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Abstract

Motivated by fairness concerns, we study existence and computation of portfolios, defined as: given an
optimization problem with feasible solutions D, a class C of fairness objective functions, a set X C D of
feasible solutions is an a-approximate portfolio if for each objective f € C, there is an a-approximation
for f in X. We study the trade-off between the size |X| of the portfolio and its approximation factor «
for various combinatorial problems, such as scheduling, covering, and facility location, and choices of C as
top-k, ordered and symmetric monotonic norms. Our results include: (i) an a-approximate portfolio of
log d

. 1 d .
size O [ —2%~ ] for ordered norms and lower bounds of size Q ( —2%__
a/4) log a+loglog d

log(
identical jobs on d unidentical machines, (ii) O(log n)-approximate O(log n)-sized portfolios for facility location

) for the problem of scheduling

on n points for symmetric monotonic norms, and (iii) logo(r2> d-size O(1)-approximate portfolios for ordered
norms and O(logd)-approximate for symmetric monotonic norms for covering polyhedra with a constant r
number of constraints. The latter result uses our novel OrderAndCount framework that obtains an exponential
improvement in portfolio sizes compared to current state-of-the-art, which may be of independent interest.
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1 Introduction

With rapid adoption and proliferation of data-driven decisions, widespread inequalities exist in our society in
various forms, often perpetuated by optimized decisions to problems in practice. For example, the existence of
food deserts is well-documented across the world [32, 2, [12], I5]. The US Department of Agriculture [32] defines
a food desert as a low-income census tract where families below poverty line do not have a largeﬂ grocery chain
within 1 mile of their location in urban areas or 10 miles in rural areas. [I§] similarly show that medical deserts
— regions with significant fraction of population below poverty line, but far off from the nearest medical facility —
disproportionately affect racial minorities in the US. The decisions to open such facilities are driven by demand,
and therefore, optimized decisions tend to overlook sparsely populated regions with vulnerable populations. As
another example, over the last decade, many retailers have adopted scheduling optimization systems [3]. These
systems draw on various data to predict customer demand and make decisions about the most efficient workforce
schedule. Some systems, e.g. Percolata, estimate sales productivity scores for each worker and create schedules
based on these scores. Concerns about fairness of workload again arise, as such optimizations result in highly
variable, unpredictable, and discordant schedules for workers. Further, there is evidence of workload inequity in
many work environments, including academia [28], last-mile delivery drivers [26], and hospital workers [30].

In such applications, the decision is often to maximize the efficiency in the system, however, this results in
unequal costs borne by various groups of people. A large number of fairness notions have been proposed in the
literature that attempt at “balancing” such costs across groups or individuals, such as minimizing some norm
of the distances traveled by groups of people [0, 9] [I8] 29], finding simultaneous solutions [24] [T6l, (7], balancing
statistical outcomes in machine learning [I0 14} [19], and balancing allocations in social welfare problems [I1].
However, even these notions of fairness can be fundamentally incompatible in the sense that a single solution
may not be fair with respect to two or more notions of fairness [22] [I8]. One workaround is to understand the
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possibilities offered by a (small) set of solutions, called portfolios, so that there is some representative solution
achieving approximate fairness for any single notion of fairness [I8]. Motivated by the practice of selecting
organ transplantation policies, [I8] define the portfolio problem as follows: given an optimization problem with
a set or domain of feasible vectors D, a class C of objective functions that represent various equity motions, an
approximation factor a, and size s, find a portfolio X C D of s solutions, so that for any objective f € C there
exists a solution x € X that a-approximates mingep f(z). X is called an a-approximate portfolio. The case s = 1
generalizes simultaneous approximations.

For various combinatorial problems and different classes of objectives, it is not clear what the minimum size
of an a-approximate portfolio needed to achieve a given approximation factor is. Larger portfolios are needed
for better approximations, and the goal is to keep size s of the portfolio small. Further, as the set C of equity
objectives grows larger, small portfolios may not even exist. For the class of equity objectives, we study

1. Top-k norms, k € [d], where the top-k norm of a vector € R? is the sum of the k highest coordinates of = by
absolute value. Top-k norms generalize the L, L., norms.

2. Ordered norms, where given a non-zero weight vector w € Rio with decreasing weights wy > ... > wgq > 0,
the ordered norm of = € R‘io is the weighted sum of coordinates of x with the kth highest coordinate of x
weighted by the kth highest weight wy. Ordered norms generalize top-k norms and have a natural fairness
interpretation when z is a vector of individual costs.

