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Abstract

Density-dependent population dynamic models strongly influence many of the world’s
most important harvest policies. Nearly all classic models (e.g. Beverton-Holt and
Ricker) recommend that managers maintain a population size of roughly 40-50 percent
of carrying capacity to maximize sustainable harvest, no matter the species’ popula-
tion growth rate. Such insights are the foundational logic behind most sustainability
targets and biomass reference points for fisheries. However, a simple, less-commonly
used model, called the Hockey-Stick model, yields very different recommendations.
We show that the optimal population size to maintain in this model, as a propor-
tion of carrying capacity, is one over the population growth rate. This leads to more
conservative optimal harvest policies for slow-growing species, compared to other
models, if all models use the same growth rate and carrying capacity values. How-
ever, parameters typically are not fixed; they are estimated after model-fitting. If the
Hockey-Stick model leads to lower estimates of carrying capacity than other models,
then the Hockey-Stick policy could yield lower absolute population size targets in
practice. Therefore, to better understand the population size targets that may be rec-
ommended across real fisheries, we fit the Hockey-Stick, Ricker and Beverton-Holt
models to population time series data across 284 fished species from the RAM Stock
Assessment database. We found that the Hockey-Stick model usually recommended
fisheries maintain population sizes higher than all other models (in 69—-81% of the data
sets). Furthermore, in 77% of the datasets, the Hockey-Stick model recommended an
optimal population target even higher than 60% of carrying capacity (a widely used
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target, thought to be conservative). However, there was considerable uncertainty in
the model fitting. While Beverton-Holt fit several of the data sets best, Hockey-Stick
also frequently fit similarly well. In general, the best-fitting model rarely had over-
whelming support (a model probability of greater than 95% was achieved in less than
five percent of the datasets). A computational experiment, where time series data were
simulated from all three models, revealed that Beverton-Holt often fit best even when
it was not the true model, suggesting that fisheries data are likely too small and too
noisy to resolve uncertainties in the functional forms of density-dependent growth.
Therefore, sustainability targets may warrant revisiting, especially for slow-growing
species.

Keywords Optimal escapement - Maximum sustainable yield - Fisheries
management - Bayesian model selection - Fishery reference points - Harvest
strategies

Introduction

Natural resource managers and scientists have largely regarded harvesting maximum
sustainable yield as problematic for conservation (Pauly and Froese 2021). This is
because such decisions risk population collapse and even extinction when applied to
systems that suffer from uncertainty, random fluctuations, or low initial population
sizes (Clark 2010; Wright 1983; Kirkwood 1981). Therefore the primary goal of mod-
ern harvest management is to maintain a healthy-sized population that replenishes
itself. Framing harvest policies based on, “what population size should we maintain?"
rather than “how much can we extract?" allows us, in theory, to buffer against popula-
tion collapse in the presence of unpredictability. It has been shown across a wide range
of population dynamic models that to optimize sustainable yield in random environ-
ments, it is better to set a population size target, and only extract surplus individuals
above the target than to set a catch target. This logic underpins much of the world’s
sustainability goals for fisheries and other harvested populations (Earle 2021; Kemp
et al. 2020).

But what target population size should we aim to maintain? In a classic paper, Reed
(1979) showed that for a large set of simple population dynamic models and types of
random fluctuations, letting a fixed population size “escape” harvest maximizes long-
run sustainable harvest. The specific optimal escapement rule is the population size
that maximizes the productivity of the stock. Surprisingly, when solving this condition,
nearly all models lead to levels near 50 percent of carrying capacity or lower (Holden
and Ellner 2016). This is regardless of the ecological parameters governing population
growth. In other words, slow-growing species should have the same escapement targets
as fast-growing species in these models, as a proportion of carrying capacity. While
modifications of this work can suggest minor changes in the optimal escapement
policy (Sethi et al. 2005), the recommendation of maintaining populations at or below
50 percent of carrying capacity is surprisingly robust to assumptions around stochastic
fluctuations (Kirkwood 1987), uncertainty (Sethi et al. 2005), age-structure (Holden
and Conrad 2015) and the details of population growth (Kapaun and Quaas 2013).
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Many of said modifications even lead to counter-intuitively more aggressive harvest
policies (Kirkwood 1987; Sethi et al. 2005; Holden and Conrad 2015; Kapaun and
Quaas 2013).

