

Supporting Static Program Analysis and
Transformation of Quantum-Based Languages

Joshua A. C. Behler
Computer Science Department

Kent State University
Kent, Ohio, USA

jbehler1@kent.edu

Ali F. Al-Ramadan
Computer Science Department

Kent State University
Kent, Ohio, USA

aalramad@kent.edu

Betis Baheri
Computer Science Department

Kent State University
Kent, Ohio, USA
bbaheri@kent.edu

Qiang Guan
Computer Science Department

Kent State University
Kent, Ohio, USA
qguan@kent.edu

Jonathan I. Maletic
Computer Science Department

Kent State University
Kent, Ohio, USA

jmaletic@kent.edu

Abstract—The work aims to enable the use of common

software engineering techniques and tools for quantum
programming languages (e.g., OpenQASM). With the increased
interest in quantum computing, researchers are adopting the use
of higher-level quantum programming languages versus low-level
circuit diagrams. While general purpose programming languages
(e.g., C++, Python) are highly supported by a variety of software
engineering tools, these novel programming languages for
quantum computing have almost no support. Useable tools for
debugging, static analysis, error detection, and transformation are
currently non-existent. This work extends an existing software
infrastructure (i.e., srcML) for the analysis, exploration, and
manipulation of source code to OpenQASM. The srcML
infrastructure, via parsing, generates abstract syntax information
of programs to support high-level querying and analysis of the
source code. With this, quantum developers can extract
information and identify possible errors or inefficiencies in their
programs. The paper presents the basic syntactic markup for
OpenQASM. Also, a number of relevant quantum-based problems
(e.g., iteration patterns, control recusion) are described and
examples of how they are addressed using srcML is given.

Keywords—quantum programming, static program analysis,
openqasm

I. INTRODUCTION
Quantum computing has exploded in popularity in recent

years. Quantum computing utilizes the principles of quantum
mechanics to process information in ways that are
fundamentally different from classical computing. The basic
principle is the use of quantum bits, or qubits, which can exist in
multiple states simultaneously. This allows us to solve certain
complex problems more efficiently than classical computers. As
more and more facets of industry and research adopt quantum
computing to solve difficult problems, more technologies are
being created to support the exploration of this field. One such
technology is quantum programming languages. Languages
such as OpenQASM [1], [2], Scaffold [3], and Q# [4] provide a
means for developers to write quantum programs that can be
executed on quantum hardware (or simulators). These

languages, similar to traditional programming languages, allow
developers to write algorithms and express quantum circuits.
OpenQASM (for Quantum assembly language) is a low-level
programming language that provides direct access to quantum
hardware. It supports both classical and quantum instructions.
However, unlike classical programming languages, quantum
programming languages lack a wide range of software
engineering tools to assist developers in the construction of
programs. There are no tools for conducting basic static analysis
of the code to assist in finding errors, tracking down
inefficiencies, or identifying common patterns. The lack of such
tools can slow the development and adoption of quantum
programming languages. As quantum computing gains more
attention, there will be a growing need for these tools that assist
developers in understanding and working with quantum
programs. By using such tools developers will be able to identify
potential errors, optimize performance, and extract meaningful
information. Moreover, the availability of such tools can
encourage developers to adopt quantum programming
languages rather than relying solely on quantum circuit analysis.

In this paper, we begin work on extending the srcML
infrastructure [5], [6] to support OpenQASM. srcML is a robust
set of tools that generates an XML representation of a program's
source code and abstract syntax based on a predefined markup
specification of the language’s grammar. This XML format
preserves all the syntactic information of the original code,
including whitespace, and currently supports various traditional
programming languages (e.g., C, C++, C#, Java). The srcML
representation enables advanced code analysis and manipulation
using standard XML technologies (e.g., XPath, XSLT). By
providing a standardized, simple format for processing and
analyzing source code, srcML enables a language to undergo
static analysis. Adding quantum programming languages to
srcML opens many possibilities for program analysis which
were previously difficult or limited in scope.

