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Safe Human-UAS Collaboration From High-Level

Planning to Low-Level Tracking

Hossein Rastgoftar

Abstract— This paper studies the problem of safe
human-uncrewed aerial system (UAS) collaboration in a
shared work environment. By considering human and UAS as
co-workers, we use Petri Nets to abstractly model evolution
of shared tasks assigned to human and UAS co-workers.
Particularly, the Petri Nets’ “places” represent work stations;
and therefore, the Petri Nets’ transitions can formally specify
displacements between the work stations. The paper’s first
objective is to incorporate uncertainty regarding the intentions
of human co-workers into motion planning for UAS, when
UAS closely interacts with human co-workers. To this end, the
proposed Petri Nets model uses “conflict” constructs to represent
situations at which UAS deals with incomplete knowledge about
human co-worker intention. The paper’s second objective is then
to plan the motion of the UAS in a resilient and safe manner,
in the presence of non-cooperative human co-workers. In order
to achieve this objective, UAS equipped with onboard perception
and decision-making capabilities are able to, through real-time
processing of in-situ observation, predict human intention,
quantify human distraction, and apply a non-stationary Markov
Decision Process (MDP) model to safely plan UAS motion in
the presence of uncertainty. Given the current and next UAS
waypoints, assigned by the MDP planner, the paper applies
Potryagin’s minimal principle to plan the desired trajectory of
the UAS and uses a feedback linearaztion trajectory control to
enable UAS with stable tracking of the desired trajectory.

Note to Practitioners—Despite advances in aerial robotics,
there are still significant barriers for their integration and
application into human-centered jobs. Safety-related concerns,
potential hazards to labor, and limited mission duration are
some major barriers for using such a helpful technology. The
main goal of this paper is to come up with a reliable solution
for long-term collaboration between humans and unmanned
aerial system (UAS) for safe and efficient accomplishment of
a human-centered work. To this end, we propose to use Petri
Nets to abstractly model and specify human-robot collaboration
and effectively plan the tasks assigned to UAS and human co-
workers. In this context, human co-workers can do some tasks
that are difficult and somehow unsafe to be carried out by UAS.
On the other hand, UAS can be deployed to monitor the work
environment, recognize human wellness, or carry some small
payloads. UAS co-workers enabled with on-board perception
capabilities can also predict human coworker intention and
quantify human co-worker distraction in real time through online
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processing of in-situ observations. Furthermore, UAS can safely
plan its motion without human intervention or supervision,
by combining Markov Decision Process, optimal control, and
trajectory tracking control models.

Index Terms— Decision-making, Markov decision process
(MDP), human intention prediction, unscrewed aerial system
(UAS), Petri Nets.

I. INTRODUCTION

W
ITH advances in artificial intelligence, learning, and

optimization approaches, copter-powered uncrewed

aerial systems (UAS) have found numerous applications in

agriculture [1], [2], warehouse industries [3], [4], mining [5],

[6], surveillance [7], [8], construction [9], [10], and many other

fields. Despite the widespread UAS applications, to date, UAS

operation is closely supervised by human professionals. This

paper, on the other hand, studies semi-autonomous missions

that are jointly operated by UAS and human in the same

environment. The primary focus of the paper is on ensuring

safety of UAS operation in shared workplaces where humans

and UAS coexist. Towards this goal, we combine Petri Nets

with non-stationary Markov Decision Process (MDP) and

Pontryagin’s minimum principle to provide a framework for

safe human-UAS collaboration.

A. Related Work

In the literature, Petri Nets have been used to model

evolution of discrete-event systems and applied for a variety

of applications. Manufacturing systems have been the primary

applications of Petri Nets [11], [12]. In [13], timed Petri Nets

are used to model the integration of virtual sensors proposed

for electric mobility services. In [14], variable Petri Nets

are proposed to describe “system connectivity,” “interaction

soundness and data validity”, and modeling and analysis of

interactive systems. Petri Nets are used in [15] to model

game flow and student learning optimization as the main

application. Researchers have used Petri Nets to optimally

schedule tasks for humans and robots cooperating in a shared

workplace [16], [17], [18], [19], [20]. Authors in [21] used

colored Petri Nets (CPN) for validation and verification of

safety-critical systems [21]. CPN was also used in [22] to

model human actions, in a human-robot collaboration, under

partial observability assumption.

This paper considers a multicopter drone as the robot

interacting with humans in a shared workplace. Application

1558-3783 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Arizona. Downloaded on May 02,2025 at 16:13:14 UTC from IEEE Xplore.  Restrictions apply. 



RASTGOFTAR: SAFE HUMAN-UAS COLLABORATION FROM HIGH-LEVEL PLANNING TO LOW-LEVEL TRACKING 7133

of drones as safety inspectors in construction site was studied

in [23]. In [24], the authors rely on user experiences to

incorporate human emotions into drone’s trajectory planning.

Refs. [25] and [26] study potential human-drone communica-

tion interfaces in a collaborative environment. Signal temporal

logic [27], [28] is used in [29] to plan ergonomic and safe

human-UAS collaboration in a construction environment.

B. Contributions

In the literature, researchers have extensively investigated

autonomous UAS operation applications or UAS operation

supervised by human professionals. This paper, on the other

hand, aims to develop a model for semi-autonomous oper-

ations that are jointly conducted by UAS and humans in

a shared workplace. By considering humans and UAS as

co-workers, sharing a work environment, safety assurance

becomes highly important since human and UAS co-workers

can closely interact. Because UAS needs to deal with the

uncertainty associated with incomplete knowledge about the

intentions of each human co-worker, safety assurance is

indeed very challenging. To address this problem, this paper

proposes to apply Petri Nets to model task evolution in a

semi-autonomous operation, conducted by human and UAS

co-workers. This novel application of Petri Nets assumes that

multiple Work Stations (WSs) exist in a shared workplace

and uses the Petri Nets’ places to abstractly represent WSs.

Therefore, the Petri Nets’s transitions either specify evolution

of tasks in the same WS, or displacement between the WSs.

