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ABSTRACT

Along with the increasing popularity of smart home IoT devices,

more users are turning to smart home automation platforms to

control and automate their IoT devices. However, IoT automation

is vulnerable to spoofed event attacks. Given that IoT devices are

intricately linked with the physical environment and operate au-

tonomously, event-based attacks can pose serious safety and se-

curity challenges. Our observations show that many IoT events

are accompanied by visual modi�cations in objects such as shape

alterations (for example, contact sensor events correspond with

door movement) or changes in color/brightness (for example, a

functioning microwave oven with the internal light switched on).

These alterations can be detected by the commonly deployed smart

cameras, providing a visually rich but challenging to manipulate

channel for verifying IoT events. We introduce IoTSentry, the �rst

system of its kind to extract high-level semantic information from

streaming video data and pixels for IoT event veri�cation. We have

designed a Siamese deep neural network to identify variations in

the appearance of IoT devices and interior objects. These are used

as the yardstick for verifying IoT events received at IoT automation

platforms. Upon assessing IoTSentry with 21 IoT devices (8 types),

the results demonstrate that IoTSentry can be trained within 120

seconds, yielding an accuracy rate of over 96.7% in recognizing

device states. We have deployed the 21 IoT devices and IoTSentry

on two real-world smart home test sites. Over the course of our

one-week evaluation, IoTSentry consistently achieved an average

detection rate of 99.24% in identifying attack instances. Moreover,

it triggered no more than 2 false alarms per day on each test site.

CCS CONCEPTS

• Security and privacy→ Arti�cial immune systems; • Computer

systems organization → Sensors and actuators.
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1 INTRODUCTION

In recent years, the global IoT market has experienced a boom in

development, projected to reach $1,8 trillion in 2028 [11]. Among

these, the smart home IoT market possesses the largest share, at

79.13 billion USD in 2020, and boasts a compound annual growth

rate of 25.3% [34]. Concurrently, IoT devices have increasingly

become the targets of attacks [6, 13, 19, 20, 30, 42, 45, 50, 56]. These

attacks pose serious safety and security concerns due to the close

integration of IoT devices with the physical environment.

The interoperability of smart home automation platforms allows

IoT event attacks to pose risks not only to compromised devices but

also to others within the network. Attackers can exploit vulnerabil-

ities in these devices to trigger malicious activities. For instance, by

spoo�ng the “user present” event, coupled with the automation rule

“unlock the door when the user is back,” they create an opportunity

for burglaries. An attacker gaining full control over a compromised

device complicates the task of verifying the device’s integrity.

There are approaches aimed at detecting spoofed events using

side-channel information, notable among them [16, 31]. However,

these existing methods have two major limitations. Firstly, veri�-

cation of each type of IoT event typically requires a speci�c corre-

sponding sensor deployed in close proximity. The diversity of IoT

events implies a need for various types of IoT devices to be densely

deployed. Secondly, event veri�cation robustness is strongly in�u-

enced by the devices’ relative distances.

To mitigate these limitations, we suggest leveraging real-time

video footage from home security cameras to verify IoT events.

Home security cameras, being one of the most common smart

home IoT devices, are installed in approximately 14.6% of Amer-

ican households [2]. This number increases to 42% in residences
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Figure 1: Work�ow of IoTSentry.

equipped with smart home IoT systems [1], indicating a signi�-

cant inclination towards incorporating security cameras as a part

of smart home setups. Furthermore, the indoor cameras takes the

largest share of 38.9% [3], which implies that home security cameras

are highly likely to be installed together with other smart home

IoT devices. In the future, home security cameras that are carried

by self-navigating drones (e.g., Ring Always Home Cam [4]) can

further expand the coverage of video surveillance. Many IoT events

produce visible evidence such as light �ickers or door movements,

which can be captured by cameras. By monitoring discrepancies

in reported states, cameras can detect faulty or malicious events.

Besides, cameras can oversee a larger area and achieve higher sam-

pling rates, signi�cantly surpassing other sensors.

While using cameras to detect motion and recognize faces is

commonplace, extracting semantic information from video data for

IoT event veri�cation is a novel tactic. In this study, we demonstrate

that cameras can be used as “broad-spectrum” sensors, leveraging

the rich semantics in videos for verifying various IoT events.

Our approach utilises recent advances in deep neural networks

(DNNs) to identify state changes of IoT devices from videos. How-

ever, creating a universal DNN model poses three prominent chal-

lenges. First, the features and appearance of IoT devices are highly

diverse, making it di�cult, if not impossible, to build a model that

is universally applicable to all IoT devices. Second, recognition ac-

curacy can be greatly in�uenced by variations in viewing angle,

distance, and lighting conditions. Finally, in speci�c IoT deploy-

ments, most devices exhibit infrequent state changes resulting in a

limited data pool for training a model from scratch.

We propose IoTSentry, a video-based IoT event veri�cation sys-

tem that aims to tackle the aforementioned challenges. We design

a semantics-assisted transfer learning approach to overcome the

training overhead and the model generalization issue. Speci�cally,

instead of seeking a universally applicable model, a semi-�nished

Deep Neural Network (DNN) model for devices sharing similar

appearance characteristics is prepared by IoT researchers, device

vendors, or platform operators. These semi-�nished models can

be �ne-tuned and adapted for IoT devices deployed in di�erent

households. That is, models of di�erent devices share the same base

model, with top layers �ne-tuned for each device.

We apply the Siamese Convolutional Neural Network (CNN)

to detect changes between two images of the same device, rather

than detecting its state directly. This method ensures more accurate

detection results as the two frames are captured in quick succes-

sion, maintaining the same viewing angle, distance, and lighting

conditions. Furthermore, the process can generate a large training

dataset of image pairs derived from a small number of images. The

key idea is that the state changes recognized by the AI system

should align with the IoT events reported to an IoT platform.

