

ChemComm

Chemical Communications

rsc.li/chemcomm

ISSN 1359-7345

Cite this: *Chem. Commun.*, 2024, 60, 14573

Received 24th June 2024,
Accepted 17th October 2024

DOI: 10.1039/d4cc03048f

rsc.li/chemcomm

Generation and interception of bicyclo[3.2.1]oct-2-yne: an experimental and theoretical mechanistic study†

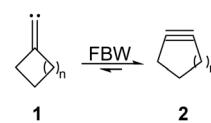
T. E. Anderson, ^a Beauty K. Chabuka, ^b Igor V. Alabugin, ^{*b} Dasan M. Thamattoor ^{*a} and David Lee Phillips ^{*c}

Bicyclo[3.2.1]oct-2-yne was generated from the Fritsch–Buttenberg–Wiechell rearrangement of 2-norbornylidene carbene. The rearrangement preferentially involves migration of a tertiary carbon over a secondary carbon, a trend that contrasts with rearrangements of acyclic carbenes and which may be attributable to hyperconjugative effects promoted by the bridged structure of the carbene.

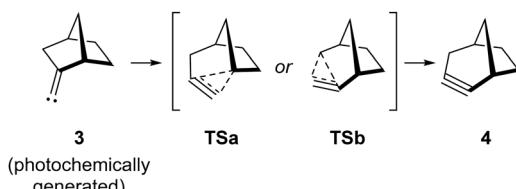
Exocyclic alkylidene carbenes **1** provide appealing precursors to strained cycloalkynes **2** due to their tendency to undergo 1,2-migratory shifts known as Fritsch–Buttenberg–Wiechell (FBW) rearrangements (Scheme 1).¹ A number of cyclopentyne,^{2,3} cyclohexyne,^{4–6} and polycyclic alkyne^{7–9} derivatives have been generated through FBW rearrangements of alkylidene carbenes. Strained carbocyclic and heterocyclic alkynes are of growing interest in organic synthesis due to their potential for providing access to complex molecular scaffolds.¹⁰

Generation of cyclic alkynes *via* FBW rearrangements have primarily involved deprotonation of bromoethylene-cycloalkanes^{7–9} or the lithiation of dibromomethylene-cycloalkanes.^{11–15} These preparations require harsh reaction conditions that include high temperatures in the case of deprotonation, and low temperatures in the case of lithiation, that can influence the pathways of reactivity. Moreover, there is some ambiguity as to whether these reactions involve real carbenes, or metal-coordinated carbenoid intermediates.^{7,16,17} These uncertainties make such approaches unsuitable for mechanistic investigations into FBW rearrangements.

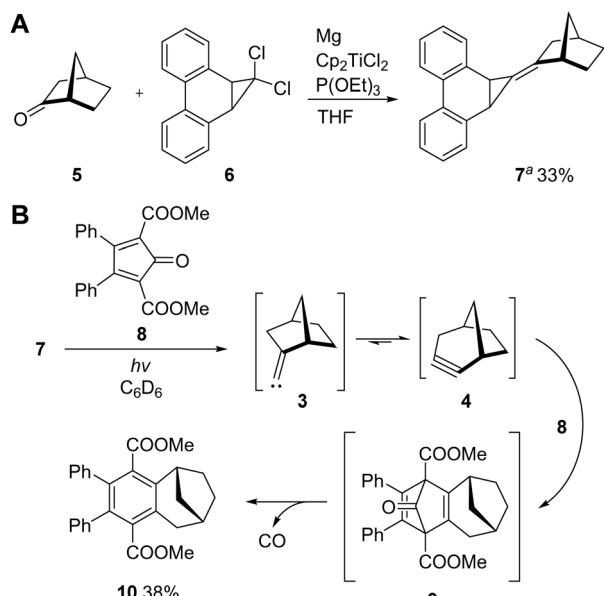
Our laboratory has developed a photochemical approach to the generation of alkylidene carbenes that proceeds under mild conditions and ambient temperatures.^{5,6,18–20} Herein, we demonstrate the utility of this method for the generation of bicyclo[3.2.1]oct-2-yne (**4**) *via* the FBW rearrangement of 2-norbornylidene carbene (**3**, Scheme 2). To our knowledge, the two previously reported preparations of **4** have involved the use of halogenated precursors, high temperatures, and strongly basic conditions.^{21,22} Furthermore, FBW rearrangement in **3** can proceed by two possible pathways, involving migration of the tertiary γ -carbon (*via* **TSa**) or the secondary γ -carbon (*via* **TSb**), both of which yield the same product **4**. Thus, these two pathways cannot be distinguished under ordinary conditions. In this work, we demonstrate the use ¹³C-labelling experiments which permitted elucidation of the rearrangement mechanism, and revealed a preference for migration of the tertiary rather than secondary carbon.