Particularly, we use “cyclic” construct to model evolution of

incomplete task, or progression of multiple tasks, in the same

place, when change of a WS is not needed. On the other hand,

we use “sequential,” “dependency,” and “conflict” to model

displacement of UAS, or human, between WSs.

While existing work, related to Petri Nets’ applications,

mainly focuses on high-level specification of task flow, this

paper applies Petri Nets, MDP method, Pontryagin minimum

principle, and control theory to specify high-level tasks, safely

plan high-level actions, determine desired UAS trajectory, and

ensure stable tracking of the desired trajectory by a multicopter

UAS, where a high-fidelity nonlinear dynamics is used to

model multicopter UAS motion. By applying the proposed

model for abstraction of human-UAS collaboration, the paper

offers the following novel contributions:

1) We enable UAS with on-board perception capability to

learn human intention and quantify human co-worker

distraction by real-time processing of in-situ observa-

tions. By predicting human co-worker intention, UAS

can resolve “conflict” situations resulted from incom-

plete knowledge about human intentions. Also, UAS

can quantify distraction of every human co-worker by

specifying the probability distribution over a moving

neighboring set (MNS). MNS is defined as a finite

set of cells that form a rigid rectangular zone around

each human coworker’s desired position, where the

human’s desired position is along a desired trajectory

that is estimated using the available search methods,

such as A* search [30], [31]. Note that the A* search

is indeed applied to obtain the shortest path between

two WSs. We consider this path as the reference to

quantify the human distraction when traveling between

two workstations.

2) We develop a non-stationary MDP model for

UAS motion planning in the presence of multiple

non-cooperative human co-workers. While the state

space, transition function, discount factor, and action

components of the proposed MDP are time-invariant,

the MDP cost is time-varying, and it is consistently

updated so that learning of human intention and

co-worker distraction are properly incorporated in the

UAS motion planning. We use value iteration method

to obtain optimal UAS actions by solving the Bellman

equation.

3) The paper applies the Pontryagin’s minimum principle

to establish an interface between the high-level MDP-

based motion planning and low-level trajectory tracking

by obtaining the UAS desired trajectory through solving

a fixed-final-state and fixed-final-time optimal control

problem.

C. Outline

This paper is organized as follows: Preliminary notions

of Petri Nets are reviewed in Section II. The problem of

UAS-Human collaboration is formulated in Section III and

followed by the paper’s approach for UAS onboard perception

and motion planning in Section IV. Simulation results are

presented in Section V. Concluding remarks are stated in

Section VI.

II. PRELIMINARIES

We use Petri Nets to model UAS-human collaboration in

a constrained workplace. The proposed Petri Nets is defined

by tuple PN = (P, T , EH , EU ,WH ,WU ,MH ,MU ), where

P is a finite set of places; T is a finite set of transitions;

EH ¢ (P × T )
⋃

(T × P) and EU ¢ (P × T )
⋃

(T × P)

define unweighted arcs of human and UAS co-workers, respec-

tively; WH : EH → N defines weights of human co-worker

transitions; WU : EU → N defines weights of UAS co-worker

transitions; marking MH : P → N specifies distribution of

human co-workers; and marking MU : P → N specifies

distribution of UAS co-workers. In this work, set P defines

actual Work Stations (WSs), therefore, T defines possible

displacements between WSs.

Assumption 1: This paper assumes that no bias exists for

activating every possible transition · ∈T by the human at

every place p ∈ P , where (p, · ) ∈ EH . Therefore,
∧

p∈P

∧

·∈T

∧

(p,· )∈EH

(WH (p, · ) = 1). (1)

Assumption 2: This paper assumes that no bias exists for

activating every possible transition · ∈T by the UAS at every

place p ∈ P , where (p, · ) ∈ EU . Therefore,
∧

p∈P

∧

·∈T

∧

(p,· )∈EU

(WU (p, · ) = 1). (2)
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Fig. 1. The constructs are used for modeling human-UAS collaboration.

Definition 1: Given human arc set EH , we define out-

neighbor transition set

NH (p) = {· ∈T : (p, · ) ∈ EH }, p ∈ P, (3)

to specify possible transitions that can be fired by human

co-workers at p ∈ P .

Definition 2: Given UAS arc set EU , we define out-neighbor

transition set

NU (p) = {· ∈T : (p, · ) ∈ EU }, p ∈ P, (4)

to specify possible transitions that can be fired by UAS at

p ∈ P .

Definition 3: Set

E ′ = {(p, · ) ∪ (· , p) : ∀p ∈ P, ∀· ∈T } (5)

defines cyclic arcs (See the cyclic arc schematic in the

bottom-left picture of Fig. 1).

Note that E ′ is used to specify tasks that can be performed

in the same workstation without requiring the UAS or a

human coworker to switch workstations. The remaining tasks

requiring change of WS are specified by EH \
(

E ′ ∩ EH

)

, for

human co-workers, and EU \
(

E ′ ∩ EU

)

for the UAS (See

Fig. 2).

Definition 4: Set

RH (p)

=
{

p′ ∈ P :
(

·, p′
)

∈ EH \
(

E ′ ∩ EH

)

, · ∈ NH (p)
}

, p ∈ P,

(6)

defines all possible next WSs for human co-workers at p ∈ P .

Definition 5: Set

RU (p)

=
{

p′ ∈ P :
(

· , p′
)

∈ EU \
(

E ′ ∩ EU

)

, · ∈ NU (p)
}

, p ∈ P

(7)

defines all possible next WSs for UAS co-workers at p ∈ P .

We note that RH (p) = ∅, if the task proceeding in p ∈ P

does not require human co-workers to leave p ∈ P . Similarly,

RU (p) = ∅, if a UAS co-worker does not require to change

its current WS for executing the assigned task at p ∈ P .

The Petri Nets, used for the abstraction of human UAS

collaboration, consist of five possible constructs that are shown

Fig. 2. Tasks are classified into two groups. Group one represents the tasks
that are specified by E ′ and do not require a human or UAS to change the WS.
On the other hand, group two represents tasks defined by EH \

(

E ′ ∩ EH

)

or

EU \
(

E ′ ∩ EU

)

and require human or UAS co-workers two transition between
to workstations.

in Fig. 1. Functionality of these constructs are described

below:

Cyclic Construct: The task progress in p ∈ P is represented

by the “cyclic construct”. Set E ′, given by Eq. (5), defines the

non-weighted arcs that represent progression of tasks in the

same WS.