We describe the process of integrating OpenQASM into
srcML by creating a markup specification that defines how the
language structures are labeled in the resulting XML

representation. We present the markup specification for
OpenQASM, covering both its classical and quantum features.
Furthermore, we introduce a static time analyzer that examines
quantum operations performed on qubits within an OpenQASM
program. Using the output of this analyzer, we identify four
common quantum language patterns: Horizontal Iteration,
Vertical Iteration, Diagonal Iteration, and Control Recursion.
In addition to pattern identification, we discuss how the srcML
representation of OpenQASM programs can facilitate quantum
code refactoring and code smell detection.

The contribution of this paper can be summarized as:

• The creation of a markup specification which begins the
process of adding OpenQASM to the srcML Toolkit.

• The manual markup of OpenQASM code examples into
their srcML format and the creation of a tool which
performs analysis of the execution order of the source
code.

• A cursory exploration of coding patterns, refactorings,
and code smells in quantum code that srcML enables the
analysis of

The rest of the paper is organized as follows. Section II
discusses related works in quantum software engineering and
program analysis. Section III describes the process of extending
srcML to support OpenQASM, including the markup
specification and the creation of srcML files. Section IV
introduces the static time analyzer and its application in
identifying quantum patterns. Section V explores quantum code
refactoring identification. Finally, Section VI concludes the
paper and outlines future research directions.

II. RELATED WORK
There is little literature on static program analysis tools for

quantum programs. LintQ [7] and QChecker [8] are two recent
works that focus on bug detection in Qiskit-based quantum
programs. LintQ identifies potential bugs by mapping a set of
quantum-specific abstractions to program information. This
information is extracted using CodeQL, a static analysis engine.
QChecker detects bugs by directly analyzing the abstract syntax
tree (AST) representation of Qiskit programs. Kaul et al. [9]
implement a tool, QCPG, that extends Code Property Graphs to
analyze quantum programs written Qiskit or OpenQASM. The
QCPG includes information from both the classical and
quantum parts to enable static analysis of both domains. Other
problem-specific techniques to analyze quantum code include
entanglement analysis [10] to detect possible entanglement
errors within and between modules in Q#. Zhao et al. [11]
identify and categorize common bug patterns in quantum
programs written in the Qiskit programming language. Nayak et
al. [12] propose a new framework, Q-PAC, that is used to detect
bug-fix patterns automatically in Qiskit quantum code using
ASTs, regular expressions, and semantic checks However, these
approaches have a few limitations. First, they are tightly coupled
to specific quantum programming languages or frameworks.
LintQ relies on CodeQL and Qiskit-specific abstractions,
QChecker is tightly coupled with Qiskit's AST structure, and the
QCPG prototype is currently specifically implemented for
Qiskit and OpenQASM. Extending these tools to analyze

programs written in other quantum languages can be
problematic without major modifications to the design. Work
dealing with pattern detection is tied to the specific syntax and
semantics of Qiskit. Other work dealing with problem-specific
techniques, such as entanglement analysis for Q#, are not easily
generalizable to other problem domains.

Our work here recognizes the need for a more general
approach to quantum program analysis. We leverage the srcML
infrastructure to represent quantum programs in a standardized
XML format to allow for a flexible and language-agnostic
program information extraction process that can be applied to
various quantum programming languages. This approach can
easily capture the structure and semantics of quantum programs
to facilitate a wide range of static analysis tasks such as bug
detection, optimization, and pattern extraction. A key advantage
of our approach is that supporting a new quantum programming
language only requires the addition of a markup specification,
which defines the language's elements, sub-elements, and their
relationships. Our work complements existing tools and
techniques by providing a versatile foundation for general-
purpose static analysis tools.

