculated by the
product of thrust force Fthrust and COM velocity vcom
such that Pthrust = Fthrustvcom. Thereafter, we obtain the
thrust power of swimming expressed as follows:

Pthrust = Fthrustvcom = m′acomvcom − F †
dragvcom. (2)

We leveraged the water-velocity vtag collected from MTag
to estimate vcom and acom, where acom was approximated
by finite-difference of vtag and smoothed by a 2-second
moving-average process to reduce noise. By applying the
depth-dependent drag model (Gabaldon et al., 2022) de-
fined by:

F †
drag = −

1

2
ρAsCDγv2com, (3)

where γ is the depth-dependent coefficient (Hertel, 1966)
to account the wave drag when the animal swims close
to the surface. Normalized drag coefficients were obtained
by applying the relation CD = 16.99Re−0.47 (Fish et al.,
2014), where Re is the body-length Reynolds number
defined by Re = Lvcom/ν. L is animal body-length and
ν = 1.044 × 10−6m2/s is the kinematic viscosity of sea
water. In (3), As denotes the surface area, given by
As = 0.08m0.65, where m is the animal mass (Fish, 1993).
Finally, we obtain the expression of thrust power:

Pthrust = m′acomvcom +
1

2
ρAsCDγv3com. (4)

Fig. 3. Body-length speed vs velocity-dependent fluking-
thrust efficiency for TT1-3. (Xargay et al., 2023;
Antoniak et al., 2023)

A non-dimensional form of thrust power was calculated to
compare animals with different lengths and masses,

Pt,nd = Pthrust/(mg1.5L0.5). (5)

Both thrust power and non-dimensional thrust power were
assumed to be positively correlated with the swimming
speed. Thrust power and swimming speed were correlated
by the following equation,

P̂thrust(vcom) = a1v
a2

com,

P̂t,nd(vcom) = a∗1(vcom/L)
a
∗

2 = a∗1v
a
∗

2

bl ,
(6)

where vbl is the individual body-length speed, and
a1, a2, a

∗
1, a

∗
2 are positive scalars to be determined using

a nonlinear curve-fitting process.

To provide predictions for the animals’ metabolic power,
work, and cost of transport, additional factors must be
considered. To account for the energy loss as chemical en-
ergy is converted into mechanical energy, the mammalian
metabolic-to-muscle power efficiency (chemical) was taken
to be ηms = 0.25 according to (Massaad et al., 2007).
The efficiency between the internal power used to move
the fluke through the water and the resulting external
propulsive power was denoted as ηsp in this article. In
prior research (Gabaldon, 2021; Gabaldon et al., 2022),
this fluking-to-propulsion power efficiency was selected to
be ηsp = 0.85 according to (Fish, 1998). In this article, we
consider a ηsp that changes with the animal’s swimming
speed (vcom) according to the fluking efficiency model from
(Xargay et al., 2023; Antoniak et al., 2023). This approach
was used to identify animal specific efficiencies that were
model ηsp(vcom) by

ηsp(vcom) = c1e
c2vcom + c3vcom + c4. (7)

Fig. 3 presents the relationship between body-length speed
and fluking efficiency of animals TT1 - TT3 that partic-
ipated in this article. The coefficients c1−4 are presented
at the bottom of Table 1 for individuals.

Thereafter, we define the energetic cost of transport by the
following expression:

COT =
Pthrust/(ηmsηsp) + PRMR

mvcom
, (8)

where PRMR is the resting metabolic power of an animal.
The method to obtain PRMR is available in (Allen et al.,
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2022; Gabaldon et al., 2022). We substitute the estimated

thrust power P̂thrust given by (6) into (8) To provide
continuous predictions of COT, given by:

ĈOT =
P̂thrust(vcom)/(ηmsηsp(vcom)) + PRMR

mvcom
. (9)

Similar to the thrust power, the COT is also assumed to
be correlated by swimming speed, given by:

ĈOT =
b1v

b2
com + PRMR

mvcom
. (10)

A COT vs body-length speed correlation is also con-
ducted to analyze animals with different lengths and
masses in cluster, given by:

ĈOTbl =
b∗1v

b
∗

2

bl + PRMR

mLvbl
, (11)

where L̄, m̄, P̄RMR are averaged animal masses, body
lengths and RMRs. In (10) and (11), b1, b2, b

∗

1, b
∗

2 are
positive scalars to be determined using a nonlinear curve-
fitting process.

