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Abstract

Motivated by fairness concerns, we study existence and computation of portfolios, defined as: given an
optimization problem with feasible solutions D, a class C of fairness objective functions, a set X ⊆ D of
feasible solutions is an α-approximate portfolio if for each objective f ∈ C, there is an α-approximation
for f in X. We study the trade-off between the size |X| of the portfolio and its approximation factor α
for various combinatorial problems, such as scheduling, covering, and facility location, and choices of C as
top-k, ordered and symmetric monotonic norms. Our results include: (i) an α-approximate portfolio of

size O
(

log d
log(α/4)

)
for ordered norms and lower bounds of size Ω

(
log d

logα+log log d

)
for the problem of scheduling

identical jobs on d unidentical machines, (ii) O(logn)-approximate O(logn)-sized portfolios for facility location

on n points for symmetric monotonic norms, and (iii) logO(r2) d-size O(1)-approximate portfolios for ordered
norms and O(log d)-approximate for symmetric monotonic norms for covering polyhedra with a constant r
number of constraints. The latter result uses our novel OrderAndCount framework that obtains an exponential
improvement in portfolio sizes compared to current state-of-the-art, which may be of independent interest.

Acknowledgements. This work was supported by NSF Grants CCF-2106444, CCF-1910423, 2112533, NSF
CAREER Grant 2239824, and the Georgia Tech ARC-ACO Fellowship.

1 Introduction

With rapid adoption and proliferation of data-driven decisions, widespread inequalities exist in our society in
various forms, often perpetuated by optimized decisions to problems in practice. For example, the existence of
food deserts is well-documented across the world [32, 2, 12, 15]. The US Department of Agriculture [32] defines
a food desert as a low-income census tract where families below poverty line do not have a large1 grocery chain
within 1 mile of their location in urban areas or 10 miles in rural areas. [18] similarly show that medical deserts
– regions with significant fraction of population below poverty line, but far off from the nearest medical facility –
disproportionately affect racial minorities in the US. The decisions to open such facilities are driven by demand,
and therefore, optimized decisions tend to overlook sparsely populated regions with vulnerable populations. As
another example, over the last decade, many retailers have adopted scheduling optimization systems [3]. These
systems draw on various data to predict customer demand and make decisions about the most efficient workforce
schedule. Some systems, e.g. Percolata, estimate sales productivity scores for each worker and create schedules
based on these scores. Concerns about fairness of workload again arise, as such optimizations result in highly
variable, unpredictable, and discordant schedules for workers. Further, there is evidence of workload inequity in
many work environments, including academia [28], last-mile delivery drivers [26], and hospital workers [30].

In such applications, the decision is often to maximize the efficiency in the system, however, this results in
unequal costs borne by various groups of people. A large number of fairness notions have been proposed in the
literature that attempt at “balancing” such costs across groups or individuals, such as minimizing some norm
of the distances traveled by groups of people [6, 9, 18, 29], finding simultaneous solutions [24, 16, 17], balancing
statistical outcomes in machine learning [10, 14, 19], and balancing allocations in social welfare problems [11].
However, even these notions of fairness can be fundamentally incompatible in the sense that a single solution
may not be fair with respect to two or more notions of fairness [22, 18]. One workaround is to understand the

∗The full version of the paper can be accessed at https://arxiv.org/abs/2311.03230
†Massachusetts Institute of Technology.
‡Georgia Institute of Technology.
§Georgia Institute of Technology.
1“Large” is defined as a store with at least $2 million annual profit and containing all traditional food departments.
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Figure 1: A qualitative plot to illus-
trate the trade-off between approximation
α and the smallest portfolio size |Xα|
for the Machine-Loads-Identical-Jobs
problem for ordered norms. The worst-

case lower bound |Xα| = Ω
(

log d
logα+log log d

)
is illustrated in red, and the upper bound

|Xα| = O
(

log d
log(α/4)

)
is illustrated in blue.

The two bounds converge for α = Ω(log d).

possibilities offered by a (small) set of solutions, called portfolios, so that there is some representative solution
achieving approximate fairness for any single notion of fairness [18]. Motivated by the practice of selecting
organ transplantation policies, [18] define the portfolio problem as follows: given an optimization problem with
a set or domain of feasible vectors D, a class C of objective functions that represent various equity notions, an
approximation factor α, and size s, find a portfolio X ⊆ D of s solutions, so that for any objective f ∈ C there
exists a solution x ∈ X that α-approximates minx∈D f(x). X is called an α-approximate portfolio. The case s = 1
generalizes simultaneous approximations.

For various combinatorial problems and different classes of objectives, it is not clear what the minimum size
of an α-approximate portfolio needed to achieve a given approximation factor is. Larger portfolios are needed
for better approximations, and the goal is to keep size s of the portfolio small. Further, as the set C of equity
objectives grows larger, small portfolios may not even exist. For the class of equity objectives, we study

1. Top-k norms, k ∈ [d], where the top-k norm of a vector x ∈ Rd is the sum of the k highest coordinates of x by
absolute value. Top-k norms generalize the L1, L∞ norms.

2. Ordered norms, where given a non-zero weight vector w ∈ Rd
≥0 with decreasing weights w1 ≥ . . . ≥ wd ≥ 0,

the ordered norm of x ∈ Rd
≥0 is the weighted sum of coordinates of x with the kth highest coordinate of x

weighted by the kth highest weight wk. Ordered norms generalize top-k norms and have a natural fairness
interpretation when x is a vector of individual costs.

3. Symmetric monotonic norms, which are norms that are invariant to the permutation of coordinates and
nondecreasing in each coordinate. Lp norms, top-k norms, and ordered norms are all symmetric monotonic
norms.2

In this work, we partially answer the question:

“What is the trade-off between achievable portfolio size and corresponding approximation factors for various
combinatorial optimization problems? Is there a general recipe for constructing small portfolios for ordered and

symmetric monotonic norms?”

In particular, we focus on three general combinatorial problems: scheduling, covering, and facility location,
motivated by workplace scheduling and access to critical facilities. While much effort has gone into determining
the best-possible simultaneous approximations (portfolio of size 1), little is known about the construction of
portfolios of size greater than 1. For top-k norms, [16] essentially obtain a (1 + ϵ)-approximate portfolio of size

O
(

log d
ϵ

)
; a similar bound holds for Lp norms [17, 18]. However, for ordered norms, only a general construction

of poly(d1/ϵ)-sized (1 + ϵ)-approximate portfolios was known before this work, due to [6], while no bound was

2Ordered norms are fundamental to symmetric monotonic norms in two aspects: each symmetric monotonic norm (1) is O(log d)-
approximated by some ordered norm [29], and (2) is the supremum of some set of ordered norms.
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Table 1: Approximations for size > 1 portfolios for ordered norms and symmetric monotonic norms, for arbitrary
ϵ ∈ (0, 1]. Previously, only a poly(d1/ϵ)-sized portfolio was known [6] for (1+ ϵ)-approximation for ordered norms,
for dimension d problems.

Problem or set of

feasible vectors D

Worst-case
approximation factor

for simultaneous

approximation

Guarantees for portfolio of size > 1

Size
Approximation

for ordered norms

Approximation

for symmetric

monotonic norms

Machine-Loads-Identical-Jobs
d machines

Ω(
√
d) O

(
log d
ϵ

)
4 + ϵ O(log d)

Covering-Polyhedra
with r constraints:

{x ∈ Rd
≥0 : Ax ≥ b},

A ∈ Rr×d
≥0 , b ∈ Rr

≥0

Ω(
√
d)

(
log(d/ϵ)

ϵ

)O(r2)
1 + ϵ O(log d)

Uncapacitated-Facility-Location

on n points
Ω(

√
n) O(logn) O(logn)

known for symmetric monotonic norms. We observe that their result generalizes to symmetric monotonic norms
in Appendix B.1. It was also known that when the size of the portfolio is 1 (also referred to as simultaneous
approximations) and it is α-approximate for top-k norms, then it is in fact α-approximate for all symmetric
monotonic norms [16]. This property is no longer true for portfolios of size greater than 1 (Theorem 2.3). In
particular, we show that the approximation guarantee of a portfolio for top-k norms and ordered orders can differ
by a factor polynomial in d. Consequently, we cannot restrict to constructing portfolios only for top-k norms
and need new techniques for the much larger set of ordered norms and symmetric monotonic norms. We show
that there exist polytopes D ⊆ Rd for which the portfolio size must be dΩ(1/ log log d) (i.e., nearly polynomial in
d) for ordered and symmetric monotonic norms even for approximation as large as O(log d) (see Appendix B). In
our main contributions, listed next, we develop a general algorithmic framework called OrderAndCount to obtain
portfolios for ordered norms for covering problems, and obtain size polylog(d) or smaller portfolios for various
combinatorial problems.

1. Characterizing Trade-off for Machine-Loads-Identical-Jobs. As our first result, we consider the
Machine-Loads-Identical-Jobs problem where n identical jobs must be scheduled on d unidentical machines
to minimize some norm of the vector of machine loads. This is a simple model for workload distribution among
d workers with different processing speeds, and various norms correspond to various fairness criteria for fair
distribution of jobs.

Result 1. (Theorems 2.1, 2.2, Section 2) For the Machine-Loads-Identical-Jobs (MLIJ) problem with d
machines, given any approximation factor α > 4, we can find an α-approximate portfolio Xα for ordered norms

satisfying |Xα| = O
(

log d
log(α/4)

)
. Further, we construct instances with the lower bound of |Xα| = Ω

(
log d

logα+log log d

)
.

In other words, the size-approximation trade-off is that the product log(α) · |Xα| remains nearly a constant
as function of α. This result completely characterizes the trade-off between portfolio sizes and achievable
approximation factors (up to log log factor) for the Machine-Loads-Identical-Jobs problem (See Figure 1).
To obtain this result, we use our OrderAndCount approach, which exploits the fact that each ordered norm, while
convex in general, is a linear function when restricted to a region where all vectors satisfy the same order of
coordinate values. That is, if vector x ∈ Rd satisfies xπ(1) ≥ xπ(2) ≥ . . . ≥ xπ(d) ≥ 0 for some order π on [d], the
ordered norm ∥x∥(w) is the linear function

∑
k wkxπ(k). This gives the following algorithm to obtain portfolios

for ordered norms: for each order π, we can restrict to the set Dπ of vectors in D that satisfy order π, and collect
the set of extreme points of Dπ. This in general results in exponentially many solutions (there are exponentially
many orders π and potentially exponentially many extreme points of each Dπ). We show that for MLIJ, (i) it
suffices to restrict to a specific order π∗ (that depends on the problem instance), and that (ii) there are at most d
extreme points of Dπ∗ . These d extreme points can further be α-approximated by a subset of O(logα/4 d) integral
points using our rounding algorithm.

2. Exponential Improvement in Portfolios for Covering. Next, we consider the Covering-
Polyhedra problem, which simply includes r covering constraints of the form: a⊤x ≥ b (for a ∈ Rd

≥0, and
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b ∈ R≥0) along with nonnegativity x ≥ 0. This generalizes the MLIJ problem above, and models many natural
scenarios for workload distribution.

For example, consider the following scenario: a centralized server needs to distribute several jobs among d
machines that each contain r different parallel processing units (e.g., a CPU, GPU, and NPU) that each handle
a different type of job. Different fairness criteria then balance loads over the machines differently. This problem
is particularly interesting in the context of volunteer-dependent non-profit organizations, such as HIV social care
centers, blood donation drives, food recovery organizations [27], etc. Numerous studies have been conducted on
the reasons for the attrition of volunteers, and overburdening by the amount of demands placed on them is one
of the key ones [25, 23]. This work can help balance workloads in volunteer organizations, to help mitigate its
impact on attrition.

Back to the machine load scheduling terminology, if bj units for the jth job type need to be scheduled, and the
machine i ∈ [d] has processing speed Aj,i for the jth type of job, then the total loads xi, i ∈ [d] on the machines
must satisfy

∑
i∈[d] Aj,ixi ≥ bj . For a given norm ∥ · ∥ or fairness criterion, this translates to minimizing ∥x∥ over

the covering polyhedron {x ∈ Rd : Ax ≥ b, x ≥ 0}.
The challenge in extending OrderAndCount to such problems is (i) bounding the number of possible orders

that the optimal solution x∗ might satisfy, and then (ii) selecting a subset of corresponding extreme points for
each order that must be included in the portfolio. For the first challenge we develop a novel primal-dual counting
technique which allows us to count the number of possible orders in an appropriate dual space that is structurally
much simpler (Section 3). For the second challenge, we show that a sparsification procedure allows us to reduce
the number of extreme points for each order. Together, using OrderAndCount, we give poly-logarithmic sized
portfolios for Covering-Polyhedra for constant r:

Result 2. (Theorem 3.1, Section 3) For Covering-Polyhedra in d dimensions and r constraints, for any

ϵ ∈ (0, 1], we obtain a (1+ ϵ)-approximate portfolio X1+ϵ of size |X1+ϵ| = O
(
log(d/ϵ)/ϵ

)3r2−2r
for ordered norms,

and O(log d)-approximate portfolio of size O(log3r
2−2r d) for symmetric monotonic norms. Our algorithm runs

in time polynomial in d and (log(d)/ϵ)r
2

.

The trade-off between ϵ and X1+ϵ is that |X1+ϵ|1/Ω(r2) · ϵ remains nearly a constant. For all r = o
( √

log d
log log d

)
,

the above-mentioned result is the first exponential improvement over the current best bound of poly(d1/ϵ) [6], to
the best of our knowledge.

3. Facility Location Problems. Finally, we consider the generalizations of classical k-clustering3 and
(uniform) uncapacitated facility location problems. In both problems, given a metric space (X,dist) on |X| = n
points, we seek to open a facility set F ⊆ X at some points in the space. Each feasible solution induces a vector
xF ∈ Rn of distances of points in X to their closest open facility. The k-clustering problem seeks the facility
set F with at most k open facilities to minimize some norm of this vector, e.g., k-median seeks to minimize the
L1 norm while k-center seeks to minimize the L∞ norm. In the Uncapacitated-Facility-Location problem,
there is no bound on the number of facilities and we instead seek to minimize the sum of the number of open
facilities4 |F | and some given norm of the vector xF of closest distances to open facilities.

Result 3. (Theorems 4.1, 4.3, Section 4) We give a portfolio of size 1 for k-Clustering that opens at

most O
(
k · logn

ϵ

)
facilities and is (3 + ϵ)-approximate for any symmetric monotonic norm objective, improving

upon the previous-best approximation factor 6 + ϵ [16, 24]. Using this result, we obtain a size O(log n)-portfolio
for Uncapacitated-Facility-Location that is O(log n)-approximate for symmetric monotonic norms.