III. OPENQASM IN SRCML
srcML is a powerful, robust, and highly scalable

infrastructure used for transforming source code into a
structured XML representation for multiple programming
languages. It includes a powerful parsing technology that allows
for efficient transformation of source code to XML and vice
versa without any loss of information (of the original source
code). The XML representation adds abstract syntax
information directly into the source code. Because of this, a user
has access to the source code and abstract syntax tree
simultaneously. An abstract syntax tree (AST) is a hierarchical
representation of the syntactic structure of a program. Each
element in the srcML AST corresponds to a specific syntactic
construct in the source code, such as a function, a loop, or an
expression. The elements are nested according to the structure
of the code, with parent elements containing child elements that
represent their constituent parts. For example, a function
declaration element may contain child elements for the function
name, parameters, and function body. Figure 1 details a small
example of OpenQASM source code and its corresponding
srcML markup. srcML differs from other ASTs in that alongside
the (exact) original source code, the whitespace and comments
are preserved in the XML. Compiler generated ASTs drop quite
a lot of original syntactic information. Making it impossible to
do such things as refactoring. srcML allows for the in-depth
exploration, analysis, and manipulation of source code by
leveraging various common XML technologies (e.g., XPath).

Compared to the other languages that srcML supports,
OpenQASM is very simple in terms of syntax and number of
features. However, because of OpenQASM’s status as a
quantum programming language, many new tags need to be
defined in srcML to support these features. OpenQASM also
supports classical programming constructs, which srcML
already supports in other languages and thus also supports them
in OpenQASM.

A. OpenQASM Markup Specification
Internally, srcML maintains parsers that handle the

conversion from source code to srcML. These parsers are
manually crafted using custom-made language grammars. When
a new language is introduced to srcML, the parsers must be
updated to support the syntax of the new language and handle
edge cases that invariantly appear.

This process is very manual and can cause great difficulty
when trying to add a language that is syntactically very different
from previous languages. To avoid this, we are currently
developing a set of parsing generation tools that can take a
markup specification file and produce a parser for the language
it represents. The markup specification is an XML document
that defines what elements the language uses, what sub-elements
and keywords each element has, and what sub-elements are
optional or required. Currently, the parser generator is still under
development and not fully functioning – however, the format for
the markup specifications is well-defined, and allows for the
markup of source code files.

To add OpenQASM to srcML, we create the markup
specification for the language. Table 1 details the contents of the
markup specification, including the new tags that are introduced
to account for quantum programming’s unique features.

Category srcML Elements

Statement

barrier, box, break, calibration,
decl_stmt, defcalgrammar,
expr_stmt, extern, for, if_stmt,
include, measure, pragma, reset,
version, while

Function/Gate
argument, argument_list, call,
function, gate, gate_decl,
parameter, parameter_list, return

Extra Markup literal, operator, name, type

Table 1: A table listing the statement tags srcML used to mark up
OpenQASM. Bold elements are new elements introduced for OpenQASM.

The markup specification for OpenQASM supports the
current version of OpenQASM 3.0. Because 3.0 is backwards
compatible with OpenQASM 2.0, the markup specification will
markup either version as encountered. An example being the
change from measure being an operation in 2.0 to being a
statement in 3.0. If measure is encountered within an
expression, the markup specification treats it as an <operator>

element. If it is used with its statement syntax, it is given the new
<measure> element.

Beyond the addition of new elements in the markup, other
additions are introduced in the OpenQASM markup
specification – the most substantial of which involve qubits.
OpenQASM supports passing both classical values and qubits to
functions and gates as parameters. Passing classical values to
these syntactically resembles how classical languages pass them
– with a comma-separated list of values within parentheses. For
qubits, OpenQASM uses a slightly different syntax, where
parentheses are not used, and the qubits are just listed between
commas. Calls, gates, and functions support having both kinds
of parameters, meaning that some kind of disambiguation is
needed within srcML. We introduce the special attribute
type="quantum" onto the qubit parameter and argument lists,
which allows a researcher to collect classical, qubit, or both lists
as needed. Alongside this, a new type of literal in srcML has
been added - <literal type="qubit">. This literal is for the
physical qubit syntax in OpenQASM, where values like $0 can
be used to represent hardware qubits when ran on physical
machines.

