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ABSTRACT

Along with the increasing popularity of smart home IoT devices,
more users are turning to smart home automation platforms to
control and automate their IoT devices. However, IoT automation
is vulnerable to spoofed event attacks. Given that IoT devices are
intricately linked with the physical environment and operate au-
tonomously, event-based attacks can pose serious safety and se-
curity challenges. Our observations show that many IoT events
are accompanied by visual modifications in objects such as shape
alterations (for example, contact sensor events correspond with
door movement) or changes in color/brightness (for example, a
functioning microwave oven with the internal light switched on).
These alterations can be detected by the commonly deployed smart
cameras, providing a visually rich but challenging to manipulate
channel for verifying IoT events. We introduce IoTSENTRY, the first
system of its kind to extract high-level semantic information from
streaming video data and pixels for IoT event verification. We have
designed a Siamese deep neural network to identify variations in
the appearance of IoT devices and interior objects. These are used
as the yardstick for verifying IoT events received at IoT automation
platforms. Upon assessing [oOTSENTRY with 21 IoT devices (8 types),
the results demonstrate that IOTSENTRY can be trained within 120
seconds, yielding an accuracy rate of over 96.7% in recognizing
device states. We have deployed the 21 IoT devices and IoTSENTRY
on two real-world smart home test sites. Over the course of our
one-week evaluation, [IOTSENTRY consistently achieved an average
detection rate of 99.24% in identifying attack instances. Moreover,
it triggered no more than 2 false alarms per day on each test site.

CCS CONCEPTS

« Security and privacy — Artificial immune systems; « Computer
systems organization — Sensors and actuators.
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1 INTRODUCTION

In recent years, the global IoT market has experienced a boom in
development, projected to reach $1,8 trillion in 2028 [11]. Among
these, the smart home IoT market possesses the largest share, at
79.13 billion USD in 2020, and boasts a compound annual growth
rate of 25.3% [34]. Concurrently, IoT devices have increasingly
become the targets of attacks [6, 13, 19, 20, 30, 42, 45, 50, 56]. These
attacks pose serious safety and security concerns due to the close
integration of IoT devices with the physical environment.

The interoperability of smart home automation platforms allows
IoT event attacks to pose risks not only to compromised devices but
also to others within the network. Attackers can exploit vulnerabil-
ities in these devices to trigger malicious activities. For instance, by
spoofing the “user present” event, coupled with the automation rule
“unlock the door when the user is back,” they create an opportunity
for burglaries. An attacker gaining full control over a compromised
device complicates the task of verifying the device’s integrity.

There are approaches aimed at detecting spoofed events using
side-channel information, notable among them [16, 31]. However,
these existing methods have two major limitations. Firstly, verifi-
cation of each type of IoT event typically requires a specific corre-
sponding sensor deployed in close proximity. The diversity of IoT
events implies a need for various types of IoT devices to be densely
deployed. Secondly, event verification robustness is strongly influ-
enced by the devices’ relative distances.

To mitigate these limitations, we suggest leveraging real-time
video footage from home security cameras to verify IoT events.
Home security cameras, being one of the most common smart
home IoT devices, are installed in approximately 14.6% of Amer-
ican households [2]. This number increases to 42% in residences
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Figure 1: Workflow of IoOTSENTRY.

equipped with smart home IoT systems [1], indicating a signifi-
cant inclination towards incorporating security cameras as a part
of smart home setups. Furthermore, the indoor cameras takes the
largest share of 38.9% [3], which implies that home security cameras
are highly likely to be installed together with other smart home
IoT devices. In the future, home security cameras that are carried
by self-navigating drones (e.g., Ring Always Home Cam [4]) can
further expand the coverage of video surveillance. Many IoT events
produce visible evidence such as light flickers or door movements,
which can be captured by cameras. By monitoring discrepancies
in reported states, cameras can detect faulty or malicious events.
Besides, cameras can oversee a larger area and achieve higher sam-
pling rates, significantly surpassing other sensors.

While using cameras to detect motion and recognize faces is
commonplace, extracting semantic information from video data for
IoT event verification is a novel tactic. In this study, we demonstrate
that cameras can be used as “broad-spectrum” sensors, leveraging
the rich semantics in videos for verifying various IoT events.

Our approach utilises recent advances in deep neural networks
(DNNGs) to identify state changes of IoT devices from videos. How-
ever, creating a universal DNN model poses three prominent chal-
lenges. First, the features and appearance of IoT devices are highly
diverse, making it difficult, if not impossible, to build a model that
is universally applicable to all IoT devices. Second, recognition ac-
curacy can be greatly influenced by variations in viewing angle,
distance, and lighting conditions. Finally, in specific IoT deploy-
ments, most devices exhibit infrequent state changes resulting in a
limited data pool for training a model from scratch.

We propose IoTSENTRY, a video-based IoT event verification sys-
tem that aims to tackle the aforementioned challenges. We design
a semantics-assisted transfer learning approach to overcome the
training overhead and the model generalization issue. Specifically,
instead of seeking a universally applicable model, a semi-finished
Deep Neural Network (DNN) model for devices sharing similar
appearance characteristics is prepared by IoT researchers, device
vendors, or platform operators. These semi-finished models can
be fine-tuned and adapted for IoT devices deployed in different
households. That is, models of different devices share the same base
model, with top layers fine-tuned for each device.
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We apply the Siamese Convolutional Neural Network (CNN)
to detect changes between two images of the same device, rather
than detecting its state directly. This method ensures more accurate
detection results as the two frames are captured in quick succes-
sion, maintaining the same viewing angle, distance, and lighting
conditions. Furthermore, the process can generate a large training
dataset of image pairs derived from a small number of images. The
key idea is that the state changes recognized by the AI system
should align with the IoT events reported to an IoT platform.