Precursor **7** was synthesized, as shown in Scheme 3A, with the aim of photolytically generating 2-norbornylidene carbene (**3**), which would provide access to bicyclo[3.2.1]oct-2-yne (**4**) *via* FBW rearrangement. The presence of the methylene bridge in bicyclo[3.2.1]oct-2-yne (**4**) is predicted to inflict 23.8 kcal mol^{–1} of strain energy relative to monocyclic cyclooctyne (Fig. S1, ESI†). The known dichlorocyclopropyl phenanthrene derivative **6** was first prepared by the cyclopropanation of phenanthrene with chloroform under basic conditions.²³ Precursor **7** was then synthesized from norcamphor (**5**) and **6** by adapting a procedure previously reported by Takeda *et al.*²⁴ Photolysis of **7** in the presence of diene **8** resulted in the formation of adduct **10**,

^a Department of Chemistry, Colby College, Waterville, Maine 04901, USA.
E-mail: dmthamat@colby.edu

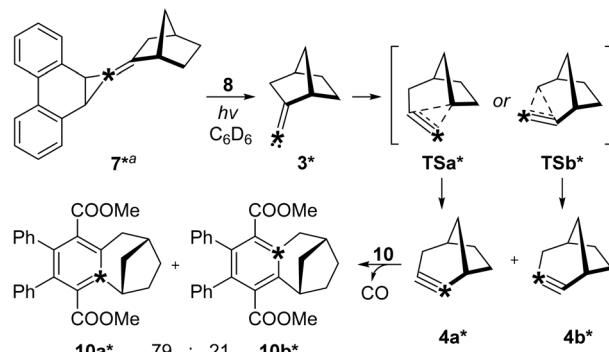

^b Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA

^c Department of Chemistry, The University of Hong Kong, Pok Fu Lam, 999077, Hong Kong, S.A.R., P. R. China


† Electronic supplementary information (ESI) available: Experimental procedures, spectral data, and Cartesian coordinates of the relevant optimized structures. See DOI: <https://doi.org/10.1039/d4cc03048f>

Scheme 1 Fritsch–Buttenberg–Wiechell (FBW) rearrangement of exocyclic alkylidene carbenes **1** to cycloalkynes **2**.

Scheme 2 Photochemical generation of bicyclo[3.2.1]oct-2-yne (4) via the FBW rearrangement of 2-norbornylidene carbene (3).



^aMixture of *endo* and *exo* diastereomers (See Supporting Information)

Scheme 3 (A) Synthesis of precursor 7. (B) Trapping of bicyclo[3.2.1]oct-2-yne (4), generated by photolysis of 7 and FBW rearrangement of 2-norbornylidene carbene (3).

likely *via* decarbonylation of the initially formed Diels–Alder product 9,^{4–6} implicating the intermediacy of bicyclo[3.2.1]oct-2-yne (4, Scheme 3B).

The pathway of FBW rearrangement in norbornylidene carbene 3 was investigated with the use of the ¹³C-labelled precursor 7* (Scheme 4). Precursor 7* was prepared similarly to its non-enriched analogue 7, but with a ¹³C-labelled dichlorocyclopropyl phenanthrene derivative 6* synthesized from 25% ¹³C-enriched chloroform (see Synthetic procedures in ESI[†]). Photolytic generation of the ¹³C-labelled alkylidene carbene 3* in the presence of diene 8 yielded isotopomers 10a* and 10b* in a ratio of 79:21,²⁵ revealing a preference for migration of the tertiary γ -carbon (*via* **TSa**). The ratio of isotopomer products indicates a 0.72 kcal mol⁻¹ difference in free energy between the transition state barriers of the two rearrangement pathways ($\Delta G_{\text{TSb}}^{\ddagger} - \Delta G_{\text{TSa}}^{\ddagger}$).²⁶ The preference for migration of the tertiary carbon over the secondary carbon is the opposite of that previously reported for acyclic alkylidene carbenes,^{27–29} indicating that the geometric constraints imposed by the bicyclic structure of 3 likely play a significant role in influencing the pathway of FBW rearrangement.

