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Safe Human-UAS Collaboration From High-Level
Planning to Low-Level Tracking

Hossein Rastgoftar

Abstract—This paper studies the problem of safe
human-uncrewed aerial system (UAS) collaboration in a
shared work environment. By considering human and UAS as
co-workers, we use Petri Nets to abstractly model evolution
of shared tasks assigned to human and UAS co-workers.
Particularly, the Petri Nets’ “places” represent work stations;
and therefore, the Petri Nets’ transitions can formally specify
displacements between the work stations. The paper’s first
objective is to incorporate uncertainty regarding the intentions
of human co-workers into motion planning for UAS, when
UAS closely interacts with human co-workers. To this end, the
proposed Petri Nets model uses “conflict” constructs to represent
situations at which UAS deals with incomplete knowledge about
human co-worker intention. The paper’s second objective is then
to plan the motion of the UAS in a resilient and safe manner,
in the presence of non-cooperative human co-workers. In order
to achieve this objective, UAS equipped with onboard perception
and decision-making capabilities are able to, through real-time
processing of in-situ observation, predict human intention,
quantify human distraction, and apply a non-stationary Markov
Decision Process (MDP) model to safely plan UAS motion in
the presence of uncertainty. Given the current and next UAS
waypoints, assigned by the MDP planner, the paper applies
Potryagin’s minimal principle to plan the desired trajectory of
the UAS and uses a feedback linearaztion trajectory control to
enable UAS with stable tracking of the desired trajectory.

Note to Practitioners—Despite advances in aerial robotics,
there are still significant barriers for their integration and
application into human-centered jobs. Safety-related concerns,
potential hazards to labor, and limited mission duration are
some major barriers for using such a helpful technology. The
main goal of this paper is to come up with a reliable solution
for long-term collaboration between humans and unmanned
aerial system (UAS) for safe and efficient accomplishment of
a human-centered work. To this end, we propose to use Petri
Nets to abstractly model and specify human-robot collaboration
and effectively plan the tasks assigned to UAS and human co-
workers. In this context, human co-workers can do some tasks
that are difficult and somehow unsafe to be carried out by UAS.
On the other hand, UAS can be deployed to monitor the work
environment, recognize human wellness, or carry some small
payloads. UAS co-workers enabled with on-board perception
capabilities can also predict human coworker intention and
quantify human co-worker distraction in real time through online
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processing of in-situ observations. Furthermore, UAS can safely
plan its motion without human intervention or supervision,
by combining Markov Decision Process, optimal control, and
trajectory tracking control models.

Index Terms— Decision-making, Markov decision process
(MDP), human intention prediction, unscrewed aerial system
(UAS), Petri Nets.

I. INTRODUCTION

ITH advances in artificial intelligence, learning, and
Woptimization approaches, copter-powered uncrewed
aerial systems (UAS) have found numerous applications in
agriculture [1], [2], warehouse industries [3], [4], mining [5],
[6], surveillance [7], [8], construction [9], [10], and many other
fields. Despite the widespread UAS applications, to date, UAS
operation is closely supervised by human professionals. This
paper, on the other hand, studies semi-autonomous missions
that are jointly operated by UAS and human in the same
environment. The primary focus of the paper is on ensuring
safety of UAS operation in shared workplaces where humans
and UAS coexist. Towards this goal, we combine Petri Nets
with non-stationary Markov Decision Process (MDP) and
Pontryagin’s minimum principle to provide a framework for
safe human-UAS collaboration.

A. Related Work

In the literature, Petri Nets have been used to model
evolution of discrete-event systems and applied for a variety
of applications. Manufacturing systems have been the primary
applications of Petri Nets [11], [12]. In [13], timed Petri Nets
are used to model the integration of virtual sensors proposed
for electric mobility services. In [14], variable Petri Nets
are proposed to describe “system connectivity,” “interaction
soundness and data validity”, and modeling and analysis of
interactive systems. Petri Nets are used in [15] to model
game flow and student learning optimization as the main
application. Researchers have used Petri Nets to optimally
schedule tasks for humans and robots cooperating in a shared
workplace [16], [17], [18], [19], [20]. Authors in [21] used
colored Petri Nets (CPN) for validation and verification of
safety-critical systems [21]. CPN was also used in [22] to
model human actions, in a human-robot collaboration, under
partial observability assumption.

This paper considers a multicopter drone as the robot
interacting with humans in a shared workplace. Application
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of drones as safety inspectors in construction site was studied
in [23]. In [24], the authors rely on user experiences to
incorporate human emotions into drone’s trajectory planning.
Refs. [25] and [26] study potential human-drone communica-
tion interfaces in a collaborative environment. Signal temporal
logic [27], [28] is used in [29] to plan ergonomic and safe
human-UAS collaboration in a construction environment.

B. Contributions

In the literature, researchers have extensively investigated
autonomous UAS operation applications or UAS operation
supervised by human professionals. This paper, on the other
hand, aims to develop a model for semi-autonomous oper-
ations that are jointly conducted by UAS and humans in
a shared workplace. By considering humans and UAS as
co-workers, sharing a work environment, safety assurance
becomes highly important since human and UAS co-workers
can closely interact. Because UAS needs to deal with the
uncertainty associated with incomplete knowledge about the
intentions of each human co-worker, safety assurance is
indeed very challenging. To address this problem, this paper
proposes to apply Petri Nets to model task evolution in a
semi-autonomous operation, conducted by human and UAS
co-workers. This novel application of Petri Nets assumes that
multiple Work Stations (WSs) exist in a shared workplace
and uses the Petri Nets’ places to abstractly represent WSs.
Therefore, the Petri Nets’s transitions either specify evolution
of tasks in the same WS, or displacement between the WSs.
Particularly, we use “cyclic” construct to model evolution of
incomplete task, or progression of multiple tasks, in the same
place, when change of a WS is not needed. On the other hand,
we use “sequential,” “dependency,” and “conflict” to model
displacement of UAS, or human, between WSs.