The work�ow of the proposed detection system is illustrated in

Figure 1. The home automation platform selects a pre-trained base

CNN model to be shared by all devices. Each image from the video

is segmented using object detection models such as YOLO [48] and

SSD [43]. Then, we add fully connected layers on top of the base

CNN model to form the Siamese network and �ne-tune the model

using pairs of image segments for each device. Sample frames are

then periodically selected from the video footage for comparison

in the Siamese network. A low similarity score produced for two

consecutive sample images indicates a change in the device’s state

during the interval when the two images were taken.

To evaluate our proposed system, we �rst conduct a validation

to test the performance of the Siamese DNN model on detecting

the state of 21 IoT devices in an o�ine setting. The results show

that our �ne-tuned DNN model achieves an accuracy of 98.77% in

recognizing devices’ state changes, and 96.67% in recognizing spe-

ci�c states by comparing the image with reference samples. We also

assess the reduction of training overhead due to the semi-�nished

model by comparing the training of the �ne-tuning model with

direct training. Results indicate that our methods reduce training

overhead by 45% on average. Finally, we deploy 21 IoT devices

and the prototype of our IoTSentry on two smart home test beds,

conducting a week-long test with injected attack cases. IoTSentry

successfully detects 99.24% and 97.23% of event spoo�ng attack at-

tempts. Moreover, IoTSentry yields no more than two false alarms

per day on each test bed, demonstrating its practical usability.

Our contributions are as follows:

• This is the �rst IoT event veri�cation solution by utilizing

inexpensive cameras that are already prevalent in many

homes. It o�ers a broader spectrum of veri�cation, as it

accommodates many more types of IoT devices and promises

more reliable performance.

• We propose the image comparison method to achive more

robust detection accuracy and two-stage transfer learning

method to alleviate the workload of model training.

• We evaluate IoTSentry on two real-world testbeds. The

results show that IoTSentry achieves device state recog-

nition accuracy of over 96% on 21 devices across 8 types.

During a one-week deployment, the IoTSentry prototype

successfully detected 98.94% of generated attack cases while

yielding fewer than 2 false alarms per day.

The remainder of this paper is structured as follows. In Section 2,

we introduce the fundamental knowledge of smart home IoT sys-

tems. We then present our threat model along with our assumptions

of potential attackers in Section 3. The design and implementation

of IoTSentry is explained in Section 4, and the evaluation details

are outlined in Section 5. In Section 6, we enumerate related works
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and compare IoTSentry with other event veri�cation solutions.

Finally, in Section 7, we assess the limitations and future work,

concluding in Section 8.

2 BACKGROUND

2.1 Smart Home Automation Platforms

With the number and variety of IoT devices increasing rapidly,

smart home IoT platforms such as Samsung SmartThings, Google

Home, and Amazon Alexa are gaining signi�cant popularity in

the IoT market. These IoT platforms provide uniform messaging

interfaces, enabling easy management and interoperability among

IoT devices of di�erent types and from di�erent vendors.

More importantly, these platforms introduce the new feature

of trigger-action programming, which allows the implementation

of user-customized automation rules. These automation rules en-

able IoT actuators to work autonomously when triggered by the

speci�ed trigger. On these automation platforms, IoT devices are

abstracted into various template abstract devices that de�ne the

uniform messaging format of events and commands. The states of

each device are stored on the platform’s cloud server and updated

based on received events.

However bene�cial they may be, automation rules also expose

new attack vectors, enabling attackers to trick automation platforms

by manipulating events. By creating fake events, attackers can

exploit automation rules to wrongly trigger or disable the execution

of the associated automation rules, which can eventually cause

hazardous situations. For example, in [18], the authors demonstrate

how a door can be maliciously unlocked with a ’light turned on’

event, and in [29], the authors illustrate how to trigger fake alarms

with spoofed smoke events. Subsequent works [23, 55] further

explore more security issues across multiple rules.

2.2 Vision-based Smart Home Safety

There has been an increasing number of home security camera

vendors adapting deep learning to their products. This technique

enables cameras to provide more accurate and intelligent alerts re-

garding potential safety risks [52]. For example, Arlo smart cameras

can recognize and capture human faces as well as common objects

such as vehicles, package deliveries, and animals from surveillance

video streams [54]. Some works further explore applications such

as fall [25] and inactivity [27] detection for elderly people.

Besides the home camera itself, cloud computing infrastructures

have also been established to support these advanced AI applica-

tions which are scalable and cost-e�ective. For example, the Ama-

zon Web Service (AWS)’s Rekognition service costs as low as 0.4

USD for processing 1000 images using newest computer vision

models. These modules can seamlessly work with smart cameras

that are integrated through the AWS IoT platform. Moreover, edge

computing devices such as Deeplens and Panorama also empower

AI-based applications to be hosted locally with acceptable cost.

3 THREAT MODEL

In this work, we examine potential attackers who can remotely con-

trol IoT devices to initiate event spoo�ng attacks. Equippedwith this

ability, attackers can malevolently prompt actions of other devices

associated with the manipulated event, using home automation
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Figure 2: Overview of IoTSentry.

rules. The event spoo�ng attack might occur due to compromised

devices [50] or vulnerable cloud APIs of the device vendor [35],

which assist attackers in injecting spoofed events directly. These

spoofed events can be utilized by attackers to trigger false security

alarms [15] or instigate dangerous actions such as unlocking smart

locks or activating heaters [18, 36].

Attackers may also possess the potential to maliciously intercept

safety-critical commands, thereby inducing dangerous situations.

For instance, attackers could intercept a command intended to

turn o� an electric heater when the user departs from home, while

fabricating the anticipated feedback event of “plug turned o�” to

maintain their stealth. Di�erent methods to verify the appropri-

ateness of these actions have been extensively examined in other

research works [18, 36, 44] and are beyond our scope. In this work,

our objective is to detect failed command executions.