^aMixture of *endo* and *exo* diastereomers (See Supporting Information)

Scheme 4 FBW rearrangement of ¹³C-labelled 2-norbornylidene carbene (3*). An asterisk (*) denotes a ¹³C-enriched carbon.

Calculations performed at the CCSD(T)/CPCM_(benzene)/def2-TZVPP//M06-2X/CPCM_(benzene)/def2-TZVP^{30–33} level of theory are in close agreement with the experimental data.³⁴ Bicyclo[3.2.1]oct-2-yne (4) is predicted to be more thermodynamically stable than the corresponding alkylidene carbene 3 by 10.57 kcal mol⁻¹ (Fig. 1). FBW rearrangement involving the migration of the tertiary carbon is likewise favored, with a transition state **TSa** that is predicted to be 0.72 kcal mol⁻¹ lower in energy than that of the competing migratory pathway, **TSb**, in which a secondary carbon undergoes migration.

Preference for the migratory pathway involving **TSa** appears to result from the geometric constraints within the cyclic structure of 2-norbornylidene carbene (3). The endocyclic sp^2 carbon within carbene 3 exhibits bond angles that are distorted compared to those of the analogous alkene 11 (Fig. 2), with a $\text{C}_1\text{–C}_2\text{–C}_3$ bond angle, which includes the migrating bond of the major pathway, contracted by almost 13° and a $\text{C}_1\text{–C}_2\text{–C}_4$ bond angle, which includes the migrating bond in the minor rearrangement pathway, enlarged by 12°. This distortion results in a structure that more closely resembles the major transition state **TSa**, situating the tertiary carbon C_3 closer to the migratory terminus at carbon C_1 , while distancing C_4 from C_1 .

The bond angle distortion around the endocyclic sp^2 carbon in carbene 3 likely arises from hyperconjugative interactions

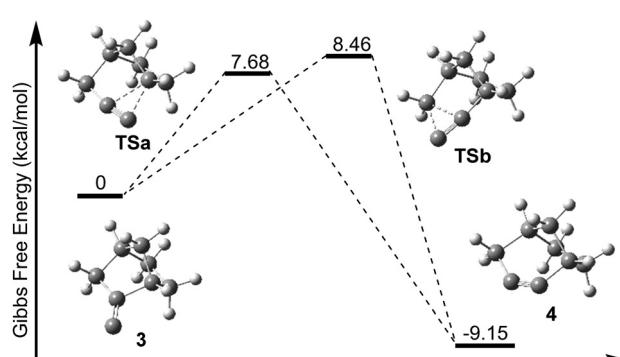


Fig. 1 Potential energy surface for the FBW rearrangement of 2-norbornylidene carbene (3) to bicyclo[3.2.1]oct-2-yne (4), computed at CCSD(T)/CPCM_(benzene)/def2-TZVPP//M06-2X/CPCM_(benzene)/def2-TZVP.

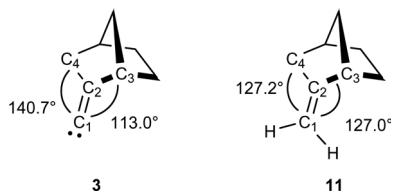


Fig. 2 Distortion of the alkylidene carbene bond angle in 2-norbornylidene carbene (**3**) compared to the alkene bond angle in 2-methyl-enebicyclo[2.2.1]heptane (**11**).

involving the divalent exocyclic sp carbon. Similar distortions in alkylidene carbenes with aryl substituents are believed to arise from donation of electron density into the empty p orbital at the divalent carbon site ($\pi \rightarrow p$ and $\sigma \rightarrow p$).³⁵ NBO calculations for 2-norbornylidene carbene (**3**) show a strong stabilizing hyperconjugative interaction (24.7 kcal mol⁻¹) between the C₂–C₃ bond and the vacant p orbital on the alkylidene carbene center C₁ ($\sigma_{C-C} \rightarrow p$, Fig. 3A). By contrast, the stabilizing interaction between the C₂–C₄ bond and empty p orbital is much weaker (4.4 kcal mol⁻¹). The contribution of homohyperconjugation involving the C₃–hydrogen bond and the p orbital on C₁ ($\sigma_{C-H} \rightarrow p$, Fig. 3B),³⁶ analogous to agnostic interactions in organometallic Schrock carbenoids,³⁷ is weak (<0.5 kcal mol⁻¹) in the carbene but become significant in **TSA** (16.8 kcal mol⁻¹) and the product alkyne (6.5 kcal mol⁻¹, see ESI†). This interaction is stronger with the C₃–hydrogen bond of the bridgehead carbon, which is constricted to be roughly in plane with the vinylidene group ($\theta_{C_1C_2C_3H_3}$, 17°, Fig. 3C), compared to the C₄–hydrogen bonds ($\theta_{C_1C_2C_4H_1}$, 58° and $\theta_{C_1C_2C_4H_2}$, 62°, Fig. 3C). The favorable interaction may explain why the vinylidene group is distorted towards the tertiary carbon C₃ rather than the secondary carbon C₄, and why the migratory trend differs from that observed in acyclic alkylidene carbenes.^{27–29}