As aresult, many of the world’s fisheries management agencies attempt to maintain
stock sizes at or around 50-60 percent of carrying capacity (Earle 2021; Kemp et al.
2020). For example, as a precautionary approach, Australian fish stocks have a target
of maintaining 60 percent of the carrying capacity in the ocean (Hutton et al. 2019;
Helidoniotis 2021; Dichmont et al. 2021). This policy, or reference point, is often
referred to as B60, standing for maintaining 60 percent of unfished biomass. Such
targets are widely justified by the classic theory above. But are there any population
dynamic models that would yield more conservative optimal escapement targets? If
so, do they fit harvested population time series data better or worse than the classic
models commonly used by fisheries managers and ecological theorists? These are the
questions we aim to answer in this work.

Classic Optimal Sustainability Targets

In the seminal work by Reed (1979), he started with a model of the form,

Xe41 = Zt f (Xt — hy), (1

where x; is population size at time ¢, Z; is an independent identically distributed
random variable with mean one, /; is the harvest amount, and f is some density-
dependent growth function. His goal was to solve for the harvest policy that maximized
the long-run sum of discounted harvest, with discount factor p. He proved that under
this formulation, the optimal harvest policy is to maintain a population size of * and
harvest individuals over this size threshold, where * is given by the solution to

1
.

1™ = @)

If the population happens to be below s*, it is optimal not to harvest until the population
grows above this size. Because we want to produce the most conservative harvest
rules possible under the classic models, we will let p = 1, which corresponds to
no discounting. Note that Reed actually derived a more general rule for maximizing
nonlinear utility functions of harvest. However, we will examine policies that maximize
the direct sum of the long-run harvest to simplify the presentation.

In this paper, we will consider a variety of commonly used growth functions f. To
make comparisons, we will parameterize all functions in terms of a growth parameter
r and carrying capacity k. We will define r to be equal to f’(0), which means it is
the growth multiplier, or proliferation rate (Filar and Streipert 2022), which can be
thought of as one plus the natural log of the fundamental population growth rate in
continuous time models, such as the logistic differential equation. We define & to be
the non-zero equilibrium of the model, and we will only consider models with one
such equilibrium, as is standard in natural resource management.
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Perhaps the most widely used model in fisheries is the Beverton-Holt model (Bev-
erton and Holt 2012), which is of the form

rx
fe ) = T T ek

It is a convenient model because it always leads to stable population dynamics that
monotonically approach equilibrium and the model can be mechanistically derived
from the principles of contest competition (Duncan et al. 2009; Anazawa 2012;
McGowan et al. 2018). By Eq. (2) optimal escapement can be solved analytically
as,

55 = <@> k. A3)

r—1

Perhaps the second most widely used model in fisheries is the Ricker model (Ricker
1954),

fr(x) = xr'7T,

which is often used to model species that experience cannibalism or other mechanisms
of over-compensatory density dependence, such as scramble competition (Franco et al.
2018; Anazawa 2019; Ahrens et al. 2020). Note that the parameterization here may be
less familiar than the one for which the model contains Euler’s mathematical constant
e. The above version is mathematically equivalent to the more commonly written
version, however, this version has the advantage that it is written in terms of its growth
multiplier » = f(0). This function does not yield an analytical solution for optimal
escapement, however, it can be computed numerically.

The Hockey-Stick Model and its Sustainability Target
A much less common model, especially among mathematicians, economists, and stock
assessment scientists is the Hockey-Stick model (Butterworth 1993). It is a piecewise-

linear model, producing exponential population growth, until abruptly capping the
population size at carrying capacity, k. It is given by the equation,

fu(x) = min(rx, k).

Its graph has a sharp corner at x = k/r and therefore, violates the differentiability
assumptions of much of the previous theory. Even so, it is straightforward to show
that in the absence of discounting, it is optimal to let

1
o = (;> K, 4)
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escape harvest in this model (see the Appendix for a derivation). This result is due to
a complete lack of density dependence for populations below size s7;. In Fig. 1, we
display the Hockey-Stick model, along with the Beverton-Holt and Ricker models for
a growth multiplier of r = 1.7.