The markup specification uses the <call> element for both
calls to functions and gates, as syntactically they are identical
due to both allowing for classical and qubit parameters.

B. Creating srcML Files
With the markup specification, OpenQASM source code

files can now easily be parsed and marked up into srcML,
allowing for static analysis to be performed. The parser for this
is not yet released but will be in the near future. For this work,
the suite of OpenQASM 3.0 example files is marked up. The 16
files within the examples provide a fairly comprehensive use of
the OpenQASM markup specification, containing at least one
use of every element defined.

Because of the nature of the srcML Toolkit we can convert
code marked up OpenQASM srcML back into the original
source code. This allows for any srcML file created through
other means (such as manual markup) to be processed and
analyzed as normal. Thus, one can use XPath or our srcQL query
language on the marked up code. Also, XSLT or XPath can be
used to do transformations or refactorings on the code.

IV. STATIC ANALYSIS
Currently, most developers that work with quantum

algorithms typically think of quantum programming on the

for uint i in [0: 3] {
 x q[i];
}

Figure 1: An example fragment of OpenQASM code (top) and its corresponding srcML (bottom). Note that all original source code text is preserved
(indicated by the bold text), including whitespace and comments. Each XML tag represents the syntactic context of the source code element.

<for>for <control><init><decl><type><name>uint</name></type><name>i</name></decl></init> <range>in
<expr><index>[<expr><literal>0</literal><operator>:</operator>
<literal>3</literal></expr>]</index></range></control> <block>{<block_content>
 <expr_stmt><expr><call><name>x</name> <argument_list type="quantum">
 <argument><expr><name><name>q</name><index>[<expr><name>i</name></expr>]</index></name></expr></argument>
 </argument_list></call></expr>;</expr_stmt>
</block_content>}</block></for>

circuit and gate level, with many works such as the Quantivine
tool by Wen et al. focusing on how to better visualize very large
quantum circuits [13]. Because of this focus from researchers,
there is a hesitation to adopt quantum programming languages
into workflows, and as a result most implementations of
OpenQASM and other quantum programming languages do not
support all of the languages’ features.

srcML makes performing static program analysis simple due
to the plethora of XML processing tools. By leveraging these
tool, we create a prototype that enables the static analysis of the
execution order of OpenQASM code to identify patterns and
shortcuts. Providing researchers and developers with this
information allows for quicker and easier understanding of
quantum code and enables the adoption of the language.

A. Execution Order Analysis
An advantage of working with quantum circuits instead of

programming languages is the ability to directly visualize the
occurrence of operations with respect to time. While
OpenQASM does allow a user to specify timing and control the
minutia of execution, the code is organized like any other
programming language, with execution jumping around to
different blocks during execution. OpenQASM also supports
classical control flow structures like if/else statements and loops,
which can further obscure execution order at first glance. Unless
a developer is intimately familiar with the custom gates and
functions within the code, it can be difficult to understand what
is happening to each qubit during execution.

To alleviate this problem, our tool traverses the XML
structure of an OpenQASM srcML file and catalog each
operation performed on a qubit with respect to time in execution.
To accomplish this, we analyze every noteworthy statement
within the code for changes made to a qubit. If a change is found,
the change and the qubit is saved to a log and the search moves
to the next statement.

B. Implementation
Each noteworthy element within OpenQASM requires a

specific approach to successfully analyze and gather any notable
changes. We list the process for analyzing each element:

<decl_stmt>: For every decl_stmt found in the srcML, we
check to see if the variable being declared is a qubit. If it is, we
save the name of the qubit into a list and give it an empty list of
operations for use in storing any changes later on.

<reset>: If the tag is a reset statement, the qubit(s) that the
reset operates on are given a reset operation in their list.

