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Abstract—The work aims to enable the use of common 

software engineering techniques and tools for quantum 
programming languages (e.g., OpenQASM). With the increased 
interest in quantum computing, researchers are adopting the use 
of higher-level quantum programming languages versus low-level 
circuit diagrams. While general purpose programming languages 
(e.g., C++, Python) are highly supported by a variety of software 
engineering tools, these novel programming languages for 
quantum computing have almost no support. Useable tools for 
debugging, static analysis, error detection, and transformation are 
currently non-existent. This work extends an existing software 
infrastructure (i.e., srcML) for the analysis, exploration, and 
manipulation of source code to OpenQASM. The srcML 
infrastructure, via parsing, generates abstract syntax information 
of programs to support high-level querying and analysis of the 
source code. With this, quantum developers can extract 
information and identify possible errors or inefficiencies in their 
programs. The paper presents the basic syntactic markup for 
OpenQASM. Also, a number of relevant quantum-based problems 
(e.g., iteration patterns, control recusion) are described and 
examples of how they are addressed using srcML is given.  

Keywords—quantum programming, static program analysis, 
openqasm 

I. INTRODUCTION 
Quantum computing has exploded in popularity in recent 

years. Quantum computing utilizes the principles of quantum 
mechanics to process information in ways that are 
fundamentally different from classical computing. The basic 
principle is the use of quantum bits, or qubits, which can exist in 
multiple states simultaneously. This allows us to solve certain 
complex problems more efficiently than classical computers. As 
more and more facets of industry and research adopt quantum 
computing to solve difficult problems, more technologies are 
being created to support the exploration of this field. One such 
technology is quantum programming languages. Languages 
such as OpenQASM [1], [2], Scaffold [3], and Q# [4] provide a 
means for developers to write quantum programs that can be 
executed on quantum hardware (or simulators). These 

languages, similar to traditional programming languages, allow 
developers to write algorithms and express quantum circuits. 
OpenQASM (for Quantum assembly language) is a low-level 
programming language that provides direct access to quantum 
hardware. It supports both classical and quantum instructions. 
However, unlike classical programming languages, quantum 
programming languages lack a wide range of software 
engineering tools to assist developers in the construction of 
programs. There are no tools for conducting basic static analysis 
of the code to assist in finding errors, tracking down 
inefficiencies, or identifying common patterns. The lack of such 
tools can slow the development and adoption of quantum 
programming languages. As quantum computing gains more 
attention, there will be a growing need for these tools that assist 
developers in understanding and working with quantum 
programs. By using such tools developers will be able to identify 
potential errors, optimize performance, and extract meaningful 
information. Moreover, the availability of such tools can 
encourage developers to adopt quantum programming 
languages rather than relying solely on quantum circuit analysis.  

In this paper, we begin work on extending the srcML 
infrastructure [5], [6] to support OpenQASM. srcML is a robust 
set of tools that generates an XML representation of a program's 
source code and abstract syntax based on a predefined markup 
specification of the language’s grammar. This XML format 
preserves all the syntactic information of the original code, 
including whitespace, and currently supports various traditional 
programming languages (e.g., C, C++, C#, Java). The srcML 
representation enables advanced code analysis and manipulation 
using standard XML technologies (e.g., XPath, XSLT). By 
providing a standardized, simple format for processing and 
analyzing source code, srcML enables a language to undergo 
static analysis. Adding quantum programming languages to 
srcML opens many possibilities for program analysis which 
were previously difficult or limited in scope. 

We describe the process of integrating OpenQASM into 
srcML by creating a markup specification that defines how the 
language structures are labeled in the resulting XML 



representation. We present the markup specification for 
OpenQASM, covering both its classical and quantum features. 
Furthermore, we introduce a static time analyzer that examines 
quantum operations performed on qubits within an OpenQASM 
program. Using the output of this analyzer, we identify four 
common quantum language patterns: Horizontal Iteration, 
Vertical Iteration, Diagonal Iteration, and Control Recursion. 
In addition to pattern identification, we discuss how the srcML 
representation of OpenQASM programs can facilitate quantum 
code refactoring and code smell detection. 