Such solutions for k-Clustering that violate the constraint of opening at most k facilities are known as
bicriteria solutions; [17] showed that it is necessary to open O(k log n) facilities to guarantee constant-factor
approximation for all symmetric monotonic norms. Our algorithm seeks to iteratively cover points in X with
balls of increasing radii until all points are covered. While an O(1)-approximate portfolio of size O(log n) was

3Unfortunately, both k-clustering and top-k norms use the index ‘k’ as the parameter in their commonly used names. We hope

our usage of the term ‘k’ will be clear from context.
4In the most general version of the problem, each facility has an opening cost; we assume unit opening costs for simplicity, but

our techniques and guarantees can be modified suitably for the more general setting.
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known for Uncapacitated-Facility-Location for Lp norms [18], our result is the first for the much larger
class of symmetric monotonic norms, to the best of our knowledge.

The rest of the paper is organized as follows: we give an overview of techniques next before listing related
work in Section 1.2. We give preliminaries in Section 1.3. Machine-Loads-Identical-Jobs is discussed
in Section 2, Covering-Polyhedra are discussed in Section 3, and k-Clustering and Uncapacitated-
Facility-Location are discussed in Section 4. We discuss open problems and conclude in Section 5.

1.1 Overview of Techniques. In Section 1.1.1, we describe the main ideas behind the OrderAndCount

algorithm for Covering-Polyhedra and MLIJ. In Section 1.1.2, we discuss the additional rounding algorithm
for MLIJ. In Section 1.1.3, we discuss k-clustering and uncapacitated facility location.

1.1.1 Covering-Polyhedra. Recall that we are given a covering polyhedron P = {x ∈ Rd : Ax ≥ b, x ≥ 0}
with r constraints, i.e., A ∈ Rr×d

≥0 and b ∈ Rr
≥0, and a parameter ϵ ∈ (0, 1]. We construct a (1 + ϵ)-

approximate portfolio X for ordered norms, i.e. a subset X ⊆ P such that for all ordered norms ∥ · ∥ on
Rd, minx∈X ∥x∥ ≤ (1 + ϵ)minx∈P ∥x∥. [29] show that any symmetric monotonic norm in dimension d can be
O(log d)-approximated by an ordered norm, and therefore our construction also implies a O(log d)-approximate

for symmetric monotonic norms. Denote N = O
( log(d/ϵ)

ϵ

)
; the size of our portfolio X will be NO(r2) where r is

the number of rows in constraint matrix A. As remarked, this size is poly-logarithmic in d for constant r.
For integer d ≥ 1, let Perm(d) denote the set of all orders or permutations on [d]. We say that a vector x ∈ Rd

≥0

satisfies order π ∈ Perm(d) if xπ(1) ≥ . . . ≥ xπ(d) ≥ 0 and denote the sorted vector x↓ = xπ = (xπ(1), . . . , xπ(d)).

An ordered norm [6] ∥ · ∥(w) is specified by a non-zero weight vector w ∈ Rd
≥0 such that w1 ≥ . . . ≥ wd ≥ 0 and

defined as ∥x∥(w) := w⊤|x|↓ =
∑

k∈[d] wkxπ(k).

Since there are an infinite number of weight vectors (and hence ordered norms), it is unclear if there is even
a finite set of ‘extreme points’ X ⊆ P with minx∈X ∥x∥(w) = minx∈P ∥x∥(w) for all ordered norms ∥ · ∥(w). In our
terminology, such a set X is an optimal (or 1-approximate) portfolio for ordered norms. We first obtain a finite

optimal portfolio X, and then outline the procedure to reduce the size of X to NO(r2), losing approximation
factor (1 + ϵ) in the process.

Note that [6] showed that there are at most poly(d1/ϵ) ordered norms on Rd up to a (1 + ϵ)-approximation.
Therefore, a (1 + ϵ)-approximate portfolio of size poly(d1/ϵ) for ordered norms can be obtained by taking the
minimum norm points with respect to these ordered norms. Our goal is to reduce this size even further when r
is small.

We can assume without loss of generality by re-scaling A that b = 1r. We can also assume without loss of
generality that all rows of A are independent (i.e. A is full row-rank). For a fixed ordered norm ∥ · ∥(w), we can
write a convex program to minimize ∥x∥(w) over P:

(Primal) min ∥x∥(w) s.t. Ax ≥ 1r, x ≥ 0.

Denote the optimal solution to this convex program as x(w). Suppose we are told that x(w) satisfies a specific
order π ∈ Perm(d), then we can add constraints xπ(1) ≥ . . . ≥ xπ(d) ≥ 0 to Primal:

min ∥x∥(w) s.t. Ax ≥ 1r, xπ(1) ≥ . . . ≥ xπ(d) ≥ 0.

x(w) is still optimal for this new convex program. However, under the new order constraints, the function
∥x∥(w) = w⊤x↓ =

∑
k∈[d] wkxπ(k) is linear. Therefore, without loss of generality, we can assume that x(w) is a

vertex of this new feasible region Pπ := {x ∈ Rd : Ax ≥ 1r, xπ(1) ≥ . . . ≥ xπ(d) ≥ 0}. Collecting all vertices across
all π ∈ Perm(d), this gives us the optimal portfolio X :=

⋃
π∈Perm(d)(vertices of Pπ) for ordered norms. Clearly,

X is finite. Further, by our discussion, each ordered norm ∥ · ∥(w) achieves its minimum over P at some point in
X.

The size of portfolio X could be much larger than our target size due to two issues:

1. Each Pπ can have too many vertices. For each vertex of Pπ, d out of r + d constraints Ax ≥ 1r, xπ(1) ≥ . . . ≥
xπ(d) ≥ 0 must be tight. Therefore, there could be

(
d+r
d

)
∼ dr vertices of Pπ.

2. There are d! orders π ∈ Perm(d). Since we are taking a union over all such orders, union bound gives the
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following bound on the portfolio size |X|:

(1.1) |X| ≤
(
number of vertices

in each Pπ

)
× (number of orders

π ) ∼ dr × d!.

To reduce the size of the portfolio to poly-logarithmic in d, we use the following two ideas:

1. Sparsification. For each row of matrix A, we round down each entry in the row to the nearest multiple of (1+ϵ)
and set all entries smaller than ϵ

3d2 times the maximum entry in the row to zero. This obtains a new instance
where the optimal solution changes by a factor at most 1 + ϵ for any norm. In this new instance, there are at

most N = O
(

log(d/ϵ)
ϵ

)
distinct entries in each row and thus, at most Nr distinct columns. That is, the set [d]

of columns/coordinates can be partitioned into S1, . . . , SNr such that any two columns in each Sl are equal.

We show that for any minimum norm point x(w) for any ordered norm ∥ · ∥(w), this result allows us to assume

that the coordinates of x(w) in any Sl are equal. This allows us to reduce the first factor in eqn. (1.1) to Nr2 .

2. Primal-dual counting. We still need to reduce the second factor in eqn. (1.1). Our goal is to show that there
is a set of orders5 Π ⊆ Perm(d) such that (a) the optimal x(w) for each weight vector w satisfies some order
π ∈ Π, and (b) |Π| ≤ N2r(r−1). If we plug this into eqn. (1.1) combined with the sparsification idea, we get

an overall bound of Nr2+2r(r−1) = N3r2−2r.

To show this, we formulate a ‘dual’ mathematical program to Primal. To formulate this dual, we appeal to
the characterization of dual norms of ordered norms, and state the Cauchy-Schwarz inequality for them:

Lemma 1.1. (Dual ordered norms) Given a weight vector w ∈ Rd, the dual norm ∥ · ∥∗(w) to ordered norm

∥ · ∥(w) is given by

∥y∥∗(w) = max
k∈[d]

∑
i∈[k] |y|

↓
i∑

i∈[k] wi
.

Lemma 1.2. (Ordered Cauchy-Schwarz) For all x, y ∈ Rd
≥0,

∥x∥(w)∥y∥∗(w) ≥ x⊤y.

Further, equality holds if and only if

(a) there is some order π ∈ Perm(d) such that x, y both satisfy π.

(b) for each k ∈ [d] either x↓
k = x↓

k+1 or
∑

i∈[k] y
↓
i∑

i∈[k] wi
= ∥y∥∗(w).

We let the (r − 1)-dimensional simplex be denoted by ∆r = {λ ∈ Rr
≥0 :

∑
i∈[r] λi = 1}. The dual program to

Primal is formulated as follows:

(Dual) min
λ∈∆r

∥λ⊤A∥∗(w).

For any x that is feasible for Primal and λ that is feasible for Dual, Lemma 1.2 implies that ∥x∥(w)∥A⊤λ∥∗(w) ≥
x⊤A⊤λ ≥ 1⊤

r λ = ∥λ∥1 = 1. Moreover, we show that equality holds if and only if x and λ are optimal to Primal
and Dual respectively, and x and A⊤λ satisfy the same order π. This allows us to count the total number of
candidate orders in the dual using geometric arguments. We show that the simplex ∆r can be partitioned into
different regions

⋃
π∈Perm(d) Rπ, where for all λ in region Rπ, A

⊤λ satisfies order π. These regions are formed

by
(
Nr

2

)
hyperplanes of the form {λ : (A⊤λ)j = (A⊤λ)j′} partitioning ∆r. Using an inductive argument, we

show that
(
Nr

2

)
hyperplanes can partition ∆r into at most N2r(r−1) regions, finishing the counting of Π, and

hence the proof.

5The formal proofs work not with orders Perm(d) but what we call ‘reduced orders’ (to be defined later). Our goal in this section
is to present the intuitive ideas and outline of the proof; we defer technicalities to Section 3.
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1.1.2 Machine-Loads-Identical-Jobs. Recall that here we are given n identical jobs and d unidentical
machines, say with processing times p1, . . . , pd > 0 per job. We need to schedule each job (integrally) on a
machine so as to minimize some norm of the machine loads; set D is the set of all possible machine load vectors.
If ni ∈ Z≥0 jobs are scheduled on machine i ∈ [d], then we must have (1)

∑
i∈[d] ni = n and (2) machine loads

xi = nipi for each i ∈ [d]. That is, machine load vector x satisfies
∑

i∈[d]
xi

pi
= n, x ≥ 0. If fractional loads were

allowed, D would precisely be a covering polyhedron with r = 1 constraint, and a portfolio would follow as a
corollary of our result for covering polyhedra.

However, since each job must be assigned integrally, minimization over the covering polyhedron
minx:

∑
i xi/pi=n ∥x∥ is only a relaxation of the original integral problem. Further, this relaxation has Ω(d) inte-

grality gap: consider n = 1, pi = 1 for each i. Then for L∞ norm, the minimum-norm point on the hyperplane
is x = (1/d, . . . , 1/d) while the integral optimum is x∗ = (1, 0, . . . , 0), so that ∥x∗∥∞/∥x∥∞ = d. Nevertheless,
this relaxation is still useful, and we will give a rounding algorithm based on this relaxation that will bypass this
integrality gap issue.

We outline the main idea to help with this. First, relabel the machines so that the processing times on
different machines satisfy 0 < p1 ≤ p2 ≤ . . . ≤ pd. We consider the special cases where each pi is a power of
2; we call such instances ‘doubling instances’; it is easily seen that an arbitrary instance is 2-approximated by
some doubling instance. We show that doubling instances have the following nice property: for any symmetric
monotonic norm ∥ · ∥ on Rd, the optimal schedule with loads xOPT satisfies xOPT

1 ≥ . . . ≥ xOPT
d ≥ 0. This gives

an idea for an integral relaxation: for a given norm ∥ · ∥, we guess the index l ∈ [d] such that xOPT
l > 0 but

xOPT
l+1 = . . . = xOPT

d = 0. Given this guess, a better convex relaxation for the problem is: min ∥x∥ such that∑
i∈[l]

xi

pi
= n and x1 ≥ . . . ≥ xl ≥ xl+1 = . . . = xd = 0. We show that for any ordered norm ∥ · ∥, one of these

relaxations has a constant integrality gap and we can round a fractional solution to an integral one.

1.1.3 k-Clustering and Uncapacitated-Facility-Location. For the k-clustering problem in a metric space
on n points with distances dist, where at most k facilities must be opened in a metric space to minimize some
norm of the vector of distance of points to their nearest open facilities. [24] first showed that their exists a solution
that opens at most O(k log n+ 1

ϵ ) facilites with approximation factor at most 9+ ϵ for each symmetric monotonic
norm. Further, they showed that such a bicriteria solution that violates the number of open facilities by factor

Ω(log n) is in fact necessary. [16] essentially give an algorithm with at most O
(

k logn
ϵ

)
facilities with an improved

approximation factor 6 + ϵ.
In our algorithm that further improves the approximation to 3 + ϵ, we use the following result of [8]: given a

radius R > 0, they find k facilities that cover at least as many points within radius 3R that any other set of k
facilities can cover within radius R. Given this subroutine, our algorithm is as follows: starting with a suitably
small radius R0, we use the subroutine to find k facilities that cover as least as many points within radius 3R0 that
any other set of facilities cover in radius R0. Then we keep increasing this radius by factor 1 + ϵ and repeat this
step until the radius is large enough so that all n points are covered. R0 is chosen so that the number of iterations
in the algorithm is at most O((log n)/ϵ), leading to the bound on the number of open facilities. Further, the
procedure is explicitly designed to have pointwise 3+ ϵ-approximation guarantees on the distances with respect to
any solution that opens k facilities. This gives the simultaneous approximation guarantee for k-clustering. Note
that if we don’t need the result to be polynomial-time, then we don’t need to lose the factor of 3 and can further
improve the approximation to 1 + ϵ.

We remark that [8]’s algorithm also works when facilities are only allowed to open in a subset of the points,
and consequently our algorithm works in that setting as well. As pointed out to us by a reviewer, if this restriction
is dropped (i.e. if facilities can open anywhere in X), then a linear programming-based rounding algorithm using
[31]’s technique gives an even better (2 + ϵ)-approximation in polynomial-time.