In this study, we presuppose that home cameras used for collect-

ing training and testing samples are not compromised by attackers.

We assume these cameras can provide genuine video footage or

image snapshots whenever requested by our IoTSentry.

4 IOTSENTRY SYSTEM DESIGN

In this section, we present the design and implementation of IoT-

Sentry. We initially describe the constituent components of IoT-

Sentry, followed by a discussion on their usage to address the

challenges presented in Section 1.

As shown in Figure 2, IoTSentry operates by comparing events

recognized by the DNN model with those reported by smart home

IoT devices. IoTSentry is comprised of four modules: 1) The Image

Segment Extractor, which utilizes existing object detection mod-

els to divide an image frame into device and object segments and

match them with identities on the home automation platform. 2)

The Device State Recognizer, tasked with recognizing state changes

of devices using a DNN model. 3) The Event Exporter, designed

to export real-time events from various smart home automation

platforms. 4) The Attack Detector acts as the decision module by

invoking the Device State Recognizer and the Event Exporter, com-

paring their results and reporting any mismatches as alarms.
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4.1 The Image Segment Extractor

Commonly used smart home security cameras have wide view

angles up to 110 degrees [7] to cover a large portion of a room. Al-

though the expansive image frame allows coverage of more devices,

irrelevant objects could potentially be included, causing interfer-

ence with device state recognition. Therefore, as a preliminary

step, we �rst need to segment the entire image frame into smaller

sections, each of which represents a device or object. We achieve

this goal by using existing object detection solutions such as Fast

R-CNN [32], Single Shot MultiBox Detector [43], and Yolo [48]

to highlight objects in the image frame with bounding boxes. We

examine the performance of di�erent versions of these three object

detectors that are pre-trained on the COCO dataset [41], �nding

that Yolo v4 o�ers the best detection accuracy. Once a device or

object has been detected, we record the coordinates of its bounding

box and use this to directly extract the segment in future frames.

With visualized bounding boxes and labels, users can conveniently

map the segments to the corresponding IoT devices’ identities on

the automation platform.

4.2 The Device State Recognizer

The Device State Recognizer is the core component of IoTSen-

try, tasked with recognizing device states using the vision side

channel. This system accepts a pair of image segments of the same

device from the Image Segment Extractor as input and then pre-

dicts whether the state of the device in the two image segments is

identical. Despite the latest advancements in deep neural network

(DNN) and computer vision [59] achieving high precision in object

classi�cation, the development of a universally applicable DNN for

all devices is currently impractical given the variety of IoT devices

and the persistent introduction of new models. Alternatively, train-

ing dedicated models for speci�c devices could provide a solution,

but this approach presents two signi�cant challenges. First, it re-

quires a substantial number of image samples to create the training

dataset, which might take an extended period to collect from a typ-

ical smart home deployment, considering many IoT devices’ states

(e.g., a door) only change a few times each day. Second, training

DNN models is computationally intensive, taking into account the

scale of installed IoT devices. Simplifying by �ne-tuning models pre-

trained on public datasets would invariably result in high training

overhead and potentially compromise system scalability.

To address the initial challenge posed by the training dataset, we

employ the Siamese neural network model [17]. Instead of training

models to directly recognize the state of a given device, we train a

model capable of determining whether the devices in two segments

are in the same state. Using image input, we explore the combi-

nations of image segments and assemble them into pairs labeled

either ‘same’ or ‘di�erent’. This method allows for the expansion of

even a small number of image segments into a substantial dataset.

For instance, as depicted in Figure 3, we can generate 5,000 training

image pairs from 100 images of a door (50 open and 50 closed) for

the purpose of training the Siamese network. This set includes 2,500

same-state pairs and 2,500 di�erent-state pairs.

Although �ne-tuning pre-trained CNN models has proven to be

e�ective in reducing training overhead, �ne-tuning DNN models

for a tremendous number of IoT devices still faces scalability issues.

100 images of a hinge door 

5000 image pairs 

1250 Same Closed2500 Different1250  Same Open

50 Closed50 Open

Figure 3: The example of the hinge door is used to illustrate

how the training dataset can be expanded using image pairs.
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Figure 4: Work�ow of the two stage �ne tune.

To further reduce the training overhead, we propose a two-stage

�ne-tuning scheme. As illustrated in Figure 4, it begins with �ne-

tuning a Siamese network model that integrates a pre-trained base

CNN model with images of a type of device. Then, we further �ne-

tune the model with images of a speci�c IoT device to allow it to

accurately recognize the device’s state changes. This scheme assists

in reducing training overhead because certain common features

learned in the �rst stage can be shared among di�erent devices of

the same type.

In the �rst stage, we train the model with images of device types

collected from the Internet, allowing us to include a greater variety

of images. Owing to the variance in images, the training and valida-

tion accuracy of the �rst stage �ne-tuning may show only a slight

improvement, thereafter stagnating as semi-�nished. Although the

resultant semi-�nished model cannot achieve satisfactory accuracy,

it has already learned some common patterns of that type of device.

In the second stage, we further �ne-tune the semi-�nished model

with images captured for speci�c devices. Leveraging the embedded

patterns, the training time and resource overhead can be signi�-

cantly reduced. Taking the hinged door as an example, we �rst train

the Siamese network model with images of hinged doors gathered

from the Internet, which include images of doors of di�erent colors,

textures, and sizes. We manually label the downloaded images as

either ’open’ or ’closed,’ deriving a pairwise training dataset to train

the semi-�nished model. In the second stage, we continue to train

the semi-�nished model with images of a speci�c hinged door. The
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accuracy can be improved to a satisfactory extent with considerable

reduction in e�ort.