One aspect of the models that becomes immediately clear, is that while the equa-
tions for Beverton-Holt and Ricker appear considerably different, when parameterized
with the same r and k values, their graphs look remarkably similar for values of pop-
ulation size below carrying capacity. They only deviate considerably for population
sizes above k. Given the similarity between the Ricker and Beverton-Holt population
curves, perhaps it would not be surprising if they produced similar values for optimal
escapement. Indeed, they do. In Fig. 2, which plots optimal escapement for each model
as a function of the population growth multiplier, r, we can see that r has little effect on

optimal escapement in the Beverton-Holt and Ricker models, which produce a target

: : : 3+4/5
escapement of just below half of carrying capacity for all r. For r less than =5,
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Fig. 3 Catch when using optimal escapement rules from Beverton-Holt (solid line) and Hockey-Stick
(dashed line) models, when population dynamics are governed by a the Beverton-Holt model and b the
Hockey-Stick model

Fig.4 Proportion of the optimal
catch achieved when using the
wrong model to determine an
escapement rule. The dashed
curve is the proportion of
optimal catch when using the
Hockey-Stick escapement rule
but dynamics are Beverton-Holt,
and the solid curve is the
proportion of optimal catch
when using the Beverton-Holt
escapement rule but dynamics
are Hockey-Stick
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Hockey-Stick suggests a more conservative optimal escapement than Beverton-Holt.
Additionally, for r less 5/3, the Hockey-Stick model produces optimal escapements
above 60 percent of carrying capacity.

What happens when you use the optimal escapement policy from one model, but
the real world is governed by a different model? In Fig.3 we see that if the real
world is governed by the Beverton-Holt model (Fig.3a), total catch is lower than
if it is governed by the Hockey-Stick model (Fig.3b), due to density dependence
reducing growth at intermediate population sizes. Incorrectly using the Hockey-Stick
model’s optimal escapement rule, 1/7, when the population grows according to the
Beverton-Holt model, does not reduce catch as much as the case where the manager
uses the Beverton-Holt model’s escapement rule when the population dynamics are
governed by the Hockey-Stick model. In Fig. 4, we see the proportion of optimal catch
achieved when using the wrong model (dashed curve, Hockey-Stick escapement rule
but dynamics are Beverton-Holt) and (solid curve, Beverton-Holt escapement rule but
dynamics are Hockey-Stick). For a large portion of parameter space, the Hockey-Stick
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escapement rule achieves near-optimal catch even when the dynamics are Beverton-
Holt. However, the Beverton-Holt escapement rule in Eq. (3) performs worse when it
is the incorrect model.

Confronting Optimal Escapement with Time Series Data

Previous work has shown that the Hockey-Stick model can fit fisheries data as well as
other models (Barrowman and Myers 2000), despite the sharp corner causing some
challenges for fitting algorithms (Mesnil and Rochet 2010). While the fits can explain
as much variation in the data as other models, the fitted parameter values can vary
substantially. Barrowman and Myers (2000) found that given the same data set, the
Beverton-Holt model estimates a larger population growth rate and carrying capacity
than the Hockey-Stick model. Because optimal escapement in the Hockey-Stick model
is k/r, lower estimates for both r and k could cancel, or if one increases more than the
other it may affect optimal escapement estimation either up or down. So in this section,
we set out to determine if (1) the Hockey-Stick model fits global fishing data as well
as the classic population models and (2) when accounting for parameter estimation,
whether optimal escapement calculations in the fitted Hockey-Stick models would be
more conservative than for Beverton-Holt and other classic models.

So when confronted with real data, which model suggests a more conservative opti-
mal escapement, Beverton-Holt, Ricker, or Hockey-Stick? To determine this we fit all
three models to the population time series in the RAM Legacy Stock Assessment
database, a global database of thousands of fishery stock assessments, each corre-
sponding to a different species or location. Of the data in the database, 476 fisheries
had both Biomass and Catch time series. However, some of this data is clearly mod-
eled rather than from actual observations. This can be seen by plotting biomass in year
t + 1 against escapement in year 7, which often leads to near smooth, deterministic,
curves. We visually identified these data sets, as well as data sets with negative values
for escapement, as is standard when fitting models to RAM stock assessment data
(Britten et al. 2017; Hilborn et al. 2020). Removing the problematic data sets left 284
sets of non-deterministic, positive data.