For the facility location problem that does not put a bound k on the number |F | of open facilities but instead
seeks to minimize the sum of |F | and the norm of the distance vector, we use the result for k-clustering as a
subroutine: first, we can search for the value |F | among the O(log n) values {20, 21, . . . , 2log2 n}. Then, we use the
corresponding |F |-clustering solution that opens at most O(|F | log n) facilities (for any constant ϵ ∈ (0, 1]), thus
giving an O(log n)-approximation for the facility location objective.
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1.2 Related Work. Portfolios were explicitly first studied by [18] who studied them for facility location
problems. Similar notions were implicit in other previous works: [16] essentially constructed O(log d)-size O(1)-
approximate portfolios for top-k norms in dimension d, [17] used the structure of Lp norms to get a similar bound,
and [6] essentially constructed poly(d)-size O(1)-approximate portfolios for ordered norms. All three techniques
rely on counting the number of unique norms (up to O(1)-approximation). In contrast, all our techniques rely on
counting vectors in the set D of feasible vectors. This shift is useful, for example, in obtaining polynomial-sizes
portfolios for symmetric monotonic norms (see Appendix B.1).

Portfolios of size-1 or simultaneous approximations have been very well-studied, with the earliest results
going as far back as [7]. [24, 16, 17] all studied general techniques that often involve (implicitly) obtaining
portfolios and combining them into one solution. [16] proved that a simultaneous α-approximation for top-k
norms is a simultaneous α-approximation for symmetric monotonic norms. [17] observed that the basic structure
of [4]’s algorithm for the Traveling Salesman Problem (TSP) can be applied to many other problems, obtaining
logarithmic or constant-factor apporoximate simultaneous approximations. Our technique for k-clustering is
somewhat similar to this algorithm, with the main idea being to reduce the original problem to a partial problem
where only a subset of clients need to be satisfied.

[24] studied simultaneous approximations for all symmetric monotonic norms for clustering, scheduling,
and flow problems. In particular, for k-clustering, they obtained a (9 + ϵ, O(log n) + ϵ−1)-approximation
in polynomial time. [16] improved this to (6 + ϵ, O((log n)/ϵ). [16] also gave a PTAS for scheduling on identical
machines. [1] proved that this PTAS is in-fact a simultaneous 1.388-approximation. [13] gave a simultaneous
approximation algorithm for TSP.

Optimizing for a fixed non-standard objective has been widely considered in the literature, and the list is
too long to fit here. [6] studied ordered norm and symmetric monotonic norm objectives for scheduling and
clustering problems and proved that any symmetric monotonic norm is the supremum of some ordered norms,
thus establishing ordered norms as fundamental to the study of symmetric convex functions. [29] proved that
any symmetric monotonic norm can be O(log d)-approximated by an ordered norm, further strengthening this
connection.

1.3 Preliminaries. We give formal definitions and useful preliminary results in this section. Omitted proofs
are included in Appendix A. Throughout, we assume that D ⊆ Rd

≥0 is a set of feasible vectors with each coordinate
representing the cost to individuals/groups in a combinatorial problem (e.g., distances to open facilities in facility
location problems or machine loads in scheduling problems). First, we define portfolios formally:

Definition 1. (Portfolios) Given a domain or set of feasible vectors D ⊆ Rd
≥0, a class of objectives

C : D → R≥0, and an approximation parameter α ≥ 1, a portfolio X ⊆ D is a set of vectors such that for
all objectives f ∈ C,

min
x∈X

f(x) ≤ αmin
x∈D

f(x).

When the portfolio has size 1, it is called a simultaneous α-approximation [16, 24].

For vector x ∈ Rd, |x|↓ is the vector with coordinates of |x| sorted in decreasing order. σx = (x1, x1 +
x2, . . . , x1+ . . .+xd) denotes the prefix sums of x and ∆x := (x1−x2, x2−x3, . . . , xd−xd+1), with the convention
xd+1 = 0. We will denote by 1k ∈ Rd the vector with k ones followed by zeros.

Definition 2. (Norm classes) Given a vector x ∈ Rd,

1. for k ∈ [d], the top-k norm of x is σ(|x|↓)k = 1⊤
k |x|↓, i.e. the sum of highest k coordinates of |x|. The class of

top-k norms is denoted Top;

2. given a nonzero weight vector w ∈ Rd such that w1 ≥ . . . ≥ wd ≥ 0, the ordered norm ∥x∥(w) is defined as

w⊤|x|↓. The class of ordered norms is denoted Ord;

3. a symmetric monotonic norm is a norm that is monotone in each coordinate and invariant to the permutation
of coordinates. The class of symmetric monotonic norms is denoted Sym.

For nonnegative x, y ∈ Rd
≥0, we say that y majorizes x or x ⪯ y if (σx↓)k ≤ (σy↓)k for all k ∈ [d]. The first

lemma connects symmetric norm values with majorization.
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Lemma 1.3. ([20]) If x ⪯ y, then ∥x∥ ≤ ∥y∥ for any ∥ · ∥ ∈ Sym.

This helps connect simultaneous approximation for Top to simultaneous approximation for Sym: if x∗ is
simultaneously α-approximate for Top over D, then (σ|x∗|↓)k ≤ α(σ|y|↓)k for all k and y ∈ D, or that x∗ ⪯ αy
for all y ∈ D. As an immediate consequence:

Observation 1. ([16], Theorem 2.3) For any D ⊆ Rd
≥0, if x∗ is a simultaneous α-approximation for Top,

then x∗ is a simultaneous α-approximation for Sym.

For any D ⊆ Rd
≥0, a (1 + ϵ)-approximate portfolio for Top can be obtained by choosing optimal solutions

corresponding to top-k norms for k = ⌊1 + ϵ⌋, ⌊(1 + ϵ)2⌋, . . . 2. There are log1+ϵ(d) = O ((log d)/ϵ) such values,
and so:

Observation 2. For any D ⊆ Rd
≥0 and ϵ ∈ (0, 1], there is a (1+ ϵ)-approximate portfolio of size O((log d)/ϵ) for

top-k norms Top.

We remark that unlike Observation 1 for simultaneous approximations, portfolio guarantees do not carry
over from Top to Sym or Ord. Indeed, despite the above observation for Top, the best-known upper bound
for O(1)-approximate portfolio sizes for Ord and Sym is polynomial in d. The next lemma allows symmetric
monotonic norms to be O(log d)-approximated by ordered norms; it will be useful to convert portfolios for Ord
to portfolios for Sym:

Lemma 1.4. ([29]) Any symmetric monotonic norm ∥·∥ on Rd can be O(log d)-approximated by an ordered norm
on Rd.

Corollary 1.1. Given D ⊆ Rd
≥0, an α-approximate portfolio X for Ord over D is an O(α log d)-approximate

portfolio for Sym over D.

The next lemma shows that portfolios can be composed in different ways:

Lemma 1.5. (Portfolio composition) Given class C of functions over D ⊆ Rd
≥0

1. If X1 is an α1-approximate portfolio for C over D and X2 is an α2-approximate portfolio for C over X1, then
X2 is an α1α2-approximate portfolio for C over D.

2. If D =
⋃

i∈[n]Di and Xi is an α-approximate portfolio for C over Di for each i ∈ [n], then
⋃

i∈[n] Xi is an
α-approximate portfolio for C over D.

We restate the characterization of the class of dual norms to ordered norms and a corresponding Cauchy-
Scwarz inequality; their proofs are included in Appendix A.

Lemma 1.1. (Dual ordered norms) Given a weight vector w ∈ Rd, the dual norm ∥ · ∥∗(w) to ordered norm

∥ · ∥(w) is given by

∥y∥∗(w) = max
k∈[d]

∑
i∈[k] |y|

↓
i∑

i∈[k] wi
.

Lemma 1.2. (Ordered Cauchy-Schwarz) For all x, y ∈ Rd
≥0,

∥x∥(w)∥y∥∗(w) ≥ x⊤y.

Further, equality holds if and only if

1. there is some order π ∈ Perm(d) such that x, y both satisfy π.

2. for each k ∈ [d] either x↓
k = x↓

k+1 or
∑

i∈[k] y
↓
i∑

i∈[k] wi
= ∥y∥∗(w).

2[16] use this proof strategy to obtain simultaneous approximations.
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2 OrderAndCount for Machine-Loads-Identical-Jobs

In this section, we present the first application of OrderAndCount framework to the Machine-Loads-Identical-
Jobs (MLIJ) problem. Recall that we are asked to assign n copies of a job among d processors or machines with
different processing times pi, i ∈ [d]. This is the simplest model for workload distribution where some tasks must
be distributed among individuals in a workplace: processors correspond to individuals, processing times represent
their efficiencies, and balancing loads on machines corresponds to managing the workloads of the individuals.
Given a norm ∥ · ∥ on Rd, the goal is to schedule the jobs to minimize the norm of the machine load vector. We
seek a portfolio of solutions (i.e. schedules) for ordered norms Ord and symmetric monotonic norms Sym.

First, we observe a simple example where no solution is simultaneous o(
√
d)-approximation: suppose there

are n = d jobs and p1 = 1 while p2 = . . . = pd =
√
d. The optimal solution for L∞ (i.e. maximum load)

minimization assigns one job per machine to get maximum load
√
d. The optimal solution for L1 (i.e. total load)

minimization assigns all jobs to the most efficient machine, i.e., machine 1, for total load of d. Therefore, any
assignment with < d/2 jobs on machine 1 is an Ω(

√
d)-approximation for L1 norm, and any assignment with

≥ d/2 jobs on machine 1 is an Ω(
√
d)-approximation for L∞ norm. This motivates us to increase the portfolio

size. We prove the following results characterizing the approximation-portfolio size trade-off in this section; we
note that the guarantee for Sym follows from the guarantee for Ord using Lemma 1.4.

Theorem 2.1. For any instance of MLIJ on d machines and any α > 4, we can find in polynomial time an

α-approximate portfolio of size O
(

log d
log(α/4)

)
for ordered norms Ord. This portfolio is also O(α log d)-approximate

for symmetric monotonic norms Sym.

Theorem 2.2. For any constant α > 1, there exists an instance of MLIJ on d machines where any α-

approximate portfolio Xα for ordered norms Ord has size |Xα| = Ω
(

log d
logα+log log d

)
. The same bound holds

for symmetric monotonic norms Sym.

We will also prove (Theorem 2.3) that there are instances of MLIJ with optimal portfolio of size 2 for Top

but with no O(1)-approximate portfolio of size o
(

log d
log log d

)
for Ord.

We start with some notation. Since all jobs are identical, we can identify a schedule by the number of jobs on
each machine. If ni ∈ Z≥0 jobs are scheduled on machine i, then

∑
i∈[d] ni = n, and the load vector is x = x(n) =

(n1p1, . . . , ndpd). Therefore, the set of feasible vectors is D = {x ∈ Rd : x ≥ 0;
∑

i ni = n; xi = nipi ∀ i ∈ [d]}.
We can relabel the machine indices and assume without loss of generality that 0 < p1 ≤ . . . ≤ pd.

2.1 Portfolio Upper Bound. At a high level, we show that special instances of MLIJ that we call doubling
instances satisfy two key properties: (i) any instance of MLIJ is 2-approximated by some doubling instance
(Lemma 2.1), and (ii) the optimal solution xOPT to a doubling instance satisfies xOPT

1 ≥ xOPT
2 ≥ . . . ≥ xOPT

d

(Lemma 2.2). These inequalities allows us to relax the integrality constraints and look at the polyhedron
P = {x :

∑
i
xi

pi
= n;x1 ≥ . . . ≥ xd ≥ 0}, where the coordinate-wise inequality constraints can be put in for

doubling instances. This sets up OrderAndCount: there is only one possible order for vectors x ∈ P, which is
x1 ≥ . . . ≥ xd ≥ 0. Each ordered norm ∥x∥(w) = w⊤x is a linear function over P, and so the set of vertices of P
form an optimal portfolio for ordered norms over P for the doubling instance and a 2-approximate portfolio for
the original instance. We show that we can restrict to O(logα/4 d) of these vertices, losing factor α/4. Finally,
we lose another factor 2 in carefully rounding back to the original, to get an overall approximation factor α for
ordered norms.

Lemma 2.1. Given an instance of MLIJ with d machines and n copies of a job, we can get an instance of the
problem with d machines and n jobs such that: for any load vector x′ for this modified instance, the corresponding
load vector x for the original instance satisfies

1√
2
x ≤ x′ ≤

√
2x.

Proof. To construct the new instance, round each pi to its closest power of 2, say p′i. Then 1√
2
p′i ≤ pi ≤√

2p′i. When ni jobs are scheduled on processor i, corresponding load vectors x = (n1p1, . . . , ndpd) and
x′ = (n1p

′
1, . . . , ndp

′
d) are within factor

√
2 of each other.
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Figure 2: An example for makespan minimization
with 2 machines and 5 jobs where xOPT

1 < xOPT
2

for optimal load vector xOPT.

Formally, a doubling instance is the one constructed in
the proof: it has each pi equal to some power of 2. We show
next that for doubling instances, optimal load vector xOPT

for any norm always satisfies the order xOPT
1 ≥ . . . ≥ xOPT

d .
Note that this is not true if the instance is not doubling; see
Figure 2.

Lemma 2.2. Suppose xOPT is the optimal load vector for
some symmetric monotonic norm ∥ · ∥ for a doubling in-
stance. We can assume without loss of generality that
xOPT
1 ≥ xOPT

2 ≥ . . . ≥ xOPT
d .

Proof. Suppose xOPT
i < xOPT

i+1 for some i. Transfer one job
from machine i+ 1 to machine i, to get the new load vector
x defined as:

xl =


xOPT
l if l ̸= i, i+ 1,

xOPT
i + pi if l = i,

xOPT
i+1 − pi+1 if l = i+ 1.

Since pi divides pi+1 and xOPT
i+1 > xOPT

i , we get that xOPT
i+1 − xOPT

i ≥ pi. Therefore,

max(xi, xi+1) = max
(
xOPT
i + pi, x

OPT
i+1 − pi+1

)
≤ xOPT

i+1 = max
(
xOPT
i , xOPT

i+1

)
.

Further, xi+xi+1 < xOPT
i +xOPT

i+1 . That is, (xi, xi+1) ≺ (xOPT
i , xOPT

i+1 ). Since all other coordinates of x and xOPT

are equal, a simple inductive argument shows that x ≺ xOPT. Lemma 1.3 implies that ∥x∥ ≤ ∥xOPT∥, finishing
the proof.

Corollary 2.1. For Ord, an α-approximate portfolio for an instance of MLIJ can be obtained from a α
2 -

approximate portfolio for the corresponding doubling instance.