4.3 The Event Exporter

The event exporter is deployed on a Virtual Private Server (VPS) to

collect real-time events from IoT devices across various automation

platforms. In our experiment, the event exporter gathers events

from multiple sources, given that devices may be integrated into

di�erent smart home automation platforms. For platforms allowing

user-customized automation programs like SmartThings [8], we

install a smart app to automatically report device events to our

VPS via HTTPS requests. Contrarily, for platforms that lack this

support (for instance, Alexa [9] and Tuya [12]), we link them to

the IFTTT platform [10] and utilize an applet to synchronize the

states of associated devices with a virtual service hosted on our

VPS. Within our VPS, we establish virtual device instances for each

device subjected to monitoring and keep an account of their states.

The state of a virtual instance changes every time it receives an

event from the automation platform.

4.4 The Attack Detector

As the decision module of IoTSentry, the Attack Detector scruti-

nizes a device’s state as determined by the DNN model and events

reported by the Event Exporter. Instead of being a passive observer,

the Attack Detector actively retrieves devices’ states from two dis-

tinct channels both periodically and when new events occur. With

a predetermined sampling period set at 60 seconds, su�cient time

is a�orded for the manifestation of the event’s visual e�ect. The

DNN model within the Device State Recognizer is only equipped to

verify whether the state of a device visible in two di�erent images

is identical. Consequently, we must monitor a device’s state by

comparing the most recent image of a device to a reference image.

Upon receiving an event, an immediate image of the related device

is taken and paired with the most recent image taken during the

periodic sampling.

Con�rmation of the event by the Device State Recognizer, sig-

ni�ed by a ‘di�erent’ output, renders the event harmless. The vir-

tual instance’s state, as maintained by the Event Exporter, is then

changed accordingly. While in the absence of an event, two images

from consecutive periods are paired, and the Device State Recog-

nizer is expected to produce a ‘same’ output. A con�ict between

the results (R1) from the Device State Recognizer and those from

the Event Exporter initiates a further validation process.

The Attack Detector randomly selects an image from the device’s

training dataset to serve as the reference image. The state of the

device in the reference image is identi�able through its label. This

reference image is then paired with the disputed image, and the

device state recognition procedure is repeated to yield a second

result (R2). Inconsistency between R1 and R2 results in the former

being disregarded as inaccurate, indicating an issue with the two

consecutive images. On the other hand, if R2 aligns with R1, the

Event Exporter’s result is deemed problematic. In such cases, the

Attack Detector sends out an alert, such as an app noti�cation on

the user’s phone, to notify the user of a possible attack.

5 EXPERIMENT & EVALUATION

In this section, we present our experiment in a real-world setting

with commercial IoT devices. We �rst describe the experiment setup

and then evaluate the accuracy and overhead of the Device State

Recognizer. Afterwards, we describe the results on two real-world

testbeds where we generate event spoo�ng attacks for testing.

5.1 Experiment Setup

Table 1: List of Tested Devices. The devices tested are classi-

�ed into eight types. In the case of the door and refrigerator,

the term ’device’ refers to the contact sensors a�xed to them.

Label Name Events Amount

D Room Door open/close 3

R Refrigerator Door open/close 2

L Light Bulb on/o� 3

M Monitor on/o� 2

H Electric Heater on/o� 2

O Microwave oven on/o� 2

K Electric Kettle on/o� 2

P Smart Plug on/o� 5

There are 21 IoT devices of 8 types (listed in Table 1) within

the two testbeds, which consist of a studio apartment and a two-

bedroom apartment. In each testbed, we have installed a single

Foscam smart home camera [14] costing less than $50 from Ama-

zon.com. The camera is strategically positioned at the corner of

the kitchen/living room area to capture all devices within a single

frame, with a resolution set at 1920*1080. For the devices lacking

built-in smart control features, we utilize smart plugs to control

them and to monitor their operational status. For instance, devices

such as an electric heater, microwave oven, and monitor, are con-

nected to smart plugs. The power output measurements obtained

serve as an indicator of their functional states. A power thresh-

old is set at 10 watts: events reporting power measures exceeding

this threshold are labeled as “turned on” and those reporting less

as “turned o�”. For the room door and refrigerator door, we have

a�xed contact sensors. For both the training and testing, we are

using a workstation with an Intel i9-9820X CPU and two Nvidia

2080Ti GPUs.

Ethical Concerns. Our experiment received approval following re-

view by the IRB committee at our university. In a bid to circumvent

privacy issues stemming from the usage of the camera, we blocked

the camera’s internet access through the addition of �rewall rules at

the home router, thereby forcing the camera to function without a

memory card. Every image was collated by triggering the camera’s

snapPicture CGI [5] from participant-owned PCs via the partici-

pant’s local area network. Image segmentation was also carried out

through the users’ PC to enable users to exclude redundant parts of

images potentially containing sensitive information. Furthermore,

we enabled participants to view their accumulated image segments

�rst, subsequently removing any containing sensitive details prior

to further processing in the workstation. The data drive within the

workstation is encrypted; access is strictly limited to the authors of

this paper.
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Figure 5: Samples from our image dataset are taken for each

device under four distinct lighting conditions.

5.2 Image Data Collection

Our Siamese network model was trained using image samples col-

lected from the internet or segmented from image frames captured

by installed cameras. For the stage 1 �ne-tuning, we retrieved im-

ages of each type of device from the internet, based on a criterion

requiring the device and its operational state in the image to be

easily identi�able by humans. We procured 100 images representing

both the ’on/open’ and ’o�/closed’ states for every type of device,

such as an electric oscillating radiant heater. Irrelevant sections of

the downloaded images were manually cropped to focus on the

target device only.

For stage 2 �ne-tuning, we captured images of devices using

cameras placed in two testbeds. The location of these cameras was

selected based on the same criterion used in stage 1 data collection,

guaranteeing that a human viewer can easily determine all testing

devices’ state through the image. As is common with most smart

home cameras, we allowed the cameras to remain stationary, main-

taining a steady position and angle during the image collection

period. As depicted in Figure 5, we recorded images of each device

under di�ering lighting conditions at four separate times: 1) in the

morning with abundant natural light; 2) at dusk, where the natural

light dims; 3) at night under arti�cial light; 4) at night with the

room in darkness, switching the camera to its IR night vision mode.