In summary, we have provided a new and mild route to bicyclo[3.2.1]oct-2-yne (**4**) through the FBW rearrangement of

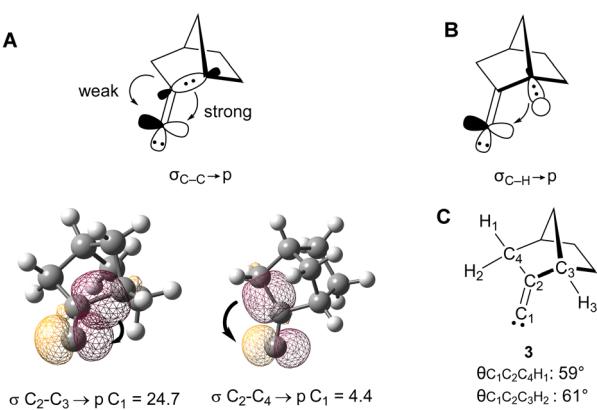


Fig. 3 Possible (A) hyperconjugative and (B) homohyperconjugative interactions in 2-norbornylidene carbene (**3**). (C) The ground-state geometry of **3**, calculated at CCSD(T)/CPCM_(benzene)def2-TZVPP//M06-2X/CPCM_(benzene)def2-TZVP.

photochemically generated 2-norbornylidene carbene (**3**). Previous efforts to access this strained polycyclic alkyne have required halogenated precursors in conjunction with high-temperatures and high basicity,^{21,22} conditions which can complicate mechanistic interpretations of reactivity,^{7,16,17,21,22} and which limit the range of reagents that can be used to trap the unstable, transient alkyne. The approach employed herein unambiguously generates the free alkylidene carbene **3**, allowing for elucidation of the specific pathways of FBW rearrangement with the use of the ¹³C-labelled precursor **7***. The experimental and computational data both indicate that migration of the tertiary γ -carbon is favored over that of the secondary γ -carbon, with a difference in transition state energies for the two rearrangement pathways of 0.72 kcal mol⁻¹. This preference for migration of the tertiary carbon contrasts with previously reported trends in acyclic alkylidene carbenes,^{27–29} potentially due to specific hyperconjugative and homohyperconjugative interactions that become favorable within the rigid caged structure of 2-norbornylidene carbene (**3**). The bridgehead carbon–hydrogen bond proximal to the vinylidene group is constrained in an orientation that is nearly in-plane with the vinylidene group, allowing for donation of electron density into the empty p orbital of the carbene ($\sigma_{C-H} \rightarrow p$). The consistency between the experimental and computational data suggests that the photochemical approach to alkylidene carbene generation used herein is a reliable method for mechanistic investigations of FBW rearrangements.

The manuscript was written through the contributions of all authors, who have given approval to the final version of the manuscript.

This work was funded by the National Science Foundation (CHE-1955874 to D. M. T.) and (CHE-2102579 to I. V. A.); the David Lee Phillips Postdoctoral Fellowship (to T. E. A.); and the ACM SIGHPC computational and data science fellowship (to B. K. C.).

Data availability

Data for this article, including experimental procedures, NMR data, and computational details have been included as part of the ESI.†

Conflicts of interest

There are no conflicts to declare.