For the rest of this section, we restrict ourselves to doubling instances; we will give an α/2-approximate
portfolio of size ≤ 1 + logα/4 d for ordered norms over doubling instances. For any weight vector w, Lemma 2.2
allows us to relax the integer program (IP1) to a linear program: while not every load vector forms a feasible
solution to IP1, Lemma 2.2 shows that there is an optimal solution that is feasible for this IP.

min w⊤x s.t.(IP1) ∑
i

xi

pi
= n,(2.2)

xi ≥ xi+1 ∀ i ∈ [d− 1],(2.3)
xi

pi
∈ Z≥0 ∀ i ∈ [d],(2.4)

min w⊤x s.t.(LP1) ∑
i

xi

pi
= n,(2.5)

xi ≥ xi+1 ∀ i ∈ [d− 1],(2.6)

x ≥ 0.(2.7)

Our next lemma characterizes the d vertices of the constraint polytope P := {x :
∑

i
xi

pi
= n;x1 ≥ . . . ≥ xd ≥

0} of LP1. We omit the straightforward proof.

Lemma 2.3. For any weight vector w, the optimal solution x∗ to LP1 satisfies for some l ∈ [d] that:

x∗
1 = . . . = x∗

l =
n∑

i∈[l]
1
pi

, x∗
l+1 = . . . = x∗

d = 0.

For l ∈ [d], denote the lth vertex as x(l) := n∑
i∈[l]

1
pi

1l, with l non-zero entries. Call x(l) good if

(2.8)
n∑

i∈[l]
1
pi

≥ pl,
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i.e., the value of each non-zero coordinate is at least the processing time corresponding to the last non-zero
coordinate. Clearly, x(1) is good since n ≥ 1, and if x(l) is good then x(l − 1) is also good. Let L be the largest
index such that x(L) is good. The next lemma says that if x(l) is good, then it can be rounded to an integral
load vector:

Lemma 2.4. If x(l) is good, then it can be rounded to x̂(l) that is feasible for IP1 and 1
2x(l) ≤ x̂(l) ≤ 2x(l).

Proof. Denote ni =
x(l)i
pi

for all i ∈ [d], then nl+1 = . . . = nd = 0 and
∑

i∈[d] ni = n. Then one can assign either

n̂i = ⌊ni⌋ or n̂i = ⌈ni⌉ jobs to machine i ∈ [d], while ensuring that
∑

i∈[d] n̂i = n. The load on machine i ∈ [d] in

this new schedule is x̂(l), with x̂(l)i = pin̂i.
By definition of good vertices, x(l)i ≥ pl ≥ pi for each i ∈ [l]. Therefore, we get ni ≥ 1, thus implying

1
2ni ≤ ⌊ni⌋ ≤ ni and ni ≤ ⌈ni⌉ ≤ 2ni for all i ∈ [l]. This implies 1

2ni ≤ n̂i ≤ 2ni for all i ∈ [d]. Since ni =
x(l)i
pi

and n̂i =
x̂(l)i
pi

, we get the result.

Our next lemma shows that rounding good vertices gives a 2-approximate portfolio for ordered norms:

Lemma 2.5. {x̂(1), . . . , x̂(L)} is a 2-approximate portfolio for Ord over the doubling instance.

Proof. Fix a weight vector w. Let xOPT be the (integral) optimal load vector for ∥ · ∥(w), and let l be the largest
index such that xOPT

l > 0. We will first show that there exists an index l′ ≤ l such that (i) x(l′) is good, and
(ii) ∥x(l′)∥(w) ≤ ∥xOPT∥(w). Together with Lemma 2.4, this implies that ∥x̂(l′)∥(w) ≤ 2∥xOPT∥(w), implying the
lemma.

We note first that x(l) is good: since xOPT is integral and xOPT
l ̸= 0, we have xOPT

l ≥ pl. From Lemma 2.2,

we have xOPT
1 ≥ . . . ≥ xOPT

l ≥ pl. Since
∑

i∈[l]
xOPT
i

pi
= n, we get n ≥

∑
i∈[l]

pl

pi
= pl

∑
i∈[l]

1
pi
. That is, x(l) is

good.
In particular, this implies that x(l′) is good for each l′ ≤ l, so it is now sufficient to show that there is some

l′ ≤ l such that ∥x(l′)∥(w) ≤ ∥xOPT∥(w). Consider the following linear program:

min w⊤x s.t.(LP2) ∑
i

xi

pi
= n,(2.9)

xi ≥ xi+1 ∀ i ∈ [d− 1],(2.10)

xl+1 = . . . = xd = 0.(2.11)

xOPT is feasible for this LP by assumption. Further, by an argument similar to Lemma 2.3, we get that the
vertices of the constraint polytope for this LP are x(1), . . . , x(l). Therefore, there is some l′ ≤ l such that
∥x(l′)∥(w) = w⊤x(l′) ≤ w⊤xOPT = ∥xOPT∥(w), finishing the proof.

We are now ready to prove Theorem 2.1. We will convert the 2-approximate portfolios of size d for doubling
instances to an α/2-approximate portfolio of size ∼ logα/4 d, which implies α-approximate portfolios of size
∼ logα/4 d for MLIJ by Corollary 2.1.

Proof. [Proof of Theorem 2.1] We claim that for all indices l, i ∈ [d] such that i ≤ α
4 l, we have x(l) ⪯

α
4 x(i). Therefore, ∥x(l)∥(w) ≤ α

4 ∥x(i)∥(w) for all ordered norms ∥ · ∥(w) from Lemma 1.3, implying that{
x((α/4)j) : j ∈ [0, 1 + log(α/4) L]

}
is an (α/2)-approximate portfolio over doubling instances.

Since p1 ≤ . . . ≤ pd and i ≤ α
4 l, we have

∑
j∈[l]

1
pj
≥ 4

α

∑
j∈[i]

1
pj
. Therefore, for all k ≤ l, we have∑

j∈[k]

x(l)j =
kn∑
i∈[l]

1
pj

≤ α

4
· kn∑

j∈[i]
1
pj

=
α

4
·
∑
j∈[k]

x(i)k.

Further, for k > l,∑
j∈[k]

x(l)j =
∑
j∈[l]

x(l)j =
nl∑

j∈[l]
1
pj

≤ α

4

nl∑
j∈[i]

1
pj

≤ α

4

∑
j∈[i]

x(i)j ≤
α

4

∑
j∈[k]

x(i)j .

Therefore, x(l) ⪯ (α/4)x(i). This completes the proof.
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2.2 Portfolio Lower Bound. We prove Theorem 2.2 by giving an appropriate doubling instance with d

machines where any α-approximate portfolio must have size O
(

log d
logα+log log d

)
. Given d, let S = S(d) be a

superconstant that we specify later; assume that S is an integer that is a power of 2. Let L be the largest integer
such that 1 + S2 + . . . + S2L ≤ d, then L = Θ(logS d). The d machines are divided into L + 1 classes from 0 to
L: there are S2l machines in the lth class and the processing time on these machines is pl = Sl. The number of
jobs n is S3L; it is chosen so as to ensure that all vertices in the constraint polytope for LP1 are good, and can
be rounded to an integral solution that is only worse by a factor at most 2 (Lemma 2.4).

There are L + 1 weight vectors for our instance. The first weight vector is w(0) = (1, 1, . . . , 1). The second
weight vector is w(1) =

(
1, 1

S2 ,
1
S2 , . . . ,

1
S2

)
. More generally, for l ∈ [0, L],

w(l) =

(
1,

1

S2
, . . . ,

1

S2︸ ︷︷ ︸
S2

,
1

S4
, . . . ,

1

S4︸ ︷︷ ︸
S4

, . . . ,
1

S2l−2
, . . . ,

1

S2l−2︸ ︷︷ ︸
S2l−2

,
1

S2l
, . . . ,

1

S2l︸ ︷︷ ︸
remaining

)
.

With some foresight, we choose S such that S
L = 5α. We claim the following: for each l ∈ [0, L− 1],

1. There is a schedule x̂(l) for this instance with ∥x̂(l)∥(w(l)) ≤ nlS−l.

2. Any schedule y that schedules more than n/4 jobs on machines in classes l+1 to L has ∥y∥(w(l)) ≥ nS
4 ·S

−l.

Combined with the above and since α ≤ S
4L , it cannot be an α-approximation for the w(l)-norm problem.

3. Any schedule y that schedules more than n/4 jobs on machines in classes 0 to l− 1 has ∥y∥(w(l)) ≥ nS
2 ·S

−l.
Therefore, it cannot be an α-approximation for the w(l)-norm problem either.

4. L = Θ(logS d) = Ω
(

log d
logα+log log d

)
.

Claims 1, 2, and 3 imply that any α-approximate solution for norm w(l) must schedule at least n/2 jobs on
machines in class l. Another application of claims 2 and 3 then implies that a portfolio that is α-approximate for
weight vectors {w(0), . . . , w(L− 1)} must have distinct solutions for each weight vector, and therefore has size at
least L. Claim 4 then implies our theorem.

Claim 4 is just computation: L = Θ(logS d) = Θ(logαL d) = Θ
(

log d
logα+logL

)
. If L = Ω(log d), then we are

done since the target size is anyway Θ
(

log d
logα+log log d

)
= O(log d) for constant α. Otherwise, logL = O(log log d)

and so L = Θ
(

log d
logα+logL

)
= Θ

(
log d

logα+log log d

)
.

We move to claim 1. As alluded to before, n = S3L has been chosen so that each vertex x(l) of the constraint
polytope is good (see inequality (2.8)):

n

1 · 11 + S2 · 1S + . . .+ S2L · 1
SL

≥ n

2SL
≥ SL = pL.

With this in hand, it is sufficient to give a fractional solution x(l) with ∥x(l)∥(w(l)) = Θ(nlS−l), since
Lemma 2.4 then implies the existence of an integral solution x̂(l) with norm at most twice. Consider
x(l) = (a, . . . , a, 0, . . . , 0) where the first 1 + S2 + . . . + S2l coordinates are non-zero and equal to a; all other
coordinates are 0. Since a total of n jobs must be scheduled (constraint (2.9)),

n = a

(
1 · 1

1
+ S2 · 1

S
+ . . .+ S2l · 1

Sl

)
≥ aSl,

so that a ≤ n
Sl . Therefore,

∥x(l)∥(w(l)) = a× sum of first (1 + S2 + . . .+ S2l) coordinates of w(l) = a · l ≤ nlS−l.

We move to claim 2. Let y schedule more than n/4 jobs on machines in classes l+1 to L. Irrespective of how
these n/4 jobs are distributed, they contribute a total load of at least (n/4)× Sl+1. Since all coordinates of w(l)
are at least 1

S2l , the contribution of these jobs to ∥y∥(w(l)) is at least

1

S2l
× n

4
Sl+1 =

nS

4
· S−l.
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Since l ≤ L = o(S), we get ∥y∥(w(l)) = ω(nlS−l).
Finally, we prove claim 3. Consider the restricted instance with only machines from classes 0, . . . , l − 1 and

n/4 jobs. Let x be the optimal fractional solution for this instance for top-1 norm ∥ · ∥(11); it is easy to see that
x must have equal loads on machines, so that from constraint (2.9):

n = ∥x∥(11)

(
1 · 1

1
+ S2 · 1

S
+ . . .+ S2l−2 · 1

Sl−1

)
≤ 2∥x∥(11)S

l−1,

implying ∥x∥(11) ≥ nS−l+1

2 . Therefore, any integral optimal solution x̂ to this restricted instance must also satisfy

∥x̂∥(11) ≥ ∥x∥(11) ≥
nS−l+1

2
.

Since y is a solution to the larger original instance, we have ∥y∥(11) ≥ ∥x̂∥(11). Finally, since w(l) = 1 by

assumption, we get 11 ⪯ w(l), and so ∥y∥(w(l)) ≥ ∥y∥(11). Together, we get ∥y∥(w(l)) ≥ nS
2 · S

−l. This completes
the proof of the claim and of Theorem 2.2.

Portfolios for Different Classes of Norms. Recall Observation 1: if x∗ is a simultaneous α-approximation
for each top-k norm, then it is a simultaneous α-approximation for all symmetric monotonic norms. One might
naturally wonder if this is true for portfolios: is an α-approximate portfolio for top-k norms also an α-approximate
portfolio for all symmetric monotonic norms? Our lower bound on portfolio sizes for ordered norms (see Appendix
B) along with O(log d) upper bounds on portfolio sizes for top-k norms (Observation 2) already implies that this
is not the case. We give another proof using the instance constructed for portfolio lower bound for MLIJ. The
proof is deferred to Appendix C.

Theorem 2.3. For all large enough d, there exists a set of vectors D ⊆ Rd
≥0 such that:

1. there is an O(1)-approximate portfolio X of size 2 for Top, and

2. any O(1)-approximate portfolio X ′ for Ord has size Ω̃
(

log d
log log d

)
.

3 OrderAndCount for Covering-Polyhedra

In this section, we extend OrderAndCount to Covering-Polyhedra in d-dimensions, which is defined by
P = {x ∈ Rd : Ax ≥ b, x ≥ 0} with nonnegative constraint matrix A ∈ Rr×d

≥0 with r rows and b ∈ Rr
≥0. As

alluded to before, such polyhedra can model workload management in settings with r splittable jobs split among
d machines that can run all r jobs concurrently. MLIJ corresponds to r = 1 since it had a single constraint of
the form a⊤x ≥ b. We prove the following theorem that upper bounds the portfolio size for covering polyhedra:

Theorem 3.1. Given ϵ ∈ (0, 1] and a covering polyhedron P = {x ∈ Rd : Ax ≥ b, x ≥ 0} where A ∈ Rr×d
≥0 and

b ∈ Rd
≥0, there is an algorithm to compute a portfolio X1+ϵ of size

|X1+ϵ| = O

((
log(d/ϵ)

ϵ

)3r2−2r
)

that is (1+ϵ)-approximate for ordered norms Ord. This portfolio can be computed in time poly(d, logr
2

(d))). Con-

sequently, using Lemma 1.4, there is a polynomial-time algorithm to compute a portfolio of size O
(
(log d)

3r2−2r
)

that is O(log d)-approximate for symmetric monotonic norms Sym.

We focus on the result for Ord since the result for Sym follows from Lemma 1.4. Further, we assume that
b = 1r = (1, . . . , 1)⊤, without loss of generality by rescaling rows of A if necessary (and removing rows with b = 0
since they will be feasible anyway).

For any order π on [d], define the restriction Pπ := P ∩ {x ∈ Rd : xπ(1) ≥ . . . ≥ xπ(d) ≥ 0}. Recall our
high-level plan: any ordered norm ∥ · ∥(w) is a linear function on each Pπ. Therefore, the minimum norm point
x(w) := argminx∈P∥x∥(w) must be one of the vertices of some Pπ. Call X the union of vertices of Pπ across all
orders π; then X is an optimal portfolio for Ord. As we outlined, two main issues potentially blow up the size
|X|:
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1. Each Pπ can have too many vertices. For each vertex of Pπ, d out of r + d constraints Ax ≥ 1r, xπ(1) ≥ . . . ≥
xπ(d) ≥ 0 must be tight. Therefore, Pπ may have

(
d+r
d

)
∼ dr vertices.