While existing work, related to Petri Nets’ applications,
mainly focuses on high-level specification of task flow, this
paper applies Petri Nets, MDP method, Pontryagin minimum
principle, and control theory to specify high-level tasks, safely
plan high-level actions, determine desired UAS trajectory, and
ensure stable tracking of the desired trajectory by a multicopter
UAS, where a high-fidelity nonlinear dynamics is used to
model multicopter UAS motion. By applying the proposed
model for abstraction of human-UAS collaboration, the paper
offers the following novel contributions:

1) We enable UAS with on-board perception capability to
learn human intention and quantify human co-worker
distraction by real-time processing of in-situ observa-
tions. By predicting human co-worker intention, UAS
can resolve “conflict” situations resulted from incom-
plete knowledge about human intentions. Also, UAS
can quantify distraction of every human co-worker by
specifying the probability distribution over a moving
neighboring set (MNS). MNS is defined as a finite
set of cells that form a rigid rectangular zone around
each human coworker’s desired position, where the
human’s desired position is along a desired trajectory
that is estimated using the available search methods,
such as A* search [30], [31]. Note that the A* search
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is indeed applied to obtain the shortest path between
two WSs. We consider this path as the reference to
quantify the human distraction when traveling between
two workstations.

2) We develop a non-stationary MDP model for
UAS motion planning in the presence of multiple
non-cooperative human co-workers. While the state
space, transition function, discount factor, and action
components of the proposed MDP are time-invariant,
the MDP cost is time-varying, and it is consistently
updated so that learning of human intention and
co-worker distraction are properly incorporated in the
UAS motion planning. We use value iteration method
to obtain optimal UAS actions by solving the Bellman
equation.

3) The paper applies the Pontryagin’s minimum principle
to establish an interface between the high-level MDP-
based motion planning and low-level trajectory tracking
by obtaining the UAS desired trajectory through solving
a fixed-final-state and fixed-final-time optimal control
problem.

C. Outline

This paper is organized as follows: Preliminary notions
of Petri Nets are reviewed in Section II. The problem of
UAS-Human collaboration is formulated in Section III and
followed by the paper’s approach for UAS onboard perception
and motion planning in Section IV. Simulation results are
presented in Section V. Concluding remarks are stated in
Section VI.

II. PRELIMINARIES

We use Petri Nets to model UAS-human collaboration in
a constrained workplace. The proposed Petri Nets is defined
by tuple PN = (P, T, Ey, Ev, Wu, Wy, My, My), where
P is a finite set of places; 7 is a finite set of transitions;
En C PxTHYYUT xP) and & € (PxT)UT xP)
define unweighted arcs of human and UAS co-workers, respec-
tively; Wy : €y — N defines weights of human co-worker
transitions; Wy : &y — N defines weights of UAS co-worker
transitions; marking My : P — N specifies distribution of
human co-workers; and marking My : P — N specifies
distribution of UAS co-workers. In this work, set P defines
actual Work Stations (WSs), therefore, 7 defines possible
displacements between WSs.

Assumption 1: This paper assumes that no bias exists for
activating every possible transition ¢ €7 by the human at
every place p € P, where (p, {) € £y. Therefore,

/\ /\ /\ Wnu(p, &) =1). (1)
PEP LT (p.b)eln

Assumption 2: This paper assumes that no bias exists for
activating every possible transition { €7 by the UAS at every
place p € P, where (p, ¢) € Ey. Therefore,

AN A Wup.o)=0. )

PEP LT (p.o)e€y
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Sequential Construct Concurrency
Construct
Cyclic Construct Dependency Conflict Construct
Copgtruct

Fig. 1. The constructs are used for modeling human-UAS collaboration.

Definition 1: Given human arc set £y, we define out-
neighbor transition set

Nu(p) =1{¢ €T : (p,¢) € En},

to specify possible transitions that can be fired by human
co-workers at p € P.

Definition 2: Given UAS arc set &y, we define out-neighbor
transition set

Ny(p) ={¢ €T : (p,¢) € &y}

to specify possible transitions that can be fired by UAS at
peP.
Definition 3: Set

E={p.HVUE.p):VpeP, V¥ €T} &)

defines cyclic arcs (See the cyclic arc schematic in the
bottom-left picture of Fig. 1).

Note that £ is used to specify tasks that can be performed
in the same workstation without requiring the UAS or a
human coworker to switch workstations. The remaining tasks
requiring change of WS are specified by £y \ (€' N Ey), for
human co-workers, and &y \ (£'N&y) for the UAS (See
Fig. 2).

Definition 4: Set

RH(P)
={p eP:(¢.p)ecu\(ENE). L € Nup}, peP,
(6)

defines all possible next WSs for human co-workers at p € P.
Definition 5: Set

Ru(p)
={p/€771 (C,p/) EEU\(E/QSU), ¢ ENU([))}, pGP
(N

defines all possible next WSs for UAS co-workers at p € P.
We note that Ry (p) = @, if the task proceeding in p € P
does not require human co-workers to leave p € P. Similarly,
Ru(p) = @, if a UAS co-worker does not require to change
its current WS for executing the assigned task at p € P.
The Petri Nets, used for the abstraction of human UAS
collaboration, consist of five possible constructs that are shown

peP, 3)

peP, 4

Task completion needs a
transition fromWS i € P
toWSj e P

All tasks need to be
completed inWSi € P

Fig. 2. Tasks are classified into two groups. Group one represents the tasks
that are specified by £ and do not require a human or UAS to change the WS.
On the other hand, group two represents tasks defined by £y \ (8’ n 51.1) or
Eu\ (8’ n EU) and require human or UAS co-workers two transition between
to workstations.

in Fig. 1. Functionality of these constructs are described
below:

Cyclic Construct: The task progress in p € P is represented
by the “cyclic construct”. Set £, given by Eq. (5), defines the
non-weighted arcs that represent progression of tasks in the
same WS.