3. Symmetric monotonic norms, which are norms that are invariant to the permutation of coordinates and
nondecreasing in each coordinate. L, norms, top-k norms, and ordered norms are all symmetric monotonic
norms

In this work, we partially answer the question:

“What is the trade-off between achievable portfolio size and corresponding approzimation factors for various
combinatorial optimization problems? Is there a general recipe for constructing small portfolios for ordered and
symmetric monotonic norms?”

In particular, we focus on three general combinatorial problems: scheduling, covering, and facility location,
motivated by workplace scheduling and access to critical facilities. While much effort has gone into determining
the best-possible simultaneous approximations (portfolio of size 1), little is known about the construction of
portfolios of size greater than 1. For top-k norms, [I6] essentially obtain a (1 + €)-approximate portfolio of size

O (@); a similar bound holds for L, norms [I7, [I8]. However, for ordered norms, only a general construction

of poly(d'/€)-sized (1 + €)-approximate portfolios was known before this work, due to [6], while no bound was

20rdered norms are fundamental to symmetric monotonic norms in two aspects: each symmetric monotonic norm (1) is O(log d)-
approximated by some ordered norm [29], and (2) is the supremum of some set of ordered norms.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

1137



Downloaded 05/02/25 to 128.61.46.63 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Table 1: Approximations for size > 1 portfolios for ordered norms and symmetric monotonic norms, for arbitrary
€ € (0,1]. Previously, only a poly(d'/€)-sized portfolio was known [6] for (1 + ¢)-approximation for ordered norms,
for dimension d problems.

Worst-case Guarantees for portfolio of size > 1
Problem or set of approximation factor . . Approximation
. . . Approximation .
feasible vectors D for simultaneous Size for symmetric
. . for ordered norms .
approximation monotonic norms
MACHINE-LOADS-IDENTICAL-JOBS
¢ OADS-IDENTICAL-JOBS Q(/d) 0 (tes) Ate O(log d)
d machines €
COVERING-POLYHEDRA
with r constraints: lo o(r?)
g(d/e)
{zx eRY,: Az > b}, Q(vd) ( € ) l+e O(logd)
rxd
AeRUG" bERL
UNCAPACITATED-FACILITY-LOCATION
Q 1 1
on . points (Vn) O(logn) O(logn)

known for symmetric monotonic norms. We observe that their result generalizes to symmetric monotonic norms
in Appendix It was also known that when the size of the portfolio is 1 (also referred to as simultaneous
approximations) and it is a-approximate for top-k norms, then it is in fact a-approximate for all symmetric
monotonic norms [I6]. This property is no longer true for portfolios of size greater than 1 (Theorem . In
particular, we show that the approximation guarantee of a portfolio for top-k norms and ordered orders can differ
by a factor polynomial in d. Consequently, we cannot restrict to constructing portfolios only for top-k norms
and need new techniques for the much larger set of ordered norms and symmetric monotonic norms. We show
that there exist polytopes D C R? for which the portfolio size must be d?(1/1°819gd) (i e, nearly polynomial in
d) for ordered and symmetric monotonic norms even for approximation as large as O(log d) (see Appendix [B). In
our main contributions, listed next, we develop a general algorithmic framework called OrderAndCount to obtain
portfolios for ordered norms for covering problems, and obtain size polylog(d) or smaller portfolios for various
combinatorial problems.

1. Characterizing Trade-off for Machine-Loads-Identical-Jobs. As our first result, we consider the
MACHINE-LOADS-IDENTICAL-JOBS problem where n identical jobs must be scheduled on d unidentical machines
to minimize some norm of the vector of machine loads. This is a simple model for workload distribution among
d workers with different processing speeds, and various norms correspond to various fairness criteria for fair
distribution of jobs.

ResuLT 1. (THEOREMS [2.1] 2.2 SECTION [2)) For the Machine-Loads-Identical-Jobs (MLLJ) problem with d
machines, given any approximation factor o > 4, we can find an a-approximate portfolio X, for ordered norms

satisfying | Xq| = O (%) . Further, we construct instances with the lower bound of | Xs| = Q (m).

In other words, the size-approximation trade-off is that the product log(a) - | X, | remains nearly a constant
as function of a. This result completely characterizes the trade-off between portfolio sizes and achievable
approximation factors (up to loglog factor) for the MACHINE-LOADS-IDENTICAL-JOBS problem (See Figure [1)).
To obtain this result, we use our OrderAndCount approach, which exploits the fact that each ordered norm, while
convex in general, is a linear function when restricted to a region where all vectors satisfy the same order of
coordinate values. That is, if vector z € R? satisfies Tr(1) = Tr(2) = -+ = Tr(g) > 0 for some order 7 on [d], the
ordered norm |||/, is the linear function . wy (). This gives the following algorithm to obtain portfolios
for ordered norms: for each order m, we can restrict to the set D, of vectors in D that satisfy order 7, and collect
the set of extreme points of D,. This in general results in exponentially many solutions (there are exponentially
many orders 7 and potentially exponentially many extreme points of each D,). We show that for MLIJ, (i) it
suffices to restrict to a specific order 7* (that depends on the problem instance), and that (ii) there are at most d
extreme points of Dr«. These d extreme points can further be a-approximated by a subset of O(log,, /4 d) integral
points using our rounding algorithm.