2. There are d! orders π ∈ Perm(d). Since we are taking a union over all such orders, the size |X| is bounded by:(
number of vertices

in each Pπ

)
× (number of orders

π ) ∼ dr × d!.

We start with sparsification (Section 3.1) that aims to reduce the number of unique coordinates of each

x(w) to
(

log(d/ϵ)
ϵ

)r
; showing that this bound the first factor above to

(
log(d/ϵ)

ϵ

)r2
. Bounding the second factor

requires bounding the number of orders that x(w) can satisfy, which we accomplish using our primal-dual counting
technique (Section 3.2).

Algorithm 1 SparsifyPolyhedron(P)

input: covering polyhedron P = {x ∈ Rd : Ax ≥ 1r, x ≥ 0}, error parameter ϵ ∈ (0, 1]

output: another covering polyhedron P̃ = {x ∈ Rd : Ãx ≥ 1r, x ≥ 0}
1: define µ = 3d2

ϵ and initialize Ã = 0r×d

2: for each row i ∈ [r] do
3: define a∗i = maxj∈[d] Ai,j to be the largest entry in the row
4: for column j ∈ [d] do

5: if Ai,j <
a∗
i

µ then

6: set Ãi,j = 0
7: else
8: let l ∈ [0, ⌊log(1+ϵ/2) µ⌋] be the unique integer such that

a∗i
µ

(
1 +

ϵ

2

)l
≤ Ai,j <

a∗i
µ

(
1 +

ϵ

2

)l+1

9: set Ãi,j =
a∗
i

µ

(
1 + ϵ

2

)l
10: return Ã, P̃ = {x ∈ Rd : Ãx ≥ 1r, x ≥ 0}

3.1 Sparsification. Denote N = O
( log(d/ϵ)

ϵ

)
. We give a sparsification procedure (Algorithm 1,

SparsifyPolyhedron) that reduces the number of distinct columns in A to Nr. For each row of matrix A,
this sparsification (1) removes ‘small’ entries in the row and (2) restricts the number of unique entries in the row
to N . Since there are r rows, the number of distinct columns after sparsification is Nr. In the process, we lose a
factor (1 + ϵ) in the approximation.

Lemma 3.1. The columns of matrix Ã ∈ Rr×d
≥0 output by Algorithm SparsifyPolyhedron take one of Nr values,

i.e., [d] can be partitioned into S1, . . . , SNr such that for any j, j′ ∈ Sl, the jth and j′th columns of Ã are equal.

Proof. Fix row i ∈ [r]. By construction, each entry in the ith row of Ã is in the set {0} ∪{
a∗
i

µ

(
1 + ϵ

2

)l
: l ∈ [0, ⌊log(1+ϵ/2) µ⌋]

}
. These are O(log(1+ϵ/2) µ) = O(log(1+ϵ/2)(d

2/ϵ)) = O
(

log(d/ϵ)
ϵ

)
= N dis-

tinct numbers. Since each column is composed of r entries, one from each row, we get a total of Nr possible
values for a column.

The next lemma gives the approximation guarantee for the sparsified polyhedron; its proof is relatively
straightforward and we defer it to Appendix D.

Lemma 3.2. P̃ = {x : Ãx ≥ 1r, x ≥ 0} output by Algorithm SparsifyPolyhedron is a (1 + ϵ)-approximate
portfolio for Sym over P.
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Lemma 3.2 allows us to work with P̃ = {x : Ãx ≥ 1r, x ≥ 0} with the nice property that columns of Ã take

at most Nr distinct values (from Lemma 3.1). We will give an optimal portfolio for Ord over P̃. This portfolio

will have size O(N3r2−2r). Using Lemma 1.5, this is sufficient to prove Theorem 3.1. Hereafter, we will only work

with the sparsified matrix Ã and polyhedron P̃. For ease of notation, we drop the symbol Ã and assume that the
original matrix A and corresponding polyhedron P are already given to us in the sparsified form.

Let S1, . . . , SNr denote the partition of [d] based on the value of columns of A, i.e., for each l ∈ [Nr] and
j, j′ ∈ Sl, jth and j′th columns of A are the same. Further, define Q = {x ∈ Rd

≥0 : xj = xj′ ∀j, j′ ∈ Sl, ∀ l ∈ [Nr]},
i.e., the set of all non-negative vectors that attain the same value for all j ∈ Sl, for all l ∈ [Nr]. Define P= = P∩Q.
Recall that for weight vector w, we define x(w) := argminx∈P∥x∥(w). Our first lemma shows that x(w) ∈ P=:

Lemma 3.3. Given a weight vector w, we can assume without loss of generality that for all l ∈ [Nr] and j, j′ ∈ Sl,
x(w)j = x(w)j′ . That is, P= is an optimal portfolio for Sym over P.

Proof. Suppose x(w)j ̸= x(w)j′ , say x(w)j > x(w)j′ . Then consider x ∈ Rd such that xk = x(w)k for all

k ̸= j, j′, and xj = xj′ =
x(w)j+x(w)j′

2 . Then it can be seen that x ⪯ x(w) and so by Lemma 1.3 we get that
∥x∥(w) ≤ ∥x(w)∥(w).

It remains to show that x ∈ P. Clearly x ≥ 0 since x(w) ≥ 0. Denote by A(j), A(j′) the jth, j′th columns of
A. Since they are equal,

A(x(w)− x) = A(j)(x(w)j − xj) +A(j′)(x(w)j′ − xj′) = A(j)((x(w)j + x(w)j′)− (xj + xj′)) = 0.

Therefore, Ax = Ax(w) ≥ 1r, or that x ∈ P.

Given the above lemma, it is now sufficient to consider orders over [Nr] instead of orders over [d]. We call
these reduced orders:

Definition 3. (Reduced orders) An order ρ on [Nr] is called a reduced order. For x ∈ Q, define vector
z(x) ∈ RNr

of unique coordinates of x, i.e., for l ∈ [Nr], define z(x)l = xj for j ∈ Sl. x ∈ Q is said to satisfy
reduced order ρ if zρ(1) ≥ . . . ≥ zρ(Nr) ≥ 0. Given a reduced order ρ, define polyhedron

P=
ρ = {x ∈ P ∩Q : x satisfies reduced order ρ}.

Suppose now that we are given some reduced order ρ. Then for x ∈ P=
ρ , ∥x∥(w) is a linear function of x.

Therefore, given a weight vector w, if x(w) satisfies reduced order ρ, then x(w) is one of the vertices of polyhedron
P=
ρ . With this observation, the rest of the proof is organized as follows:

• For each reduced order ρ, P=
ρ has at most Nr2 + 1 vertices (Lemma 3.4).

• Consider the set Π of reduced orders such that for any weight vector w, x(w) satisfies some reduced order
ρ ∈ Π, i.e, Π = {reduced order ρ : ∃w where x(w) satisfies ρ}. Then we will show that |Π| ≤ N2r(r−1) (Lemma
3.5).

Together, these observations mean that X :=
⋃

ρ∈Π

(
vertices of P=

ρ

)
is an optimal portfolio for Ord over P=.

By Lemma 3.3, P= is an optimal portfolio for Ord over P. Therefore, Lemma 1.5 implies that X is an optimal
portfolio for Ord over P. Further,

|X| =
∣∣∣ ⋃
ρ∈Π

(
vertices of P=

ρ

) ∣∣∣ ≤∑
ρ∈Π

∣∣(vertices of P=
ρ

)∣∣
≤
∑
ρ∈Π

(Nr2 + 1) = |Π|(Nr2 + 1) ≤ N2r(r−1)(Nr2 + 1) = O(N3r2−2r).

This implies Theorem 3.1. We prove Lemma 3.4 next and defer Lemma 3.5 to the next subsection.

Lemma 3.4. For each reduced order ρ, P=
ρ has at most Nr2 + 1 vertices
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Proof. For simplicity, assume (after possibly relabeling indices) that ρ(l) = l for all l ∈ [Nr], and that
S1 = {1, . . . , |S1|}, S2 = {|S1| + 1, . . . , |S1| + |S2|} etc. Then the polyhedron P=

ρ is the set of all x such that

A⊤
i x ≥ 1 for all i ∈ [r] and

x1 = . . . = x|S1| ≥ x|S1|+1 = . . . = x|S1|+|S2| ≥ . . . ≥ xd−|SNr |+1 = . . . = xd ≥ 0.

Any vertex corresponds to a set of d (linearly independent) inequalities. The constraints of the polytope have
d−Nr equalities and Nr+r inequalities. Therefore, each vertex corresponds to some Nr of the Nr+r inequalities
being tight. The number of such choices is

(
Nr+r
Nr

)
. Then,(

Nr + r

Nr

)
=

(
Nr + r

r

)
≤
(
1 +

Nr

r

)r

.

For r = 1, this is at most 1 +Nr. For r ≥ 2, 1 + Nr

r ≤ Nr and so this is at most Nr2 .

At this point, a natural first attempt at bounding the portfolio size is to count the number of ordered norms
in the space of ‘reduced’ vectors {z(x) : x ∈ P=} ⊆ RNr

. After all, the result from [6] result shows that there are
at most poly(Nr/ϵ) ordered norms in RNr

up to a (1+ ϵ)-approximation. However, to the best of our knowledge,
this approach does not directly work because ordered norms on Rd cannot be translated appropriately into an
ordered norm on the smaller space RNr

.
For example, consider the covering polyhedron P = {x ∈ R3

≥0 : x1 ≥ 2, x2 +x3 ≥ 4, 2x1 +x2 +x3 ≥ 10}. The
point (3, 2, 2) ∈ P is the (unique) minimizer of the L1 norm, which corresponds to weight vector w = (1, 1, 1).
The constraint polytope for P has two unique columns, and the corresponding ‘reduced covering polyhedron’ is
P ′ = {z ∈ R2 : z1 ≥ 2, z2 ≥ 2, z1 + z2 ≥ 5}. A point (a, b, b) ∈ P corresponds to the point (a, b) ∈ P ′. However,
by a majorization argument, the point (5/2, 5/2) ∈ P ′ minimizes all ordered norms on P ′, but the corresponding
point (5/2, 5/2, 5/2) ∈ P with L1 norm 7.5 is sub-optimal for the L1 norm. Therefore, it is not sufficient to count
ordered norms in RNr

, and we need an alternate approach that we describe next.

3.2 Primal-Dual Counting. In this section, we study the set Π of reduced orders such that for any weight
vector w, x(w) satisfies some reduced order ρ ∈ Π, i.e, Π = {reduced order ρ : ∃ w where x(w) satisfies ρ}. We
prove that

Lemma 3.5. |Π| ≤ N2r(r−1).

The main idea is to count reduced orders not on x(w), but in a dual space. We write the following modified
primal and dual, and denote λ(w) = argminλ∈∆r

∥A⊤λ∥∗(w):

(Primal’) min ∥x∥(w) s.t. Ax ≥ 1r, x ∈ Q. (Dual) min ∥A⊤λ∥∗(w) s.t. λ ∈∆r

Note that (A⊤λ)j is simply the dot product of the jth column of A with λ. Further, recall for all j, j′ ∈ Sl

for any l ∈ [Nr], the jth and j′th columns of A are equal. Therefore, we have (A⊤λ)j = (A⊤λ)j′ for any λ. By
definition, this means that A⊤λ ∈ Q for all λ ≥ 0.

The next lemma establishes the crucial connection between reduced orders in Primal’ and Dual. It uses
Lemma 1.2 (Ordered Cauchy-Schwarz) along with a Lagrangian function; we defer its proof to Appendix D.

Lemma 3.6. Given a weight vector w, ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Further, there is a reduced order ρ such that

both x(w), A⊤λ(w) satisfy ρ.

As a consequence of this lemma, we get that it is sufficient to count reduced orders in the dual:

Π = {reduced order ρ : ∃ w where x(w) satisfies ρ}
= {reduced order ρ : ∃ w where A⊤λ(w) satisfies ρ}
⊆ {reduced order ρ : ∃ λ ∈∆r where A⊤λ satisfies ρ}.

Denote Π∗ = {reduced order ρ : ∃ λ ∈ ∆r where A⊤λ satisfies ρ}; our goal is to show that |Π∗| ≤ N2r(r−1).
From the above, this is sufficient to prove Lemma 3.5. Our final lemma is a geometric counting inequality.
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Lemma 3.7. T hyperplanes partition ∆r into at most T r−1 + 1 regions.

Proof. The result is trivially true for r = 1 since ∆1 is a point. For r = 2, ∆2 is a line segment, and T
‘hyperplanes’ partition it into ≤ T +1 regions. For r ≥ 3, we use induction on T . 1 hyperplane clearly divides any
convex body into at most 2 ≤ 1r−1 + 1 regions. Suppose T > 1. Let the T th hyperplane be H. By the induction
hypothesis, the first T − 1 hyperplanes divide ∆r into at most (T − 1)r−1 + 1 regions. If ∆r ⊆ H, then H does
not add any new regions, and we are done.

Otherwise, the number of new regions H adds is the number of regions that the first T − 1 hyperplanes
partition ∆r ∩ H into. But ∆r ∩ H can be linearly transformed into ∆r−1 in this case, and so the number of
new regions is at most (T − 1)r−2 + 1. Therefore, by the induction hypothesis, the total number of regions with
T hyperplanes is at most

((T − 1)r−1 + 1) + ((T − 1)r−2 + 1) ≤ T r−1 + 1 ∀ T ≥ 1, r ≥ 3.

We are ready to finish the proof of Lemma 3.5. Partition ∆r into regions {Rρ : ρ ∈ Π∗}, where
Rρ := {λ ∈ ∆r : A⊤λ satisfies ρ}. The size |Π∗| is exactly the number of such regions. Pick j, j′ ∈ [d]
such that j, j′ belong to different sets Sl, Sl′ . Then these regions are separated by hyperplanes of the form
{λ : (A⊤λ)j = (A⊤λ)j′}, i.e., different reduced orders exist on different sides of these hyperplanes. There are(
Nr

2

)
such hyperplanes, each corresponding to a pair of sets Sl, Sl′ . By the above lemma, these partition ∆r into

at most (
Nr

2

)r−1

+ 1 =

(
Nr(Nr − 1)

2

)r−1

+ 1 ≤ N2r(r−1).

regions. Thus, |Π| ≤ |Π∗| = |{Rρ : ρ ∈ Π∗}| ≤ N2r(r−1). This finishes the proof of Lemma 3.5, and therefore the
proof of Theorem 3.1.