Sequential Construct: The picture on the top-left of
Fig. 1 illustrates the ‘“sequential construct”. A sequential
construct represents situations at which the transition of
the human co-worker or UAS co-worker is known because
the worker has only one possible target WS to follow
next.

Conflict Construct: The conflict construct is used to
incorporate UAS uncertainty associated with the human deci-
sion/intention to choose the next place p’ € Ry (p). For place
p € P dealing with a conflict construct, |Rg(p)| > 1.

Dependency Construct: The “dependency construct” rep-
resents a situation at which inputs from several incoming
locations are needed to fire a transition ¢ €7 .

Concurrency Construct: The “concurrency construct”
shown in Fig. 1 represents a situation at which a
human co-worker, or UAS, is conducting multiple tasks
simultaneously.

We define the following rules to activate Petri Nets’
transitions:

Rule 1: The marking functions are non-negative, i.e.
Mpy(p) = 0 and My(p) = 0 at every place p € P.
If My(p) = 0, there is no human co-worker in place p €
P. Otherwise, My(p) > 0 assigns the number of human
co-workers in place p € P. Similarly, My (p) > 0 specifies
the number of UAS co-worker in place p € P.

Rule 2: Transition ¢ is fired for a human co-worker at p €
P, if the following

AN N Map)=Wa(p.0) 201, ®

peP ¢eT (p,g)e€n

where /\ means “include all”.
Rule 3: Transition ¢ is fired for a UAS co-worker at p € P,
if the following

AN N\ Mup)=Wup. o) =0). )

peP ;€T (p.Y)eky

where /\ means “include all”.
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................ N
WS 301 sequential
| Construct
H

Coneurrency.Construct
| Ws24 WS 26 )
i

Fig. 3. Example Petri Nets with places representing actual WSs and
transitions representing displacement between WSs.

The marking functions Mpy(p) and My(p) are both
defined over the place set P. On the other hand, Wy (p, ¢)
and Wy (p, ¢) can be considered as transition functions quan-
tifying cost of transition from place p € P to ¢ €7, thus
needing to be defined over P x 7.

Rule 4: The “dependency” construct’s transition uses logical
“or” reasoning to approve a potential displacement. This
implies that, in order for a “dependency” transition { € 7
to occur, there must be a human or UAS coworker present at
p € P, where (p,¢) € Eg U&y.

Rule 5: To ensure safety of the human co-workers, UAS
co-workers can be present at WS p € P, if the following
condition is met:

<2 My >0

VpeP.
>0 My(p) =0, P

My (p) + Mpu(p) =[

(10)

By imposing condition (10), the following safety regulations
are imposed for the presence of UAS and human co-workers
in WS peP:

Regulation 1: No constraints are imposed on the number of
human co-workers in WS p € P, if no UAS exists in p € P.

Regulation 2: The number of UAS and human co-workers
cannot exceed 2 in WS p € P, if one UAS exists in WS
peP.

Regulation 3: At most 2 UAS co-workers can work in
WS p € P, if no human coworker is present in WS
peP.

To better clarify the above notations, Fig. 3 shows an
example of Petri Nets with place set P = {1, - - - , 33} defining
33 WSs in a shared motion space. The Petri Nets consist
of the five constructs shown in Fig. 1. In the illustrated
Petri Nets, places representing WSs are shown by circles,
and transitions are shown by rectangles. The Petri Nets con-
tain sequential, dependency, concurrency, conflict, and cyclic
constructs.

III. PROBLEM STATEMENT

We consider operation of UAS in the presence of Ny
human co-workers identified by set H = {1,---, Ny} in a
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shared workplace. The entire workplace is spatially discretized
and abstractly represented by finite set D = X x ) where
x is the Cartesian product symbol; & = {1,---,n,} and
Y ={1,---,n,} identify the x and y coordinates of the cells,
respectively. We also define O C D as stationary obstacles in
the workplace that cannot be reached neither by UAS or a
human co-worker. The WS positions are defined by finite set

(1)

We consider scenarios at which the UAS co-worker aims
to reach j € Ry(i) from i € P, where the UAS motion
can be abstracted by a sequential construct through firing
transition ¢, € 7. Therefore, (i, ¢,) ¢y, j) € Ey. The paper
focuses in particular on scenarios that the UAS models human
coworker behavior using a conflict construct when the humans’
decisions are uncertain to UAS.

Given the above problem setting, the paper studies the
following four problems:

Problem 1 (Human Distraction Quantification): The first
problem aims to quantify the distraction of human co-worker
h € H moving from p, € P to p, € Rpu(py), where
Ru(pn) # @ which in turn implies that p, # p,. To this
end, we first specify an MNS around the desired trajectory
of a human co-worker /2 € H, which is obtained by using an
available search method. We then quantify human distraction
through real-time processing of in-situ observations of human
motion.

Problem 2 (Human Intention Prediction): The second prob-
lem is to learn intention of human co-worker 4 € H by
quantifying the intention probability Pr(p;,|ps) for p;, €
Ru(pn), where

> Pr(pylp) =1,

PrERu(pr)

Problem 3 (UAS Motion Planning): The third problem is to
obtain a safe trajectory for a UAS in a workplace shared with
the human co-workers. The key assumption of the paper is that
UAS flies at a low-altitude close to the ground. This assump-
tion is necessary for indoor UAS operation in some workplaces
such as underground mines, warehouse sites, or under-canopy
spaces in farms. Therefore, the objective of trajectory planning
is that UAS avoids areas where the likelihood of existence of
human co-workers are high. We develop a non-stationary MDP
to optimize the UAS trajectory.