2. Exponential Improvement in Portfolios for Covering. Next, we consider the COVERING-
POLYHEDRA problem, which simply includes 7 covering constraints of the form: a'x > b (for a € Rd>o, and
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b € R>p) along with nonnegativity « > 0. This generalizes the MLIJ problem above, and models many natural
scenarios for workload distribution.

For example, consider the following scenario: a centralized server needs to distribute several jobs among d
machines that each contain r different parallel processing units (e.g., a CPU, GPU, and NPU) that each handle
a different type of job. Different fairness criteria then balance loads over the machines differently. This problem
is particularly interesting in the context of volunteer-dependent non-profit organizations, such as HIV social care
centers, blood donation drives, food recovery organizations [27], etc. Numerous studies have been conducted on
the reasons for the attrition of volunteers, and overburdening by the amount of demands placed on them is one
of the key ones [25] 23]. This work can help balance workloads in volunteer organizations, to help mitigate its
impact on attrition.

Back to the machine load scheduling terminology, if b; units for the jth job type need to be scheduled, and the
machine ¢ € [d] has processing speed A;; for the jth type of job, then the total loads z;,% € [d] on the machines
must satisfy Zie[d] Aj;x; > b;. For a given norm || - || or fairness criterion, this translates to minimizing ||z|| over
the covering polyhedron {z € R?: Az > b,z > 0}.

The challenge in extending OrderAndCount to such problems is (i) bounding the number of possible orders
that the optimal solution z* might satisfy, and then (ii) selecting a subset of corresponding extreme points for
each order that must be included in the portfolio. For the first challenge we develop a novel primal-dual counting
technique which allows us to count the number of possible orders in an appropriate dual space that is structurally
much simpler (Section . For the second challenge, we show that a sparsification procedure allows us to reduce
the number of extreme points for each order. Together, using OrderAndCount, we give poly-logarithmic sized
portfolios for COVERING-POLYHEDRA for constant r:

REsuLT 2. (THEOREM [3.1], SECTION [3)) For COVERING-POLYHEDRA in d dimensions and r constraints, for any
2_

€ € (0,1], we obtain a (1+ €)-approzimate portfolio X1 of size | X14| = O(log(d/e)/e) e for ordered norms,

and O(log d)-approzimate portfolio of size O(log?’ﬁ*% d) for symmetric monotonic norms. Our algorithm runs

in time polynomial in d and (log(d)/G)TQ,

The trade-off between e and X, is that |X14c|'/2"") . € remains nearly a constant. For all r = o (1@(1)7
the above-mentioned result is the first ezponential improvement over the current best bound of poly(d'/€) [6], to
the best of our knowledge.

3. Facility Location Problems. Finally, we consider the generalizations of classical k‘—clusterinéﬂ and
(uniform) uncapacitated facility location problems. In both problems, given a metric space (X, dist) on |X|=n
points, we seek to open a facility set F' C X at some points in the space. Each feasible solution induces a vector
xzp € R™ of distances of points in X to their closest open facility. The k-CLUSTERING problem seeks the facility
set F' with at most k open facilities to minimize some norm of this vector, e.g., k-median seeks to minimize the
L1 norm while k-center seeks to minimize the L., norm. In the UNCAPACITATED-FACILITY-LOCATION problem,
there is no bound on the number of facilities and we instead seek to minimize the sum of the number of open
facilitiesﬁ |F'| and some given norm of the vector xp of closest distances to open facilities.

RESULT 3. (THEOREMS , , SECTION We give a portfolio of size 1 for k-CLUSTERING that opens at

most O (k . 10%) facilities and is (3 + €)-approzimate for any symmetric monotonic norm objective, improving

upon the previous-best approximation factor 6 + € [16, [2]]]. Using this result, we obtain a size O(logn)-portfolio
for UNCAPACITATED-FACILITY-LOCATION that is O(logn)-approzimate for symmetric monotonic norms.