<gate>s and <function>s: If the tag is either a gate or a
function definition, the name of the gate/function is grabbed and
saved to a dictionary alongside the block of code it contains.
Saving the block of code is important, as when a call is made to
the function/gate, the statements within the block need to be
analyzed further. Because each function could call other
functions, this process can become quite nested, and we ensure
that all statements are evaluated in order.

<measure>: If a tag is a measure statement, the measure
operation is given to the qubit(s) that are being measured.

<for>: If the tag is a for loop, multiple steps must be taken
to ensure proper evaluation. First, the range of the for loop is
evaluated to determine which values the looping variable will
hold, and thus determine how many times it will execute.
OpenQASM only supports range-based for loops, so we
reasonably assume that the for loop will have a limited
execution. For each value that the looping variable will hold, a
copy of the for loop’s block is made, and any reference to the
looping variable within each copy is replaced with the
corresponding value. All the copies are then added to the list of
statements, and our execution continues. This loop unrolling
allows us to track precise changes to qubits which are stored in
arrays.

<expr_stmt>: Expression statements require the most
processing of all the other tags, due to calls being present inside
of them. If a <call> sub-element is found within the expression
statement, the quantum arguments that the call passes are saved.
We check to see if the name of the call matches with any of the
standard library gate calls or any function/gate defined within
the code. If a match is found a copy of the corresponding
function/gate’s block is made. Each parameter is replaced with
the corresponding argument from the call, and the block’s
statements are added to the execution stack.

When the tool finishes analyzing the file, it has a list of every
qubit and every operation performed on a qubit with respect to
time. This data is representable in two main formats sorted by
time– as a list of operations per each qubit, or a list of operations
performed on all qubits. Figure 2 showcases some example
output from a simple piece of OpenQASM code.

Figure 2: An example of the execution order analysis performed on a simple
OpenQASM file. Left is the input code, and right is the order analysis output

C. Limitations
Currently, there are some limitations to what the analyzer

can evaluate. While loops are currently not supported, as
evaluating the looping condition is non-trivial and out-of-scope
currently. Additionally, any qubits that are passed classically to
a function are not processed. This does mean that certain
OpenQASM files are not completely evaluated. Alongside this,
if an expression statement makes multiple calls, or a call is found
inside a different statement (such as the condition of an if), the
call is not processed. This is typically rare, but occasionally
happens when using the durationof built-in function.

Time q[0] q[1] q[2]
1 reset reset reset
2 ctrl cx
3 ctrl cx
4 cx ctrl
5 measure measure measure

include "stdgates.inc";

qubit[3] q;

reset q;

for uint i in [0: 2] {
 cx q[i], q[(i+1)%3];
}

bit[3] result;

measure q -> result;

V. QUANTUM PATTERN REFACTORING
Using the output from the execution order analysis, we can

identify many different patterns, optimizations, and refactorings
which are of interest to quantum programmers.

Refactoring code is the process of changing or reorganizing
code while maintaining the same external functionality [14].
Typically, refactoring is done to eliminate code smells – a
segment of code that may be problematic. Work by Chen et al.
[15] has explored eight different quantum computing specific
code smells and how to prevalent them. Other work by Zhao
[16] explores types of refactoring on Q# programs, and
discusses both generic programming refactoring like the
changing of a variable name to more quantum focused issues,
such as consolidating measurement operations. Using srcML
and the available transformation languages, quantum code can
be analyzed for code smells, and then refactored automatically.

Identifying code smells and refactoring them can be
extremely helpful for quantum programmers. Typically,
quantum programs are run on publicly available quantum
machines provided by third-party companies – IBM Quantum is
one such example. Running these programs can take a large
amount of time, particularly as large queues of developer
submitted jobs will form. Ensuring that your code is as efficient
as possible and has no issues is vital to efficiently work on these
platforms, not to mention saving costs.