We finally remark that this can be converted into an algorithm that runs in time poly(Nr2 , d): tracing back,
find the set Π∗ using the above hyperplane argument, and then simply output the union of vertices of P=

ρ for all
ρ ∈ Π∗.

4 k-Clustering and Uncapacitated-Facility-Location

In this section, we consider k-Clustering and Uncapacitated-Facility-Location. Recall that we are given
a metric space (X,dist) on |X| = n points (also called clients) and are required to choose a subset F ⊆ X of
open facilities. The induced distance vector xF ∈ RX is defined as the vector of distances between point j and
its nearest open facility, i.e., xF (j) = minf∈F dist(j, f) for all j ∈ X. Given a norm ∥ · ∥ on Rn, k-Clustering
seeks to open set F of at most k facilities to minimize ∥xF ∥, while Uncapacitated-Facility-Location allows
any number of facilities to open to minimize the combined objective |F |+ ∥xF ∥.

4.1 k-Clustering. The main result in this section is a bicriteria simultaneous approximation for k-
Clustering: a solution F ⊆ X is bicriteria (α, β)-approximation for k-Clustering if its objective value is
within factor α of the optimal and it opens at most βk facilities.

Theorem 4.1. For k-Clustering,

1. there exists a simultaneous bicriteria
(
1 + ϵ, O

(
logn
ϵ

))
-approximation, and

2. a simultaneous bicriteria
(
3 + ϵ, O

(
logn
ϵ

))
-approximation can be found in polynomial time.

We note that the part 1 of the theorem can also be obtained using Observation 2: take optimal k-Clustering
solutions corresponding to top-l vectors for l = ⌊1 + ϵ⌋, ⌊(1 + ϵ)2⌋, . . . and combine these facilities to obtain a
single solution with O(k log1+ϵ(n)) facilities; this was noted for ϵ = 1 in [16]. For a polynomial-time bound, their
technique of combining fractional solutions and rounding based on the techniques of [21] achieves a simultaneous
(6 + ϵ)-approximation with O(k log1+ϵ n) facilities. We improve this to a 3 + ϵ with a simple combinatorial
algorithm IterativeClustering, described next.
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Algorithm 2 PartialClustering((X,dist), k, R, α)

input: A metric space (X,dist), integer k ≥ 1, radius R ≥ 0, parameter α ≥ 1
output: A set of k facilities C ∈

(
X
k

)
such that B(C,αR) contains at least as many points as contained by

any B(C ′, R) with |C ′| ≤ k, i.e.,
|B(C,αR)| ≥ max

C′∈(Xk)
|B(C ′, R)| .

Algorithm 3 IterativeClustering((X,dist), k, ϵ, α)

input: A metric space (X,dist), integer k ≥ 1, parameter ϵ > 0, parameter α ≥ 1

output: A set C ⊆ X of O
(

k logn
ϵ

)
facilities

1: C ← ∅ R0 = Dϵ
n

2: for l = 0, 1, . . . , log1+ϵ(n/ϵ) do
3: R← R0(1 + ϵ)l

4: Cl ← PartialClustering((X,dist), k, R, α)
5: C ← C ∪ Cl

6: return C

At a high level, our algorithm IterativeClustering combines several solutions with k facilities each. Each
of these solutions corresponds to a radius R, and subroutine PartialClustering attempts to get the set of k
facilities that covers the largest number of points within radius R. Radius R will increase exponentially across
iterations.

For polynomial-time computations, PartialClustering cannot be solved exactly since it generalizes the k-
center problem. To get efficient algorithms, we allow it to output k facilities that cover as many points within
radius αR as those covered by any k facilities within radius R. As [24] note, [8] give an approximation algorithm
for PartialClustering for α = 3, which we state in a modified form:

Theorem 4.2. (Theorem 3.1, [8]) Given metric (X,dist), integer k ≥ 1, and radius R, there exists a
polynomial-time algorithm that outputs k facilities that cover at least as many points within radius 3R as those
covered by any set of k facilities within radius R. That is, subroutine PartialClustering runs in polynomial-time
for α = 3.

We give some notation: given nonempty F ⊆ X and some radius R ≥ 0, we denote by B(F ;R) the set of
all points within distance R of F , i.e., B(F ;R) = {x ∈ X : ∃ y ∈ F with dist(x, y) ≤ R}. We say that a set of
facilities F covers p points within radius R if |B(F ;R)| ≥ p.

Let D denote the k-center optimum for (X,dist). By definition, there are k facilities that can cover all of X
within radius D. Therefore, the largest radius we need to consider is D. What is the smallest radius we need to
consider? Since all of our objective norms are monotonic and symmetric, points covered within very small radii
do not contribute a significant amount to the norm value. Therefore, we can start at a large enough radius, which
has been set to Dϵ

n with some foresight.
We will first prove the following claim:

Claim 1. IterativeClustering gives a simultaneous bicriteria
(
α(1 + 2ϵ), O

(
logn
ϵ

))
-approximation for sym-

metric monotonic norms Sym.

Proof. We first show that the number of facilities output by the algorithm is O
(

k logn
ϵ

)
. The number of iterations

in the for loop is log(1+ϵ)

(
n
ϵ

)
= O

(
logn
ϵ + log(1/ϵ)

ϵ

)
. When ϵ > 1

n , this expression is O
(

logn
ϵ

)
. Since each iteration

adds at most k facilities to C, we are done in this case. When ϵ ≤ 1
n , then

k logn
ϵ ≥ n, that is, all facilities can be

opened anyway.
Fix any symmetric monotonic norm ∥ · ∥ on Rn, and let OPT denote the optimal solution for this norm

and xOPT ∈ Rn denote the corresponding distance vector. Let the distance vector for facilities C output by the
algorithm be x. We need to show that ∥x∥ ≤ α(1 + 2ϵ)∥xOPT∥.
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By definition, (xOPT)↑1 ≤ (xOPT)↑2 ≤ . . . ≤ (xOPT)↑n. Let j
∗ be the smallest index such that (xOPT)↑j∗ > R0 =

Dϵ
n . Since ∥ ·∥ is symmetric, we have ∥x↑∥ = ∥x∥ and ∥(xOPT)↑∥ = ∥xOPT∥. Our twofold strategy is to show that:

1. for all j ≥ j∗,

(4.12) (x)↑j ≤ α(1 + ϵ)(xOPT)↑j ,

2. the contribution of x↑
1, . . . , x

↑
j∗−1 to ∥x∥ is small; specifically,

(4.13)
∥∥∥(x↑

1, . . . , x
↑
j∗−1, 0, . . . , 0

)∥∥∥ ≤ αϵ∥xOPT∥.

Consider the first part. We have R0(1 + ϵ)log1+ϵ(n/ϵ) = R0
n
ϵ = D. That is, in the final iteration of the for

loop, R = D. Therefore, by definition of D and PartialClustering, Cl in this iteration covers all of X within
radius αD. That is, ∥x∥∞ ≤ αD since Cl ⊆ C.

fix some j ≥ j∗, and let l ≥ 0 be the smallest integer such that (xOPT)↑j ≤ R0(1 + ϵ)l. If l ≥ 1 + log1+ϵ(n/ϵ),

then (xOPT)↑j > R0(1 + ϵ)l−1 = D. Since ∥x∥∞ ≤ αD, inequality (4.12) holds in this case.

Otherwise, l ≤ log1+ϵ(n/ϵ). The k facilities in OPT cover at least j points within radius R = R0(1 + ϵ)l.
By definition of PartialClustering, in iteration l of the for loop, Cl covers at least j points within radius αR.
Since Cl ⊆ C, C also covers at least j points within radius αR, so that x↑

j ≤ αR = R0(1 + ϵ)l. By definition of l,

(xOPT)↑ > R0(1 + ϵ)l−1, and so

x↑
j ≤ αR0(1 + ϵ)l ≤ α(1 + ϵ)(xOPT)↑j .

We move to (4.13). By definition of j∗, OPT covers at least j∗− 1 points within radius R0. In iteration 0, by
definition of PartialClustering, C0 (and therefore C) covers at least (j∗ − 1) points within radius αR0. That

is, x↑
j∗−1 ≤ αR0.

Denote (1, 0, . . . , 0) = e. Since ∥ · ∥ is monotonic and D is the k center optimum, ∥xOPT∥ ≥(
∥xOPT∥∞, 0, . . . , 0

)
∥e∥ ≥ D∥e∥. Therefore,∥∥∥(x↑
1, . . . , x

↑
j∗−1, 0, . . . , 0

)∥∥∥ ≤ ∑
j∈[j∗−1]

x↑
j∥e∥ (triangle inequality)

≤
∑

j∈[j∗−1]

αR0∥e∥ (x↑
j∗−1 ≤ αR)

< nα
Dϵ

n
∥e∥ (j∗ ≤ n)

≤ αϵ∥xOPT∥. (∥xOPT∥ ≥ D∥e∥)

Together, inequalities (4.12), (4.13) imply that

∥x∥ ≤
∥∥∥(x↑

1, . . . , x
↑
j∗−1, 0, . . . , 0

)∥∥∥+ ∥∥∥(0, . . . , 0, x↑
j∗ , . . . , x

↑
n

)∥∥∥ (triangle inequality)

≤ αϵ∥xOPT∥+ α(1 + ϵ)
∥∥∥(0, . . . , 0, (xOPT)↑j∗ , . . . , (x

OPT)↑n

)∥∥∥ (inequalities (4.12), (4.13))

≤ αϵ∥xOPT∥+ α(1 + ϵ)∥xOPT∥ = α(1 + 2ϵ)∥xOPT∥. (∥ · ∥ is symmetric monotonic)

With this result in hand, our main theorem is simple to derive: we choose α = 1 in the claim with ϵ/2
as the parameter for the existence result. We choose α = 3 in the claim with ϵ/6 as the parameter for the
polynomial-time result; Theorem 4.2 guarantees that the algorithm is polynomial-time.
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4.2 Uncapacitated-Facility-Location. First, we note that a single solution cannot be better than Ω(
√
n)-

approximate for even the L1 and L∞ norms: suppose the metric is a star metric with n leaves. The distance from
the center to each leaf is

√
n. Then the optimal L1 solution is to open each facility, and the cost of this solution

is n + 1. The optimal L∞ solution is to open just one facility at the center, the cost of this solution is 1 +
√
n.

Now, any solution that opens fewer than n/2 facilities has cost ≥ n/2+ (n/2)
√
n = Ω(n

√
n) for the L1 norm and

therefore is an Ω(
√
n)-approximation. Any solution that opens ≥ n/2 facilities is an Ω(

√
n)-approximation for

the L∞ norm. A similar example was noted for the k-clustering variant in [16].
This motivates us to seek larger portfolios and get a smaller approximation. The main theorem of this section

gives an O(log n)-approximate portfolio of size O(log n) for Uncapacitated-Facility-Location:

Theorem 4.3. An O(log n)-approximate portfolio of size O(log n) for symmetric monotonic norms Sym over
Uncapacitated-Facility-Location can be found in polynomial time.

Proof. Assume without loss of generality that the number of points n is a power of 2. Choose solutions
corresponding to k = 20, 21, 22, . . . , 2log2 n with ϵ = 1 in Theorem 4.1 part 2. There are clearly O(log n) of
these, and the theorem asserts that they can be found in polynomial time. We claim that these form an O(log n)-
approximate all-norm portfolio.

Fix a norm ∥ · ∥, and suppose the optimal solution OPT for this norm opens k∗ ∈ [n] facilities. Let l be the
unique integer such that 2l−1 < k∗ ≤ 2l, i.e., l = ⌈log2 k∗⌉. We show that the solution corresponding to k = 2l in
our portfolio is an O(log n)-approximation for ∥ · ∥. Add arbitrary 2l − k∗ facilities to OPT; this only decreases
the induced distance vector xOPT. For this new set of facilities, we have the guarantee from Theorem 4.1 that
∥x∥ ≤ 4∥xOPT∥. Therefore, the objective value of the portfolio solution is

O(log n) · 2l + ∥x∥ = O(log n)
(
k∗ + ∥xOPT∥

)
= O(log n) ·OPT.

This completes the proof.

5 Discussion and Open Problems

In this work, we gave the first characterization of trade-off between portfolio size and the approximation factors
for certain scheduling problems. However, questions about the design of portfolios can be asked for any setting
in optimization with a class of objectives: at their core, portfolios simply ask if the set of feasible solutions can
be represented by a smaller subset and still enjoy some guarantees for optimization for a given class of functions.
We state some open questions here:

1. General covering polyhedra: For covering polyhedra in dimension d, we improved portfolio sizes from
the general bound of poly(d) when the number of constraints r = o(

√
log d/(log log d)). We conjecture

that this is tight up to polylogarithmic factors, i.e, that there exist covering polyhedra in dimension d with
O(log d) constraints such that any O(log d)-approximate portfolios for symmetric monotonic norms must have
polynomial size.

Conversely, this raises the question of whether there are good characterizations of polyhedra that admit small-
sized portfolios for ordered norms.

2. Scheduling with unidentical jobs: We show O(1)-approximate portfolios of size O(log d) for MLIJ, i.e.,
machine load minimization on d machines with identical jobs. It is open if there exists a similar-sized portfolio
for the more general problem of machine-load minimization with unidentical jobs. We believe that this may
not be true.

3. Approximation gap between ordered and symmetric monotonic norms: Our bounds using
OrderAndCount have a factor O(log d) approximation gap between ordered norms and symmetric monotonic
norms. OrderAndCount does not tackle symmetric monotonic norms directly but instead uses the O(log d)-
approximation by some ordered norm. Improving upon the O(log d) approximation factor for symmetric
monotonic norms would be interesting.

4. Class of equity objectives: Our work focused on understanding portfolios for various families of symmetric
monotonic norms. However, many more notions of equity have been proposed in the literature, such as
lexicographically optimal solutions [24], for which such questions are largely open.
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A Omitted Proofs from Section 1.3

Proof. [Proof of Lemma 1.5]

1. For any f ∈ C, minx∈X2
f(x) ≤ α2 minx∈X1

f(x) ≤ α2α1 minx∈D f(x). The first inequality follows since X2 is
an α2-approximate portfolio for C over X1 and the second inequality follows since X1 is an α1-approximate
portfolio for C over D.