Notes and references

- A. Guin, S. Bhattacharjee and A. T. Biju, *Hetarynes, Cycloalkynes, and Related Intermediates*, *Modern Aryne Chemistry*, 2021, pp. 359–406.
- L. Fitjer, U. Kliebisch, D. Wehle and S. Modaressi, [2+2]-cycloadditions of cyclopentyne, *Tetrahedron Lett.*, 1982, **23**(16), 1661–1664.
- J. C. Gilbert and M. E. Baze, Symmetry of a reactive intermediate from ring expansion of cyclobutylidene carbene, cyclopentyne, *J. Am. Chem. Soc.*, 1983, **105**(3), 664–665.
- T. E. Anderson, D. M. Thamattoor and D. L. Phillips, Formation of 3-Oxa- and 3-Thiacyclohexyne from Ring Expansion of Heterocyclic

Alkylidene Carbenes: A Mechanistic Study, *Org. Lett.*, 2023, **25**(9), 1364–1369.

5 R. Fan, Y. Wen and D. M. Thamattoor, Photochemical generation and trapping of 3-oxacyclohexyne, *Org. Biomol. Chem.*, 2017, **15**(39), 8270–8275.

6 D. P. Maurer, R. Fan and D. M. Thamattoor, Photochemical Generation of Strained Cycloalkynes from Methylenecyclopropanes, *Angew. Chem., Int. Ed.*, 2017, **56**(16), 4499–4501.

7 M. Balci, M. Krawiec, Y. Taşkesenligil and W. H. Watson, Structure of a ring enlarged product from the base induced rearrangement of dibromomethylenebenzonorbornene, *J. Chem. Crystallogr.*, 1996, **26**(6), 413–418.

8 K. L. Erickson and J. Wolinsky, Rearrangement of Bromomethylenecycloalkanes with Potassium *t*-Butoxide, *J. Am. Chem. Soc.*, 1965, **87**(5), 1142–1143.

9 G. Mehta, Base-catalyzed rearrangement of ω -bromolongifolene, *J. Org. Chem.*, 1971, **36**(22), 3455–3456.

10 S. M. Anthony, L. G. Wonilowicz, M. S. McVeigh and N. K. Garg, Leveraging Fleeting Strained Intermediates to Access Complex Scaffolds, *JACS Au*, 2021, **1**(7), 897–912.

11 B. Sahu, G. N. Gururaja, T. Kumar, A. Chatterjee, B. Ganguly, S. M. Mobin and I. N. N. Namboothiri, Generation and Trapping of a Cage Annulated Vinylidene carbene and Approaches to Its Cycloalkyne Isomer, *J. Org. Chem.*, 2012, **77**(16), 6998–7004.

12 A. P. Marchand, K. A. Kumar, D. Rajagopal, R. Eckrich and S. G. Bott, Generation and trapping of a caged cyclopentylidene carbene, *Tetrahedron Lett.*, 1996, **37**(4), 467–470.

13 A. P. Marchand, S. Alihodžić, S. G. Bott, W. H. Watson, S. G. Bodige and R. Gilardi, Generation and trapping of 7-norbornylidene carbene and a heptacyclic analog of this alkylidene carbene, *Tetrahedron*, 1998, **54**(44), 13427–13434.

14 L. Xu, G. Lin, F. Tao and U. Brinker, Efficient Syntheses of Multi-substituted Methylenecyclopropanes via Novel Ultrasonicated Reactions of 1,1-Dihaloolefins and Metals, *Acta Chem. Scand.*, 1992, **46**, 650–653.

15 A. P. Marchand, I. N. N. Namboothiri, B. Ganguly and S. G. Bott, Study of a Vinylidene carbene–Cycloalkyne Equilibrium in the D3-Trishomocubyl Ring System, *J. Am. Chem. Soc.*, 1998, **120**(28), 6871–6876.

16 J. C. Gilbert, E. G. McKinley and D.-R. Hou, The Nature of Cyclopentyne from Different Precursors, *Tetrahedron*, 1997, **53**(29), 9891–9902.

17 R. Knorr, Alkylidene carbenes, Alkylidene carbeneoids, and Competing Species: Which Is Responsible for Vinylidene Nucleophilic Substitution, [1+2] Cycloadditions, 1,5-CH Insertions, and the Fritsch–Buttenberg–Wiechell Rearrangement?, *Chem. Rev.*, 2004, **104**(9), 3795–3850.

18 X. Yang, K. Languet and D. M. Thamattoor, An Experimental and Computational Investigation of (α -Methylbenzylidene) carbene, *J. Org. Chem.*, 2016, **81**(18), 8194–8198.