To estimate the parameters and quantify model uncertainty, we used a statistical
model, which is an extension of the population model in (1), described probabilistically
by,

xt(ﬂzl ~ LogNormal(log f(m)(x,(’) - h;’)), o fort=1,...,T,—1,
where f(,,) is the function f, fr or fy, depending on the model () in question. The
superscript (i) denotes the dataset of interest fori = 1, ..., 284, and 7; is the length of
the time series in dataset i. It is important to note that the model assumes that error is
process noise rather than observation noise. This assumption aligns perfectly with the
optimisation theory in Reed (1979), which is used to derive the optimal escapements
in this paper.

To perform parameter estimation and model selection we applied and compared
both a Bayesian and likelihood-based approach. For the Bayesian approach, we
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assumed the following prior distributions on the parameters,

r ~ Uniform[1, 10],
k ~ Uniform [0.1 max(x,), 10 mtax(xt)] ,
o ~ HalfCauchy(0, 1).

For model (m) and dataset i, we estimated the posterior distribution
Py (r, &, XD, 1D o piuy (V1 &, 0, R p(r, K, 0),

using the RStan package (Stan Development Team 2023). The normalising constants
of the posteriors were estimated using the bridgesampling package (Gronau et al.
2020), and these estimates were then converted into a probability that each model was
the true model for the given dataset. These probabilities use the prior belief that all
three models are considered equally likely.

Due to the challenge of choosing uninformative priors for Bayesian inference and
the fact that prior distributions on the parameters influence model selection, we also
used a likelihood approach. To estimate the (7, k, o) parameter combination that max-
imized the likelihood for each model-dataset pair, we used the dfoptim package
(Varadhan et al. 2023), with an initial guess set to the parameter combination with
the highest evaluated likelihood in the Markov chain from the Bayesian approach.
We computed the Akaike weight (Anderson and Burnham 2004) for each model to
measure the relative evidence supporting each model for each data set. Further details
on implementation are available in the appendix.

To validate our fitting approach for the real-world fisheries data, we also conducted
a computational experiment where we fit simulated data. The goal was to determine
if Bayesian and likelihood-based inference could correctly identify a true model, the
one used to simulate the data, out of the set of all three candidate models. To do this,
we simulated twenty datasets per model, each of which required a sensible choice of
r, k, o, xo, and the harvests. To select these values, we randomly selected an observed
dataset, out of the 284 possible datasets, and used the corresponding observed xo. We
chose the values of 7, k, and o by selecting the final value of the Markov chain for each
of the specified model-dataset pairs because this (approximately) represents a draw
from the posterior. We then simulated the time series data using formula (1), with the
chosen parameter values. To specify the harvests in (1), we could not use the observed
harvests from the selected dataset because this could lead to negative biomass given
the new simulated noise. Instead, we simulated harvests by drawing, with replacement,
observed harvest proportions, which we converted to absolute harvest by multiplying
the drawn proportion by the simulated biomass value. The process was repeated 20
times to give 20 simulated datasets per model.
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Fig.5 Model probabilities from our Bayesian analysis, across all 284 fisheries biomass time-series data-sets
in RAM legacy Stock Assessment Database, sorted by the number of data points in each time series. Each
bar sums to one, with the green portion denoting the relative support for the Hockey-Stick model by the
time series data. Blue and red bars denote support for the Beverton-Holt and Ricker models respectively
(Color figure online)

Results from Fitting Data in RAM Stock Assessment Database

Using the Bayesian inference approach, Hockey-Stick, Beverton-Holt, and Ricker had
the highest model probabilities in 9%, 90%, and 1% of the 284 data sets, respectively
(Fig.5). While Beverton-Holt (blue middle bars in Fig.5a) was the most supported
model in the majority of the data sets, it is important to note that the other models also
received substantial support, with probabilities typically exceeding 20% even when
not considered the most supported model.