Problem 4 (UAS Trajectory Planning and Tracking): A
finite-time optimal control problem is defined to plan the UAS
desired trajectory given every two consecutive desired way
points that are assigned by the MDP planner. We use the
nonlinear dynamics developed in [32] to model the motion of
each UAS and apply a feedback linearization-based trajectory
tacking control to ensure that the UAS desired trajectory is
stably tracked at any time.

D={f = (%.,5%)eD\O:ieP}

pr €P, he™H. (12)

IV. APPROACH

Problems 1, 2, 3, and 4 are formulated and explained in
Sections IV-A, IV-B, IV-C, and I'V-D below. We let p, (k) € P
and p) (k) € Ry (py(k)) be the “origin” WS and “destination”
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TABLE I

NOMENCLATURE
H Finite set identifying human co-workers
keN Discrete time
teR Continuous time
P The Petri Nets’ “place” set defining all workstations
T The Petri Nets’ “transition” set
Ex Set of unweighted arcs specifying possible displacements of human co-workers between places (workstations)
Eu Set of unweighted arcs specifying possible displacements of UAS between places (workstations)
&’ Set unweighted arcs specifying displacements that can be performed at the same workstation
Nu(p)cT The set defining possible transitions that can be fired by human co-workers at p € P
Nu(p)cT The set defining possible transitions that can be fired by UAS co-workers at p €
'RIP,I cP The set defining all possible next WSs for human co-workers
‘Rg cP The set defining all possible next WSs for human co-workers
Mu The Petri Nets’ marking function used to specify human co-worker distribution is the work environment
My The Petri Nets’ marking function used to specify UAS co-worker distribution is the work environment

D A set specifying all discrete positions of all nodes used for discretization of motion space

DcCD A set specifying all discrete positions of workstations, defined by set P

oc?D A set specifying all obstacle nodes distributed over the motion space

Un.pp,.pj € D “Current” desired position when h € H travels from pj, € P to p; € Ru(pn)
_Z’ s D “Next” desired position when h € H travels from pj, € P to p; € Ru(pn)

Vi ' Desired velocity of human co-worker h € H

ry €D “Discrete Actual” position of UAS

r,LeD “Discrete Actual” position when h € H travels from pj € P to p; € Ru(pn)
r(t) e R’ “Actual” position of UAS at continuous time #

rq(7) €eR3 “Desired” position of UAS at continuous time ¢

Pr (P;, Iph) Probability that p; € Ry (pp) is the “destination” for human h € H when s/he departed WS pj, € P
rq(7) eR3 “Desired” position of UAS at continuous time ¢

Si.e MDP state set specified based on “origin” WS i € P and “goal” WS g € Ry (i)
A MDP action set

Cok:SigXxA—>R

MDP cost function at discrete time k when i € P and g € Ry (i) are the “origin” and “goal” WSs

MDP discount factor

Y
Fig:Si,e XA — Si ¢ | Deterministic MDP transition function

X, u, and y Quadcopter UAS state, input, and output vector, respectively
m Mass of the quadcopter UAS
Jq Mass moment of inertia of the quadcopter UAS

WS place of a human co-worker & € H at discrete time k.
We use the following position notations:

1) Thp,.p, € D: “Current” desired position of human co-
worker i € ‘H given py(k) € P and pj (k) € Ru(pn)
as the “origin” WS and “destination” WS, respectively,
at discrete time k.

2) EZPM € D: “Next” desired position of human co-
worker i € ‘H given py (k) € P and p; (k) € Ry (pn(k))
as the “origin” WS and “destination” WS, respectively,
at discrete time k.

3) ¥, € D: “Discrete Actual” position of human worker
h € 'H at discrete time k.

4) Ty € D: “Discrete Actual” position of UAS at discrete
time k.

5) r(t) € R?: “Actual” position of UAS at continuous time
t.

6) ry(t) € R3: “Desired” position of UAS at continuous
time ¢.

Note that the desired trajectory of human worker h € H
can be assigned by using an A* search over set D. Also,
the actual position of every human co-worker & € H is
observed by the UAS at every discrete time k, where it is either
captured by on-site cameras and communicated to the UAS,
or it is accurately estimated by the UAS through processing
of onboard visual sensory information.

The parameters and variables used for modeling of the
proposed human-UAS interaction problem are described in
Table I.

A. Problem I: Distraction Probability Quantification

In this section, we present an approach for updating dis-
traction probability of human co-workers in real-time based
on empirical data collected over the past n, time steps from
discrete time k, at every discrete time k.

Definition 6: We define

Vi 13)

— &t _ = )
- rh,[?hu"L Th.pu.pj-
as desired velocity of human worker i € H obtained based on
“current” desired position T, ,, ,» and “next” desired position
1_':[ , of human worker h € H.

sPhs Dy

Given V;, the motion of human worker /& € H is categorized
as follows:

« We say human co-worker 4 € H moves “diagonally,” if
IVall = V2.

o We say human co-worker 7 € H moves “straight,” if
Vel = 1.

o A human co-worker 7 € H desires to “Stay”, if v, =
0, 0).

Authorized licensed use limited to: University of Arizona. Downloaded on May 02,2025 at 16:13:14 UTC from IEEE Xplore. Restrictions apply.



RASTGOFTAR: SAFE HUMAN-UAS COLLABORATION FROM HIGH-LEVEL PLANNING TO LOW-LEVEL TRACKING

Definition 7: For every human worker i € 'H,
Ta(Fnppp) ={Frpnry + s jo) €D

iss o € (=d. - ).
(14)

is the moving neighboring set (MNS) of degree d, where d is
called degree of neighborhood.