19 K. A. Moore, J. S. Vidaurri-Martinez and D. M. Thamattoor, The Benzylidene carbene–Phenylacetylene Rearrangement: An Experimental and Computational Study, *J. Am. Chem. Soc.*, 2012, **134**(49), 20037–20040.

20 L. Du, X. Lan, D. L. Phillips, W. H. Coldren, C. M. Hadad, X. Yang and D. M. Thamattoor, Direct Observation of an Alkylidene carbene by Ultrafast Transient Absorption Spectroscopy, *J. Phys. Chem. A*, 2018, **122**(34), 6852–6855.

21 A. T. Bottini and B. Anderson, Nucleophilic substitution reactions of the 2- and 3-halobicyclo[3.2.1]-Oct-2-enes with potassium *t*-butoxide and with sodium pyrrolide, *Tetrahedron Lett.*, 1973, **14**(35), 3321–3324.

22 J. J. Valcho, *Reactions of Organolithiums with a Variety of Vinyl Chlorides*, Doctoral dissertation, Ohio State University, Columbus, OH, USA, 1975.

23 D. Takeuchi, T. Okada, J. Kuwabara and K. Osakada, Living Alternating Copolymerization of a Methylenecyclopropane Derivative with CO to Afford Polyketone with Dihydrophenanthrene-1,10-diy Groups, *Macromol. Chem. Phys.*, 2006, **63**(21), 7286–7288.

24 T. Takeda, R. Sasaki and T. Fujiwara, Carbonyl Olefination by Means of a *gem*-Dichloride–Cp₂Ti[P(OEt)₃]₂ System, *J. Org. Chem.*, 1998, **63**(21), 7286–7288.

25 Ratio determined by analysis of the ¹³C NMR spectrum of the purified adducts.

26 F. A. Carroll, Arrhenius Theory and Transition-State Theory, *Perspectives on Structure and Mechanism in Organic Chemistry*, Brooks/Cole, Pacific Grove, 1998, p. 344.

27 H. Rezaei, S. Yamanoi, F. Chemla and J. F. Normant, Fritsch–Buttenberg–Wiechell Rearrangement in the Aliphatic Series, *Org. Lett.*, 2000, **2**(4), 419–421.

28 W. Graf von der Schulenburg, H. Hopf and R. Walsh, Alkyl Migration Aptitudes in the Vinylidene–Acetylene Rearrangement and Isotope Effect in the Vinylidene Formation Process from a Deuterium-Labeled Cyclopropene, *Angew. Chem., Int. Ed.*, 1999, **38**(8), 1128–1130.

29 Preference for migration of a secondary over a tertiary carbon in the FBW rearrangements of acyclic carbenes is also consistent with our computed energies for the rearrangement of ethyl isopropyl alkylidene carbene at the CCSD(T)/def2-TZVPP//M06-2X/def2-TZVP level of theory (see Fig. S2, ESI[†]).

30 Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

31 C. Ripplinger and F. Neese, An efficient and near linear scaling pair natural orbital based local coupled cluster method, *J. Chem. Phys.*, 2013, **138**(3), 034106.

32 C. Ripplinger, B. Sandhoefer, A. Hansen and F. Neese, Natural triple excitations in local coupled cluster calculations with pair natural orbitals, *J. Chem. Phys.*, 2013, **139**(13), 134101.

33 F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**(18), 3297–3305.

34 The M06-2X functional has previously been found to provide accurate structural predictions for alkylidene carbenes. See: Y. Zhou and Z.-X. Yu, 1,5-X Insertions of Free Alkylidene Carbenes: A Theoretical Study, *Asian J. Org. Chem.*, 2023, **12**, e202300440.

35 H. J. A. Dale, C. Nottingham, C. Poree and G. C. Lloyd-Jones, Systematic Evaluation of 1,2-Migratory Aptitude in Alkylidene Carbenes, *J. Am. Chem. Soc.*, 2021, **143**(4), 2097–2107.

36 I. V. Alabugin, G. dos Passos Gomes and M. A. Abdo, Hyperconjugation, *Wiley Interdiscip. Rev.: Comput. Mol. Sci.*, 2019, **9**, e1389.

37 R. Goddard, R. Hoffmann and E. D. Jemmis, Unusual M–C–H angles, C–H bond activation, and α -hydrogen abstraction in transition metal carbene complexes, *Z. Anal. Chem. Fresenius.*, 1980, **304**(4), 263.