Sequential Construct: The picture on the top-left of

Fig. 1 illustrates the “sequential construct”. A sequential

construct represents situations at which the transition of

the human co-worker or UAS co-worker is known because

the worker has only one possible target WS to follow

next.

Conflict Construct: The conflict construct is used to

incorporate UAS uncertainty associated with the human deci-

sion/intention to choose the next place p′ ∈ RH (p). For place

p ∈ P dealing with a conflict construct, |RH (p)| > 1.

Dependency Construct: The “dependency construct” rep-

resents a situation at which inputs from several incoming

locations are needed to fire a transition · ∈T .

Concurrency Construct: The “concurrency construct”

shown in Fig. 1 represents a situation at which a

human co-worker, or UAS, is conducting multiple tasks

simultaneously.

We define the following rules to activate Petri Nets’

transitions:

Rule 1: The marking functions are non-negative, i.e.

MH (p) g 0 and MU (p) g 0 at every place p ∈ P .

If MH (p) = 0, there is no human co-worker in place p ∈
P . Otherwise, MH (p) > 0 assigns the number of human

co-workers in place p ∈ P . Similarly, MU (p) g 0 specifies

the number of UAS co-worker in place p ∈ P .

Rule 2: Transition · is fired for a human co-worker at p ∈
P , if the following

∧

p∈P

∧

·∈T

∧

(p,· )∈EH

(MH (p)−WH (p, · ) g 0), (8)

where
∧

means “include all”.

Rule 3: Transition · is fired for a UAS co-worker at p ∈ P ,

if the following

∧

p∈P

∧

·∈T

∧

(p,· )∈EU

(MU (p)−WU (p, · ) g 0), (9)

where
∧

means “include all”.
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Fig. 3. Example Petri Nets with places representing actual WSs and
transitions representing displacement between WSs.

The marking functions MH (p) and MU (p) are both

defined over the place set P . On the other hand, WH (p, · )

and WU (p, · ) can be considered as transition functions quan-

tifying cost of transition from place p ∈ P to · ∈T , thus

needing to be defined over P × T .

Rule 4: The “dependency” construct’s transition uses logical

“or” reasoning to approve a potential displacement. This

implies that, in order for a “dependency” transition · ∈ T

to occur, there must be a human or UAS coworker present at

p ∈ P , where (p, · ) ∈ EU ∪ EH .

Rule 5: To ensure safety of the human co-workers, UAS

co-workers can be present at WS p ∈ P , if the following

condition is met:

MU (p)+MH (p) =
{

f 2 MU (p) > 0

g 0 MU (p) = 0,
∀p ∈ P.

(10)

By imposing condition (10), the following safety regulations

are imposed for the presence of UAS and human co-workers

in WS p ∈ P:

Regulation 1: No constraints are imposed on the number of

human co-workers in WS p ∈ P , if no UAS exists in p ∈ P .

Regulation 2: The number of UAS and human co-workers

cannot exceed 2 in WS p ∈ P , if one UAS exists in WS

p ∈ P .

Regulation 3: At most 2 UAS co-workers can work in

WS p ∈ P , if no human coworker is present in WS

p ∈ P .

To better clarify the above notations, Fig. 3 shows an

example of Petri Nets with place set P = {1, · · · , 33} defining

33 WSs in a shared motion space. The Petri Nets consist

of the five constructs shown in Fig. 1. In the illustrated

Petri Nets, places representing WSs are shown by circles,

and transitions are shown by rectangles. The Petri Nets con-

tain sequential, dependency, concurrency, conflict, and cyclic

constructs.

III. PROBLEM STATEMENT

We consider operation of UAS in the presence of NH

human co-workers identified by set H = {1, · · · , NH } in a

shared workplace. The entire workplace is spatially discretized

and abstractly represented by finite set D = X × Y where

× is the Cartesian product symbol; X = {1, · · · , nx } and

Y =
{

1, · · · , ny

}

identify the x and y coordinates of the cells,

respectively. We also define O ¢ D as stationary obstacles in

the workplace that cannot be reached neither by UAS or a

human co-worker. The WS positions are defined by finite set

D̄ =
{

r̄i =
(

x̄ i , ȳi

)

∈ D \O : i ∈ P
}

. (11)

We consider scenarios at which the UAS co-worker aims

to reach j ∈ RU (i) from i ∈ P , where the UAS motion

can be abstracted by a sequential construct through firing

transition ·u ∈ T . Therefore, (i, · u)
⋃

(· u, j) ∈ EU . The paper

focuses in particular on scenarios that the UAS models human

coworker behavior using a conflict construct when the humans’

decisions are uncertain to UAS.

Given the above problem setting, the paper studies the

following four problems:

Problem 1 (Human Distraction Quantification): The first

problem aims to quantify the distraction of human co-worker

h ∈ H moving from ph ∈ P to p′h ∈ RH (ph), where

RH (ph) ̸= ∅ which in turn implies that p′h ̸= ph . To this

end, we first specify an MNS around the desired trajectory

of a human co-worker h ∈ H, which is obtained by using an

available search method. We then quantify human distraction

through real-time processing of in-situ observations of human

motion.

Problem 2 (Human Intention Prediction): The second prob-

lem is to learn intention of human co-worker h ∈ H by

quantifying the intention probability Pr(p′h |ph) for p′h ∈
RH (ph), where

∑

p′h∈RH (ph)

Pr(p′h |ph) = 1, ph ∈ P, h ∈ H. (12)

Problem 3 (UAS Motion Planning): The third problem is to

obtain a safe trajectory for a UAS in a workplace shared with

the human co-workers. The key assumption of the paper is that

UAS flies at a low-altitude close to the ground. This assump-

tion is necessary for indoor UAS operation in some workplaces

such as underground mines, warehouse sites, or under-canopy

spaces in farms. Therefore, the objective of trajectory planning

is that UAS avoids areas where the likelihood of existence of

human co-workers are high. We develop a non-stationary MDP

to optimize the UAS trajectory.