The workflow of the proposed detection system is illustrated in
Figure 1. The home automation platform selects a pre-trained base
CNN model to be shared by all devices. Each image from the video
is segmented using object detection models such as YOLO [48] and
SSD [43]. Then, we add fully connected layers on top of the base
CNN model to form the Siamese network and fine-tune the model
using pairs of image segments for each device. Sample frames are
then periodically selected from the video footage for comparison
in the Siamese network. A low similarity score produced for two
consecutive sample images indicates a change in the device’s state
during the interval when the two images were taken.

To evaluate our proposed system, we first conduct a validation
to test the performance of the Siamese DNN model on detecting
the state of 21 IoT devices in an offline setting. The results show
that our fine-tuned DNN model achieves an accuracy of 98.77% in
recognizing devices’ state changes, and 96.67% in recognizing spe-
cific states by comparing the image with reference samples. We also
assess the reduction of training overhead due to the semi-finished
model by comparing the training of the fine-tuning model with
direct training. Results indicate that our methods reduce training
overhead by 45% on average. Finally, we deploy 21 IoT devices
and the prototype of our [IOTSENTRY on two smart home test beds,
conducting a week-long test with injected attack cases. [IOTSENTRY
successfully detects 99.24% and 97.23% of event spoofing attack at-
tempts. Moreover, IoTSENTRY yields no more than two false alarms
per day on each test bed, demonstrating its practical usability.

Our contributions are as follows:

o This is the first IoT event verification solution by utilizing
inexpensive cameras that are already prevalent in many
homes. It offers a broader spectrum of verification, as it
accommodates many more types of IoT devices and promises
more reliable performance.

e We propose the image comparison method to achive more
robust detection accuracy and two-stage transfer learning
method to alleviate the workload of model training.

e We evaluate IJOTSENTRY on two real-world testbeds. The
results show that IoTSENTRY achieves device state recog-
nition accuracy of over 96% on 21 devices across 8 types.
During a one-week deployment, the IoTSENTRY prototype
successfully detected 98.94% of generated attack cases while
yielding fewer than 2 false alarms per day.

The remainder of this paper is structured as follows. In Section 2,
we introduce the fundamental knowledge of smart home IoT sys-
tems. We then present our threat model along with our assumptions
of potential attackers in Section 3. The design and implementation
of IoTSENTRY is explained in Section 4, and the evaluation details
are outlined in Section 5. In Section 6, we enumerate related works
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and compare IOTSENTRY with other event verification solutions.
Finally, in Section 7, we assess the limitations and future work,
concluding in Section 8.

2 BACKGROUND
2.1 Smart Home Automation Platforms

With the number and variety of IoT devices increasing rapidly,
smart home IoT platforms such as Samsung SmartThings, Google
Home, and Amazon Alexa are gaining significant popularity in
the IoT market. These IoT platforms provide uniform messaging
interfaces, enabling easy management and interoperability among
IoT devices of different types and from different vendors.

More importantly, these platforms introduce the new feature
of trigger-action programming, which allows the implementation
of user-customized automation rules. These automation rules en-
able IoT actuators to work autonomously when triggered by the
specified trigger. On these automation platforms, IoT devices are
abstracted into various template abstract devices that define the
uniform messaging format of events and commands. The states of
each device are stored on the platform’s cloud server and updated
based on received events.

However beneficial they may be, automation rules also expose
new attack vectors, enabling attackers to trick automation platforms
by manipulating events. By creating fake events, attackers can
exploit automation rules to wrongly trigger or disable the execution
of the associated automation rules, which can eventually cause
hazardous situations. For example, in [18], the authors demonstrate
how a door can be maliciously unlocked with a ’light turned on’
event, and in [29], the authors illustrate how to trigger fake alarms
with spoofed smoke events. Subsequent works [23, 55] further
explore more security issues across multiple rules.

2.2 Vision-based Smart Home Safety

There has been an increasing number of home security camera
vendors adapting deep learning to their products. This technique
enables cameras to provide more accurate and intelligent alerts re-
garding potential safety risks [52]. For example, Arlo smart cameras
can recognize and capture human faces as well as common objects
such as vehicles, package deliveries, and animals from surveillance
video streams [54]. Some works further explore applications such
as fall [25] and inactivity [27] detection for elderly people.
Besides the home camera itself, cloud computing infrastructures
have also been established to support these advanced Al applica-
tions which are scalable and cost-effective. For example, the Ama-
zon Web Service (AWS)’s Rekognition service costs as low as 0.4
USD for processing 1000 images using newest computer vision
models. These modules can seamlessly work with smart cameras
that are integrated through the AWS IoT platform. Moreover, edge
computing devices such as Deeplens and Panorama also empower
Al-based applications to be hosted locally with acceptable cost.

3 THREAT MODEL

In this work, we examine potential attackers who can remotely con-
trol IoT devices to initiate event spoofing attacks. Equipped with this
ability, attackers can malevolently prompt actions of other devices
associated with the manipulated event, using home automation
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Figure 2: Overview of IoTSENTRY.

rules. The event spoofing attack might occur due to compromised
devices [50] or vulnerable cloud APIs of the device vendor [35],
which assist attackers in injecting spoofed events directly. These
spoofed events can be utilized by attackers to trigger false security
alarms [15] or instigate dangerous actions such as unlocking smart
locks or activating heaters [18, 36].

Attackers may also possess the potential to maliciously intercept
safety-critical commands, thereby inducing dangerous situations.
For instance, attackers could intercept a command intended to
turn off an electric heater when the user departs from home, while
fabricating the anticipated feedback event of “plug turned off” to
maintain their stealth. Different methods to verify the appropri-
ateness of these actions have been extensively examined in other
research works [18, 36, 44] and are beyond our scope. In this work,
our objective is to detect failed command executions.