The contribution of this paper can be summarized as:  

• The creation of a markup specification which begins the 
process of adding OpenQASM to the srcML Toolkit. 

• The manual markup of OpenQASM code examples into 
their srcML format and the creation of a tool which 
performs analysis of the execution order of the source 
code. 

• A cursory exploration of coding patterns, refactorings, 
and code smells in quantum code that srcML enables the 
analysis of 

The rest of the paper is organized as follows. Section II 
discusses related works in quantum software engineering and 
program analysis. Section III describes the process of extending 
srcML to support OpenQASM, including the markup 
specification and the creation of srcML files. Section IV 
introduces the static time analyzer and its application in 
identifying quantum patterns. Section V explores quantum code 
refactoring identification. Finally, Section VI concludes the 
paper and outlines future research directions. 

II. RELATED WORK 
There is little literature on static program analysis tools for 

quantum programs. LintQ [7] and QChecker [8] are two recent 
works that focus on bug detection in Qiskit-based quantum 
programs. LintQ identifies potential bugs by mapping a set of 
quantum-specific abstractions to program information. This 
information is extracted using CodeQL, a static analysis engine. 
QChecker detects bugs by directly analyzing the abstract syntax 
tree (AST) representation of Qiskit programs. Kaul et al. [9] 
implement a tool, QCPG, that extends Code Property Graphs to 
analyze quantum programs written Qiskit or OpenQASM. The 
QCPG includes information from both the classical and 
quantum parts to enable static analysis of both domains. Other 
problem-specific techniques to analyze quantum code include 
entanglement analysis [10] to detect possible entanglement 
errors within and between modules in Q#. Zhao et al. [11] 
identify and categorize common bug patterns in quantum 
programs written in the Qiskit programming language. Nayak et 
al. [12] propose a new framework, Q-PAC, that is used to detect 
bug-fix patterns automatically in Qiskit quantum code using 
ASTs, regular expressions, and semantic checks However, these 
approaches have a few limitations. First, they are tightly coupled 
to specific quantum programming languages or frameworks. 
LintQ relies on CodeQL and Qiskit-specific abstractions, 
QChecker is tightly coupled with Qiskit's AST structure, and the 
QCPG prototype is currently specifically implemented for 
Qiskit and OpenQASM. Extending these tools to analyze 

programs written in other quantum languages can be 
problematic without major modifications to the design. Work 
dealing with pattern detection is tied to the specific syntax and 
semantics of Qiskit. Other work dealing with problem-specific 
techniques, such as entanglement analysis for Q#, are not easily 
generalizable to other problem domains. 

Our work here recognizes the need for a more general 
approach to quantum program analysis. We leverage the srcML 
infrastructure to represent quantum programs in a standardized 
XML format to allow for a flexible and language-agnostic 
program information extraction process that can be applied to 
various quantum programming languages. This approach can 
easily capture the structure and semantics of quantum programs 
to facilitate a wide range of static analysis tasks such as bug 
detection, optimization, and pattern extraction. A key advantage 
of our approach is that supporting a new quantum programming 
language only requires the addition of a markup specification, 
which defines the language's elements, sub-elements, and their 
relationships. Our work complements existing tools and 
techniques by providing a versatile foundation for general-
purpose static analysis tools. 

III. OPENQASM IN SRCML 
srcML is a powerful, robust, and highly scalable 

infrastructure used for transforming source code into a 
structured XML representation for multiple programming 
languages. It includes a powerful parsing technology that allows 
for efficient transformation of source code to XML and vice 
versa without any loss of information (of the original source 
code). The XML representation adds abstract syntax 
information directly into the source code. Because of this, a user 
has access to the source code and abstract syntax tree 
simultaneously. An abstract syntax tree (AST) is a hierarchical 
representation of the syntactic structure of a program. Each 
element in the srcML AST corresponds to a specific syntactic 
construct in the source code, such as a function, a loop, or an 
expression. The elements are nested according to the structure 
of the code, with parent elements containing child elements that 
represent their constituent parts. For example, a function 
declaration element may contain child elements for the function 
name, parameters, and function body. Figure 1 details a small 
example of OpenQASM source code and its corresponding 
srcML markup. srcML differs from other ASTs in that alongside 
the (exact) original source code, the whitespace and comments 
are preserved in the XML. Compiler generated ASTs drop quite 
a lot of original syntactic information. Making it impossible to 
do such things as refactoring. srcML allows for the in-depth 
exploration, analysis, and manipulation of source code by 
leveraging various common XML technologies (e.g., XPath).  