Problem 4 (UAS Trajectory Planning and Tracking): A

finite-time optimal control problem is defined to plan the UAS

desired trajectory given every two consecutive desired way

points that are assigned by the MDP planner. We use the

nonlinear dynamics developed in [32] to model the motion of

each UAS and apply a feedback linearization-based trajectory

tacking control to ensure that the UAS desired trajectory is

stably tracked at any time.

IV. APPROACH

Problems 1, 2, 3, and 4 are formulated and explained in

Sections IV-A, IV-B, IV-C, and IV-D below. We let ph(k) ∈ P

and p′h(k) ∈ RH (ph(k)) be the “origin” WS and “destination”
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TABLE I

NOMENCLATURE

WS place of a human co-worker h ∈ H at discrete time k.

We use the following position notations:
1) r̄h,ph ,p

′
h
∈ D̄: “Current” desired position of human co-

worker h ∈ H given ph(k) ∈ P and p′h(k) ∈ RH (ph)

as the “origin” WS and “destination” WS, respectively,

at discrete time k.

2) r̄+
h,ph ,p

′
h
∈ D̄: “Next” desired position of human co-

worker h ∈ H given ph(k) ∈ P and p′h(k) ∈ RH (ph(k))

as the “origin” WS and “destination” WS, respectively,

at discrete time k.

3) r̄h ∈ D̄: “Discrete Actual” position of human worker

h ∈ H at discrete time k.

4) r̄U ∈ D̄: “Discrete Actual” position of UAS at discrete

time k.

5) r(t) ∈ R
3: “Actual” position of UAS at continuous time

t .

6) rd(t) ∈ R
3: “Desired” position of UAS at continuous

time t .

Note that the desired trajectory of human worker h ∈ H

can be assigned by using an A* search over set D. Also,

the actual position of every human co-worker h ∈ H is

observed by the UAS at every discrete time k, where it is either

captured by on-site cameras and communicated to the UAS,

or it is accurately estimated by the UAS through processing

of onboard visual sensory information.

The parameters and variables used for modeling of the

proposed human-UAS interaction problem are described in

Table I.

A. Problem 1: Distraction Probability Quantification

In this section, we present an approach for updating dis-

traction probability of human co-workers in real-time based

on empirical data collected over the past n p time steps from

discrete time k, at every discrete time k.

Definition 6: We define

v̄h = r̄+
h,ph ,p

′
h
− r̄h,ph ,p

′
h
. (13)

as desired velocity of human worker h ∈ H obtained based on

“current” desired position r̄h,ph ,p
′
h

and “next” desired position

r̄+
h,ph ,p

′
h

of human worker h ∈ H.

Given v̄h , the motion of human worker h ∈ H is categorized

as follows:
• We say human co-worker h ∈ H moves “diagonally,” if

∥v̄h∥ =
√

2.

• We say human co-worker h ∈ H moves “straight,” if

∥v̄h∥ = 1.

• A human co-worker h ∈ H desires to “Stay”, if v̄h =
(0, 0).
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Definition 7: For every human worker h ∈ H,

Id

(

r̄h,ph ,p
′
h

)

=
{

r̄h,ph ,p
′
h
+ (is, js) ∈ D :

is, js ∈ {−d, · · · , d}
}

.

(14)

is the moving neighboring set (MNS) of degree d , where d is

called degree of neighborhood.

Because d is time-invariant, MNS remains rigid at every

discrete time k. Note that MNS Id

(

r̄h,ph ,p
′
h

)

is a rectangular

box that is centered at r̄h,ph ,p
′
h

and contains (2d+1)×(2d+1)

cells.

Definition 8: We use bh

(

r̄h, r̄h,ph ,p
′
h
, ∥v̄h∥

)

to denote the

number of visits of r̄h ∈ Id

(

r̄h,ph ,p
′
h

)

, when human co-worker

h ∈ H moves from origin (WS) ph(k) ∈ P towards destination

p′h(k) ∈ RH
ph

with desired velocity v̄h .

The distraction probability of human worker h ∈ H is

denoted by ³h and defined by

³h

(

r̄h(k)|r̄h,ph ,p
′
h
, ∥v̄h∥

)

=
bh

(

r̄h(k), r̄h,ph ,p
′
h
, ∥v̄h∥

)

∑

r̄h(k)∈Id

(

r̄h,ph ,p
′
h

) bh

(

r̄h, r̄h,ph ,p
′
h
, ∥v̄h∥

) , (15)

for every human worker h ∈ H. Note that the desired trajectory

of every human co-worker h ∈ H can be obtained offline

between every “origin” WS ph ∈ P and “goal” WS p′h ∈
RH (ph) by using A* search without imposing computation

cost for real time perception. Therefore, the distraction ³h can

be computed and updated with minimal computation cost at

every discrete time k.

B. Problem 2: Human Intention Prediction

We define

¶
(

r̄h(k), r̄h,ph ,p
′
h
(k)

)

= exp
(

−
∥

∥r̄h(k)− r̄h,ph ,p
′
h
(k)

∥

∥

)

(16)

to quantify deviation of human co-worker h ∈ H from

the desired trajectory r̄h,ph ,p
′
h

when the worker moves from

origin ph ∈ P towards destination p′h ∈ RH (ph). Note

that ¶
(

r̄h, r̄h,ph ,p
′
h

)

can be considered as a reward function

decreases from 1 to 0 as
∥

∥r− r̄h,ph ,p
′
h

(

p, p′
)∥

∥ increases from

0 to +∞.

By knowing ph ∈ P , p′h ∈ RH (ph), and trajectory of human

worker h ∈ H, over the past Np time steps,

Pr
(

p′h |ph

)

=
∑k−1

Ä=k−Np
¶
(

r̄h(Ä ), r̄h,ph ,p
′
h
(Ä )

)

∑

p′h∈RH
p

∑k−1
Ä=k−Np

¶
(

r̄h(Ä ), r̄h,ph ,p
′
h
(Ä )

)
(17)

assigns the probability that p′h ∈ RH (ph) is the goal WS for

human worker h ∈ H at discrete time k.