In this study, we presuppose that home cameras used for collect-
ing training and testing samples are not compromised by attackers.
We assume these cameras can provide genuine video footage or
image snapshots whenever requested by our [oOTSENTRY.

4 JOTSENTRY SYSTEM DESIGN

In this section, we present the design and implementation of IoT-
SENTRY. We initially describe the constituent components of IoT-
SENTRY, followed by a discussion on their usage to address the
challenges presented in Section 1.

As shown in Figure 2, [OTSENTRY operates by comparing events
recognized by the DNN model with those reported by smart home
ToT devices. IoTSENTRY is comprised of four modules: 1) The Image
Segment Extractor, which utilizes existing object detection mod-
els to divide an image frame into device and object segments and
match them with identities on the home automation platform. 2)
The Device State Recognizer, tasked with recognizing state changes
of devices using a DNN model. 3) The Event Exporter, designed
to export real-time events from various smart home automation
platforms. 4) The Attack Detector acts as the decision module by
invoking the Device State Recognizer and the Event Exporter, com-
paring their results and reporting any mismatches as alarms.
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4.1 The Image Segment Extractor

Commonly used smart home security cameras have wide view
angles up to 110 degrees [7] to cover a large portion of a room. Al-
though the expansive image frame allows coverage of more devices,
irrelevant objects could potentially be included, causing interfer-
ence with device state recognition. Therefore, as a preliminary
step, we first need to segment the entire image frame into smaller
sections, each of which represents a device or object. We achieve
this goal by using existing object detection solutions such as Fast
R-CNN ([32], Single Shot MultiBox Detector [43], and Yolo [48]
to highlight objects in the image frame with bounding boxes. We
examine the performance of different versions of these three object
detectors that are pre-trained on the COCO dataset [41], finding
that Yolo v4 offers the best detection accuracy. Once a device or
object has been detected, we record the coordinates of its bounding
box and use this to directly extract the segment in future frames.
With visualized bounding boxes and labels, users can conveniently
map the segments to the corresponding IoT devices’ identities on
the automation platform.

4.2 The Device State Recognizer

The Device State Recognizer is the core component of IoTSEN-
TRY, tasked with recognizing device states using the vision side
channel. This system accepts a pair of image segments of the same
device from the Image Segment Extractor as input and then pre-
dicts whether the state of the device in the two image segments is
identical. Despite the latest advancements in deep neural network
(DNN) and computer vision [59] achieving high precision in object
classification, the development of a universally applicable DNN for
all devices is currently impractical given the variety of IoT devices
and the persistent introduction of new models. Alternatively, train-
ing dedicated models for specific devices could provide a solution,
but this approach presents two significant challenges. First, it re-
quires a substantial number of image samples to create the training
dataset, which might take an extended period to collect from a typ-
ical smart home deployment, considering many IoT devices’ states
(e.g., a door) only change a few times each day. Second, training
DNN models is computationally intensive, taking into account the
scale of installed IoT devices. Simplifying by fine-tuning models pre-
trained on public datasets would invariably result in high training
overhead and potentially compromise system scalability.

To address the initial challenge posed by the training dataset, we
employ the Siamese neural network model [17]. Instead of training
models to directly recognize the state of a given device, we train a
model capable of determining whether the devices in two segments
are in the same state. Using image input, we explore the combi-
nations of image segments and assemble them into pairs labeled
either ‘same’ or ‘different’. This method allows for the expansion of
even a small number of image segments into a substantial dataset.
For instance, as depicted in Figure 3, we can generate 5,000 training
image pairs from 100 images of a door (50 open and 50 closed) for
the purpose of training the Siamese network. This set includes 2,500
same-state pairs and 2,500 different-state pairs.

Although fine-tuning pre-trained CNN models has proven to be
effective in reducing training overhead, fine-tuning DNN models
for a tremendous number of IoT devices still faces scalability issues.
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Figure 3: The example of the hinge door is used to illustrate
how the training dataset can be expanded using image pairs.
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To further reduce the training overhead, we propose a two-stage
fine-tuning scheme. As illustrated in Figure 4, it begins with fine-
tuning a Siamese network model that integrates a pre-trained base
CNN model with images of a type of device. Then, we further fine-
tune the model with images of a specific IoT device to allow it to
accurately recognize the device’s state changes. This scheme assists
in reducing training overhead because certain common features
learned in the first stage can be shared among different devices of
the same type.

In the first stage, we train the model with images of device types
collected from the Internet, allowing us to include a greater variety
of images. Owing to the variance in images, the training and valida-
tion accuracy of the first stage fine-tuning may show only a slight
improvement, thereafter stagnating as semi-finished. Although the
resultant semi-finished model cannot achieve satisfactory accuracy,
it has already learned some common patterns of that type of device.
In the second stage, we further fine-tune the semi-finished model
with images captured for specific devices. Leveraging the embedded
patterns, the training time and resource overhead can be signifi-
cantly reduced. Taking the hinged door as an example, we first train
the Siamese network model with images of hinged doors gathered
from the Internet, which include images of doors of different colors,
textures, and sizes. We manually label the downloaded images as
either "open’ or 'closed, deriving a pairwise training dataset to train
the semi-finished model. In the second stage, we continue to train
the semi-finished model with images of a specific hinged door. The
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accuracy can be improved to a satisfactory extent with considerable
reduction in effort.