We gathered 50 images of each state of a device for training and

validation, along with another 10 images aimed for evaluation.

Following the image collection, we combined the image samples

into pairs of two di�erent states and sorted through their combi-

nations. This method allowed us to acquire 2,500 same-state pair

samples and an equivalent number of di�erent-state pair samples

for the training of each device. As for pairs featuring images of the

same state, we labeled them as ’1’. Meanwhile, pairs with images

of di�erent states were labeled as ’0’.

Relu

Conv2D

Fully Connected

Fully Connected

IMG 1

Relu

Conv2D

MaxPooling

Relu

Conv2D

Relu

Conv2D

MaxPooling

Relu

Conv2D

Relu

Conv2D

MaxPooling

Relu

Conv2D

Relu

Conv2D

MaxPooling

IMG 2

Euclidean 

Distance 

Dropout

Fully Connected

Fully Connected

Dropout

Figure 6: The architecture of our Siamese network model.

Table 2: Hyperparameters of Our Siamese Network Model.

Parameters Value Space Optimal

FC1 Nodes {128,196,256,512,1024} 512

FC2 Nodes {128,196,256,512} 512

Dropout Rate [0.05, 0.5] 0.3

Learning Rate [0.0001, 0.5] 0.02

Batch Size {8,16,32} 16

Base CNN
{VGG16, Resnet50,

InceptionV3, Plain CNN}
Resnet50

5.3 Device State Recognition

In this subsection, we carry out a validation experiment to assess

the performance of the Device State Recognizer. We conduct the

evaluation using an o�ine approach using our collected dataset.

5.3.1 Siamese Network Model. We take the standard approach

to construct our Siamese model, the structure of which is shown

in Figure 6. In this model, our foundation is formed by layers of

convolutional blocks using CNN models that are pre-trained on the

ImageNet [26] dataset. We discard the top classi�cation layers of

the CNN model, utilizing the remainder as the feature extractor.

We then freeze the weights of the convolutional blocks. On top

of these foundational convolutional layers, we incorporate two

fully connected layers utilizing the ReLU activation function and

interspersed these with a single dropout layer. The �nal stage is

calculating the Euclidean distance between the vector outputs of

the two input images to produce a result. If the distance is less than

0.5, we deduce that the devices shown in the two input images are

in the same state. Conversely, if the distance is equal to or exceeds

0.5, we infer that they are in di�erent states.

5.3.2 Hyper-parameters. For training our siamese model, certain

hyperparameters (as outlined in Table 2) need to be determined.

In addition to the usual hyperparameters like batch size and the

number of nodes in the two fully-connected layers, we also need
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to compare the performance of varied pre-trained CNN models

used as feature extractors, and select the one that yields the highest

accuracy. The ideal set of hyperparameters is determined by apply-

ing the NNI (Neural Network Intelligence) [38] tool to scour the

parameter value space automatically. Remember that we test eight

types of devices (Table 1). One representative device is selected

from each of these eight types. We bypass the �ne-tuning stage 1

and directly train the Siamese model with stage 2 images.

The Siamese network model incorporates seven hyperparam-

eters for each device type (enumerated in Table 2). The �ndings

demonstrate that all eight types of devices perform optimally with

a dropout rate of 0.3, and a batch size of 16. Regarding other pa-

rameters, we observe no signi�cant improvement, exceeding 1%, in

state recognition accuracy with a count of nodes in fully-connected

layers exceeding 512 and a learning rate below 0.02. Consequently,

we adopt 512 and 0.02 to minimize training overhead. As it re-

lates to the choice of a base CNN feature extractor, the plain CNN

is discarded as it displays an accuracy that is at least 25% lower

than alternative choices. Among the four pre-trained CNN models,

Resnet50 records the highest average accuracy.

Table 3: Accuracy of device state recognition.

Device
Stage 1 Accuracy Stage 2 Accuracy

Pairwise
On/

Open

O�/

Closed
Pairwise

On/

Open

O�/

Closed

D1 90.45% 70.00% 80.00% 98.73% 90.00% 100.00%

D2 84.52% 80.00% 90.00% 100.00% 100.00% 100.00%

D3 88.95% 70.00% 90.00% 99.67% 90.00 100.00%

R1 87.33% 70.00% 90.00% 100.00% 100.00% 100.00%

R2 91.17% 80.00% 90.00% 100.00% 100.00% 100.00%

L1 92.16% 100.00% 80.00% 100.00% 100.00% 100.00%

L2 91.43% 100.00% 80.00% 100.00% 100.00% 100.00%

L3 80.43% 90.00% 70.00% 100.00% 100.00% 100.00%

M1 97.45% 100.00% 90.00% 100.00% 100.00% 100.00%

M2 95.31% 90.00% 90.00% 100.00% 100.00% 100.00%

H1 95.22% 70.00% 60.00% 96.15% 90.00% 90.00%

H2 58.74% 40.00% 70.00% 93.54% 90.00% 80.00%

O1 86.72% 50.00% 60.00% 100.00% 100.00% 100.00%

O2 56.16% 40.00% 60.00% 96.32% 100.00% 80.00%

K1 66.34% 50.00% 40.00% 93.39% 100.00% 90.00%

K2 69.01% 60.00% 70.00% 98.21% 100.00% 90.00%

P1 76.31% 80.00% 70.00% 100.00% 100.00% 100.00%

P2 85.50% 70.00% 90.00% 100.00% 100.00% 100.00%

P3 52.99% 40.00% 50.00% 100.00% 100.00% 100.00%

P4 88.34% 80.00% 90.00% 98.16% 90.00% 100.00%

P5 89.92% 70.00% 80.00% 100.00% 100.00% 100.00%

Ave. 82.12% 71.43% 75.71% 98.77% 97.62% 96.67%

5.3.3 Accuracy of State Recognition. With the optimal hyperparam-

eters, we conduct a two-stage training and evaluate the accuracy of

the Siamese network model in recognizing the states of speci�c de-

vices. In the �rst stage of training, we train the newly constructed

model with image samples downloaded from the internet. This

step yields eight semi-�nished models for the eight types of de-

vices/objects. In the second stage of training, for each device, we

use the corresponding semi-�nished model of its type and continue

to train the model with image samples captured by our cameras.