Because d is time-invariant, MNS remains rigid at every
discrete time k. Note that MNS Z, (f'h, P, Pé) is a rectangular
box that is centered at ty, p, ,; and contains (2d +1) x (2d +1)
cells.

Definition 8: We use by, (Ehvfll,ph,p;,v v ||) to denote the
number of visits of Ty € Zy(Fp,p,. ;). when human co-worker
h € 'H moves from origin (WS) p;, (k) € P towards destination
pptk) € Y with desired velocity V.

The distraction probability of human worker h € H is
denoted by «;, and defined by

o (Fn (k) [Ty pr s 194 11)

_ by, (I_‘h(k),l_‘h,ph,p}u ||f'h||) as)

X ez, (5 ) 2 e T 191)

for every human worker 4 € H. Note that the desired trajectory
of every human co-worker 7 € H can be obtained offline
between every “origin” WS p, € P and “goal” WS p; €
Ru(pr) by using A* search without imposing computation
cost for real time perception. Therefore, the distraction ), can
be computed and updated with minimal computation cost at
every discrete time k.

Th,pp.p),

B. Problem 2: Human Intention Prediction
We define

8(Fn(k), .y py, (6)) = exp(=[[En (k) = T p, p; (O )

to quantify deviation of human co-worker & € H from
the desired trajectory Tty p, ,» when the worker moves from
origin p, € P towards destination p, € Rpy(ps). Note
that 8(Fy, Ty p, ) can be considered as a reward function
decreases from 1 to 0 as ||r — ¥, ,, , (p, p')| increases from
0 to +oo.

By knowing p, € P, p, € Ru(ps), and trajectory of human
worker i € H, over the past N, time steps,

Siiw, 8(E4(D), By (7))
k—1 - -
ZI’/ZERE Zr:k—N,, 5(1‘;, (1), T, pu,p), (T))

assigns the probability that p; € Ry (ps) is the goal WS for
human worker h € H at discrete time k.

(16)

Pr(p,lpn) = (17

C. Problem 3: UAS Motion Planning

We consider a scenario at which UAS is in transitioning
mode from WS i € P to goal WS g € Ry (i) while interacting
with multiple human co-workers. The UAS motion planning
is considered a non-stationary MDP with time-invariant states,
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Ny =1y —

Fig. 4. |S]| versus n, (ny = |X]) and n; (n; = |K|), where n, = n,

(ny =1YD.

actions, transitions, and discount factor but time-varying cost.
To be more precise, the MDP cost is updated at every
discrete time k such that human intention and distraction
are consistently learned and incorporated into UAS motion
planning.

1) MDP Components: Assuming the UAS aims to displace
fromi € P, att; € D, to g € Ry(i),atr, € D, the proposed
(non-stationary) MDP is given by tuple (S,-,g, A, Cq ks Figs y)
at discrete time k with state set S; ,, action set A, transition
function Fj o : Sj o x A — Sig, cost Cg i 1 S g x N — R, and
discount factor y € [0, 1]. These components are defined as
follows:

State Set S; 4: We use set K = {1, - - -, n;} to define a future
horizon interval of length n,. Then, MDP state set S; , is a
subset of

S={s=(f,7):reD\O, T ek} (18)

for every i € P and g € Ry(i). If set S defines the state
set, regardless of the locations of the “origin” and “goal”
WS positions, the motion planning becomes computationally
expensive, and real-time motion planning may not be feasi-
ble. For better clarification, Fig. 4 shows |S]| for different
ne (ny = |X]) and n, (n, = |K|), where n, = n,
(ny = 1Y)).

To address this issue, we define a variable-size state set S; ,,
for every i € P and g € Ry (i), such that the the following
conditions hold:

1) (Fi,7) € Sipiand (F,, 7) € S forevery t € K, i € P,

and g € Ry (i).
2) r, € D can be reached from r; € D for every i € P and
g € RU (l)
We note that S;, C S can be obtained, for every i € P
and g € Ry (i) offline, without imposing computation cost on
real-time UAS motion planning, while conditions 1 and 2 are
both satisfied.
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Action Set A: We use set

A ={E,NE,N,NW, W, SW, S, SE, O} 19)
to define nine possible actions including go towards “east”
(E), go towards “northeast” (NE), go towards “north” (N),
go toward ‘“northwest” (NW), go towards “west” (W),
go towards “southwest” (SW), go towards “south” (S),
go towards “southeast” (SE), and “no motion” (O).

Cost Cq: By expressing s as s = (f', 'L’), for every r € D
and every t € K, cost is imposed on operation of the UAS
intending to go to the “goal” WS g € Ry(i) from any
state state s € S;,. To define the MDP cost, we define
spatiotemporal heat map

Tek(s) = T, (F) + T, (F, 7), (20)

where

To(x) = It — Tl geP, teD, ¥, €D, 21)

is the distance from F € D and F, € D and

T(E)=c > D> D Pr(phk+)patk + 1))

heH preP p,eRu(pn)

x oy (FIFn, py. pp (k + 7). Vi (k + 7)) (22)

where ¢ > 0, t € K, and r € D. The MDP cost is then
defined by

c, K0
Cobs > 0Or

Cok (l_" t) = €
Jek(8) T #T,,

(23)

where |cg| and |c,ps| are sufficiently large and constant.

Transition Probability: By assuming that UAS actuators and
sensors are all healthy, we can suppose deterministic transi-
tions over the state space. Under this assumption, F (s+|s, a) €
{0, 1} is a binary variable, for every current state s € S, next
state s € S, and action a € A.