Under the likelihood approach, support shifted away from Beverton-Holt when
compared to the Bayesian approach, with Hockey-Stick, Beverton-Holt, and Ricker
having the highest Akaike weights in 24%, 66%, and 10% of the data sets, respectively
(Fig.5b).

In most of the 284 data sets, a substantial proportion of evidence supports each
of the three models, regardless of the methodology used to perform model selection
(Fig.5). Only 5 percent had a single model achieve a model probability or Akaike
weight of 95 percent or higher. The median model probability and Akaike weight of
the best model across the data sets was 0.52 and 0.50, respectively (Fig. 6). Note that
1/3 or (0.33) represents all models being equally likely. So, the typical support for
the best model was quite low, considering it was rarely above twice its theoretical
minimum.
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Fig.6 Histogram of the model probability and Akaike weight of the best fitting model for each of the 284
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Fig.7 Fitted growth rate, r, left column and carrying capacity k (as a proportion of max observed biomass)
combined across all posterior distributions for each dataset in the Bayesian approach. Hockey-Stick often
leads to lower estimates of both growth rate and carrying capacity (more area to the left in the bottom row)

Of the 13 data sets that had substantial support from one model (greater than 95
percent Akaike weight), 2 supported the Hockey-Stick Model and 11 supported the
Beverton-Holt model. Under the Bayesian model probability approach, there were 13
data sets with the most supported model achieving a model probability greater than
95 percent.

Confirming the results of Barrowman and Myers (2000), we found that the Hockey-
Stick model estimates r to be lower (median of 1.27 across all posteriors in the Bayesian
approach and 1.29 across the 284 maximum likelihood estimates) than estimates from
the Beverton-Holt (1.49 and 1.57) and Ricker (1.43 and 1.51) models (Fig.7).
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Fig.8 Histograms of optimal escapement for each model across all Markov-chain runs and all data sets a as
a proportion of the fitted carrying capacity and b as a proportion of the maximum observed population size
for the data sets in the RAM Stock Assessment Database. In a we see the Hockey-Stick model frequently
leads to optimal escapements close to carrying capacity (green bars on the right), whereas the other models
produce optimal escapements at or below 50 percent of carrying capacity. Similarly in b the Hockey-Stick
model more often than not leads to higher total optimal escapements than the other models, but not always,
due to lower fitted Hockey-Stick carrying capacities. Distributions in b are truncated to aid visualization
(Color figure online)

Substituting fitted growth rates and carrying capacities into the optimal escapement
formulas (3) and (4) we calculated optimal escapement in two ways (1) as a proportion
of carrying capacity and (2) as a proportion of the maximum population size. For
the Bayesian approach, we used the median optimal escapement across the posterior
for each dataset. Using this method, we found the Hockey-Stick model fits led to
the most conservative (highest) escapement strategies, as a percentage of carrying
capacity in 87% of the datasets while Ricker and Beverton-Holt recommended the
highest escapement rule in 13% and 0% of the datasets, respectively. Furthermore, in
77% of these fits, Hockey-Stick optimal escapement exceeded 60 percent of carrying
capacity (B60, a commonly used sustainability target in fisheries, Fig. 8). Similarly, in
the likelihood-based approach, we found that the Hockey-stick model fits suggested
the most conservative optimal escapement 90% of the time, Ricker 10% of the time
and Beverton-Holt 0% of the time.

Note the optimal escapement distributions for the Hockey-stick model in Fig. 8
are more disperse than for the Ricker and Beverton-Holt models. This is because
optimal escapement is a function of the fitted parameters. For Hockey-stick, optimal
escapement is the reciprocal of the population growth rate times carrying capacity, as
seen in Eq. (4). This means that for slow-growing species, optimal escapement can
be close to 100% of carrying capacity (see the green dashed curve in Fig. 2). While
for Beverton-Holt and Ricker models, optimal escapement is still a function of the
growth rate, this function is much less sensitive to how quickly the species grows at
low densities (see red-dotted and blue-solid curves in Fig. 2 and Eq. (3) for Beverton-
Holt). Therefore, even though the posterior distributions on r appear similar for all
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Fig.9 Histogram of optimal escapement for each model calculated using the maximum likelihood estimate
of the parameters for each data set a as a proportion of the fitted carrying capacity and b as a proportion
of the maximum observed population size for the data sets in the RAM Stock Assessment Database (color
figure online)

three models (compare histograms in Fig. 7), the distribution of optimal escapement
values is only disperse for the Hockey-Stick model, more concentrated for Beverton-
Holt, and most concentrated for Ricker. This perfectly agrees with the sensitivity of
optimal escapement to r for each of the three models.