Compared to the other languages that srcML supports, 
OpenQASM is very simple in terms of syntax and number of 
features. However, because of OpenQASM’s status as a 
quantum programming language, many new tags need to be 
defined in srcML to support these features. OpenQASM also 
supports classical programming constructs, which srcML 
already supports in other languages and thus also supports them 
in OpenQASM. 



A. OpenQASM Markup Specification 
Internally, srcML maintains parsers that handle the 

conversion from source code to srcML. These parsers are 
manually crafted using custom-made language grammars. When 
a new language is introduced to srcML, the parsers must be 
updated to support the syntax of the new language and handle 
edge cases that invariantly appear. 

This process is very manual and can cause great difficulty 
when trying to add a language that is syntactically very different 
from previous languages. To avoid this, we are currently 
developing a set of parsing generation tools that can take a 
markup specification file and produce a parser for the language 
it represents. The markup specification is an XML document 
that defines what elements the language uses, what sub-elements 
and keywords each element has, and what sub-elements are 
optional or required. Currently, the parser generator is still under 
development and not fully functioning – however, the format for 
the markup specifications is well-defined, and allows for the 
markup of source code files. 

To add OpenQASM to srcML, we create the markup 
specification for the language. Table 1 details the contents of the 
markup specification, including the new tags that are introduced 
to account for quantum programming’s unique features. 

Category srcML Elements 

Statement 

barrier, box, break, calibration, 
decl_stmt, defcalgrammar, 
expr_stmt, extern, for, if_stmt, 
include, measure, pragma, reset, 
version, while 

Function/Gate 
argument, argument_list, call, 
function, gate, gate_decl, 
parameter, parameter_list, return 

Extra Markup literal, operator, name, type 

Table 1: A table listing the statement tags srcML used to mark up 
OpenQASM. Bold elements are new elements introduced for OpenQASM. 

The markup specification for OpenQASM supports the 
current version of OpenQASM 3.0. Because 3.0 is backwards 
compatible with OpenQASM 2.0, the markup specification will 
markup either version as encountered. An example being the 
change from measure being an operation in 2.0 to being a 
statement in 3.0. If measure is encountered within an 
expression, the markup specification treats it as an <operator> 

element. If it is used with its statement syntax, it is given the new 
<measure> element. 

Beyond the addition of new elements in the markup, other 
additions are introduced in the OpenQASM markup 
specification – the most substantial of which involve qubits. 
OpenQASM supports passing both classical values and qubits to 
functions and gates as parameters. Passing classical values to 
these syntactically resembles how classical languages pass them 
– with a comma-separated list of values within parentheses. For 
qubits, OpenQASM uses a slightly different syntax, where 
parentheses are not used, and the qubits are just listed between 
commas. Calls, gates, and functions support having both kinds 
of parameters, meaning that some kind of disambiguation is 
needed within srcML. We introduce the special attribute 
type="quantum" onto the qubit parameter and argument lists, 
which allows a researcher to collect classical, qubit, or both lists 
as needed. Alongside this, a new type of literal in srcML has 
been added - <literal type="qubit">. This literal is for the 
physical qubit syntax in OpenQASM, where values like $0 can 
be used to represent hardware qubits when ran on physical 
machines. 

The markup specification uses the <call> element for both 
calls to functions and gates, as syntactically they are identical 
due to both allowing for classical and qubit parameters. 