C. Problem 3: UAS Motion Planning

We consider a scenario at which UAS is in transitioning

mode from WS i ∈ P to goal WS g ∈ RU (i) while interacting

with multiple human co-workers. The UAS motion planning

is considered a non-stationary MDP with time-invariant states,

Fig. 4. |S| versus nx (nx = |X |) and nÄ (nÄ = |K|), where nx = ny

(ny = |Y|).

actions, transitions, and discount factor but time-varying cost.

To be more precise, the MDP cost is updated at every

discrete time k such that human intention and distraction

are consistently learned and incorporated into UAS motion

planning.

1) MDP Components: Assuming the UAS aims to displace

from i ∈ P , at r̄i ∈ D̄, to g ∈ RU (i), at r̄g ∈ D̄, the proposed

(non-stationary) MDP is given by tuple
(

Si,g,A, Cg,k,Fi,g, µ
)

at discrete time k with state set Si,g , action set A, transition

function Fi,g : Si,g×A→ Si,g , cost Cg,k : Si,g×N→ R, and

discount factor µ ∈ [0, 1]. These components are defined as

follows:
State Set Si,g: We use set K = {1, · · · , nÄ } to define a future

horizon interval of length nÄ . Then, MDP state set Si,g is a

subset of

S =
{

s =
(

r̄, Ä
)

: r̄ ∈ D \O, Ä ∈ K
}

. (18)

for every i ∈ P and g ∈ RU (i). If set S defines the state

set, regardless of the locations of the “origin” and “goal”

WS positions, the motion planning becomes computationally

expensive, and real-time motion planning may not be feasi-

ble. For better clarification, Fig. 4 shows |S| for different

nx (nx = |X |) and nÄ (nÄ = |K|), where nx = ny

(ny = |Y|).
To address this issue, we define a variable-size state set Si,g ,

for every i ∈ P and g ∈ RU (i), such that the the following

conditions hold:
1)

(

r̄i , Ä
)

∈ Si,g; and
(

r̄g, Ä
)

∈ Si,g for every Ä ∈ K, i ∈ P ,

and g ∈ RU (i).

2) r̄g ∈ D can be reached from r̄i ∈ D for every i ∈ P and

g ∈ RU (i).

We note that Si,g ¢ S can be obtained, for every i ∈ P

and g ∈ RU (i) offline, without imposing computation cost on

real-time UAS motion planning, while conditions 1 and 2 are

both satisfied.
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Action Set A: We use set

A = {E,NE,N,NW,W,SW,S,SE,O} (19)

to define nine possible actions including go towards “east”

(E), go towards “northeast” (NE), go towards “north” (N),

go toward “northwest” (NW), go towards “west” (W),

go towards “southwest” (SW), go towards “south” (S),

go towards “southeast” (SE), and “no motion” (O).

Cost Cg,k: By expressing s as s =
(

r̄, Ä
)

, for every r̄ ∈ D

and every Ä ∈ K, cost is imposed on operation of the UAS

intending to go to the “goal” WS g ∈ RU (i) from any

state state s ∈ Si,g . To define the MDP cost, we define

spatiotemporal heat map

Jg,k(s) = J̄ g

(

r̄
)

+ J
k

(

r̄, Ä
)

, (20)

where

J̄ g(r) = ∥r̄− r̄g∥, g ∈ P, r̄ ∈ D, r̄g ∈ D̄, (21)

is the distance from r̄ ∈ D and r̄g ∈ D̄ and

J
k

(

r̄, Ä
)

= c0

∑

h∈H

∑

ph∈P

∑

p′h∈RH (ph)

Pr
(

p′h(k + Ä)|ph(k + Ä)
)

× ³h

(

r̄|r̄h,ph ,p
′
h
(k + Ä), v̄h(k + Ä)

)

(22)

where c0 > 0, Ä ∈ K, and r̄ ∈ D. The MDP cost is then

defined by

Cg,k

(

r̄, Ä
)

=











cg j 0 r̄ = r̄g ∈ D̄, g ∈ P, ∀k, ∀Ä
cobs k 0 r̄ ∈ O, ∀k, ∀Ä
Jg,k(s) r̄ ̸= r̄g, r̄ /∈ O, ∀k, ∀Ä,

(23)

where
∣

∣cg

∣

∣ and |cobs | are sufficiently large and constant.

Transition Probability: By assuming that UAS actuators and

sensors are all healthy, we can suppose deterministic transi-

tions over the state space. Under this assumption, F
(

s+|s, a
)

∈
{0, 1} is a binary variable, for every current state s ∈ S, next

state s+ ∈ S, and action a ∈ A.

We use Algorithm 1 to specify deterministic transitions of

the UAS over the MDP state space. To be more precise,

Algorithm 1 uses s = ( j, h, Ä ) and s+ =
(

j ′, h′, Ä ′
)

to

denote the “current” and “next” states, respectively. By default,

Algorithm 1 assumes that i ′ = i , j ′ = j , and Ä ′ = Ä + 1.

To update i ′, j ′, and Ä ′, it follows the following rules,

if needed:
1) If Ä+1 /∈ K, the “next” state is the same as the “current”

state (s+ = s).

2) Under action a∈{SE,E,NE}, j ′ = j + 1 is replaced,

if
(

j ′, h′, Ä ′
)

∈ Si,g .

3) Under action a∈{NE,N,NW}, h′ = h + 1 is replaced,

if
(

j ′, h′, Ä ′
)

∈ Si,g .

4) Under action a∈{SW,W,NW}, j ′ = j − 1 is replaced,

if
(

j ′, h′, Ä ′
)

∈ Si,g

5) Under action a∈{SE,S,SW}, h′ = h − 1 is replaced,

if
(

j ′, h′, Ä ′
)

∈ Si,g .