Another striking feature of Fig. 8 is the unusual bimodal shape of the distribution
for optimal escapement for the Hockey-Stick model. This distribution is an aggregate
over all 284 posterior distributions for » across the 284 datasets. These posterior
distributions incorporate wide, harshly capped, uniform priors on r, which preclude
any estimates of r above or below the bounds of its uniform prior. The small peak of
low escapements is caused by both fast-growing species and the fact that the uniform
prior gives high weight to large growth rates. High escapements are driven by both
slow-growing species and instances of the Markov chain for r close to the minimum
of the prior. In Fig. 9, we can see the distributions of optimal escapement for the most
likely parameter for each species under the likelihood approach. These distributions
are no longer as bimodal as in the Bayesian approach. Hence, their shape is purely
driven by the frequency of slow and fast-growing species rather than arbitrary reference
Bayesian priors.

Despite the lower estimate of r leading to more conservative escapement, the
Hockey-Stick’s lower estimate for carrying capacity for many datasets (Fig.7) coun-
teracts this effect, when escapement is measured in total biomass (rather than the
proportion of carrying capacity). We find that when we consider optimal escapement
as a proportion of the maximum recorded biomass (i.e. proportional to total escape-
ment), the fitted Hockey-Stick models still lead to more conservative escapements
(Fig. 8). In the Bayesian (likelihood) approach Hockey-stick recommended the most
conservative escapements in 81% (69%) of the data sets, while Ricker and Beverton-
Holt recommended higher escapement rules as a proportion of the maximum observed
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Fig. 10 Model probabilities and Akaike weights in the 20 simulated data sets when the data was generated
using the a, d Beverton-Holt, b, e Ricker and ¢, f Hockey-Stick models. Blue (middle), red (top), and green
(bottom) bars are for Beverton-Holt, Ricker, and Hockey-Stick Akaike weight and model probabilities,
respectively (Color figure online)

biomass in 14% (19%) and 8% (12%) of the datasets, respectively. It should be noted
that if the true carrying capacity is higher than the maximum observed biomass, the
likelihood for the Hockey-Stick model is the same for all values of k bigger than the
maximum observed biomass (as there would be no density dependence in the observa-
tions). Therefore, we capped k at the maximum observed biomass when computing its
maximum likelihood estimate. For the Bayesian approach, in such datasets, the esti-
mates of optimal escapement, depend on the Bayesian prior, which is uniform over a
large support set.

Simulation Results

When simulating data from the Beverton-Holt model using parameters generated from
20 of the sampled datasets, we found that Beverton-Holt had the highest model prob-
ability in 19 of the 20 datasets, and highest Akaike weight in seven (35%) (Fig. 10).
While there was considerable support for other models in eight of the 20 runs, there
was substantially more support for the true model when Beverton Holt was true, com-
pared to when Ricker or Hockey-Stick was the true model. When Ricker was the true
model, it had the highest model probability in only two (10%) of the simulated data
sets, but highest Akaike weight in ten (50%). When the Hockey-Stick model gener-
ated the data, it only had the highest model probability in seven (35%) of the data sets,
but highest Akaike weight in 14 (70%). In both cases, even though Beverton-Holt
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was not the true model, it still had the highest model probability in 65% and 85% of
the simulated data sets, when Hockey-Stick and Ricker models generated the data,
respectively.

Discussion

Classic and widely used population dynamic models lead to harvest recommenda-
tions that maintain a population at half of carrying capacity or lower. We showed that
the less common Hockey-Stick model often produces more conservative harvest poli-
cies that maintain the population size at 1/r. This escapement policy leads to higher
catches in the case where the model is wrong. It also maintains a stock population size
closer to carrying capacity for slow-growing species. Considering that slow-growing
species are also often species of conservation concern, this raises the alarm that current
management decisions may over-exploit slow-growing populations.