Such solutions for k-CLUSTERING that violate the constraint of opening at most k facilities are known as
bicriteria solutions; [I7] showed that it is necessary to open O(klogn) facilities to guarantee constant-factor
approximation for all symmetric monotonic norms. Our algorithm seeks to iteratively cover points in X with
balls of increasing radii until all points are covered. While an O(1)-approximate portfolio of size O(logn) was

3Unfortunately, both k-clustering and top-k norms use the index ‘k’ as the parameter in their commonly used names. We hope
our usage of the term ‘k’ will be clear from context.

4In the most general version of the problem, each facility has an opening cost; we assume unit opening costs for simplicity, but
our techniques and guarantees can be modified suitably for the more general setting.
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known for UNCAPACITATED-FACILITY-LOCATION for L, norms [I§], our result is the first for the much larger
class of symmetric monotonic norms, to the best of our knowledge.

The rest of the paper is organized as follows: we give an overview of techniques next before listing related
work in Section We give preliminaries in Section MACHINE-LOADS-IDENTICAL-JOBS is discussed
in Section [2) COVERING-POLYHEDRA are discussed in Section [3] and k-CLUSTERING and UNCAPACITATED-
FACILITY-LOCATION are discussed in Section [d] We discuss open problems and conclude in Section

1.1 Overview of Techniques. In Section [[.I.I] we describe the main ideas behind the OrderAndCount
algorithm for COVERING-POLYHEDRA and MLIJ. In Section [1.1.2] we discuss the additional rounding algorithm
for MLIJ. In Section we discuss k-clustering and uncapacitated facility location.

1.1.1 Covering-Polyhedra. Recall that we are given a covering polyhedron P = {x € R?: Az > b,z > 0}
with 7 constraints, ie., A € RIS? and b € R%,, and a parameter ¢ € (0,1]. We construct a (1 + ¢)-
approximate portfolio X for ordered norms, i.e. a subset X C P such that for all ordered norms | - || on
R? mingey ||z]] < (1 + €) mingep ||z]|. [29] show that any symmetric monotonic norm in dimension d can be
O(log d)-approximated by an ordered norm, and therefore our construction also implies a O(log d)-approximate
for symmetric monotonic norms. Denote N = O(M); the size of our portfolio X will be NV O() where r is
the number of rows in constraint matrix A. As remarked, this size is poly-logarithmic in d for constant r.

For integer d > 1, let Perm(d) denote the set of all orders or permutations on [d]. We say that a vector x € RZ,,
satisfies order m € Perm(d) if xr(1) > ... > T4 > 0 and denote the sorted vector ot =x, = (Tr(1)s -+ Tr(ay)-
An ordered norm [6] || - [/ is specified by a non-zero weight vector w € R‘éo such that w; > ... > wy > 0 and
defined as ||z () == w |zt = 2 keld) W (k)-

Since there are an infinite number of weight vectors (and hence ordered norms), it is unclear if there is even
a finite set of ‘extreme points’ X C P with mingex ||z () = mingep ||| () for all ordered norms || - [[(,). In our
terminology, such a set X is an optimal (or l-approximate) portfolio for ordered norms. We first obtain a finite
optimal portfolio X, and then outline the procedure to reduce the size of X to N O(TQ), losing approximation
factor (1 + €) in the process.

Note that [6] showed that there are at most poly(d'/€) ordered norms on R% up to a (1 + €)-approximation.
Therefore, a (1 + €)-approximate portfolio of size poly(d'/€) for ordered norms can be obtained by taking the
minimum norm points with respect to these ordered norms. Our goal is to reduce this size even further when r
is small.

We can assume without loss of generality by re-scaling A that b = 1,,. We can also assume without loss of
generality that all rows of A are independent (i.e. A is full row-rank). For a fixed ordered norm || - [|(,), we can
write a convex program to minimize ||z||(, over P:

(Primal) min [|z]|(p) s.t. Az >1,,2>0.

Denote the optimal solution to this convex program as x(w). Suppose we are told that z(w) satisfies a specific
order m € Perm(d), then we can add constraints Tr(1) = -+ 2 Tr(ay = 0 to

min ||z st. Ax > 1., 250) > ... > 25 > 0.

x(w) is still optimal for this new convex program. However, under the new order constraints, the function
2]y = w'at = >_keld) WeTx(k) is linear. Therefore, without loss of generality, we can assume that z(w) is a
vertex of this new feasible region P, := {x € R : Az > 1, Tr(1) = -0 2 Tr(a) = 0}. Collecting all vertices across
all 7 € Perm(d), this gives us the optimal portfolio X := (J, cpeym(a) (Vertices of Pr) for ordered norms. Clearly,

X is finite. Further, by our discussion, each ordered norm || - ||, achieves its minimum over P at some point in
X.
The size of portfolio X could be much larger than our target size due to two issues:

1. Each Py can have too many vertices. For each vertex of Py, d out of r + d constraints Az > 1,, 2,y > ... >
Tr(q) = 0 must be tight. Therefore, there could be (d'gr) ~ d" vertices of Pj.