4.3 The Event Exporter

The event exporter is deployed on a Virtual Private Server (VPS) to
collect real-time events from IoT devices across various automation
platforms. In our experiment, the event exporter gathers events
from multiple sources, given that devices may be integrated into
different smart home automation platforms. For platforms allowing
user-customized automation programs like SmartThings [8], we
install a smart app to automatically report device events to our
VPS via HTTPS requests. Contrarily, for platforms that lack this
support (for instance, Alexa [9] and Tuya [12]), we link them to
the IFTTT platform [10] and utilize an applet to synchronize the
states of associated devices with a virtual service hosted on our
VPS. Within our VPS, we establish virtual device instances for each
device subjected to monitoring and keep an account of their states.
The state of a virtual instance changes every time it receives an
event from the automation platform.

4.4 The Attack Detector

As the decision module of IoTSENTRY, the Attack Detector scruti-
nizes a device’s state as determined by the DNN model and events
reported by the Event Exporter. Instead of being a passive observer,
the Attack Detector actively retrieves devices’ states from two dis-
tinct channels both periodically and when new events occur. With
a predetermined sampling period set at 60 seconds, sufficient time
is afforded for the manifestation of the event’s visual effect. The
DNN model within the Device State Recognizer is only equipped to
verify whether the state of a device visible in two different images
is identical. Consequently, we must monitor a device’s state by
comparing the most recent image of a device to a reference image.
Upon receiving an event, an immediate image of the related device
is taken and paired with the most recent image taken during the
periodic sampling.

Confirmation of the event by the Device State Recognizer, sig-
nified by a ‘different’ output, renders the event harmless. The vir-
tual instance’s state, as maintained by the Event Exporter, is then
changed accordingly. While in the absence of an event, two images
from consecutive periods are paired, and the Device State Recog-
nizer is expected to produce a ‘same’ output. A conflict between
the results (R1) from the Device State Recognizer and those from
the Event Exporter initiates a further validation process.

The Attack Detector randomly selects an image from the device’s
training dataset to serve as the reference image. The state of the
device in the reference image is identifiable through its label. This
reference image is then paired with the disputed image, and the
device state recognition procedure is repeated to yield a second
result (R2). Inconsistency between R1 and R2 results in the former
being disregarded as inaccurate, indicating an issue with the two
consecutive images. On the other hand, if R2 aligns with R1, the
Event Exporter’s result is deemed problematic. In such cases, the
Attack Detector sends out an alert, such as an app notification on
the user’s phone, to notify the user of a possible attack.
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5 EXPERIMENT & EVALUATION

In this section, we present our experiment in a real-world setting
with commercial IoT devices. We first describe the experiment setup
and then evaluate the accuracy and overhead of the Device State
Recognizer. Afterwards, we describe the results on two real-world
testbeds where we generate event spoofing attacks for testing.

5.1 Experiment Setup

Table 1: List of Tested Devices. The devices tested are classi-
fied into eight types. In the case of the door and refrigerator,
the term ’device’ refers to the contact sensors affixed to them.

Label Name Events Amount
D Room Door open/close 3
R Refrigerator Door  open/close 2
L Light Bulb on/off 3
M Monitor on/off 2
H Electric Heater on/off 2
(0] Microwave oven on/off 2
K Electric Kettle on/off 2
P Smart Plug on/off 5

There are 21 IoT devices of 8 types (listed in Table 1) within
the two testbeds, which consist of a studio apartment and a two-
bedroom apartment. In each testbed, we have installed a single
Foscam smart home camera [14] costing less than $50 from Ama-
zon.com. The camera is strategically positioned at the corner of
the kitchen/living room area to capture all devices within a single
frame, with a resolution set at 1920*1080. For the devices lacking
built-in smart control features, we utilize smart plugs to control
them and to monitor their operational status. For instance, devices
such as an electric heater, microwave oven, and monitor, are con-
nected to smart plugs. The power output measurements obtained
serve as an indicator of their functional states. A power thresh-
old is set at 10 watts: events reporting power measures exceeding
this threshold are labeled as “turned on” and those reporting less
as “turned off”. For the room door and refrigerator door, we have
affixed contact sensors. For both the training and testing, we are
using a workstation with an Intel i9-9820X CPU and two Nvidia
2080Ti GPUs.

Ethical Concerns. Our experiment received approval following re-
view by the IRB committee at our university. In a bid to circumvent
privacy issues stemming from the usage of the camera, we blocked
the camera’s internet access through the addition of firewall rules at
the home router, thereby forcing the camera to function without a
memory card. Every image was collated by triggering the camera’s
snapPicture CGI [5] from participant-owned PCs via the partici-
pant’s local area network. Image segmentation was also carried out
through the users’ PC to enable users to exclude redundant parts of
images potentially containing sensitive information. Furthermore,
we enabled participants to view their accumulated image segments
first, subsequently removing any containing sensitive details prior
to further processing in the workstation. The data drive within the
workstation is encrypted; access is strictly limited to the authors of
this paper.
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Figure 5: Samples from our image dataset are taken for each

device under four distinct lighting conditions.

5.2 Image Data Collection

Our Siamese network model was trained using image samples col-
lected from the internet or segmented from image frames captured
by installed cameras. For the stage 1 fine-tuning, we retrieved im-
ages of each type of device from the internet, based on a criterion
requiring the device and its operational state in the image to be
easily identifiable by humans. We procured 100 images representing
both the 'on/open’ and *off/closed’ states for every type of device,
such as an electric oscillating radiant heater. Irrelevant sections of
the downloaded images were manually cropped to focus on the
target device only.