2. For each f ∈ C,
min
x∈D

f(x) = min
i∈[n]

min
x∈Di

f(x) ≤ min
i∈[n]

α min
x∈Xi

f(x) = α min
x∈∪i∈[n]Xi

f(x).

Therefore, ∪i∈[n]Xi is an α-approximate portfolio for C over D.

Proof. [Proof of Lemma 1.1] Let K = {x ∈ Rd : ∥x∥(w) ≤ 1}, and let K∗ = {y ∈ Rd : y⊤x ≤ 1 ∀ x ∈ K}. Also

denote K =
{
y ∈ Rd : maxk∈[d]

(σ|y|↓)k
(σw)k

≤ 1
}
. We will show that K = K∗.

Suppose y ∈ K. Then for any x ∈ K,

y⊤x ≤ (|y|↓)⊤|x|↓ (rearrangment inequality)

= (σ|y|↓)⊤(∆|x|↓) (alternating sum)

≤ (σw)⊤(∆|x|↓) (y ∈ K)

= ∥x∥(w) (alternating sum)

≤ 1. (x ∈ K)

That is, y ∈ K∗. Conversely, assume y ∈ K∗ so that y⊤x ≤ 1 for each x ∈ K. Since K∗ is symmetric, assume
without loss of generality that y1 ≥ . . . ≥ yd ≥ 0, other cases are handled similarly. It is easy to check that for

each k ∈ [d], x(k) := 1
(σw)k

(1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) is in K. Therefore 1 ≥ y⊤x(k) = (σy)k
(σw)k

= (σ|y|↓)k
(σw)k

, implying that

y ∈ K.

Proof. [Proof of Lemma 1.2] This proof is similar to the previous proof. For any x, y ∈ Rd, we have

y⊤x ≤ (|y|↓)⊤|x|↓ (rearrangment inequality)

=
∑
k∈[d]

(σ|y|↓)k(∆|x|↓)k (alternating sum)

≤ ∥y∥∗(w)

∑
k∈[d]

(σw)k(∆|x|↓)k (definition of ∥y∥∗(w))

= ∥y∥∗(w)∥x∥(w) (alternating sum).

Further, the first inequality holds if and only if x, y are order-consistent, i.e., if and only if there exists
an order π such that x↓ = xπ and y↓ = yπ. The second inequality holds if and only if for each k,

(σ|y|↓)k(∆|x|↓)k = ∥y∥∗(w)(σw)k(∆|x|
↓)k, which happens if and only if ∆|x|↓ = 0 or (σ|y|↓)k

(σw) = ∥y∥∗(w).

B Upper and Lower Bounds on Portfolios for Arbitrary D
Given α ≥ 1, we give worst-case upper and lower bounds for ordered norms Ord and symmetric monotonic norms
Sym.

A general upper bound of poly(d1/ϵ) for Ord was established in [6] by a sparsification argument, by grouping
together similar ordered norms. We first show that a similar sparsification argument in the set D of feasible
vectors yields the same bound for Sym on the size of (1 + ϵ)-approximate portfolios, i.e., there always exist
(1+ ϵ)-approximate portfolios of size poly(d1/ϵ) for symmetric monotonic norms (Theorem B.1). The subsequent
subsection gives nearly-polynomial lower bounds, showing that these upper bounds are not far off from the true
bounds.
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B.1 Upper Bound. To get the upper bound, we use a sparsification technique that places all vectors in one
of polynomially-many ‘buckets’, with the property that any two vectors in the bucket approximately majorize
each other. This implies a portfolio of polynomial size using Lemma 1.3. This technique was used by [6] to
(approximately) enumerate Ord, and their result essentially implies a polynomial-sized portfolio for Ord. Our
observation is that we can get a portfolio for Sym if we apply this argument to vectors in D instead:

Theorem B.1. Given a set of vectors D ⊆ Rd
≥0 and ϵ ∈ (0, 1], there is always a (1+ ϵ)-approximate portfolio for

Sym of size at most dO(1/ϵ).

Proof. Let v∗ = minx∈D ∥x∥∞, with the corresponding vector denoted x∗. Let D = {x ∈ D : ∥x∥∞ ≤ dv∗}.
We first claim that D is an optimal portfolio for all symmetric monotonic norms over D, i.e., for each
symmetric monotonic norm ∥ · ∥, the corresponding minimum norm point argminx∈D∥x∥ ∈ D. To see this,
let x = argminx∈D∥x∥. Then,

∥x∥∞∥(1, 0, . . . , 0)∥
≤∥x∥ (∥ · ∥ is symmetric)

≤∥x∗∥ (optimality of x)

≤∥x∗∥∞∥(1, . . . , 1)∥
≤v∗d∥(1, 0, . . . , 0)∥.

This implies that ∥x∥∞ ≤ dv∗, or that x ∈ D. Next, we will place all vectors in D in one of dO(1/ϵ) buckets
such that for any two vector x, y in the same bucket, x ⪯ (1 + ϵ)y and y ⪯ (1 + ϵ)x, so that by Lemma 1.3,
∥x∥ ≃1+ϵ ∥y∥ for all symmetric monotonic norms ∥ · ∥. Consequently, it is sufficient to pick just one vector in
each bucket to get a (1 + ϵ)-approximate portfolio for all symmetric monotonic norms over D.

Denote T = ⌈log1+ ϵ
3
d⌉. Each bucket B(a1, . . . , aT ) is specified by an increasing sequence a1 ≤ a2 ≤ . . . ≤ aT

of integers that lie in [0, 2T ]. The number of such sequences is
(
3T
T

)
≤ 3T = dO(1/ϵ), bounding the number of

buckets. Let ci =
⌊
(1 + ϵ/3)i

⌋
for i ∈ [T ]. Then x lies in bucket B(a1, . . . , aT ) where ai =

⌊
log1+ ϵ

3

(
1
v∗ ∥x∥1ci

)⌋
.

First, we show that this assignment is valid, i.e., each ai ∈ [0, 2T ]. Indeed,

1

v∗
∥x∥1ci

≤ 1

v∗
ci∥x∥∞ ≤

d∥x∞∥
v∗

≤ d2.

The final inequality follows since x ∈ D. Therefore, ai ≤ log1+ ϵ
3d

2 ≤ 2T . Next, we claim that for any

x, y ∈ B(a1, . . . , ad), x ⪯ (1 + ϵ)y. Fix any k ∈ [d], and let i ∈ [0, T ] such that ci ≤ k < ci+1. Note that
by definition of ai, we have ai ≤ log1+ ϵ

3

(
1
v∗ ∥x∥1ci

)
≤ ai + 1, and the same inequality also holds for y. Then,

∥x∥1k
≤ k

ci
∥x∥1ci

≤ k

ci

(
vi (1 + ϵ/3)

ai+1
)

=
k(1 + ϵ/3)

ci

(
vi (1 + ϵ/3)

ai+1
)

≤ k(1 + ϵ/3)

ci
∥y∥1ci

≤ k(1 + ϵ/3)

ci
∥y∥1k

.

Finally, k
ci
≤ ci+1−1

ci
≤ (1 + ϵ/3), so that

∥x∥1k

∥y∥1k
≤ (1 + ϵ/3)2 = 1 + 2

3ϵ+
1
9ϵ

2 ≤ 1 + ϵ for all ϵ ∈ (0, 1].

B.2 Lower Bound. We now give lower bounds on worst-case portfolio sizes for Sym,Ord in dimension d.
Theorem B.2 shows that there exist polytopes D in Rd

≥0 such that any O(log d)-approximate portfolios for Ord

must have size dΩ(1/ log log d). Since Ord ⊆ Sym, this bound is also true for Sym and recorded in Corollary B.1.
Before we prove the theorems, we need a counting lemma:

Lemma B.1. Given L ≥ 1, Let T be the set of integral sequences a = (a0, . . . , aL) such that ai−1 ≤ ai ≤ ai−1 + 1
for all i ∈ [L] and a0 = 0. Then there exists a subset T ⊆ T such that (1) |T | ≥ 2L/(2L2), and (2) for any two
sequences a, a′ ∈ T , there exists an i such that a′i < ai, and vice-versa.
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Proof. We first show that |T | = 2L. For any such sequence a, consider ϕ(a) = (a1 − a0, . . . , aL − aL−1). Then
ϕ(a) maps sequences in T to binary sequences (b1, . . . , bL); further, ϕ is bijective. Therefore, |T | is the number of
binary sequences (b1, . . . , bL), which is 2L.

Also note that ≥ is a partial order on T : a ≤ a′ if and only if a′i ≥ ai for all i ∈ [0, L]. For any distinct a, a′

such that a′ ≥ a, we must have that
∑

i∈[L] a
′
i ≥ 1 +

∑
i∈[L] ai. Further,

∑
i∈[L] ai ≤ L2 for all a ∈ T . Therefore,

the length of any chain in order ≥ on T is at most L2 + 1. This means that any chain decomposition of ≥ on
T must have at least |T |/(L2 + 1) ≥ 2L/(2L2) chains. By Dilworth’s theorem, this is also the size of the largest
antichain. But an anti-chain is exactly the set T we are looking for.

Theorem B.2. There exist set of vectors D ⊆ Rd
≥0 such that any O(log d)-approximate portfolio for Ord must

have size dΩ(1/ log log d). Further, this bound is also true for a polytope D ⊆ Rd. That is, there exist polytopes D
such that any O(log d)-approximate portfolio for Ord over D must have size dΩ(1/ log log d).

Corollary B.1. There exist D ⊆ Rd
≥0 such that any O(log d)-approximate portfolio for Sym must have size

dΩ(1/ log log d). Further, this bound is also true for a polytope D.

Proof. [Proof of theorem] Let S = log3 d, and let L be such that S0 + S1 + . . .+ SL = d. Then L = Θ
(

log d
logS

)
=

Θ
(

log d
log log d

)
, or that S/L = Ω(log2 d).

Let T be the set of integral sequences from the previous lemma, i.e., each sequence a = (a0, . . . , aL) is such
that ai−1 ≤ ai ≤ ai−1 + 1 for all i ∈ [L] and a0 = 0, and for any two sequences a, a′ ∈ T , there exists i such that
a′i < ai. Define

x(a) =
(
S−a0︸ ︷︷ ︸
S0

, S−a1 , . . . , S−a1︸ ︷︷ ︸
S1

, . . . , S−aL , . . . , S−aL︸ ︷︷ ︸
SL

)
.

Note that since ai ≥ ai−1, x
↓ = x. Further, since ai ≤ ai−1 + 1, we have ai − i ≤ ai−1 − (i− 1). Define

w(a) =
(
Sa0−0︸ ︷︷ ︸

S0

, Sa1−1, . . . , Sa1−1︸ ︷︷ ︸
S1

, . . . , SaL−L, . . . , SaL−L︸ ︷︷ ︸
SL

)
.

Then

∥x(a)∥(w(a)) = x(a)⊤w(a) =
∑

i∈[0,L]

S−aiSai−iSi = L.

Further, for any other a′ = (a′0, . . . , a
′
L) ∈ T , there exists i such that a′i < ai, we get

∥x(a′)∥(w(a)) ≥ S−a′
iSai−iSi > S.

Since S/L = Ω(log2 d), this means that x(a′) is an ω(log d)-approximation for ∥ · ∥(w(a)). That is, any O(log d)-

approximate portfolio for Ord over T must have size |T | ≥ 2L/(2L2). However,

2L

2L2
= 2Θ((log d)/ log log d)Θ

(
(log log d)2

(log d)2

)
= dΘ(

1
log log d )−O( log log d

log d ) = dΩ(
1

log log d ).

To prove the second part of the theorem, we claim that in fact even for conv(T ), we have that any O(log d)-
approximate portfolio must have size |T | = dΩ(1/ log log d). Let x =

∑
b∈T λbx(b) ∈ conv(T ). Fix a ∈ T . We will

show that for all x such that 1− λa > 1/4, ∥x∥w(a) = Θ(S/L)∥x(a)∥w(a). That is, the any O(log d)-approximate

minimizer x of ∥ · ∥w(a) in conv(T ) must have λa ≥ 3
4 , implying the claim.
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First, note that for each b, x(b)↓ = x(b). Therefore,

∥x∥w(a) =

∑
b∈T

λbx(b)

⊤

w(a) =
∑
b∈T

λb∥x(b)∥w(a)

= λa∥x(a)∥w(a) +
∑
b̸=a

λb∥x(b)∥w(a)

≥ λaL+ S
∑
b ̸=a

λb ≥ S(1− λa) ≥ S/4.

Where the last inequality follows by the assumption that 1− λa ≥ 1/4. Therefore, ∥x∥w(a) = Θ(S/L) = ω(log d).
This finishes the proof.

C Proof of Theorem 2.3

We show that all instances of MLIJ (d) admit O(1)-approximate portfolio of size 2 for all top-k norms. Recall

that theorem 2.2 gives instances where any O(1)-approximate portfolio for ordered norms must have size Ω̃(log d).
Combined, this implies the result with m = d. We will denote the top-k norm by ∥ · ∥1k

Recall Lemmas 2.5, 2.4: X ′ = {x̂(1), . . . , x̂(L)} is an O(1)-approximate portfolio for all ordered norms where
1
2x(l) ≤ x̂(l) ≤ 2x(l) for all l ∈ [L]. Therefore, ∥x̂(l)∥1k

is within factor 2 of ∥x(l)∥1k
for all k ∈ [d]. Further for

all k ∈ [d],

∥x(l)∥1k
=


ln∑

i∈[l]
1
pi

if l ≤ k,

kn∑
i∈[l]

1
pi

if l > k.

Fix k. Since pi ≤ pi+1 for all i, ln∑
i∈[l]

1
pi

is non-increasing in l. Further, kn∑
i∈[l]

1
pi

is decreasing in l. Therefore, the

smallest among ∥x(l)∥1k
, l ∈ [L] is either ∥x(1)∥1k

or ∥x(L)∥1k
. Therefore,

min{∥x̂(1)∥1k
, ∥x̂(l)∥1k

} ≤ 2min{∥x(1)∥1k
, ∥x(l)∥1k

}
≤ 2min{∥x(1)∥1k

, ∥x(2)∥1k
, . . . , ∥x(L)∥1k

}
≤ 4min{∥x̂(1)∥1k

, ∥x̂(2)∥1k
, . . . , ∥x̂(L)∥1k

}.

Since {x̂(1), . . . , x̂(L)} is an O(1)-approximate portfolio for all ordered norms, this implies that {x̂(1), x̂(L)}
is an O(1)-approximate portfolio for all top-k norms.