We measure the accuracy of the models using three metrics: 1)

pairwise accuracy is the accuracy of predicting whether the devices

in a pair of images are in the same state; 2) accuracy in recognizing

a device’s ’on’ state; 3) accuracy in recognizing a device’s ’o�’ state.

The �nal two accuracy measures are determined by comparing the

testing samples with reference image samples.

As the results presented in Table 3 indicate, we evaluate the

accuracy of the semi-�nished models from stage one using an eval-

uation dataset. These models achieve an average pairwise accuracy

of 0.82. In terms of state recognition accuracy, they achieve a score

of 0.71 and 0.75 for recognizing the ’on’ and ’o�’ states, respec-

tively. For some devices showing more pronounced appearance

changes when changing states, such as lamps and monitors, the

semi-�nished models achieve better accuracies, nearing 90%. This

is because these devices share more common features typical of

their device type, which can be discerned from the downloaded im-

ages. Meanwhile, other devices with a more varied appearance and

fewer common features (e.g., di�erent smart plugs display di�erent

colors and shapes of indicator lights), the recognition accuracy is

only slightly better than an untrained model (i.e., 50% pairwise

accuracy).

Following this, we conduct the second stage of training by �ne-

tuning the eight models for their corresponding devices and then

evaluate them using the same evaluation dataset. As demonstrated

in Table 3, after �ne-tuning, accuracies for both pairwise and spe-

ci�c states signi�cantly improve, exceeding 0.96. Out of the 21

tested devices, models trained via stage two �ne-tuning achieve

100% accuracy on 13 devices. We subsequently examine the cases of

H2 and O2, which have comparatively lower accuracies. The heater,

H2, is a radiator heater that only exhibits changes in appearance

through the brightness of its indicator light. In the two instances

where the heater was misclassi�ed as being in the ’on’ state, we

noticed that its indicator light was illuminating due to nearby light

sources, preventing even humans from accurately determining its

working state. Unlike H2, H1 does not face this issue because it

is an infrared radiant heater that shows a color change in a large

area when turned on. Misclassi�cation of the microwave oven, O2,

was caused by a similar issue: sometimes the front panel re�ects

natural light, making it appear as though the interior light is turned

on. After augmenting our training dataset with image samples of

these particular cases, our models achieve 100% state recognition

accuracy for both devices.

5.3.4 Reduction of Training Overhead. To highlight the in�uence of

stage 1 �ne-tuning on curbing the total training overhead, a single

device from each type is selected to illustrate the contrast in its

processes of training based on stage 1 versus training without stage

1. As depicted in Figure 7, when the �nish threshold for training is

de�ned as an accuracy level of 98%, it requires an average of 3.375

epochs to train a model without stage 1. In contrast, when utilizing

the semi-�nishedmodel from stage 1 training, this number dwindles

to 1.625, representing a decrease in computation by 51.86%. For

certain device types withmore shared features, such as doors, lamps,

refrigerators, and monitors, the reduction in training overhead

exceeds 75%. Moreover, for items like electric kettles and smart

plugs, which have either minor visual alterations or highly varied
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Figure 7: Comparison of Stage 2 Training Overhead With and Without Stage 1 Fine-Tuning: Each chart depicts a dashed line

representing the improvement in training accuracy attributed to Stage 1 �ne-tuning. Conversely, the solid line represents the

scenario without the �ne-tuning of Stage 1.

appearances, stage 1 training still proves e�ective and diminishes

training overhead by 25%.

In order to fully comprehend this enhancement, we analyzed the

duration of both stage 1 and stage 2 training. Following the stan-

dard resizing of input image samples to 224*224, a single iteration

of a 16-image pair batch is completed in 88 milliseconds on our

workstation. Given that the Siamese network structure is consis-

tent in both stages, the training expense for one iteration with the

same batch size remains equal. For the stage 1 training with a set of

20,000 training image pair samples, each epoch necessitates 1,250

iterations, totaling approximately 110 seconds. In contrast, stage

2 training, with fewer input image samples, requires merely 312

iterations and culminates in under 30 seconds. This signi�es that

training a Siamese network model speci�cally for any device would

require no longer than 120 seconds (4 epochs) on our dual-GPU

workstation. This overhead can be further mitigated by training a

more extensive semi-�nished model in stage 1 using a larger sample

size of images.

5.4 Detection of Event Attacks

Aside from the validation test for the Device State Recognizer, we

have also implemented other parts of IoTSentry on two testbeds.

We conducted end-to-end tests to evaluate its performance in de-

tecting event spoo�ng attacks.

5.4.1 A�ack Case Generation. During the week-long testing pe-

riod, the residents in two testbeds keep their normal living pat-

terns and generate 1,559 events that are relevant to our testing

devices/objects from the two testbeds. Then, for each device, we

randomly inject 100 events into the collected event log for sim-

ulating event spoo�ng attacks targeting that device. Please note

that, rather than triggering the devices’ actions, spoofed events

are only inserted into the events log, which aligns with recently

disclosed smart home IoT attacks via the automation platforms and

communication links, and integration channels. [18, 29, 35].

For the spoo�ng attack event, 200 spoofed events were randomly

injected during the week-long testing period.