For stage 2 fine-tuning, we captured images of devices using
cameras placed in two testbeds. The location of these cameras was
selected based on the same criterion used in stage 1 data collection,
guaranteeing that a human viewer can easily determine all testing
devices’ state through the image. As is common with most smart
home cameras, we allowed the cameras to remain stationary, main-
taining a steady position and angle during the image collection
period. As depicted in Figure 5, we recorded images of each device
under differing lighting conditions at four separate times: 1) in the
morning with abundant natural light; 2) at dusk, where the natural
light dims; 3) at night under artificial light; 4) at night with the
room in darkness, switching the camera to its IR night vision mode.
We gathered 50 images of each state of a device for training and
validation, along with another 10 images aimed for evaluation.

Following the image collection, we combined the image samples
into pairs of two different states and sorted through their combi-
nations. This method allowed us to acquire 2,500 same-state pair
samples and an equivalent number of different-state pair samples
for the training of each device. As for pairs featuring images of the
same state, we labeled them as ’1’. Meanwhile, pairs with images
of different states were labeled as ’0’.
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Figure 6: The architecture of our Siamese network model.

Table 2: Hyperparameters of Our Siamese Network Model.

Parameters Value Space Optimal
FC1 Nodes {128,196,256,512,1024} 512
FC2 Nodes {128,196,256,512} 512
Dropout Rate  [0.05,0.5] 0.3
Learning Rate  [0.0001,0.5] 0.02
Batch Size {8,16,32} 16
Base CNN {VGG16, Resnetso, Resnet50

InceptionV3, Plain CNN}

5.3 Device State Recognition

In this subsection, we carry out a validation experiment to assess
the performance of the Device State Recognizer. We conduct the
evaluation using an offline approach using our collected dataset.

5.3.1 Siamese Network Model. We take the standard approach
to construct our Siamese model, the structure of which is shown
in Figure 6. In this model, our foundation is formed by layers of
convolutional blocks using CNN models that are pre-trained on the
ImageNet [26] dataset. We discard the top classification layers of
the CNN model, utilizing the remainder as the feature extractor.
We then freeze the weights of the convolutional blocks. On top
of these foundational convolutional layers, we incorporate two
fully connected layers utilizing the ReLU activation function and
interspersed these with a single dropout layer. The final stage is
calculating the Euclidean distance between the vector outputs of
the two input images to produce a result. If the distance is less than
0.5, we deduce that the devices shown in the two input images are
in the same state. Conversely, if the distance is equal to or exceeds
0.5, we infer that they are in different states.

5.3.2  Hyper-parameters. For training our siamese model, certain
hyperparameters (as outlined in Table 2) need to be determined.
In addition to the usual hyperparameters like batch size and the
number of nodes in the two fully-connected layers, we also need
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to compare the performance of varied pre-trained CNN models
used as feature extractors, and select the one that yields the highest
accuracy. The ideal set of hyperparameters is determined by apply-
ing the NNI (Neural Network Intelligence) [38] tool to scour the
parameter value space automatically. Remember that we test eight
types of devices (Table 1). One representative device is selected
from each of these eight types. We bypass the fine-tuning stage 1
and directly train the Siamese model with stage 2 images.

The Siamese network model incorporates seven hyperparam-
eters for each device type (enumerated in Table 2). The findings
demonstrate that all eight types of devices perform optimally with
a dropout rate of 0.3, and a batch size of 16. Regarding other pa-
rameters, we observe no significant improvement, exceeding 1%, in
state recognition accuracy with a count of nodes in fully-connected
layers exceeding 512 and a learning rate below 0.02. Consequently,
we adopt 512 and 0.02 to minimize training overhead. As it re-
lates to the choice of a base CNN feature extractor, the plain CNN
is discarded as it displays an accuracy that is at least 25% lower
than alternative choices. Among the four pre-trained CNN models,
Resnet50 records the highest average accuracy.

Table 3: Accuracy of device state recognition.

Stage 1 Accuracy Stage 2 Accuracy

Device
Pairwise On/ Off/ Pairwise On/ Off/

Open  Closed Open Closed

D1 90.45% 70.00%  80.00% 98.73% 90.00% 100.00%
D2 84.52% 80.00%  90.00% 100.00% 100.00% 100.00%
D3 88.95% 70.00%  90.00% 99.67% 90.00 100.00%
R1 87.33% 70.00%  90.00%  100.00% 100.00% 100.00%
R2 91.17% 80.00%  90.00% 100.00% 100.00% 100.00%
L1 92.16% 100.00% 80.00%  100.00% 100.00% 100.00%
L2 91.43% 100.00% 80.00%  100.00% 100.00% 100.00%
L3 80.43% 90.00%  70.00% 100.00% 100.00% 100.00%
M1 97.45% 100.00%  90.00%  100.00% 100.00% 100.00%
M2 95.31% 90.00% 90.00%  100.00% 100.00% 100.00%
H1 95.22% 70.00%  60.00% 96.15% 90.00% 90.00%
H2 58.74% 40.00%  70.00% 93.54% 90.00% 80.00%
o1 86.72% 50.00% 60.00% 100.00% 100.00% 100.00%
02 56.16% 40.00%  60.00% 96.32% 100.00% 80.00%
K1 66.34% 50.00% 40.00% 93.39% 100.00% 90.00%
K2 69.01% 60.00%  70.00% 98.21% 100.00% 90.00%
P1 76.31% 80.00%  70.00% 100.00% 100.00% 100.00%
P2 85.50% 70.00%  90.00%  100.00% 100.00% 100.00%
P3 52.99% 40.00% 50.00%  100.00% 100.00% 100.00%
P4 88.34% 80.00%  90.00% 98.16% 90.00% 100.00%
P5 89.92% 70.00% 80.00%  100.00% 100.00% 100.00%
Ave. 82.12% 71.43% 75.71% 98.77% 97.62%  96.67%

5.3.3  Accuracy of State Recognition. With the optimal hyperparam-
eters, we conduct a two-stage training and evaluate the accuracy of
the Siamese network model in recognizing the states of specific de-
vices. In the first stage of training, we train the newly constructed
model with image samples downloaded from the internet. This
step yields eight semi-finished models for the eight types of de-
vices/objects. In the second stage of training, for each device, we
use the corresponding semi-finished model of its type and continue
to train the model with image samples captured by our cameras.
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We measure the accuracy of the models using three metrics: 1)
pairwise accuracy is the accuracy of predicting whether the devices
in a pair of images are in the same state; 2) accuracy in recognizing
a device’s 'on’ state; 3) accuracy in recognizing a device’s off” state.
The final two accuracy measures are determined by comparing the
testing samples with reference image samples.