Algorithm 1 Obtaining Function Fi,g

(

s+|s, a
)

Under Deter-

ministic Transition Assumption Over the Si,g (i ∈ P and

g ∈ RU (i))

1: Get: State set Si,g and action a ∈ A for i ∈ P and g ∈
RU (i).

2: Return: Binary function Fi,g

(

s+|s, a
)

for every s ∈ Si,g .

3: if Ä + 1 ∈ K then

4: Ä ′← Ä + 1

5: for every ( j, h, Ä ) ∈ Si,g do

6: s← ( j, h, Ä )

7: j ′← j and h′← h.

8: if a∈{SE,E,NE} then

9: if ( j + 1, h, Ä + 1) ∈ Si,g then

10: j ′← j + 1.

11: end if

12: end if

13: if a∈{NE,N,NW} then

14: if ( j, h + 1, Ä + 1) ∈ Si,g then

15: h′← h + 1.

16: end if

17: end if

18: if a∈{NW,W,SW} then

19: if ( j − 1, h, Ä + 1) ∈ Si,g then

20: j ′← j − 1.

21: end if

22: end if

23: if a∈{SE,S,SW} then

24: if ( j, h − 1, Ä + 1) ∈ Si,g then

25: h′← h − 1.

26: end if

27: end if

28: end for

29: else

30: j ′← j , h′← h, and Ä ′← Ä .

31: end if

32: s+←
(

j ′, h′, Ä ′
)

.

33: F
(

s+|s, a
)

← 1.

2) Solution: The optimal UAS trajectory is obtained by

solving the Bellman equation which is given by

Vi,g,k(s)=min
a∈A

∑

s+∈Si,g

Fi,g(s
+|s, a)(Cg,k(s)+Vi,g,k(s

+)),

∀s ∈ Si,g (24)

where g ∈ P is the goal WS for the UAS and k ∈ N denotes

discrete time. The optimal policy is assigned by

Ã∗i,g,k(r̄, Ä ) = min
a∈A

∑

s+∈Si,g

Fi,g(s
+|s, a)(Cg,k(s)+ Vi,g,k(s

+)).

(25)

over for state (r̄, Ä ) ∈ Si,g , i ∈ P , g ∈ RU (i).

While Eq. (25) species the optimal policy over the entire

space set Si,g , UAS only applies optimal actions over a subset

of Si,g that is associated with Ä = 1 ∈ T . Therefore, the

optimal action of the UAS is denoted by a∗(k), at discrete
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time k, and obtained by

a∗(k) = Ã∗i,g,k(r̄U (k), 1), i ∈ P, g ∈ RU (i), (26)

where r̄U (k) is the UAS actual discrete position of the UAS

at discrete time k. UAS implements Algorithm 2 to assign

optimal action a∗(k) at every discrete time k.

Algorithm 2 UAS Motion Planning

1: Input: Set D, set K, actions set A, transition function

F , discount factor µ , initial position r̄i (i ∈ P and

r̄i ∈ D̄), and UAS target position r̄g (g ∈ RU (i) ¢ P

and r̄g ∈ D̄).

2: Set: k ← 0; r̄U ← r̄i .

3: for < h ∈ H do

4: Get: Get ph(0) ∈ P .

5: for < p′h(0) ∈ RH (ph(0)) do

6: Determine desired trajectory r̄h,ph ,p
′
h
.

7: end for

8: end for

9: while r̄U (k) ̸= r̄g do

10: for < h ∈ H > do

11: for < p′h(k) ∈ RH (ph(k)) > do

12: if ph(k + 1) ̸= ph(k) or p′h(k + 1) ̸= p′h(k)
then

13: Update desired trajectory r̄h,ph ,p
′
h
.

14: end if

15: Update distraction probability by Eq. (15).

16: Update Pr
(

p′h |ph

)

by Eq. (17).

17: Update MDP cost function by Eq. (23).

18: end for

19: end for

20: Obtain optimal policy by solving Eq. (25).

21: Obtain optimal action a∗(k) = Ã∗i,g,k(r̄U (k), 1).

22: Obtain the next UAS position r̄′.
23: k ← k + 1.

24: r̄U (k)← r̄′.
25: end while

D. Problem 4: UAS Trajectory Planning and Tracking

To model multicopter UAS motion, we use x(t), y(t),

and z(t) to define UAS position components at (continuous)

time t . We also use Æ(t), ¹(t), and È(t) to define roll,

pitch, and yaw angles of the UAS at (continuous) time t ,

where we use the 3-2-1 Euler angle standard to characterize

orientation of the UAS. The thrust force magnitude generated

by the quacopter UAS is denoted by f (t) at (continuous)

time.

We model motion of a multicopter UAS with mass m by

nonlinear dynamics







ẋ = f(x)+G(x)u

y =
[

x y z È

]T (27)

where x =
[

x y z ẋ ẏ ż Æ ¹ È Æ̇ ¹̇ È̇ f ḟ
]T ∈ R

14×1 is the

state vector, u =
[

u1 u2 u3 u4

]T
is the control input, and

f(x) =

















































ẋ

ẏ

ż
f

m
(sinÆ sinÈ + cosÆ cosÈ sin ¹)

f

m
(cosÆ sinÈ sin ¹ − sinÆ cosÈ)

f

m
cosÆ cos ¹ − g

Æ̇

¹̇

È̇

0

0

0

ḟ

0

















































, (28)

G =
[

g1 g2 g3 g4

]

=









09×1 09×3

03×1 I3

0 01×3

1 01×3









(29)

are smooth functions. In Eq. (28), g = 9.81m/s2 is gravity

acceleration. Note that u1 = f̈ , u2 = Æ̈, u3 = ¹̈ , u4 = È̈ are

considered as the components of the control input vector u.

Because we use the 3−2−1 Euler angle standard to quantify

the multicopter orientation, 3 =
[

Æ̇ ¹̇ È̇
]T

is related to the

multicopter angular velocity vector � by

� = 03, (30)

where � is expressed with respect to the multicopter body

frame and

0 =





1 0 sin ¹

0 cosÆ sin ¹ sinÆ

0 − sinÆ cosÆ cos ¹



. (31)

Control input vector u =
[

Æ̈ ¹̈ È̈
]T

can be related to the

control torque Mq by applying the rotational dynamics of the

multicopter, which can be expressed by

Jq0u+ Jq 0̇3+�×
(

Jq�
)

=Mq (32)

where Jq is the inertia matrix of the multicopter [32].