A. Iteration Patterns
In quantum computing, iteration patterns are small patterns

of code where similar operations are performed in order on
qubits. The patterns are defined to help with the visualization of
large quantum circuits, such as for the Quantivine tool [13]. For
quantum code, these patterns can be used to identify locations
where the code can be either condensed into various loops to
promote readability, or loops can be unrolled to improve
performance on hardware. There are three iteration patterns:
horizontal iteration, vertical iteration, and diagonal iteration.

Horizontal iteration is defined as the same operation
occurring on the same qubit multiple times in a row. To detect
this, we look at the qubit-oriented data and identify places where
the same operation appears multiple times in a row on a qubit.
By searching this way, we also avoid missing instances where
the operations are distant from each other, and other operations
are performed on unrelated qubits in-between. Figure 3
showcases some examples of horizontal iteration within
OpenQASM.

Figure 3: Three examples of horizontal iteration occurring. Highlighted calls

are part of the iteration.

Vertical iteration is the same operation being performed on
multiple different qubits in a row. On a quantum circuit diagram,
these are easy to identify as the operations will take up the same
vertical time slice on the circuit. Adapting this for OpenQASM,

we define vertical iteration as being the same operation
performed on unique qubits one after the other, with no other
operations occurring in between. This differs from horizontal
iteration, in that other operations cannot occur between parts of
the vertical iteration. Figure 4 details some examples of vertical
iteration in OpenQASM code.

Figure 4: Three examples of vertical iteration occurring. Highlighted calls are
part of the iteration. Note that if no other operations occur, the order in which

the qubits are used does not matter.

Diagonal iteration is similar to vertical iteration in that the
same operation must be performed on different qubits each time.
However, diagonal iteration requires the operation to need two
qubits as arguments, and the qubits must form a “chain”, where
each operation links to the previous one through a single qubit.
On a circuit diagram, this forms a step-like pattern which travels
diagonally across the board. The for loop in Figure 2 is an
example of diagonal iteration, and Figure 5 details further
examples of diagonal iteration.

Figure 5: Two examples of diagonal iteration occurring. The highlighted calls

are a part of the iteration

B. Control Recursion and Mirroring
Control recursion is defined simply as an operation being

under two or more control qubits [17]. Identification of this
pattern is easy, and requires only looking at each operation row
in the data for more than one ctrl entry. Alongside this pattern,
Huang and Martonosi introduce the Mirroring pattern, which
involves the deallocation of qubits by reversing any previously
performed operations. OpenQASM provides the reset statement
to accomplish the same thing, so we do not provide any
additional checks for this pattern. To find all places the qubits
are reset back to |0>, searching for all reset operations is
sufficient.

C. CNOTs in Hadamard Bases
Along with identifying patterns, srcML can be used to

identify optimizations to the source code, and implement them
as transformations using srcML. One such example of this is the
use of a CNOT between calls to the Hadamard gate. According
to the book by Rieffel and Polak, performing a CNOT on two
qubits between calling the Hadamard gate on both qubits before
and after the CNOT is equivalent to calling a CNOT with the
arguments reversed [18 p.80]. Figure 6 gives an example of this
transformation.

x q;
x q;
x q;

for uint i in [0:2] {
 x q;
}

x a;
x b;
y b;
x a;
z b;
x a;

x a;
x b;
x c;
x d;

for uint i in [0:10] {
 x q[i];
}

x q[1];
x q[0];
x q[2];

cx $0, $1;
cx $1, $2;
cx $2, $3;

for uint i in [0:5] {
 swap q[i], q[i+1];
}

Figure 6: An example of a code optimization, where a CNOT between two

sets of calls to the Hadamard gate in a code fragment can be replaced with the
reversed CNOT and removal of the Hadamard gates.