B. Creating srcML Files 
With the markup specification, OpenQASM source code 

files can now easily be parsed and marked up into srcML, 
allowing for static analysis to be performed. The parser for this 
is not yet released but will be in the near future. For this work, 
the suite of OpenQASM 3.0 example files is marked up. The 16 
files within the examples provide a fairly comprehensive use of 
the OpenQASM markup specification, containing at least one 
use of every element defined. 

Because of the nature of the srcML Toolkit we can convert 
code marked up OpenQASM srcML back into the original 
source code. This allows for any srcML file created through 
other means (such as manual markup) to be processed and 
analyzed as normal. Thus, one can use XPath or our srcQL query 
language on the marked up code. Also, XSLT or XPath can be 
used to do transformations or refactorings on the code. 

IV. STATIC ANALYSIS 
Currently, most developers that work with quantum 

algorithms typically think of quantum programming on the 

for uint i in [0: 3] { 
    x q[i]; 
} 

Figure 1: An example fragment of OpenQASM code (top) and its corresponding srcML (bottom). Note that all original source code text is preserved 
(indicated by the bold text), including whitespace and comments. Each XML tag represents the syntactic context of the source code element. 

<for>for <control><init><decl><type><name>uint</name></type><name>i</name></decl></init> <range>in 
<expr><index>[<expr><literal>0</literal><operator>:</operator> 
<literal>3</literal></expr>]</index></range></control> <block>{<block_content> 
    <expr_stmt><expr><call><name>x</name> <argument_list type="quantum"> 
    <argument><expr><name><name>q</name><index>[<expr><name>i</name></expr>]</index></name></expr></argument> 
    </argument_list></call></expr>;</expr_stmt> 
</block_content>}</block></for> 



circuit and gate level, with many works such as the Quantivine 
tool by Wen et al. focusing on how to better visualize very large 
quantum circuits [13]. Because of this focus from researchers, 
there is a hesitation to adopt quantum programming languages 
into workflows, and as a result most implementations of 
OpenQASM and other quantum programming languages do not 
support all of the languages’ features. 

srcML makes performing static program analysis simple due 
to the plethora of XML processing tools. By leveraging these 
tool, we create a prototype that enables the static analysis of the 
execution order of OpenQASM code to identify patterns and 
shortcuts. Providing researchers and developers with this 
information allows for quicker and easier understanding of 
quantum code and enables the adoption of the language. 

A. Execution Order Analysis 
An advantage of working with quantum circuits instead of 

programming languages is the ability to directly visualize the 
occurrence of operations with respect to time. While 
OpenQASM does allow a user to specify timing and control the 
minutia of execution, the code is organized like any other 
programming language, with execution jumping around to 
different blocks during execution. OpenQASM also supports 
classical control flow structures like if/else statements and loops, 
which can further obscure execution order at first glance. Unless 
a developer is intimately familiar with the custom gates and 
functions within the code, it can be difficult to understand what 
is happening to each qubit during execution. 

To alleviate this problem, our tool traverses the XML 
structure of an OpenQASM srcML file and catalog each 
operation performed on a qubit with respect to time in execution. 
To accomplish this, we analyze every noteworthy statement 
within the code for changes made to a qubit. If a change is found, 
the change and the qubit is saved to a log and the search moves 
to the next statement. 

B. Implementation 
Each noteworthy element within OpenQASM requires a 

specific approach to successfully analyze and gather any notable 
changes. We list the process for analyzing each element: 

<decl_stmt>: For every decl_stmt found in the srcML, we 
check to see if the variable being declared is a qubit. If it is, we 
save the name of the qubit into a list and give it an empty list of 
operations for use in storing any changes later on. 

<reset>: If the tag is a reset statement, the qubit(s) that the 
reset operates on are given a reset operation in their list. 

<gate>s and <function>s: If the tag is either a gate or a 
function definition, the name of the gate/function is grabbed and 
saved to a dictionary alongside the block of code it contains. 
Saving the block of code is important, as when a call is made to 
the function/gate, the statements within the block need to be 
analyzed further. Because each function could call other 
functions, this process can become quite nested, and we ensure 
that all statements are evaluated in order. 

<measure>: If a tag is a measure statement, the measure 
operation is given to the qubit(s) that are being measured. 