We use Algorithm 1 to specify deterministic transitions of
the UAS over the MDP state space. To be more precise,
Algorithm 1 uses s = (j,h,7) and s = (j',h',7) to
denote the “current” and “next” states, respectively. By default,
Algorithm 1 assumes that i’ = i, j/ = j, and v/ = © + 1.
To update i’, j’, and t’, it follows the following rules,
if needed:

1) If t+1 ¢ IC, the “next” state is the same as the “current”
state (st =s).

2) Under action ae{SE, E,NE}, j/ = j + 1 is replaced,
if (j,h',7') €Sy

3) Under action ae{NE, N,NW}, i’ = h + 1 is replaced,
if (j/, n, r’) € Si,.

4) Under action ae{SW, W, NW}, j' = j — 1 is replaced,
if (j/, n, r’) €S,

5) Under action a€{SE, S,SW}, #’ = h — 1 is replaced,
if (j/,0',7') €S,
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Algorithm 1 Obtaining Function F; ¢ (s*|s, a) Under Deter-
ministic Transition Assumption Over the S;, (i € P and
8 € Ry(i)
1: Get: State set S;, and action a € Afori € P and g €
Ry (@).
2: Return: Binary function F; ,(sTs, a) for every s € S; .
3: if t +1 € K then

4: v —1+1

5: for every (j,h,1) € S; ¢ do

6: s < (j,h, 1)

7: j < jand b < h.

8: if ae{SE, E, NE} then

9: if (j+1,ht+1) €S, then
10: j o~ j+1

11: end if

12: end if

13: if ae{NE, N, NW} then

14 if (j,h+1,t+1)€S;, then
15: h < h+1.

16: end if

17: end if

18: if ac{NW, W, SW} then

19: if (j—1,h,t4+1) €S, then
20: j o« j—1

21: end if

22: end if

23: if ae{SE, S, SW} then

24: if (j,h—1,t+1) €S, then
25: h <~ h—1.

26: end if

27: end if

28: end for

29: else

30: j' < j,h < h,and T < 1.

31: end if

32: st < (jL 0, T).
33: F(stls,a) < 1.

2) Solution: The optimal UAS trajectory is obtained by
solving the Bellman equation which is given by

g —mi (ot g +
Vig(s) mlj‘lzs Fig(*ls, )(Cox(9)+Vigulsh),

VseS, (24)

where g € P is the goal WS for the UAS and k € N denotes
discrete time. The optimal policy is assigned by

T 1) =min > Fio(s71, @) Co(®) + Viga(sh).

S+€Siyg

(25)

over for state (f,7) € Sjy, i € P, g € Ry(i).

While Eq. (25) species the optimal policy over the entire
space set S; ,, UAS only applies optimal actions over a subset
of S;, that is associated with © = 1 € 7. Therefore, the
optimal action of the UAS is denoted by a*(k), at discrete
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time k, and obtained by

a*(k) =/, (xy k), 1), i€P, geRy), (26)
where ry (k) is the UAS actual discrete position of the UAS
at discrete time k. UAS implements Algorithm 2 to assign

optimal action a*(k) at every discrete time k.

Algorithm 2 UAS Motion Planning
1: Input: Set D, set IC, actions set A, transition function
F, discount factor y, initial position r; (i € P and
t; € D), and UAS target position ¥, (g € Ry (i) C P

and t, € D).
2: Set: k < 0; ry < 1.
3: for < h e 'H do
4 Get: Get p;(0) € P.
5: for < p;,(0) € Ry(ps(0)) do
6: Determine desired trajectory T p, -
7: end for
8: end for
9: while ry (k) #r, do
10: for < heH > do
11: for < p) (k) € Ry(pa(k)) > do
12: if pp(k + 1) # pp(k) or p(k +1) # pj (k)
then
13: Update desired trajectory I ,,
14: end if
15: Update distraction probability by Eq. (15).
16: Update Pr(pj},|ps) by Eq. (17).
17: Update MDP cost function by Eq. (23).
18: end for
19: end for
20: Obtain optimal policy by solving Eq. (25).
21: Obtain optimal action a*(k) = n;,‘g.k(f'y k), 1).
22: Obtain the next UAS position .
23: k< k+1.
24: ry(k) < r.

25: end while

D. Problem 4: UAS Trajectory Planning and Tracking

To model multicopter UAS motion, we use x(t), y(?),
and z(z) to define UAS position components at (continuous)
time ¢t. We also use ¢(t), 6(t), and ¢ (t) to define roll,
pitch, and yaw angles of the UAS at (continuous) time ft,
where we use the 3-2-1 Euler angle standard to characterize
orientation of the UAS. The thrust force magnitude generated
by the quacopter UAS is denoted by f(¢) at (continuous)
time.

We model motion of a multicopter UAS with mass m by
nonlinear dynamics

x = f(x) + G(x)u

y=[x .o 1//]T 27
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wherex:[xyzfcjiiqﬁQwq'ﬁét'ﬂff']TeRMXl is the
state vector, w = [uy us u3 u4]T is the control input, and

by
y
Z
i(sinq& sin Y + cos ¢ cos ¥ sin6)
< (cos ¢ sinyy sinf — sin ¢ cos Yr)
A cos¢cosd — g

m

f(x) = ¢ , (28)
0
¥
0
0
0
S
L 0 i
01 0oy3
_ 10 I3
G=[g & g &= 0 0.5 (29)
1 01><3

are smooth functions. In Eq. (28), g = 9.81m/s? is gravity
acceleration. Note that u; = f, Uy = (}5, Uz = o, Uy = w are
considered as the components of the control input vector u.
Because we use the 3—2—1 Euler angle standard to quantify
the multicopter orientation, A = [¢ 6 1//]T is related to the

multicopter angular velocity vector Q2 by
Q =TA, (30)

where Q2 is expressed with respect to the multicopter body
frame and

1 0 sin 6
'=({0 cos¢ sin 6 sin ¢ (€2))
0 —sing cos¢cos6

Control input vector u = [¢ 6 I//]T can be related to the
control torque M, by applying the rotational dynamics of the
multicopter, which can be expressed by

JTu+J,FA+Qx (J,Q) =M,

where J, is the inertia matrix of the multicopter [32].