As the results presented in Table 3 indicate, we evaluate the
accuracy of the semi-finished models from stage one using an eval-
uation dataset. These models achieve an average pairwise accuracy
of 0.82. In terms of state recognition accuracy, they achieve a score
of 0.71 and 0.75 for recognizing the ’on’ and ’off” states, respec-
tively. For some devices showing more pronounced appearance
changes when changing states, such as lamps and monitors, the
semi-finished models achieve better accuracies, nearing 90%. This
is because these devices share more common features typical of
their device type, which can be discerned from the downloaded im-
ages. Meanwhile, other devices with a more varied appearance and
fewer common features (e.g., different smart plugs display different
colors and shapes of indicator lights), the recognition accuracy is
only slightly better than an untrained model (i.e., 50% pairwise
accuracy).

Following this, we conduct the second stage of training by fine-
tuning the eight models for their corresponding devices and then
evaluate them using the same evaluation dataset. As demonstrated
in Table 3, after fine-tuning, accuracies for both pairwise and spe-
cific states significantly improve, exceeding 0.96. Out of the 21
tested devices, models trained via stage two fine-tuning achieve
100% accuracy on 13 devices. We subsequently examine the cases of
H2 and 02, which have comparatively lower accuracies. The heater,
H2, is a radiator heater that only exhibits changes in appearance
through the brightness of its indicator light. In the two instances
where the heater was misclassified as being in the ’on’ state, we
noticed that its indicator light was illuminating due to nearby light
sources, preventing even humans from accurately determining its
working state. Unlike H2, H1 does not face this issue because it
is an infrared radiant heater that shows a color change in a large
area when turned on. Misclassification of the microwave oven, O2,
was caused by a similar issue: sometimes the front panel reflects
natural light, making it appear as though the interior light is turned
on. After augmenting our training dataset with image samples of
these particular cases, our models achieve 100% state recognition
accuracy for both devices.

5.3.4  Reduction of Training Overhead. To highlight the influence of
stage 1 fine-tuning on curbing the total training overhead, a single
device from each type is selected to illustrate the contrast in its
processes of training based on stage 1 versus training without stage
1. As depicted in Figure 7, when the finish threshold for training is
defined as an accuracy level of 98%, it requires an average of 3.375
epochs to train a model without stage 1. In contrast, when utilizing
the semi-finished model from stage 1 training, this number dwindles
to 1.625, representing a decrease in computation by 51.86%. For
certain device types with more shared features, such as doors, lamps,
refrigerators, and monitors, the reduction in training overhead
exceeds 75%. Moreover, for items like electric kettles and smart
plugs, which have either minor visual alterations or highly varied
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Figure 7: Comparison of Stage 2 Training Overhead With and Without Stage 1 Fine-Tuning: Each chart depicts a dashed line
representing the improvement in training accuracy attributed to Stage 1 fine-tuning. Conversely, the solid line represents the

scenario without the fine-tuning of Stage 1.

appearances, stage 1 training still proves effective and diminishes
training overhead by 25%.

In order to fully comprehend this enhancement, we analyzed the
duration of both stage 1 and stage 2 training. Following the stan-
dard resizing of input image samples to 224*224, a single iteration
of a 16-image pair batch is completed in 88 milliseconds on our
workstation. Given that the Siamese network structure is consis-
tent in both stages, the training expense for one iteration with the
same batch size remains equal. For the stage 1 training with a set of
20,000 training image pair samples, each epoch necessitates 1,250
iterations, totaling approximately 110 seconds. In contrast, stage
2 training, with fewer input image samples, requires merely 312
iterations and culminates in under 30 seconds. This signifies that
training a Siamese network model specifically for any device would
require no longer than 120 seconds (4 epochs) on our dual-GPU
workstation. This overhead can be further mitigated by training a
more extensive semi-finished model in stage 1 using a larger sample
size of images.

5.4 Detection of Event Attacks

Aside from the validation test for the Device State Recognizer, we
have also implemented other parts of IOTSENTRY on two testbeds.
We conducted end-to-end tests to evaluate its performance in de-
tecting event spoofing attacks.

5.4.1 Attack Case Generation. During the week-long testing pe-
riod, the residents in two testbeds keep their normal living pat-
terns and generate 1,559 events that are relevant to our testing
devices/objects from the two testbeds. Then, for each device, we
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randomly inject 100 events into the collected event log for sim-
ulating event spoofing attacks targeting that device. Please note
that, rather than triggering the devices’ actions, spoofed events
are only inserted into the events log, which aligns with recently
disclosed smart home IoT attacks via the automation platforms and
communication links, and integration channels. [18, 29, 35].

For the spoofing attack event, 200 spoofed events were randomly
injected during the week-long testing period.

5.4.2 Performance of Detection. The test cases are evaluated au-
tonomously. For each test case, we construct a time window be-
ginning 60 seconds before the event occurrence and concluding
60 seconds post-event. Subsequently, we gather all image samples
from the specific device, captured within the defined time window.
To illustrate, in a scenario of a spoofed "open’ event of a door at
instance t¢, we collect images of the door captured within the time
boundaries [te — 60, te + 60]. We then monitor the device’s state
within our defined time window to verify event occurrence. In
the event of spoofing attack cases, we deem the detection process
successful if the device state recognizer reports no change in state
within the image samples in the observed time window.