<for>: If the tag is a for loop, multiple steps must be taken 
to ensure proper evaluation. First, the range of the for loop is 
evaluated to determine which values the looping variable will 
hold, and thus determine how many times it will execute. 
OpenQASM only supports range-based for loops, so we 
reasonably assume that the for loop will have a limited 
execution. For each value that the looping variable will hold, a 
copy of the for loop’s block is made, and any reference to the 
looping variable within each copy is replaced with the 
corresponding value. All the copies are then added to the list of 
statements, and our execution continues. This loop unrolling 
allows us to track precise changes to qubits which are stored in 
arrays. 

<expr_stmt>: Expression statements require the most 
processing of all the other tags, due to calls being present inside 
of them. If a <call> sub-element is found within the expression 
statement, the quantum arguments that the call passes are saved. 
We check to see if the name of the call matches with any of the 
standard library gate calls or any function/gate defined within 
the code. If a match is found a copy of the corresponding 
function/gate’s block is made. Each parameter is replaced with 
the corresponding argument from the call, and the block’s 
statements are added to the execution stack.  

When the tool finishes analyzing the file, it has a list of every 
qubit and every operation performed on a qubit with respect to 
time. This data is representable in two main formats sorted by 
time– as a list of operations per each qubit, or a list of operations 
performed on all qubits. Figure 2 showcases some example 
output from a simple piece of OpenQASM code. 

 

 
Figure 2: An example of the execution order analysis performed on a simple 
OpenQASM file. Left is the input code, and right is the order analysis output 

C. Limitations 
Currently, there are some limitations to what the analyzer 

can evaluate. While loops are currently not supported, as 
evaluating the looping condition is non-trivial and out-of-scope 
currently. Additionally, any qubits that are passed classically to 
a function are not processed. This does mean that certain 
OpenQASM files are not completely evaluated. Alongside this, 
if an expression statement makes multiple calls, or a call is found 
inside a different statement (such as the condition of an if), the 
call is not processed. This is typically rare, but occasionally 
happens when using the durationof built-in function. 

Time q[0] q[1] q[2] 
1 reset reset reset 
2 ctrl cx  
3  ctrl cx 
4 cx  ctrl 
5 measure measure measure 

 

include "stdgates.inc"; 
 
qubit[3] q; 
 
reset q; 
 
for uint i in [0: 2] { 
  cx q[i], q[(i+1)%3]; 
} 
 
bit[3] result; 
 
measure q -> result; 
 



V. QUANTUM PATTERN REFACTORING 
Using the output from the execution order analysis, we can 

identify many different patterns, optimizations, and refactorings 
which are of interest to quantum programmers. 

Refactoring code is the process of changing or reorganizing 
code while maintaining the same external functionality [14]. 
Typically, refactoring is done to eliminate code smells – a 
segment of code that may be problematic. Work by Chen et al. 
[15] has explored eight different quantum computing specific 
code smells and how to prevalent them. Other work by Zhao 
[16] explores types of refactoring on Q# programs, and 
discusses both generic programming refactoring like the 
changing of a variable name to more quantum focused issues, 
such as consolidating measurement operations. Using srcML 
and the available transformation languages, quantum code can 
be analyzed for code smells, and then refactored automatically. 

Identifying code smells and refactoring them can be 
extremely helpful for quantum programmers. Typically, 
quantum programs are run on publicly available quantum 
machines provided by third-party companies – IBM Quantum is 
one such example. Running these programs can take a large 
amount of time, particularly as large queues of developer 
submitted jobs will form. Ensuring that your code is as efficient 
as possible and has no issues is vital to efficiently work on these 
platforms, not to mention saving costs. 

A. Iteration Patterns 
In quantum computing, iteration patterns are small patterns 

of code where similar operations are performed in order on 
qubits. The patterns are defined to help with the visualization of 
large quantum circuits, such as for the Quantivine tool [13]. For 
quantum code, these patterns can be used to identify locations 
where the code can be either condensed into various loops to 
promote readability, or loops can be unrolled to improve 
performance on hardware. There are three iteration patterns: 
horizontal iteration, vertical iteration, and diagonal iteration. 