Algorithm 1 The algorithm to segment AF swimming
period

AF = 0: ▷ AF == 0: AF period does not start
▷ AF == 1: AF period starts

Trial start
while True do

if Depth > 0.5m & Fluctuating Pitch== True
& Fwd Acc> 0 & AF == 0 then

AF = 1. Record the timestamp. ▷ AF period
starts.

end if
if (Depth ≤ 0.5m ∥ Fluctuating Pitch== False ∥

Fwd Acc< -0.5 )& AF == 1 then
AF = 0. Record the timestamp. ▷ AF period

ends.
end if

end while

2.3 Segmentation and identification

Periods of animal swimming with minimal speed fluctua-
tions, defined here as consistent-speed (CS) intervals, were
identified using a heuristically tuned (manually defined
parameter) automated method (Gabaldon et al., 2022).
Periods of animal swimming with positive thrust fluking,
defined here as active-fluking (AF) intervals, were identi-
fied manually using the method presented in Algorithm
1. These two methods for segmentation are presented as
follows.

Consistent-speed swimming: First, speed data vcom
from MTag were smoothed using a 2-second Savitzky-
Golay filter to produce vcom. This filtering method was
chosen for its ability to perform smoothing while pre-
serving overall signal shape, which was useful when iden-
tifying specific time indices. A 2-second moving-window
standard deviation was computed for vcom, to produce
σv = 0.045ms−1. During steady-state swimming, a dolphin
would be fluking to overcome drag effects, which would
result in positive Pthrust rather than zero during no motion,
hence minimal-movement low σv segments were filtered
out by removing segments with low thrust power. Thrust

power data were also smoothed with a 2-second Savitzky-
Golay filter to produce P thrust , for noise reduction. A
dolphin was then considered to be in a steady-state swim-
ming pattern when σv = 0.045ms−1 and P thrust > 50W,
both thresholds heuristically determined.

Active-fluking swimming: The segmentation algorithm
of AF periods is presented in Algorithm 1.

When we compare the two methods, we find that the AF
periods cover the CS periods in one trial, but AF periods
include longer swimming period with higher acceleration
caused by fluking thrust. The relationship between AF
periods and CS periods can be observed in Fig. 2.

3. RESULTS

General metrics for the conducted experiments, differen-
tiated by animal, are reported in Table 1. Each dolphin
completed between 29 (TT2) and 54 (TT1) laps across all
trials, for a total of 120 laps. The power-speed relationship
for each animal is presented in (4), and the curves for the
individual fits are presented in Subfigs. a)-c) in Fig. 4. The
non-dimensional power vs body-length speed relationship
is presented in (5) and the curve for all of the animals is
presented in Subfig. d) in Fig. 4. The COT-speed relation-
ship for each animal is presented in (9), and the curves
for the individual fits and overall fit are presented in Fig.
5. The curve-fitting results for both AF segments and CS
segments are presented in Figs. 4 and 5. The curve-fitting
coefficients are presented at the bottom of 1.

A total of 239 active fluking segments were extracted
from the swimming laps, Table 1 (‘AF’ rows). The mean
duration of the AF segments is from 6.93s (TT2) to
8.38s (TT3). The mean velocity of the animals in the
AF segments ranged from 3.46 m/s (TT2) to 3.84 m/s
(TT3), the mean power was between 800 W (TT1) to 925
W (TT3), and the minimum cost of transport was between
3.55 J/kg·m (TT2) and 5.07 J/kg·m (TT1).