Much of the world’s fisheries have a sustainability target of maintaining a population
size of 60 percent of carrying capacity (B60) (Hutton et al. 2019; Streipert et al. 2019),
or equivalently 120 percent of the equilibrium population size required to achieve
maximum sustainable yield (Kemp et al. 2020). This is meant to be conservative,
given that both the Ricker and Beverton-Holt models recommend optimal escapement
targets below 50 percent. However, the Hockey-Stick model recommends an optimal
escapement higher than 60 percent of carrying capacity when growth rates are below
1.67. Fitted Hockey-Stick growth rates were below 1.67 in 77 percent of the 284
analyzed data sets. This suggests that the sustainability targets of the majority of the
world’s fishery management authorities may not be conservative enough to maintain
the highest sustainable catches in cases where the Hockey-Stick model is supported.

While Beverton-Holt was the more commonly supported model out of the 284
stock assessment data sets in our analysis, the magnitude of support for Beverton-Holt
was only substantially greater than for the Hockey-Stick and Ricker models less than
5% of the time (i.e. a model probability or Akaike weight over 95%). Further, when
fitting all three models, using Bayesian inference, to data simulated from the Hockey-
Stick and Ricker models, the Beverton-Holt model (the incorrect model) frequently
erroneously achieved the highest model probability. In contrast, the likelihood-based
approach produced Akaike weights, which more frequently identified the true model
that was actually used to simulate the data.

The inability of the Bayesian methodology to identify the correct model in our
simulation experiment was likely due to uniform priors on the parameter values biasing
model selection towards Beverton-Holt. While the ability of priors to drastically affect
model selection is a well-known drawback of using Bayesian inference to perform
model selection under limited prior knowledge of parameter values Kass and Raftery
(1995), as far as we are aware, this drawback is not widely known in fisheries (Doll
and Jacquemin 2019). Our study, therefore, identifies an essential line of open research
in Bayesian statistics: developing priors that do not bias model selection in fisheries
science and management.

Under the likelihood approach, which is immune to the issue of priors biasing
model selection, the Hockey-Stick model best fit 24% of the datasets (compared to
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66% and 10% for the Beverton-Holt and Ricker models). Similar to the results under
the Bayesian approach, all models typically had considerable support, regardless of
which model fit best. The statistical analysis and accompanying simulation experi-
ments suggest that fishery biomass and catch time-series data sets are likely too small
and noisy to reliably differentiate the functional form of density dependence in popu-
lation dynamic models. Under such inconclusive results, managers may want to favour
more conservative targets.

Our study was limited to fitting simple, stationary, one-dimensional difference equa-
tion models with only two equilibria describing a population growing towards carrying
capacity in the absence of harvest. When fisheries are better described by more compli-
cated dynamics such as, multi-species interactions (Holden et al. 2024), ecologically
or economically induced Allee effects (Perild et al. 2022; Holden and McDonald-
Madden 2017), non-stationary parameters (e.g. due to time-dependent environmental
regime shifts, Johnson et al. 2015), time delays (e.g. due to age-structure,Tahvonen
2008; Filar et al. 2024), or alternative stable states (Gardmark et al. 2015), our anal-
ysis would not be appropriate. Such complex dynamics can drive fisheries collapse
and impair recovery. Unfortunately, the complicated models capable of describing
these processes can be more challenging to implement due to identifiability issues and
overfitting (Clark et al. 2010; Koetke et al. 2020). Therefore, in such cases, other man-
agement tools, such as marine reserves, may be more effective for preserving desired
ecological states (Erm et al. 2023, 2024; Zhao et al. 2024), compared to harvest reg-
ulations guided by simple population dynamic models.