Horizontal iteration is defined as the same operation 
occurring on the same qubit multiple times in a row. To detect 
this, we look at the qubit-oriented data and identify places where 
the same operation appears multiple times in a row on a qubit. 
By searching this way, we also avoid missing instances where 
the operations are distant from each other, and other operations 
are performed on unrelated qubits in-between. Figure 3 
showcases some examples of horizontal iteration within 
OpenQASM. 

 
Figure 3: Three examples of horizontal iteration occurring. Highlighted calls 

are part of the iteration. 

Vertical iteration is the same operation being performed on 
multiple different qubits in a row. On a quantum circuit diagram, 
these are easy to identify as the operations will take up the same 
vertical time slice on the circuit. Adapting this for OpenQASM, 

we define vertical iteration as being the same operation 
performed on unique qubits one after the other, with no other 
operations occurring in between. This differs from horizontal 
iteration, in that other operations cannot occur between parts of 
the vertical iteration. Figure 4 details some examples of vertical 
iteration in OpenQASM code. 

 
Figure 4: Three examples of vertical iteration occurring. Highlighted calls are 
part of the iteration. Note that if no other operations occur, the order in which 

the qubits are used does not matter. 

Diagonal iteration is similar to vertical iteration in that the 
same operation must be performed on different qubits each time. 
However, diagonal iteration requires the operation to need two 
qubits as arguments, and the qubits must form a “chain”, where 
each operation links to the previous one through a single qubit. 
On a circuit diagram, this forms a step-like pattern which travels 
diagonally across the board. The for loop in Figure 2 is an 
example of diagonal iteration, and Figure 5 details further 
examples of diagonal iteration. 

 
Figure 5: Two examples of diagonal iteration occurring. The highlighted calls 

are a part of the iteration 

B. Control Recursion and Mirroring 
Control recursion is defined simply as an operation being 

under two or more control qubits [17]. Identification of this 
pattern is easy, and requires only looking at each operation row 
in the data for more than one ctrl entry. Alongside this pattern, 
Huang and Martonosi introduce the Mirroring pattern, which 
involves the deallocation of qubits by reversing any previously 
performed operations. OpenQASM provides the reset statement 
to accomplish the same thing, so we do not provide any 
additional checks for this pattern. To find all places the qubits 
are reset back to |0>, searching for all reset operations is 
sufficient. 

C. CNOTs in Hadamard Bases 
Along with identifying patterns, srcML can be used to 

identify optimizations to the source code, and implement them 
as transformations using srcML. One such example of this is the 
use of a CNOT between calls to the Hadamard gate. According 
to the book by Rieffel and Polak, performing a CNOT on two 
qubits between calling the Hadamard gate on both qubits before 
and after the CNOT is equivalent to calling a CNOT with the 
arguments reversed [18 p.80]. Figure 6 gives an example of this 
transformation. 

x q; 
x q; 
x q; 

for uint i in [0:2] { 
  x q; 
} 

x a; 
x b; 
y b; 
x a; 
z b; 
x a; 

 

x a; 
x b; 
x c; 
x d; 

for uint i in [0:10] { 
  x q[i]; 
} 

x q[1]; 
x q[0]; 
x q[2]; 

 

cx $0, $1; 
cx $1, $2; 
cx $2, $3; 

for uint i in [0:5] { 
  swap q[i], q[i+1]; 
} 

 



 
Figure 6: An example of a code optimization, where a CNOT between two 

sets of calls to the Hadamard gate in a code fragment can be replaced with the 
reversed CNOT and removal of the Hadamard gates. 

D. Combining Gate Calls 
In OpenQASM, all standard library and user defined gates 

are fundamentally defined by two primitive gates, U and gphase. 
U is the unitary matrix gate and gphase is the global phase gate. 
By analyzing all operations linearly on each individual qubit, 
sums of the underlying U calls made to each qubit can be 
constructed and replace consecutive gate calls. Table 2 details 
an example of this on two qubit calls. 