The results presented in Table 4 demonstrate that [OTSENTRY
achieves an average detection rate of 99.24% in detecting the event
spoofing attack. Moreover, [OTSENTRY maintains a 100% detection
rate in 10 out of the 21 testing cases. Upon examining detection
accuracies across different devices, we observed a similar trend
as with the validation test of the device state recognizer. That is,
the state changes of devices with implicit features, such as H2, K2,
and smart plugs, result in a higher number of failed testing cases,
proving difficult to distinguish even for human observers.
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Table 4: Performance of IoOTSENTRY in detecting event spoof-
ing attack cases.

Device Testing Detected Detection False
Cases Cases Rate Alarms

D1 100 99 99.00% 2
D2 100 99 99.00% 1
D3 100 100 100.00% 0
R1 100 100 100.00% 0
R2 100 99 99.00% 2
L1 100 100 100.00% 0
L2 100 100 100.00% 1
L3 100 100 100.00% 0
M1 100 100 100.00% 0
M2 100 100 100.00% 0
Hi1 100 99 99.00% 1
H2 100 98 98.00% 3
01 100 100 100.00% 1
02 100 97 97.00% 1
K1 100 100 100.00% 1
K2 100 96 96.00% 4
P1 100 99 99.00% 0
P2 100 100 100.00% 1
P3 100 99 99.00% 1
P4 100 98 98.00% 1
P5 100 100 100% 0
Ave. 99.24% 1.78/day

5.5 False Alarm Test

The false alarm rate is a critical aspect of a detection system; fre-
quent false alarms can pose nuisances to users, possibly compelling
them not to use the system. A dedicated false alarm test was con-
ducted, wherein all images procurement during the seven-day test-
ing period were analyzed with the device state recognizer. The
recognition results were then compared with events exported from
the home automation server. As no assault cases were injected into
this test, all alarms triggered by the attack detector were subse-
quently classified as false alarms. As depicted in Table 4, a total of
20 false alarms manifested over the course of the week-long testing
on two testbeds. This resulted in an average of 1.42 false alarms
per day for each testbed. Out of these 20 false alarms, half were
triggered by the electric heater H2 and the kettle K2.

6 RELATED WORKS

Security of Smart Home IoT.. Recent research extensively stud-
ies the potential vulnerabilities and corresponding defenses linked
with smart home Internet of Things (IoT) systems [21, 22, 29, 35,
37, 55, 57, 58, 60, 61]. The rapid growth of the IoT industry has led
to an influx of low-cost IoT devices riddled with various vulner-
abilities [13, 39], which result in significant attack surfaces. Ow-
ing to the integration of smart home IoT devices within physical
environments, these vulnerabilities allow attackers to extend the
damage from the cyberspace to the physical environment. Ronen et
al. demonstrated a method to compromise Philips Hue light bulbs
in [50]. They exploited the proximity-based authentication scheme
of the bulb and created a worm, which propagated through pre-
viously infected devices. Using this approach, thousands of light
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bulbs could be compromised within hours. In [35], Yan et al. de-
tailed and analyzed the vulnerability of the MQTT protocol adopted
frequently by smart home IoT devices. Through exploiting these
vulnerabilities, attackers could execute large-scale attacks such as
IoT remote control, data spoofing, and denial-of-service. Zhou et
al. exposed implementation flaws in the IoT device pairing and
binding protocol in [61]. The flaws enabled attackers to sever the
connection between an IoT device and its associated cloud server
and replace it with malicious phantom devices. This breach pro-
vided attackers an opportunity to perform denial-of-service attacks
or forge counterfeit events targeting the automation cloud server.

Event Verification. Considering that IoT platforms welcome de-
vices from various vendors and that any device, regardless of its
relevance to sensitive attributes, can potentially impact other be-
nign devices with events, developing robust IoT event verifica-
tion systems becomes critical to prevent security risks instigated
by event-based attacks. Current research primarily uses anom-
aly/outlier detection techniques, which identify unusual events
from event logs exported from smart home automation platforms.
HAWatcher [31] introduced the concept of inter-device correla-
tion, combining IoT semantic information with conventional data
mining procedures. Collecting correlations from the set training
period allows IoT devices to verify each other and send alerts for
any violated correlations. Peeves [16] presented an approach that
uses readings from multiple sensors as evidence to confirm real-
world event occurrences. The authors proposed a measure, termed
relative mutual information (RMI), to calculate the relationship
between an event and sensor reading fluctuations. The RMI from
different sensors gets used collectively in a machine learning model
to verify a sequence of smart home events. Ozmen et al. [46] further
enhance these two EVS solutions by software patching and sensor
placement inferencing techniques and prevent them from being
circumvented by intelligent adversaries. DICE [24] and Aegis [53]
implemented similar methods, involving a state transition graph
or Markov chain model, to record transitions in states of smart
home IoT devices during the training phase. Afterward, during
deployment, any events triggering unseen transitions get reported
as faulty or malicious. Compared to our IoTSENTRY, these methods
face usability issues as they all require the assumption that IoT
devices with various sensing capacities can be deployed densely
enough so that inter-device correlation can be established. Further-
more, the accuracy of these 'indirect’ event verification methods
may drop due to interference from users’ activities and physical
environments. IoTSENTRY only assumes a security camera being
installed and offers better detection accuracy.