Despite the caveats, Ricker and Beverton-Holt models are the most widely used
density-dependent population dynamic models in fisheries since the 1950’s (Needle
2001). These models are popular because they are historical, simple, can be derived
from mechanistic ecological principles (Anazawa 2012), and are easily fitted to data
(Needle 2001). Similar to our results, previous works have challenged classic density-
dependent population dynamic models’ fit to real-world time-series data across species
(Sakuramoto 2005; Carruthers et al. 2014; Knape and de Valpine 2012), and have also
shown that the Hockey-Stick model fits recruitment data similarly well compared
with the more classic models (Barrowman and Myers 2000). But past works have
focussed on the fact that Ricker and Beverton-Holt models predict higher growth
rates (Barrowman and Myers 2000) than the Hockey-Stick model, and therefore can
overestimate resilience and underestimate extinction risk for exploited populations
(Clark et al. 1973). Additional work has also shown that the harvest rules derived from
these models can be too aggressive when accounting for long-run uncertainties in
observed biomass (Memarzadeh and Boettiger 2019). Our work provides yet another
reason why such harvest policies may be too aggressive. Even when ignoring the risk
of stock collapse, measurement uncertainties, and fluctuations, classic sustainability
targets can still reduce long-term catch compared to more conservative policies if
density dependence acts on populations according to a non-smooth function, such as
the Hockey-Stick model.
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Appendix: Optimal Harvest in the Hockey-Stick Model

Consider the model in Eq. (1). To solve for the harvest at each time step, h;, 0 < h; <
X;, that maximizes the total discounted catch, over a fixed time horizon T,

T
B {z o } ,
t=0
where p is the discount factor, it is useful to define escapement as,
Sy = Xy — l’l[.

This problem is equivalent to solving for the optimal escapement, s;, at each time step
t, since each escapement uniquely determines a harvest and vice versa. In order to solve
this problem, we use stochastic dynamic programming. Define a value function,

V(xr) = max{xy — st},
ST
and, forallt < T,
V(x) = msax{x; — s + pE [V(xt+1)]}~

Clearly at time T it is optimal to harvest everything, meaning V (x7) = x7 and st = 0.
Therefore, at time 7 — 1 we have

Vixr—1) = I;I;EDIQ{XT—I —s7—1 + pE[V(x7)]}
= ISHaX{xT—l —s7-1+ pmin{rsy_y, k}}
T—1

— max xr—1+ (pr — V)sp—y, if sy <k/r
st—1 | Xxr—1 —s7—1+ pk, it s7_1 > k/r

Noting that x7_1 is a known constant, it is optimal to increase escapement if s7_1 <
k/r and decrease escapement if s7_1 > k/r. Therefore, s7_1 = k/r. Applying the
same logic, backward in time, yields the same optimal escapement, s, = k/r for all
t < T. Note that in the above argument we made the simplifying assumption that
the population is self-sustaining, Z, > 1/r for all ¢, as is typical for these types of
arguments (Reed 1979). While this is quite a strong assumption, it turns out that it
can be verified numerically that the optimal policies are near-optimal even when the
assumption is violated (Holden and Conrad 2015).
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Data Fitting Details

This section describes the specific implementation used for Bayesian inference with
the Rstan and bridgesampling packages. The Rstan package uses the no-
u-turn sampler (Hoffman et al. 2014) so it samples from a Markov chain that is
designed to have the posterior distribution as its limiting distribution. We use four
chains, each with 100,000 iterations and a burn-in of 50,000 iterations. We select
max_treedepth=30 and adapt_delta=0.999 for robustness, and thin=10
to reduce storage requirements. We use the default options provided by the Stan team
for all other function arguments. We use all defaults for the bridgesampl ing pack-
age to calculate the logarithm of the normalising constant for each model and dataset
combination.

To assess the convergence of the set of Markov chains for each dataset and model
combination, we calculated the R diagnostic (Gelman and Rubin 1992) for each of
the three parameters of interest and the log (unnormalised) probability. Across the
284 observed datasets, the number of runs with at least one R > 1.01 was zero for
the Ricker model, one for the Beverton-Holt model and eight for the Hockey-Stick
model. Only one run for the Beverton-Holt model and one run for the Hockey-Stick
model failed to meet the less stringent threshold of R < 1.1 recommended by Gelman
and Rubin (1992), with a maximum of R ~ 1.2 observed. This indicates reasonable
convergence for the large majority of the 284 x 3 = 852 sets of Markov chains.
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