 
Table 2: An example of how two different gate calls can be summed into one 

singular unitary matrix operation 

Reducing code in this manner provides both benefits and 
deficits. Positively, condensing code in this manner can reduce 
the amount of overhead, execution time, and amount of noise on 
certain hardware as the amount of U calls made in total is 
reduced. Negatively, this will obscure the code and make it 
much harder to sight-read. Custom-named gates are easier for a 
reader to understand at a glance. 

E. Code Reusability 
Quantum programs are highly susceptible to repeating code. 

Due to direct translation from quantum circuits to quantum code, 
a lot of quantum programming code can end up being very 
linear, with little to no encapsulation within functions and gates. 

By analyzing the series of operations, the source code can be 
refactored by identifying common subsets of operations which 
are used multiple times within the file. These subsets can then 
be encapsulated into a function or gate, and all instances of the 
original calls can be replaced with a single call to the new 
function/gate. This can serve to make quantum code more 
readable, as it will reduce file size and encapsulate commonly 
occurring series of operations into a single location.  

This also makes future development easier, as the 
function/gate can now be called instead of copying the exact 
operations again. 

VI. CONCLUSIONS AND FUTURE WORK 
By supporting for OpenQASM in the srcML infrastructure, 

a large realm of program analysis is made available to the 
quantum community. We demonstrate a tool that uses srcML to 
perform some simple analysis, and then provide examples of 
what can be achieved through this analysis. 

In the future, our qubit analyzer can be improved to support 
more of OpenQASM’s classical and quantum features. Features 
like branching, delays, boxes, and others can support finer-grain 
analysis, giving researchers more insight into their code. 

Additionally, once the Parser Generator for srcML is 
working, we plan to expand support for other quantum 
programming languages. The elements added in the 
OpenQASM markup specification are designed to be as 
generically named and formatted as possible, so future quantum 
languages can be added and reuse the elements. Doing this will 
ensure that analysis can be as language agnostic as possible. 

ACKNOWLEDGEMENTS 
This work was supported in part by grants from the US 

National Science Foundation: CNS 20-16465, OAC 22-38734, 
OAC 22-30111, OAC 22-17021, OAC 23-11950. 

REFERENCES 
[1] A. W. Cross et al., “OpenQASM 3: A broader and deeper 

quantum assembly language,” ACM Transactions on 
Quantum Computing, vol. 3, no. 3, pp. 1–50, Sep. 2022, 
doi: 10.1145/3505636. 

[2] A. W. Cross, L. S. Bishop, J. Smolin, and J. M. Gambetta, 
“OpenQasm Live Specification — OpenQASM Live 
Specification documentation.” Accessed: Nov. 30, 2023. 
[Online]. Available: https://openqasm.com/index.html 

[3] A. J. Abhari et al., “Scaffold: Quantum Programming 
Language,” Jul. 2012. Accessed: Apr. 02, 2024. [Online]. 
https://www.semanticscholar.org/paper/Scaffold%3A-
Quantum-Programming-Language-Abhari-
Faruque/427e9698df9c2080547ca97411fb8d13fadee381 

[4] K. M. Svore et al., “Q#: Enabling scalable quantum 
computing and development with a high-level domain-
specific language,” in Proceedings of the Real World 
Domain Specific Languages Workshop 2018, Feb. 2018, 
pp. 1–10. doi: 10.1145/3183895.3183901. 

[5] M. L. Collard, M. J. Decker, and J. I. Maletic, 
“Lightweight Transformation and Fact Extraction with the 
srcML Toolkit,” in 2011 IEEE 11th International Working 
Conference on Source Code Analysis and Manipulation, 
Williamsburg, Virginia, USA: IEEE, Sep. 2011, pp. 173–
184. doi: 10.1109/SCAM.2011.19. 

[6] M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An 
Infrastructure for the Exploration, Analysis, and 
Manipulation of Source Code: A Tool Demonstration,” in 
29th IEEE International Conference on Software 
Maintenance (ICSM), 2013, pp. 516–519. doi: 
10.1109/ICSM.2013.85. 