D. Combining Gate Calls
In OpenQASM, all standard library and user defined gates

are fundamentally defined by two primitive gates, U and gphase.
U is the unitary matrix gate and gphase is the global phase gate.
By analyzing all operations linearly on each individual qubit,
sums of the underlying U calls made to each qubit can be
constructed and replace consecutive gate calls. Table 2 details
an example of this on two qubit calls.

Table 2: An example of how two different gate calls can be summed into one

singular unitary matrix operation

Reducing code in this manner provides both benefits and
deficits. Positively, condensing code in this manner can reduce
the amount of overhead, execution time, and amount of noise on
certain hardware as the amount of U calls made in total is
reduced. Negatively, this will obscure the code and make it
much harder to sight-read. Custom-named gates are easier for a
reader to understand at a glance.

E. Code Reusability
Quantum programs are highly susceptible to repeating code.

Due to direct translation from quantum circuits to quantum code,
a lot of quantum programming code can end up being very
linear, with little to no encapsulation within functions and gates.

By analyzing the series of operations, the source code can be
refactored by identifying common subsets of operations which
are used multiple times within the file. These subsets can then
be encapsulated into a function or gate, and all instances of the
original calls can be replaced with a single call to the new
function/gate. This can serve to make quantum code more
readable, as it will reduce file size and encapsulate commonly
occurring series of operations into a single location.

This also makes future development easier, as the
function/gate can now be called instead of copying the exact
operations again.

VI. CONCLUSIONS AND FUTURE WORK
By supporting for OpenQASM in the srcML infrastructure,

a large realm of program analysis is made available to the
quantum community. We demonstrate a tool that uses srcML to
perform some simple analysis, and then provide examples of
what can be achieved through this analysis.

In the future, our qubit analyzer can be improved to support
more of OpenQASM’s classical and quantum features. Features
like branching, delays, boxes, and others can support finer-grain
analysis, giving researchers more insight into their code.

Additionally, once the Parser Generator for srcML is
working, we plan to expand support for other quantum
programming languages. The elements added in the
OpenQASM markup specification are designed to be as
generically named and formatted as possible, so future quantum
languages can be added and reuse the elements. Doing this will
ensure that analysis can be as language agnostic as possible.

ACKNOWLEDGEMENTS
This work was supported in part by grants from the US

National Science Foundation: CNS 20-16465, OAC 22-38734,
OAC 22-30111, OAC 22-17021, OAC 23-11950.

REFERENCES
[1] A. W. Cross et al., “OpenQASM 3: A broader and deeper

quantum assembly language,” ACM Transactions on
Quantum Computing, vol. 3, no. 3, pp. 1–50, Sep. 2022,
doi: 10.1145/3505636.

[2] A. W. Cross, L. S. Bishop, J. Smolin, and J. M. Gambetta,
“OpenQasm Live Specification — OpenQASM Live
Specification documentation.” Accessed: Nov. 30, 2023.
[Online]. Available: https://openqasm.com/index.html

[3] A. J. Abhari et al., “Scaffold: Quantum Programming
Language,” Jul. 2012. Accessed: Apr. 02, 2024. [Online].
https://www.semanticscholar.org/paper/Scaffold%3A-
Quantum-Programming-Language-Abhari-
Faruque/427e9698df9c2080547ca97411fb8d13fadee381

[4] K. M. Svore et al., “Q#: Enabling scalable quantum
computing and development with a high-level domain-
specific language,” in Proceedings of the Real World
Domain Specific Languages Workshop 2018, Feb. 2018,
pp. 1–10. doi: 10.1145/3183895.3183901.

[5] M. L. Collard, M. J. Decker, and J. I. Maletic,
“Lightweight Transformation and Fact Extraction with the
srcML Toolkit,” in 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation,
Williamsburg, Virginia, USA: IEEE, Sep. 2011, pp. 173–
184. doi: 10.1109/SCAM.2011.19.

[6] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An
Infrastructure for the Exploration, Analysis, and
Manipulation of Source Code: A Tool Demonstration,” in
29th IEEE International Conference on Software
Maintenance (ICSM), 2013, pp. 516–519. doi:
10.1109/ICSM.2013.85.