1) UAS Trajectory Planning: Given every two consecutive

optimal waypoints r̄U (k) and r̄U (k+1), assigned by the MDP

planner, the UAS desired trajectory is denoted by rd(t) =
[

xd(t) yd(t) zd(t)
]T

and defined by
[

xd(t)

yd(t)

]

= (1− ´(t − tk))r̄U (k)+ ´(t − tk)r̄U (k + 1),

(33a)

zd(t) = z0, (33b)

for t ∈
[

tk, tk+1) and k ∈ N, where 1t = tk+1 − tk is constant

for every k ∈ N. Without loss of generality, we desire that

the multicopter flies at constant altitude, therefore, z0 is time-

invariant. By taking time derivative from rd(t), we obtain

d lrd(t)

dt l
=

d l´(t)

dt l

([

r̄U (k + 1)

0

]

−
[

r̄U (k)

0

])

, (34)
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Fig. 5. Optimal ´, ˙́, ΅, and
...
´ versus t ∈ [0,1t], where we choose 1t = 5s.

Fig. 6. Black diagram of UAS trajectory planning and tracking.

at any time t ∈ [tk, tk+1), for every k ∈ N and l =
1, 2, 3, 4. We let ´(t) be updated by the following fourth order

dynamics:

d4´(t)

dt4
= s´(t), t ∈

[

tk, tk+1), k ∈ N, (35)

where s´(t) is the control that is assigned by minimizing

J =
1

2

∫ tk+1t

tk

s2
´dt, k ∈ N, (36)

subject to the following boundary conditions:

´(tk) = 0, k ∈ N, (37a)

´(tk+1) = 1, k ∈ N, (37b)

d l´(tk)

dth
=

d l´(tk+1)

dt l
= 0, k ∈ N, l = 1, 2, 3. (37c)

The above boundary conditions ensure that the multicopter

UAS fully stops at every waypoint r̄U (k) which is indeed

required since the UAS may need to change its motion

direction for 90 degrees to reach rU (k + 1) from rU (k).

We solve the above optimal control problem by using the

approach detailed in the Appendix and obtain optimal ´, ˙́,
΅, and

...
´ plotted in Fig. 5.

2) Trajectory Tracking: We apply the feedback linearization

method developed in Refs. [32] and [33] to design the multi-

copter trajectoy tracking control u. For this purpose, we define

state transformation

z(x) =
[

rT ṙT r̈T ...
r T È È̇

]T
(38)

and update z by the following dynamics

ż = AU z+ BU w (39)

Fig. 7. Schematic of human-UAS interaction in the workplace.

where w =
[ ....

x
....
y

....
z È̈

]T
is the control input of dynam-

ics (39), and

AU =









09×3 I9 09×1 09×1

03×3 03×9 03×1 03×1

01×3 01×9 0 1

01×3 01×9 0 0









and

BU =









09×3 09×1

I3 03×1

01×3 0

01×3 1









.
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Fig. 8. Desired trajectories between the origin WS and three possible next
WSs are shown by dashed plot for human co-workers 1, 2, 3, 4, and 5 in
sub-figures (a), (b), (c), (d), and (e), respectively. Also, actual trajectory of
each co-worker is shown by black dots in sub-figures (a)-(e).

Note that w is related to the control input of multicopter UAS,

denoted by u, by

w =M1u+M2, (40)

where

M1 =









Lg
1
L3

f x Lg
2
L3

f x Lg
3
L3

f x Lg
4
L3

f x

Lg
1
L3

f y Lg
2
L3

f y Lg
3
L3

f y Lg
4
L3

f y

Lg
1
L3

f z Lg
2
L3

f z Lg
3
L3

f z Lg
4
L3

f z

Lg
1
L fÈ Lg

2
L fÈ Lg

3
L fÈ Lg

4
L fÈ









∈ R
4×4,

(41a)

M2 =
[

L4
f x L4

f y L4
f z L2

fÈ
]T ∈ R

4×1. (41b)

The control design objective is objective is achieved by

choosing w such that z stably tracks

zd =
[

rT
d ṙT

d r̈T
d

...
r T

d Èd È̇d

]T
,

where rd is the UAS desired trajectory, defined by Eq. (33),

and Èd is the desired yaw angle of multicopter i ∈ V . Without

loss of generality, this paper assumes that Èd(t) = 0 at any

Fig. 9. Intention prediction of human co-workers.

time t , which in turn implies that È̇d(t) = 0. To achieve the

control objective, we choose

w = KU (zd − z) (42)

such that AU − BU KU is Hurwitz. Then, the control input of

the UAS is obtained by

u =M−1
1 (w−M2). (43)

Figure 6 shows the block diagram of the multicopter control

design based on the above feedback linearation method.
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Fig. 10. Optimal actions taken by the UAS to safely plan its trajectory.

V. SIMULATION RESULTS

We consider a single UAS and five human co-workers in

a shared environment (motion space). The motion space is a

rectangle and represented by a uniform grid of 50× 50 size.

The motion space consists a finite number of obstacles that are

shown by red circles in Fig. 7. The workplace has 33 WSs that

are identified by set P = {1, · · · , 33} and represented by the

places shown in Fig. 3. The schematic of the motion space

(workplace) is shown in Fig. 7 where WSs 1 through 22 are

marked by blue as they represent either the current WSs or

the possible next WSs for the humans and UAS existing in

the workplace. We consider a UAS-human interaction scenario

that is formally specified by the Petri Nets shown in Fig. 3

where UAS aims to move from 21 ∈ P to 22 ∈ RU (21).

This UAS motion interacts with the motion of five human

co-workers at 1, 2, 3, 4, 5 ∈ P in the shared workplace.