We can also show that portfolios for ordered norms are not portfolios for Lp norms: consider an instance

of identical jobs scheduling with pi =
√
i for each i ∈ [d]. Denote ρ(l) =

∑
i∈[l]

1
pi

=
∑

i∈[l]
1√
i
; also denote

the dth Harmonic number Hd =
∑

i∈[d]
1
i = Θ(log d). Then for each l ∈ [d], x(l) =

( n

ρ(l)
, . . . ,

n

ρ(l)︸ ︷︷ ︸
l

, 0, . . . , 0
)
.

Recall (Lemmas 2.4, 2.5) that there exists an L ∈ [d] such that (1) 1
2x(l) ≤ x̂(l) ≤ 2x(l) for all l ∈ [L] and (2)

X ′ = {x̂(1), . . . , x̂(L)} is an O(1)-approximate portfolio for ordered norms for some L ∈ [d]. We claim that each
x ∈ Xl is an Ω(

√
Hd)-approximation for the L2 norm.

For each l ∈ [L], ρ(l) ≤ 1 + 2
∫ l

1
2√
x
≤ 4
√
l, so that

2∥x̂(l)∥2 ≥ ∥x(l)∥2 =
n

ρ(l)
·
√
l ≥ n

4
.

Consider the following assignment: assign ni =
n

iHd
jobs to machine i ∈ [d], and choose n large enough so that

each ni is integral. Then this is a valid assignment since
∑

i∈[d] ni = n by definition of Hd. The machine loads
for this assignment are xi = nipi =

n
Hd

√
i
. The L2 norm of x is

∥x∥2 =
n

Hd

√√√√∑
i∈[d]

1

i
=

n√
Hd

.

Therefore, each x̂(l) is an Ω(
√
Hd)-approximation for the L2 norm.
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D Omitted Proofs from Section 3

We prove Lemmas 3.2 and 3.6 in this section.

D.1 Proof of Lemma 3.2. For each i ∈ [r], j ∈ [d], by construction we have Ãi,j ≤ Ai,j , so that if x ∈ P,
then Ax ≥ Ãx ≥ 1r, i.e., P̃ ⊆ P.

Suppose x ∈ P. We will claim that there is some x̃ ∈ P̃ such that x̃ ⪯ (1 + ϵ)x. From Lemma 1.3, this will
imply that ∥x̃∥ ≤ (1 + ϵ)∥x∥, and therefore that minx̃∈P̃ ∥x̃∥ ≤ (1 + ϵ)minx∈P ∥x∥. This implies the lemma.

To see the claim, suppose x ∈ P. Define x̃ =
(
1 + ϵ

2

) (
x+ ϵ(σx)d

3d (1, . . . , 1)
)
. First, we show that x̃ ⪯ (1+ ϵ)x.

We have that for all k ∈ [d],

(σx̃↓)k =
(
1 +

ϵ

2

)(
(σx↓)k +

kϵ(σx)d
3d

)
.

However, (σx)d
d ≤ (σx↓)k

k , so that the above gives us

(σx̃↓)k =
(
1 +

ϵ

2

)(
(σx↓)k +

kϵ(σx)d
3d

)
≤
(
1 +

ϵ

2

)(
(σx↓)k +

ϵ(σx↓)k
3

)
=
(
1 +

ϵ

2

)(
1 +

ϵ

3

)
(σx↓)k.

For all ϵ ∈ (0, 1],
(
1 + ϵ

2

) (
1 + ϵ

3

)
≤ 1 + ϵ, so that x̃ ⪯ (1 + ϵ)x. Next, we show that x̃ ∈ P̃. Clearly, x̃ ≥ x ≥ 0; it

remains to show that Ãx̃ ≥ 1r.
Let B(i) denote the set of columns in row i such that Ãi,j = 0. Fix i ∈ [r]; denote the ith rows of A, Ã

respectively by Ai, Ãi. From the algorithm, for j ̸∈ B(i), we have Ãi,j ≥ 1
1+ ϵ

2
Ai,j . Therefore,

Ã⊤
i x̃ =

∑
j∈[d]

Ãi,j x̃j =
∑

j ̸∈B(i)

Ãi,j x̃j (Ãi,j = 0 ∀ j ∈ B(i)),

≥ 1

1 + ϵ
2

∑
j ̸∈B(i)

Ai,j x̃j

=
1

1 + ϵ
2

 ∑
j ̸∈B(i)

Ai,j

(
1 +

ϵ

2

)(
xj +

ϵ(σx)d
3d

)
=
∑

j ̸∈B(i)

Ai,jxj +
ϵ(σx)d
3d

∑
j ̸∈B(i)

Ai,j .

Now,
∑

j ̸∈B(i) Ai,j ≥ a∗i ≥
µ
d

∑
j∈B(i) Ai,j =

3d
ϵ

∑
j∈B(i) Ai,j . Therefore,

ϵ(σx)d
3d

∑
j ̸∈B(i)

Ai,j ≥
ϵ(σx)d
3d

· 3d
ϵ
·
∑

j∈B(i)

Ai,j ≥
∑

j∈B(i)

Ai,jxj .

Together, this means that Ã⊤
i x̃ ≥ A⊤

i x ≥ 1. Since this holds for all i ∈ [r], x̃ ∈ P. This completes the proof.

D.2 Proof of Lemma 3.6. We prove Lemma 3.6 here. We restate the relevant convex programs and the
lemma here for convenience:

(Primal’) min ∥x∥(w) s.t. Ax ≥ 1r, x ∈ Q. (Dual) min ∥A⊤λ∥∗(w) s.t. λ ∈∆r

Lemma 3.6. Given a weight vector w, ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Further, there is a reduced order ρ such that

both x(w), A⊤λ(w) satisfy ρ.

For j ∈ [d], denote the jth column of A as A(j) ∈ Rr. Recall that S1, . . . , SNr form a partition of [d] such
that for l ∈ [Nr], and for all j, j′ ∈ Sl, A

(j) = A(j′). Also recall that Q is the set of all vectors x ≥ 0 such that
xj = xj′ for all j, j

′ ∈ Sl, for all l ∈ [Nr]. From Lemma 3.3, x(w) ∈ Q.
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First, for all x ∈ P and λ ∈ ∆r, we get by ordered Cauchy-Schwarz (Lemma 1.2) that ∥x∥(w)∥A⊤λ∥∗(w) ≥
λ⊤Aw. Since x ∈ P, Ax ≥ 1r, and since λ ∈∆r, λ

⊤Ax ≥ 1. Now, suppose that there is some λ ∈∆r such that
∥x(w)∥(w)∥A⊤λ∥∗(w) = 1, i.e. equality holds. Then, since λ(w) = argminλ∈∆r

∥λ∥∗(w), we get that

1 = ∥x(w)∥(w)∥A⊤λ∥∗(w) ≥ ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) ≥ 1.

Then equality must hold everywhere, and in particular ∥x(w)∥(w)∥A⊤λ(w)∥∗(w) = 1. Further, from ordered

Cauchy-Schwarz, it is necessary that x(w), A⊤λ(w) satisfy some order π ∈ Perm(d).
From Lemma 3.3, x(w) ∈ Q, i.e., for all j, j′ ∈ Sl, for all l ∈ [Nr], x(w)j = x(w)j′ . Similarly, (A⊤λ(w))j is

the dot product of the jth column of A with λ(w), and therefore A⊤λ(w) ∈ Q as well. Since x,A⊤λ(w) both
satisfy order π, π must induce a reduced order ρ on S1, . . . , SNr . This implies the lemma.

It remains to prove that there exists λ such that ∥x(w)∥(w)∥A⊤λ∥∗(w) = 1. Our proof is along the lines of the

proof of strong duality using Slater’s conditions [5], although we use the properties of ordered norms at several
places. We will need the following two lemmas:

Lemma D.1. For vector y ∈ Rd such that y1 ≥ . . . ≥ yd ≥ 0, let t1 ≤ t2 ≤ . . . ≤ tT = d be indices such that

y1 = . . . = yt1 ≥ yt1+1 = . . . = yt2 ≥ . . . ≥ ytT−1+1 = . . . = ytT .

Then for any weight vector w, ∥y∥∗(w) = maxk∈[d]
(σy)k
(σw)k

is achieved at some k ∈ {t1, . . . , tT }.

Proof. The proof is straightforward, albeit somewhat involved. Denote t0 = 0. It is sufficient to show that for all
i ∈ [T ] and ti−1 ≤ k ≤ ti, we have

max

{
(σy)ti−1

(σw)ti−1

,
(σy)ti
(σw)ti

}
≥ (σy)k

(σw)k
.

Denote z = yti−1+1 = . . . = yti . Consider (1− λ)(σy)ti−1 + λ(σy)ti for λ = k−ti−1

ti−ti−1
. Then λ ∈ [0, 1], and

(1− λ)(σy)ti−1
+ λ(σy)ti = (σy)ti−1

+ λz(ti − ti−1) = (σy)ti−1
+ (k − ti−1)z = (σy)k.

Further,

(1− λ)(σw)ti−1
+ λ(σw)ti = (σw)ti−1

+ λ(wti−1+1 + . . .+ wti)

= (σw)ti−1 + (k − ti−1)
wti−1+1 + . . .+ wti

ti − ti−1
.

Since wti−1+1 ≥ . . . ≥ wti , we get that

wti−1+1 + . . .+ wti

ti − ti−1
≤

wti−1+1 + . . .+ wk

k − ti−1
.

Plugging this back in, we get (1− λ)(σw)ti−1
+ λ(σw)ti ≤ (σw)k. Therefore,

(σy)k
(σw)k

≤
(1− λ)(σy)ti−1

+ λ(σy)ti
(1− λ)(σw)ti−1

+ λ(σw)ti
≤ max

{
(σy)ti−1

(σw)ti−1

,
(σy)ti
(σw)ti

}
.

Lemma D.2. For µ ∈ Rr
≥0,

sup
x∈Q

µ⊤Ax− ∥x∥(w) =

{
0 if ∥µ⊤A∥∗(w) ≤ 1,

∞ otherwise.

Proof. Denote y = A⊤µ. Then y ∈ Rd, and yj = (A(j))⊤µ. If ∥y∥∗(w) ≤ 1, we get from Lemma 1.2 (ordered

Cauchy-Schwarz) that

y⊤x− ∥x∥(w) ≤ ∥y∥∗(w)∥x∥(w) − ∥x∥(w) ≤ (∥y∥∗(w) − 1)∥x∥(w) ≤ 0.
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However, 0 ∈ Q, and therefore for x = 0, y⊤x− ∥x∥(w) = 0, so that supx∈Q y⊤x− ∥x∥(w) = 0

Now suppose that ∥y∥∗(w) ≥ 1. Note that since yj = (A(j))⊤µ, for all j, j′ ∈ Sl for some l, we get yj = yj′ .

Relabel the indices [Nr] so that for all j ∈ Sl and j′ ∈ Sl+1, yj ≥ yj′ . Further, relabel indices [d] so that
S1 = {1, . . . , |S1|}, S2 = {|S1|+ 1, . . . , |S1|+ |S2|} etc. That is,

y1 = . . . = y|S1| ≥ y|S1|+1 = . . . = y|S1|+|S2| ≥ . . . ≥ yd−|SNr |+1 = . . . = yd ≥ 0.

By the previous lemma ∥y∥∗(w) = maxk∈[d]
(σy)k
(σw)k

achieved at some k = |S1| + . . . + |Sl|. For brevity, denote this

number as k∗.
Define x such that x1 = x2 = . . . = xk∗ = α

(σw)k∗ and xk∗+1 = . . . = xd = 0 where α is an arbitrarily large

number. Then x ∈ Q and ∥x∥(w) = α. Further,

y⊤x = (σy)⊤(∆x) = (σy)k∗
α

(σw)k∗
.

Since (σy)k∗
(σw)k∗ = ∥y∥∗(w) > 1, we get that y⊤x−∥x∥(w) = α

(
(σy)k∗
(σw)k∗ − 1

)
, which can be arbitrarily large as α grows.

This proves the second case as well.

We proceed to prove that there exists λ such that ∥x(w)∥(w)∥A⊤λ∥∗(w) = 1. Let A be the set of points

(v1, . . . , vr, t) such that there exists an x ∈ Q with vi ≥ 1−A⊤
i x for all i ∈ [r] and t ≥ ∥x∥(w). It is easy to check

that A is convex. Next, define B = {(0, . . . , 0︸ ︷︷ ︸
r

, s) : s < ∥x(w)∥(w)}. Clearly, B is convex. It is easy to see that

A ∩ B = ∅. Therefore, there is a separating hyperplane between A,B, i.e. there exist µ ∈ Rd, δ, α ∈ R such that

µ⊤v + δt ≥ α ∀ (v, t) ∈ A,(D.1)

δs < α ∀s < ∥x(w)∥(w).(D.2)

The second equation implies that δ ≥ 0 since otherwise we can choose s to be arbitrarily small and δs becomes
arbitrarily large. Then, we get δ∥x(w)∥(w) ≤ α.

Further, by a similar argument, µ ≥ 0. Applying eqn. (D.1), to point (1 − A⊤
1 x, . . . , 1 − A⊤

r x, ∥x∥(w)) ∈ A
that for all x ∈ Q,

∑
i∈[r] µi − µ⊤Ax+ δ∥x∥(w) ≥ α ≥ δ∥x(w)∥(w).

Case I: µ = 0. Then δ∥x∥(w) ≥ α ≥ δ∥x(w)∥(w). Since not both µ, δ can be zero, δ > 0. Further,
∥x(w)∥(w) > 0, so if we pick x = 0 ∈ Q, we get a contradiction.

Case II: µ ̸= 0, so we get that all for all x ∈ Q,
∑

i∈[r] µi − µ⊤Ax + δ∥x∥(w) ≥ α ≥ δ∥x(w)∥(w). If δ = 0,

then
∑

i µi − µ⊤Ax ≥ 0 for all x ∈ Q. Pick arbitrarily large x again, giving a contradiction. Therefore, δ > 0;
assume without loss of generality that it is 1.

That is, for all x ∈ Q,
∑

i µi − µ⊤Ax + ∥x∥(w) ≥ ∥x(w)∥(w). Taking infimum on the left-hand side and

applying Lemma D.2, we get that
∑

i µi ≥ ∥x(w)∥(w) with ∥µ⊤A∥∗(w) ≤ 1. Then λ := µ∑
i µi
∈∆r. Therefore,

1 ≥ ∥µ⊤A∥∗(w) =
∑
i

µi∥λ⊤A∥∗(w) ≥ ∥x(w)∥(w)∥λ⊤A∥∗(w).

This finishes the proof.
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