[7] M. Paltenghi and M. Pradel, “LintQ: A Static Analysis 
Framework for Qiskit Quantum Programs.” arXiv, Oct. 
01, 2023. doi: 10.48550/arXiv.2310.00718. 

[8] P. Zhao, X. Wu, Z. Li, and J. Zhao, “QChecker: Detecting 
Bugs in Quantum Programs via Static Analysis,” in 2023 
IEEE/ACM 4th International Workshop on Quantum 
Software Engineering (Q-SE), May 2023, pp. 50–57. doi: 
10.1109/Q-SE59154.2023.00014. 

[9] M. Kaul, A. Küchler, and C. Banse, “A Uniform 
Representation of Classical and Quantum Source Code for 

... 
h a; 
h b; 
 
cx a, b; 
 
h a; 
h b; 
... 

 
 
 
... 
cx b, a 
... 
 
 
 

Gate Call Equivalent U call Sum 
x $0; U(π, π/2, π) $0;  
y $0; U(π, π/2, π/2) $0; U(2 * π, π/2, 3* π/2) $0; 

 



Static Code Analysis,” in 2023 IEEE International 
Conference on Quantum Computing and Engineering 
(QCE), Sep. 2023, pp. 1013–1019. doi: 
10.1109/QCE57702.2023.00115. 

[10] S. Xia and J. Zhao, “Static Entanglement Analysis of 
Quantum Programs,” in 2023 IEEE/ACM 4th 
International Workshop on Quantum Software 
Engineering (Q-SE), May 2023, pp. 42–49. doi: 
10.1109/Q-SE59154.2023.00013. 

[11] P. Zhao, J. Zhao, and L. Ma, “Identifying Bug Patterns in 
Quantum Programs,” in 2021 IEEE/ACM 2nd 
International Workshop on Quantum Software 
Engineering (Q-SE), Jun. 2021, pp. 16–21. doi: 
10.1109/Q-SE52541.2021.00011. 

[12] P. K. Nayak, K. V. Kher, M. B. Chandra, M. V. P. Rao, 
and L. Zhang, “Q-PAC: Automated Detection of Quantum 
Bug-Fix Patterns.” arXiv, Nov. 29, 2023. doi: 
10.48550/arXiv.2311.17705. 

[13] Z. Wen et al., “Quantivine: A Visualization Approach for 
Large-scale Quantum Circuit Representation and 
Analysis,” IEEE Trans. Visual. Comput. Graphics, pp. 1–
11, 2023, doi: 10.1109/TVCG.2023.3327148. 

[14] M. Fowler, Refactoring: Improving the Design of Existing 
Code, 2nd ed. in Addison-Wesley Signature Series 
(Fowler). Addison-Wesley Professional, 2018. 

[15] Q. Chen, R. Câmara, J. Campos, A. Souto, and I. Ahmed, 
“The Smelly Eight: An Empirical Study on the Prevalence 
of Code Smells in Quantum Computing,” in 2023 
IEEE/ACM 45th International Conference on Software 
Engineering (ICSE), May 2023, pp. 358–370. doi: 
10.1109/ICSE48619.2023.00041. 

[16] J. Zhao, “On Refactoring Quantum Programs in Q#,” in 
2023 IEEE International Conference on Quantum 
Computing and Engineering (QCE), Sep. 2023, pp. 169–
172. doi: 10.1109/QCE57702.2023.10203. 

[17] Y. Huang and M. Martonosi, “Statistical assertions for 
validating patterns and finding bugs in quantum 
programs,” in Proceedings of the 46th International 
Symposium on Computer Architecture, in ISCA ’19. New 
York, NY, USA: Association for Computing Machinery, 
Jun. 2019, pp. 541–553. doi: 10.1145/3307650.3322213. 

[18] E. Rieffel and W. Polak, Quantum computing: a gentle 
introduction. in Scientific and engineering computation. 
Cambridge, Mass.: MIT Press, 2011. Accessed: Nov. 28, 
2023. [Online]. Available: 
http://www.books24x7.com/marc.asp?bookid=52592 

 
 

 