1) UAS Trajectory Planning: Given every two consecutive
optimal waypoints ry (k) and ry (k4 1), assigned by the MDP
planner, the UAS desired trajectory is denoted by r,(r) =
[x(t) ya() za()]" and defined by

(32)

|:xd(t)i| = (=Bt — t)Fyk) + Bt — t)Fy(k + 1),
ya(t)
(33a)
zq(t) = 2o, (33b)

for t € [tk, tr+1) and k € N, where At = ;41 — #; is constant
for every k € N. Without loss of generality, we desire that
the multicopter flies at constant altitude, therefore, zq is time-
invariant. By taking time derivative from r,(¢), we obtain

d'vgt) _ d'B@) ([rutk+ 1] [Foh)
dit — dt! 0 0 '

(34)
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Fig. 5. Optimal g, f}, ﬁ, and /3 versus ¢t € [0, At], where we choose At = 5s.
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Planner -
Ya

Fig. 6. Black diagram of UAS trajectory planning and tracking.

at any time ¢t € [f,fy1), for every k € N and I =
1,2, 3,4. We let B(¢) be updated by the following fourth order
dynamics:

d*B(t)
dr*

= sp(t), t € [t tis1), k €N, (35)

where sg(#) is the control that is assigned by minimizing

1 t+At
= —/ spdt, k e N, (36)
2 Jy
subject to the following boundary conditions:
B(t) =0, keN, (37a)
Bltk+1) =1, keN, (37b)
d'Bt)  d'Btiy)
T 0, keN,I=1,2,3. (37¢)

The above boundary conditions ensure that the multicopter
UAS fully stops at every waypoint ry(k) which is indeed
required since the UAS may need to change its motion
direction for 90 degrees to reach ry(k + 1) from ry (k).
We solve the above optimal control problem by using the
approach detailed in the Appendix and obtain optimal B, B,
B, and B plotted in Fig. 5.

2) Trajectory Tracking: We apply the feedback linearization
method developed in Refs. [32] and [33] to design the multi-
copter trajectoy tracking control u. For this purpose, we define
state transformation

2x) = [7 i ¥ ¥y ] (38)
and update z by the following dynamics
Z ZAUZ+BUW (39)
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w =Ky(zq — 2)

5]

Z = z(X)

S u =Ml (w - My)
u
X
x = f(x) + Gu

Fig. 7.

where w = [ %" 5 7 ¢

ics (39), and

0953
03,3
01x3
| 013
09,3
I
0153
| 01x3

Schematic of human-UAS interaction in the workplace.

Io (| ST | 5
03x9 03><l 03x1
019 0 1
0159 0 0

09x1
03><1
0
1

and
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Fig. 8. Desired trajectories between the origin WS and three possible next

WSs are shown by dashed plot for human co-workers 1, 2, 3, 4, and 5 in
sub-figures (a), (b), (c), (d), and (e), respectively. Also, actual trajectory of
each co-worker is shown by black dots in sub-figures (a)-(e).

Note that w is related to the control input of multicopter UAS,
denoted by u, by

Pr(p'lp)

0.8

0.6

0.4

0.2
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w = M;u + My, (40
where
Ly Lix Ly Ljx Ly Lix Ly Lix
H 13' & g 8; 13‘ g, g
M, = Lgl Lf3y ngLf3y Lg3Lf3y Lg4Lf3y €R4x4,
Ly Lyz Ly Lyz Ly Lz Lg Liz
Loy Ly Lg Lty Lg Lty Lg Lty
(41a)
M, =[Lix Liy Lz Liy]" eR*™. (41b)
The control design objective is objective is achieved by

choosing w such that z stably tracks

i 9T

Yl va v

where r; is the UAS desired trajectory, defined by Eq. (33),

and v, is the desired yaw angle of multicopter i € V. Without
loss of generality, this paper assumes that ¥;(¢z) = O at any

T oT w7
zg = [r] ¥ ]

(e) Human co-worker 5
Fig. 9. Intention prediction of human co-workers.

time ¢, which in turn implies that 1/}d(t) = 0. To achieve the
control objective, we choose
w=Ky(z, —2) (42)

such that Ay — By Ky is Hurwitz. Then, the control input of
the UAS is obtained by
u=M;'(w-M,). (43)

Figure 6 shows the block diagram of the multicopter control
design based on the above feedback linearation method.

Authorized licensed use limited to: University of Arizona. Downloaded on May 02,2025 at 16:13:14 UTC from IEEE Xplore. Restrictions apply.



7142

4.5

VIUF ACUUIS

= N w
- ;N w o
T T T T T

o
3

Time k

Fig. 10. Optimal actions taken by the UAS to safely plan its trajectory.

V. SIMULATION RESULTS

We consider a single UAS and five human co-workers in
a shared environment (motion space). The motion space is a
rectangle and represented by a uniform grid of 50 x 50 size.
The motion space consists a finite number of obstacles that are
shown by red circles in Fig. 7. The workplace has 33 WSs that
are identified by set P = {1, ---, 33} and represented by the
places shown in Fig. 3. The schematic of the motion space
(workplace) is shown in Fig. 7 where WSs 1 through 22 are
marked by blue as they represent either the current WSs or
the possible next WSs for the humans and UAS existing in
the workplace. We consider a UAS-human interaction scenario
that is formally specified by the Petri Nets shown in Fig. 3
where UAS aims to move from 21 € P to 22 € Ry(21).
This UAS motion interacts with the motion of five human
co-workers at 1,2,3,4,5 € P in the shared workplace.
Motion of human co-workers deals with uncertainty as each
has three possible destinations. More specifically,

Ru(l) =1{6,11,16}, 1eP,
Ru(2) =1{7,12,17},  2¢€ P,
Ru(3) =1{8,13,18}, 3eP,
Ru@) =1{9,14,19}, 4eP,
Ru(3) ={10,15,20}, 5¢eP,

define the possible next WSs for the human co-workers. The
schematic of the proposed human-UAS interaction is shown
in Fig. 7.