[7] M. Paltenghi and M. Pradel, “LintQ: A Static Analysis
Framework for Qiskit Quantum Programs.” arXiv, Oct.
01, 2023. doi: 10.48550/arXiv.2310.00718.

[8] P. Zhao, X. Wu, Z. Li, and J. Zhao, “QChecker: Detecting
Bugs in Quantum Programs via Static Analysis,” in 2023
IEEE/ACM 4th International Workshop on Quantum
Software Engineering (Q-SE), May 2023, pp. 50–57. doi:
10.1109/Q-SE59154.2023.00014.

[9] M. Kaul, A. Küchler, and C. Banse, “A Uniform
Representation of Classical and Quantum Source Code for

...
h a;
h b;

cx a, b;

h a;
h b;
...

...
cx b, a
...

Gate Call Equivalent U call Sum
x $0; U(π, π/2, π) $0;
y $0; U(π, π/2, π/2) $0; U(2 * π, π/2, 3* π/2) $0;

Static Code Analysis,” in 2023 IEEE International
Conference on Quantum Computing and Engineering
(QCE), Sep. 2023, pp. 1013–1019. doi:
10.1109/QCE57702.2023.00115.

[10] S. Xia and J. Zhao, “Static Entanglement Analysis of
Quantum Programs,” in 2023 IEEE/ACM 4th
International Workshop on Quantum Software
Engineering (Q-SE), May 2023, pp. 42–49. doi:
10.1109/Q-SE59154.2023.00013.

[11] P. Zhao, J. Zhao, and L. Ma, “Identifying Bug Patterns in
Quantum Programs,” in 2021 IEEE/ACM 2nd
International Workshop on Quantum Software
Engineering (Q-SE), Jun. 2021, pp. 16–21. doi:
10.1109/Q-SE52541.2021.00011.

[12] P. K. Nayak, K. V. Kher, M. B. Chandra, M. V. P. Rao,
and L. Zhang, “Q-PAC: Automated Detection of Quantum
Bug-Fix Patterns.” arXiv, Nov. 29, 2023. doi:
10.48550/arXiv.2311.17705.

[13] Z. Wen et al., “Quantivine: A Visualization Approach for
Large-scale Quantum Circuit Representation and
Analysis,” IEEE Trans. Visual. Comput. Graphics, pp. 1–
11, 2023, doi: 10.1109/TVCG.2023.3327148.

[14] M. Fowler, Refactoring: Improving the Design of Existing
Code, 2nd ed. in Addison-Wesley Signature Series
(Fowler). Addison-Wesley Professional, 2018.

[15] Q. Chen, R. Câmara, J. Campos, A. Souto, and I. Ahmed,
“The Smelly Eight: An Empirical Study on the Prevalence
of Code Smells in Quantum Computing,” in 2023
IEEE/ACM 45th International Conference on Software
Engineering (ICSE), May 2023, pp. 358–370. doi:
10.1109/ICSE48619.2023.00041.

[16] J. Zhao, “On Refactoring Quantum Programs in Q#,” in
2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), Sep. 2023, pp. 169–
172. doi: 10.1109/QCE57702.2023.10203.

[17] Y. Huang and M. Martonosi, “Statistical assertions for
validating patterns and finding bugs in quantum
programs,” in Proceedings of the 46th International
Symposium on Computer Architecture, in ISCA ’19. New
York, NY, USA: Association for Computing Machinery,
Jun. 2019, pp. 541–553. doi: 10.1145/3307650.3322213.

[18] E. Rieffel and W. Polak, Quantum computing: a gentle
introduction. in Scientific and engineering computation.
Cambridge, Mass.: MIT Press, 2011. Accessed: Nov. 28,
2023. [Online]. Available:
http://www.books24x7.com/marc.asp?bookid=52592