5.4.2 Performance of Detection. The test cases are evaluated au-

tonomously. For each test case, we construct a time window be-

ginning 60 seconds before the event occurrence and concluding

60 seconds post-event. Subsequently, we gather all image samples

from the speci�c device, captured within the de�ned time window.

To illustrate, in a scenario of a spoofed ’open’ event of a door at

instance C4 , we collect images of the door captured within the time

boundaries [C4 − 60, C4 + 60]. We then monitor the device’s state

within our de�ned time window to verify event occurrence. In

the event of spoo�ng attack cases, we deem the detection process

successful if the device state recognizer reports no change in state

within the image samples in the observed time window.

The results presented in Table 4 demonstrate that IoTSentry

achieves an average detection rate of 99.24% in detecting the event

spoo�ng attack. Moreover, IoTSentry maintains a 100% detection

rate in 10 out of the 21 testing cases. Upon examining detection

accuracies across di�erent devices, we observed a similar trend

as with the validation test of the device state recognizer. That is,

the state changes of devices with implicit features, such as H2, K2,

and smart plugs, result in a higher number of failed testing cases,

proving di�cult to distinguish even for human observers.
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Table 4: Performance of IoTSentry in detecting event spoof-

ing attack cases.

Device
Testing

Cases

Detected

Cases

Detection

Rate

False

Alarms

D1 100 99 99.00% 2

D2 100 99 99.00% 1

D3 100 100 100.00% 0

R1 100 100 100.00% 0

R2 100 99 99.00% 2

L1 100 100 100.00% 0

L2 100 100 100.00% 1

L3 100 100 100.00% 0

M1 100 100 100.00% 0

M2 100 100 100.00% 0

H1 100 99 99.00% 1

H2 100 98 98.00% 3

O1 100 100 100.00% 1

O2 100 97 97.00% 1

K1 100 100 100.00% 1

K2 100 96 96.00% 4

P1 100 99 99.00% 0

P2 100 100 100.00% 1

P3 100 99 99.00% 1

P4 100 98 98.00% 1

P5 100 100 100% 0

Ave. 99.24% 1.78/day

5.5 False Alarm Test

The false alarm rate is a critical aspect of a detection system; fre-

quent false alarms can pose nuisances to users, possibly compelling

them not to use the system. A dedicated false alarm test was con-

ducted, wherein all images procurement during the seven-day test-

ing period were analyzed with the device state recognizer. The

recognition results were then compared with events exported from

the home automation server. As no assault cases were injected into

this test, all alarms triggered by the attack detector were subse-

quently classi�ed as false alarms. As depicted in Table 4, a total of

20 false alarms manifested over the course of the week-long testing

on two testbeds. This resulted in an average of 1.42 false alarms

per day for each testbed. Out of these 20 false alarms, half were

triggered by the electric heater H2 and the kettle K2.

6 RELATEDWORKS

Security of Smart Home IoT.. Recent research extensively stud-

ies the potential vulnerabilities and corresponding defenses linked

with smart home Internet of Things (IoT) systems [21, 22, 29, 35,

37, 55, 57, 58, 60, 61]. The rapid growth of the IoT industry has led

to an in�ux of low-cost IoT devices riddled with various vulner-

abilities [13, 39], which result in signi�cant attack surfaces. Ow-

ing to the integration of smart home IoT devices within physical

environments, these vulnerabilities allow attackers to extend the

damage from the cyberspace to the physical environment. Ronen et

al. demonstrated a method to compromise Philips Hue light bulbs

in [50]. They exploited the proximity-based authentication scheme

of the bulb and created a worm, which propagated through pre-

viously infected devices. Using this approach, thousands of light

bulbs could be compromised within hours. In [35], Yan et al. de-

tailed and analyzed the vulnerability of the MQTT protocol adopted

frequently by smart home IoT devices. Through exploiting these

vulnerabilities, attackers could execute large-scale attacks such as

IoT remote control, data spoo�ng, and denial-of-service. Zhou et

al. exposed implementation �aws in the IoT device pairing and

binding protocol in [61]. The �aws enabled attackers to sever the

connection between an IoT device and its associated cloud server

and replace it with malicious phantom devices. This breach pro-

vided attackers an opportunity to perform denial-of-service attacks

or forge counterfeit events targeting the automation cloud server.

Event Veri�cation. Considering that IoT platforms welcome de-

vices from various vendors and that any device, regardless of its

relevance to sensitive attributes, can potentially impact other be-

nign devices with events, developing robust IoT event veri�ca-

tion systems becomes critical to prevent security risks instigated

by event-based attacks. Current research primarily uses anom-

aly/outlier detection techniques, which identify unusual events

from event logs exported from smart home automation platforms.

HAWatcher [31] introduced the concept of inter-device correla-

tion, combining IoT semantic information with conventional data

mining procedures. Collecting correlations from the set training

period allows IoT devices to verify each other and send alerts for

any violated correlations. Peeves [16] presented an approach that

uses readings from multiple sensors as evidence to con�rm real-

world event occurrences. The authors proposed a measure, termed

relative mutual information (RMI), to calculate the relationship

between an event and sensor reading �uctuations. The RMI from

di�erent sensors gets used collectively in a machine learning model

to verify a sequence of smart home events. Ozmen et al. [46] further

enhance these two EVS solutions by software patching and sensor

placement inferencing techniques and prevent them from being

circumvented by intelligent adversaries. DICE [24] and Aegis [53]

implemented similar methods, involving a state transition graph

or Markov chain model, to record transitions in states of smart

home IoT devices during the training phase. Afterward, during

deployment, any events triggering unseen transitions get reported

as faulty or malicious. Compared to our IoTSentry, these methods

face usability issues as they all require the assumption that IoT

devices with various sensing capacities can be deployed densely

enough so that inter-device correlation can be established. Further-

more, the accuracy of these ’indirect’ event veri�cation methods

may drop due to interference from users’ activities and physical

environments. IoTSentry only assumes a security camera being

installed and o�ers better detection accuracy.