Motion of human co-workers deals with uncertainty as each

has three possible destinations. More specifically,

RH (1) = {6, 11, 16}, 1 ∈ P,

RH (2) = {7, 12, 17}, 2 ∈ P,

RH (3) = {8, 13, 18}, 3 ∈ P,

RH (4) = {9, 14, 19}, 4 ∈ P,

RH (5) = {10, 15, 20}, 5 ∈ P,

define the possible next WSs for the human co-workers. The

schematic of the proposed human-UAS interaction is shown

in Fig. 7.

Given origin and possible WSs for every human co-worker,

the desired trajectory are obtained by using A* search method

and shown by dashed plots in Fig. 8. Also, the actual trajectory

of each human co-worker is shown by black dots in Figs. 8(a),

(b), (c), (d), and (e), for human co-workers 1, 2, 3, 4,

and 5, respectively. By using the human intention prediction

approach, presented in Section IV-B, We obtain Pr
(

p′|p
)

for

human-co-workers 1 through 5 and plot them in Figs. 9(a)

through 9(e). Optimal actions of the UAS are plotted versus

discrete time k in Fig. 10, where 1, 2, 3, 4, 5, 6, 7, 8, and

9 represent “E,” “NE,” “N,” “NW,” “W,” “SW,” “S,” “SE,”

Fig. 11. The optimal path of the UAS in the workplace.

Fig. 12. x and y components of actual trajectory of the multicopter UAS
from the initial position (6, 15) to final destination (21, 6).

and “O,” respectively. The optimal path of the UAS in the

workplace is shown in Fig. 11.

For UAS trajectory planning, we use 1t = 5s, therefore,

´, ˙́, ΅, and
...
´ plotted in Fig 5 are used to obtain r(t) ṙ(t),

r̈(t), and
...
r (t) for t ∈ [tk, tk] and k ∈ N. Figure 12 plots UAS

actual position components x and y versus time t .

VI. CONCLUSION AND FUTURE WORK

We develop a novel method for abstraction of UAS and

human interaction in the same workplace. We consider a work-

place that consists of a finite number of WSs and apply Petri

Nets to: (i) abstractly represent WSs and transition between

WSs, and (ii) leverage incomplete knowledge about human

intentions. We develop a variable-size non-stationary MDP,

with time-invariant transition function, state space, actions, and

discount factor and time-varying cost, to safely plan the UAS

trajectory in the presence of human co-workers. In particular,

the MDP cost function is updated based on real-time obser-

vation data so that human intention and distraction of human

co-workers are properly incorporated in UAS motion planing

when UAS closely intercat with human co-workers.
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The proposed variable-size non-stationary MDP can effi-

ciently define the state space based on the locations of the

origin WS i ∈ P and goal WS g ∈ RU (p) to achieve real-time

motion planning at a low computing cost. The computation

cost of motion planning can be further reduced by efficient

structuring of the Petri Nets so that distance between every

“origin” WS i ∈ P and every goal WS “g ∈ RU (i)” not very

large.

The other method for reducing the computation cost is to

replace the MDP by a time-dependent A* search that can be

used for motion planning over spatiotemporal motion spaces.

Indeed, A* is much less computationally expensive compared

with the MDP and can further reduce the computation cost.

However, for the proposed huamn-UAS collaboration appli-

cation, it needs to incorporate the uncertainty associated with

human intention. This will be considered as a plan for the

future work.

In the near future, we will also be studying high-level

motion planning for UAS under inaccurate sensing and actu-

ation assumption. For this study, we can use model-based

and model-free methods to incorporate probabilistic transitions

into MDP. Particularly, we can use Gaussian processes to

incorporate model-based uncertainty associated with actuation

inaccuracy into MDP transition probability function. We can

also apply different reinforcement learning approaches to

include and learn model-free uncertainty. When sensor read-

ing is uncertain, states are not fully observable. Under this

situation, we can apply the hidden Markov models to model

evolution over the state space and use Partially Observable

Markov Decision Processes (POMDP) method to optimally

plan UAS actions.

APPENDIX

This section provides a solution for the optimal control

problem defined in Section IV-D1 to assign optimal ´ over

time interval
[

tk, tk+1

]

, for every k ∈ N.

We can rewrite dynamics (35) using the state space form as

follows:

ẋ´ = A´x´ + B´s´, k ∈ N, t ∈
[

tk, tk+1

]

, (A1)

where x´ =
[

´ ˙́ ΅
...
´

]T
, B´ =

[

01×3 1
]T

, and

A´ =
[

03×1 I3

0 01×3

]

.

By rewriting the boundary conditions given by Eq.

(37), dynamics (A1) must satisfy the following end-point

conditions:

x´(tk) = 04×1, k ∈ N, (A2)

x´(tk+1) = [1 0 0 0]T , k ∈ N. (A3)

Let ¼ =
[

¼´ ¼ ˙́ ¼ ΅ ¼
...
´

]T
be the co-state vector, then, the

Hamiltonian is obtained by

H
(

x´, ¼, s´
)

=
1

2
s2
´ + ¼T

(

A´x´ + B´s´
)

. (A4)

By applying the Prontryagin’s minimum principle, the optimal

control s∗´ is obtained by

s∗´ = −BT
´ ¼ (A5)

where x´ and ¼ are updated by dynamics
[

ẋ´
¼̇

]

= Asys

[

x´
¼

]

(A6)

with

Asys =
[

A´ −BT
´B´

04×4 −AT
´

]

. (A7)

Therefore,
[

x´(t)

¼(t)

]

= 8sys(t, tk)

[

x´(tk)

¼(tk)

]

, t ∈
[

tk, tk+1

]

, (A8)

where

8sys(t, tk) =
[

811(t, tk) 812(t, tk)

821(t, tk) 822(t, tk)

]

= eAsys (t−tk ) (A9)

is the state transition matrix. By imposing boundary condi-

tion (A3), we obtain

¼(tk) = 8−1
12 (t, tk)

(

x´(tk+1)−811(t, tk)x´(tk)
)

(A10)

By knowing x´(tk) from boundary condition (A2) and ¼(tk),

obtained by (A10), x´(t) is obtained by (A8) at any time t ∈
[

tk, tk+1

]

.
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