HoMonit [60], another relevant piece of work, suggests using
wireless traffic from IoT devices as side-channel information to
verify IoT events. The authors develop a Deterministic Finite Au-
tomaton (DFA) to monitor the states of the smart home system,
updated through events gathered from wireless traffic. Afterward,
the states predicted by the DFA are compared to the outcome of
smart apps (automation rules) to detect misbehaving smart apps.
Although the authors claim they can detect ’spoofed events’, they
assume such events are produced by malicious smart apps, not
real-world devices. In our threat model, compromised devices can
generate spoofed events, which come with actual wireless traffic.
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This method allows the attack to bypass HoMonit’s check since
it does not disrupt the DFA transition. Contrarily, our [OTSENTRY
can effectively identify this attack by directly checking the events
against their associated physical ground truth.

Side-channel information for IoT security. Many other works ex-
plore various ways to utilize different kinds of side-channel in-
formation in the IoT security domain. IOTCUPID [28] proposes
to utilize the inter-event correlations to securely pair IoT devices
with heterogeneous sensing modalities. Perceptio [33] was the first
to introduce the concept of a physical security boundary, within
which devices are considered to be co-located to capture sensory
data from the same event. The fused data from these devices are
utilized as a secure source from which to derive and deliver secure
keys. T2Pair [40] suggests the use of universal operation sensing,
which exploits the correlated vibration/accelerometer readings to
capture the user’s physical operations on two devices to be paired.

Aside from vibration and movement, other forms of side-channel
information are used for IoT applications. The authors of [47] ex-
plore the potential to correlate the inherent acoustic noises of home
appliances with their operational states. They investigate different
classification methods capable of accurately classifying multiple
appliances operating simultaneously. The resulting recognition aids
the smart home system in identifying abnormal energy consump-
tion and preventing hazardous status of devices. In concurrence
with our work, IDIoT[51] also applies the vision side channel, with
the aim to detect and identify wearable IoT devices for the elderly.
The authors of this paper employ a 2D camera to capture the user’s
pose and match it with readings from the 3D inertial sensors em-
bedded in the IoT device. Through the integration of visualized
information with user motion measurements, the study claims to
be capable of matching multiple IoT devices with their respective
identities, even when they are covered by clothing or stored in a
user’s pocket.

7 DISCUSSION & FUTURE WORKS

Unapplicable situations. IOTSENTRY is not designed as a univer-
sal solution to verify events of all devices. There may be situations
where events do not display explicit appearance changes or occur
out of the camera’s view. These situations may pose difficulties
for humans in recognizing device states using only visual infor-
mation. For instance, the August Smart Lock [6] displays minimal
appearance changes during the rotation of the rounded handle.
Although not effective in all scenarios, the vision channel utilized
by IoTSENTRY remains the most comprehensive among all side
channels, implying IOTSENTRY can cover most IoT devices. The
acoustic channel could serve as a significant supplement to the
vision channel to detect exceptions (e.g., smart lock rotation) with
audio streams, which can also be picked up by home cameras. We
aim to explore this possibility in future work.

Non-binary device states. This work primarily focuses on detect-
ing spoofed events in devices with binary states. While quite a
few IoT devices generate numeric values (e.g., illuminance, dim-
mer level, and air quality index), devices crucial for security and
safety typically produce binary events (e.g., motion, lock, switch,
and contact). This selection is consistent with other state-of-the-art
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event verification solutions [16, 31, 46, 49]. Moreover, [OTSENTRY,
is also capable of detecting non-binary spoofed events, particularly
when they markedly deviate from a device’s actual states. In these
instances, [OTSENTRY discerns state changes between “high” and
“low” instead of “on” and “off”, which is also adopted in [31].

Changes of camera’s viewing angle and distance. The accuracy of
device state recognition might be influenced if the test images are
captured from varying angles and distances. Currently, we have not
integrated these variations into our evaluation as most smart home
cameras tend to be stationary. However, if movable cameras become
commonplace in the future, we can account for this by incorporating
images of devices taken from different viewing angles and distances
into our training dataset. The current version of IoTSENTRY has
demonstrated this ability by training DNN models with images
under varied lighting conditions, yielding models that can adapt to
a range of light conditions.

Situation of camera compromise. If the camera used as JoOTSEN-
TRY’s input source is compromised, attackers could potentially cir-
cumvent the detection of event-based attacks by replaying historic
images. This stratagem, however, greatly increases the complexity
and cost of the attack as attackers would have to determine the
location of the target device within the image and select images
that consistently result in the same recognition states. This selec-
tion process could be time-consuming. In situations where multiple
cameras are installed within a household, attackers would need to
identify the specific camera used to verify events for their target
device or compromise all cameras. Other state-of-the-art IoT event
verification systems [16, 31, 46, 49] also need the similar assumption
that the verifying device cannot be compromised at the same time.
In contrast, [OTSENTRY incurs much lower cost than existing EVS
solutions as it does not require IoT devices to be densely installed
for forming relative mutual information associations or correlations
and can achieve decent performance when very few IoT devices
are installed.

8 CONCLUSION

This work explores the feasibility of verifying IoT device events
through the visual channel. Utilizing cameras that are already ex-
tensively deployed, IOTSENTRY extracts rich semantic information,
which is not commonly utilized in most existing works, and com-
pares it with the received IoT events to detect event spoofing attacks.
We designed a Siamese neural network and implemented a two-
stage fine-tuning process to address the scarcity of training samples
and significantly reduce the overhead of the model training. We
constructed and implemented a prototype of IoTSENTRY, and evalu-
ated it on two real-world smart home testbeds with 21 devices. Our
experimental results reveal the high accuracy and low false alarm
rate of IJOTSENTRY. Our work implements the widely accepted con-
ception of "seeing is believing" through Al, which markedly raises
the bar for IoT event-based attacks.
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