HoMonit [60], another relevant piece of work, suggests using

wireless tra�c from IoT devices as side-channel information to

verify IoT events. The authors develop a Deterministic Finite Au-

tomaton (DFA) to monitor the states of the smart home system,

updated through events gathered from wireless tra�c. Afterward,

the states predicted by the DFA are compared to the outcome of

smart apps (automation rules) to detect misbehaving smart apps.

Although the authors claim they can detect ’spoofed events’, they

assume such events are produced by malicious smart apps, not

real-world devices. In our threat model, compromised devices can

generate spoofed events, which come with actual wireless tra�c.
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This method allows the attack to bypass HoMonit’s check since

it does not disrupt the DFA transition. Contrarily, our IoTSentry

can e�ectively identify this attack by directly checking the events

against their associated physical ground truth.

Side-channel information for IoT security. Many other works ex-

plore various ways to utilize di�erent kinds of side-channel in-

formation in the IoT security domain. IOTCUPID [28] proposes

to utilize the inter-event correlations to securely pair IoT devices

with heterogeneous sensing modalities. Perceptio [33] was the �rst

to introduce the concept of a physical security boundary, within

which devices are considered to be co-located to capture sensory

data from the same event. The fused data from these devices are

utilized as a secure source from which to derive and deliver secure

keys. T2Pair [40] suggests the use of universal operation sensing,

which exploits the correlated vibration/accelerometer readings to

capture the user’s physical operations on two devices to be paired.

Aside from vibration and movement, other forms of side-channel

information are used for IoT applications. The authors of [47] ex-

plore the potential to correlate the inherent acoustic noises of home

appliances with their operational states. They investigate di�erent

classi�cation methods capable of accurately classifying multiple

appliances operating simultaneously. The resulting recognition aids

the smart home system in identifying abnormal energy consump-

tion and preventing hazardous status of devices. In concurrence

with our work, IDIoT[51] also applies the vision side channel, with

the aim to detect and identify wearable IoT devices for the elderly.

The authors of this paper employ a 2D camera to capture the user’s

pose and match it with readings from the 3D inertial sensors em-

bedded in the IoT device. Through the integration of visualized

information with user motion measurements, the study claims to

be capable of matching multiple IoT devices with their respective

identities, even when they are covered by clothing or stored in a

user’s pocket.

7 DISCUSSION & FUTURE WORKS

Unapplicable situations. IoTSentry is not designed as a univer-

sal solution to verify events of all devices. There may be situations

where events do not display explicit appearance changes or occur

out of the camera’s view. These situations may pose di�culties

for humans in recognizing device states using only visual infor-

mation. For instance, the August Smart Lock [6] displays minimal

appearance changes during the rotation of the rounded handle.

Although not e�ective in all scenarios, the vision channel utilized

by IoTSentry remains the most comprehensive among all side

channels, implying IoTSentry can cover most IoT devices. The

acoustic channel could serve as a signi�cant supplement to the

vision channel to detect exceptions (e.g., smart lock rotation) with

audio streams, which can also be picked up by home cameras. We

aim to explore this possibility in future work.

Non-binary device states. This work primarily focuses on detect-

ing spoofed events in devices with binary states. While quite a

few IoT devices generate numeric values (e.g., illuminance, dim-

mer level, and air quality index), devices crucial for security and

safety typically produce binary events (e.g., motion, lock, switch,

and contact). This selection is consistent with other state-of-the-art

event veri�cation solutions [16, 31, 46, 49]. Moreover, IoTSentry,

is also capable of detecting non-binary spoofed events, particularly

when they markedly deviate from a device’s actual states. In these

instances, IoTSentry discerns state changes between “high” and

“low” instead of “on” and “o�”, which is also adopted in [31].

Changes of camera’s viewing angle and distance. The accuracy of

device state recognition might be in�uenced if the test images are

captured from varying angles and distances. Currently, we have not

integrated these variations into our evaluation as most smart home

cameras tend to be stationary. However, if movable cameras become

commonplace in the future, we can account for this by incorporating

images of devices taken from di�erent viewing angles and distances

into our training dataset. The current version of IoTSentry has

demonstrated this ability by training DNN models with images

under varied lighting conditions, yielding models that can adapt to

a range of light conditions.

Situation of camera compromise. If the camera used as IoTSen-

try’s input source is compromised, attackers could potentially cir-

cumvent the detection of event-based attacks by replaying historic

images. This stratagem, however, greatly increases the complexity

and cost of the attack as attackers would have to determine the

location of the target device within the image and select images

that consistently result in the same recognition states. This selec-

tion process could be time-consuming. In situations where multiple

cameras are installed within a household, attackers would need to

identify the speci�c camera used to verify events for their target

device or compromise all cameras. Other state-of-the-art IoT event

veri�cation systems [16, 31, 46, 49] also need the similar assumption

that the verifying device cannot be compromised at the same time.

In contrast, IoTSentry incurs much lower cost than existing EVS

solutions as it does not require IoT devices to be densely installed

for forming relative mutual information associations or correlations

and can achieve decent performance when very few IoT devices

are installed.

8 CONCLUSION

This work explores the feasibility of verifying IoT device events

through the visual channel. Utilizing cameras that are already ex-

tensively deployed, IoTSentry extracts rich semantic information,

which is not commonly utilized in most existing works, and com-

pares it with the received IoT events to detect event spoo�ng attacks.

We designed a Siamese neural network and implemented a two-

stage �ne-tuning process to address the scarcity of training samples

and signi�cantly reduce the overhead of the model training. We

constructed and implemented a prototype of IoTSentry, and evalu-

ated it on two real-world smart home testbeds with 21 devices. Our

experimental results reveal the high accuracy and low false alarm

rate of IoTSentry. Our work implements the widely accepted con-

ception of "seeing is believing" through AI, which markedly raises

the bar for IoT event-based attacks.
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