A total of 277 consistent-speed segments were extracted
from the swimming laps, Table 1 (‘CS’ rows). The mean
duration of the CS segments is from 4.06s (TT2) to
4.19s (TT3). The mean velocity of the animals in the CS
segments ranged from 3.73 m/s (TT2) to 4.22 m/s (TT3),
the mean power was between 568 W (TT1) to 813 W
(TT3), and the minimum cost of transport was between
2.30 J/kg·m (TT2) and 3.17 J/kg·m (TT1).

In Fig. 5, we observed that COTs of AF periods were
significantly higher than CS periods in regular swimming
intervals (0.5-5m/s). We compared the ratio of AF Min
COT and CS Min COT for individuals. This ratio is from
1.71 (TT2) to 2.0 (TT3).

In Fig. 4 d) and Fig. 5 d), we clustered the data points from

TT1-TT3 and conducted curve-fitting for P̂t,nd − vbl and

ĈOTbl − vbl correlations. We observed that the adjusted
R2 values of CS curve fitting is much better than the ones
of AF period. That is because the AF periods accounted
the energy cost for acceleration, which was not accounted
in CS periods. The arbitrary acceleration, which caused
arbitrary energy cost during AF periods, leads to worse
R2 values of the curve fitting.
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We also observed that COTs of AF periods were sig-
nificantly higher than CS periods in regular swimming
intervals (0.5-5m/s). We compared the ratio of AF Min
COT and CS Min COT for individuals. This ratio is from
1.71 (TT2) to 2.0 (TT3).

(a) TT1 (b) TT2

(c) TT3 (d) Overall

Fig. 4. Comparisons of speed vs power for AF segments
(purple) and SS segments (blue) from existing litera-
ture (Gabaldon et al., 2022; Gabaldon, 2021). TT1-
3 : Subfigures a)-c) present the comparisons of animal
speed vs thrust power. The experimental data and
power-fitting are compared for TT1-3 individually in
a)-c). Overall : Subfigure d) presents the comparison
of body-speed vs non-dimensional thrust power. The
experimental data from TT1-3 is clustered to conduct
curve fitting between body-length speed and non-
dimensional thrust power in d).

4. CONCLUSION

In this article, we estimated the propulsive force generated
during swimming locomotion using a simplified rigid body
model of a dolphin and tag kinematic measurements. This
approach enable the investigation of swimming biomechan-
ics using hundreds of fluke strokes from one hundred and
twenty laps of prescribed swimming. Animal specific mod-
els were created using parameters measured directly from
the animals (mass, length, body diameter, fluke geome-
try) or estimated using published relationships between
anthropometric measurements and the model parameter
(animal volume and drag coefficient during low amplitude
fluking). The prescribed swimming trials performed by
the animals enabled an comparison between the cost to
accelerate the animal to a given speed and those associ-
ated with overcoming the drag acting on the body at a
constant swimming speed. These transient costs are sig-
nificant, and increase as speed increases. For example, the

(a) TT1 (b) TT2

(c) TT3 (d) Overall

Fig. 5. Comparisons of speed vs COT for active fluk-
ing segments (purple) and constant speed swimming
segments (blue) from existing literature (Gabaldon
et al., 2022; Gabaldon, 2021). TT1-3 : Subfigures a)-c)
present the comparisons of animal speed vs COT. The
experimental data and COT-fitting are compared for
TT1-3 individually in a)-c). Overall : The experiment
data from TT1-3 is clustered to conduct curve fitting
between body length speed and COT in d).

average cost of transport for the period of active fluking
was approximately 1.5 times larger than during constant
speed swimming. Accounting for these transient costs will
be important for future studies that use more direct mea-
surements of metabolic cost (like respirometry) to verify
estimates of energetic cost derived from measurements of
kinematics.
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