Given origin and possible WSs for every human co-worker,
the desired trajectory are obtained by using A* search method
and shown by dashed plots in Fig. 8. Also, the actual trajectory
of each human co-worker is shown by black dots in Figs. 8(a),
(), (¢), (d), and (e), for human co-workers 1, 2, 3, 4,
and 5, respectively. By using the human intention prediction
approach, presented in Section IV-B, We obtain Pr(p’|p) for
human-co-workers 1 through 5 and plot them in Figs. 9(a)
through 9(e). Optimal actions of the UAS are plotted versus
discrete time k in Fig. 10, where 1, 2, 3, 4, 5, 6, 7, 8, and
9 represent “E,” “NE,” “N,” “NW,” “W,” “SW,” “S)” “SE,”
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Fig. 11. The optimal path of the UAS in the workplace.
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Fig. 12.  x and y components of actual trajectory of the multicopter UAS

from the initial position (6, 15) to final destination (21, 6).

and “0O,” respectively. The optimal path of the UAS in the
workplace is shown in Fig. 11.

For UAS trajectory planning, we use Ar = Ss, therefore,
B, ,3, ,3, and /3 plotted in Fig 5 are used to obtain r(z) ¥(t),
f(t), and 7 (¢) for t € [, #;] and k € N. Figure 12 plots UAS
actual position components x and y versus time ¢.

VI. CONCLUSION AND FUTURE WORK

We develop a novel method for abstraction of UAS and
human interaction in the same workplace. We consider a work-
place that consists of a finite number of WSs and apply Petri
Nets to: (i) abstractly represent WSs and transition between
WSs, and (ii) leverage incomplete knowledge about human
intentions. We develop a variable-size non-stationary MDP,
with time-invariant transition function, state space, actions, and
discount factor and time-varying cost, to safely plan the UAS
trajectory in the presence of human co-workers. In particular,
the MDP cost function is updated based on real-time obser-
vation data so that human intention and distraction of human
co-workers are properly incorporated in UAS motion planing
when UAS closely intercat with human co-workers.
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The proposed variable-size non-stationary MDP can effi-
ciently define the state space based on the locations of the
origin WS i € P and goal WS g € Ry (p) to achieve real-time
motion planning at a low computing cost. The computation
cost of motion planning can be further reduced by efficient
structuring of the Petri Nets so that distance between every
“origin” WS i € P and every goal WS “g € Ry (i)” not very
large.

The other method for reducing the computation cost is to
replace the MDP by a time-dependent A* search that can be
used for motion planning over spatiotemporal motion spaces.
Indeed, A* is much less computationally expensive compared
with the MDP and can further reduce the computation cost.
However, for the proposed huamn-UAS collaboration appli-
cation, it needs to incorporate the uncertainty associated with
human intention. This will be considered as a plan for the
future work.

In the near future, we will also be studying high-level
motion planning for UAS under inaccurate sensing and actu-
ation assumption. For this study, we can use model-based
and model-free methods to incorporate probabilistic transitions
into MDP. Particularly, we can use Gaussian processes to
incorporate model-based uncertainty associated with actuation
inaccuracy into MDP transition probability function. We can
also apply different reinforcement learning approaches to
include and learn model-free uncertainty. When sensor read-
ing is uncertain, states are not fully observable. Under this
situation, we can apply the hidden Markov models to model
evolution over the state space and use Partially Observable
Markov Decision Processes (POMDP) method to optimally
plan UAS actions.

APPENDIX

This section provides a solution for the optimal control
problem defined in Section IV-DI1 to assign optimal 8 over
time interval [#, f;41], for every k € N.

We can rewrite dynamics (35) using the state space form as
follows:

).(ﬂ = AﬂXﬁ + BﬁSﬂ, keN, te [lk, tk+1], (A1)
where x5 = [B B B B']T, Bg = [01x3 I]T, and
03,4 I
Ap = [ 0 les}'
By rewriting the boundary conditions given by Eq.

(37), dynamics (Al) must satisfy the following end-point
conditions:

k e N,
k e N.

(A2)
(A3)

Xg(tx) = O4x1,
Xg(tiy1) =100 01",

Let A = [Ap A5 Az AB']T be the co-state vector, then, the

Hamiltonian is obtained by
1
H(X,g, A, Sﬁ) = Esé + )\T(Aﬁxﬁ + B/gsls). (A4)

By applying the Prontryagin’s minimum principle, the optimal
control s; is obtained by

s = _B};/\ (AS)
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where xg and A are updated by dynamics
Xp | _ Xp
BRI —
with
| A —BgBﬂ
As‘yx - |:04><4 _Aljg‘ . (A7)
Therefore,
xg(®)| _ Xg (%)
[w)}—cbsys(t,tk)[k(tk) . tEe[ttn].  (A8)
where
O, ) D, 1) Aws(—12)
Dy (2, k) = =T (A9
sys 1 8¢) [¢21(l,fk) ¢22(I,lk)i| © (A9)

is the state transition matrix. By imposing boundary condi-
tion (A3), we obtain

At) = D1 (1, 1) (Xp (1) — P (8, 1)Xp (1)

By knowing xg(#;) from boundary condition (A2) and A(%),
obtained by (A10), xg(¢) is obtained by (A8) at any time ¢ €
[lk, tk+1]-

(A10)
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