2. There are d! orders 7 € Perm(d). Since we are taking a union over all such orders, union bound gives the

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

1140



Downloaded 05/02/25 to 128.61.46.63 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

following bound on the portfolio size |X|:

(11) |X| S (UUIIIigega%fhv%:cices) X (numbcr;r)f ordcrs) ~ d?“ % d'

To reduce the size of the portfolio to poly-logarithmic in d, we use the following two ideas:

. Sparsification. For each row of matrix A, we round down each entry in the row to the nearest multiple of (1+¢)

and set all entries smaller than 357 times the maximum entry in the row to zero. This obtains a new instance
where the optimal solution changes by a factor at most 1 + € for any norm. In this new instance, there are at

most N = O (M) distinct entries in each row and thus, at most N” distinct columns. That is, the set [d]
of columns/coordinates can be partitioned into Si, ..., Sy+ such that any two columns in each S; are equal.

We show that for any minimum norm point z(w) for any ordered norm || - [|(,), this result allows us to assume
that the coordinates of z(w) in any S; are equal. This allows us to reduce the first factor in eqn. to N™°.

. Primal-dual counting. We still need to reduce the second factor in eqn. (L.1). Our goal is to show that there

is a set of ordersﬂ IT C Perm(d) such that (a) the optimal z(w) for each weight vector w satisfies some order
7 €11, and (b) |[II| < N?"("=D_ If we plug this into eqn. (1.1)) combined with the sparsification idea, we get
an overall bound of N""+2r(r=1) — N3r®—2r,

To show this, we formulate a ‘dual’ mathematical program to To formulate this dual, we appeal to
the characterization of dual norms of ordered norms, and state the Cauchy-Schwarz inequality for them:

LEMMA 1.1. (DUAL ORDERED NORMS) Given a weight vector w € R, the dual norm || - [y to ordered norm
|l lw) is given by

lyll?,, = max Zie[k] |y|f
() keld] Zie[k] w;

LEMMA 1.2. (ORDERED CAUCHY-SCHWARZ) For all z,y € R‘éo,

2]l [l 7y = 2Ty
Further, equality holds if and only if

(a) there is some order m € Perm(d) such that x,y both satisfy .

: ey ¥ i
(b) for each k € [d] either x} = xtﬂ or ﬁ:ﬁw = [[4ll{w)-
We let the (r — 1)-dimensional simplex be denoted by A, ={A € R, : >°

jAi = 1}. The dual program to
[Primall is formulated as follows:

i€(r

: T *
(Dual) min AT,

For any z that is feasible for and A that is feasible for Lemma implies that ||z, [|AT A7, =

(w
xTATA > 17X\ = ||\||; = 1. Moreover, we show that equality holds if and only if 2 and X are optimal to
and respectively, and « and AT\ satisfy the same order 7. This allows us to count the total number of
candidate orders in the dual using geometric arguments. We show that the simplex A, can be partitioned into
different regions Uﬂeperm( 4) B, where for all A in region Ry, AT\ satisfies order 7. These regions are formed
by (]\g) hyperplanes of the form {A: (ATA); = (AT\); } partitioning A,. Using an inductive argument, we
show that (1\;7) hyperplanes can partition A, into at most N2"("=1) regions, finishing the counting of II, and
hence the proof.

5The formal proofs work not with orders Perm(d) but what we call ‘reduced orders’ (to be defined later). Our goal in this section

is to present the intuitive ideas and outline of the proof; we defer technicalities to Section @
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1.1.2 Machine-Loads-Identical-Jobs. Recall that here we are given n identical jobs and d unidentical
machines, say with processing times p1,...,pq > 0 per job. We need to schedule each job (integrally) on a
machine so as to minimize some norm of the machine loads; set D is the set of all possible machine load vectors.
If n; € Z>o jobs are scheduled on machine i € [d], then we must have (1) >°;cyni = n and (2) machine loads
x; = n;p; for each i € [d]. That is, machine load vector z satisfies 3¢y 5- =mn, x > 0. If fractional loads were
allowed, D would precisely be a covering polyhedron with » = 1 constraint, and a portfolio would follow as a
corollary of our result for covering polyhedra.

However, since each job must be assigned integrally, minimization over the covering polyhedron
MiNg.s~ o, /p;=n [|Z]| is only a relaxation of the original integral problem. Further, this relaxation has Q(d) inte-
grality gap: consider n = 1, p; = 1 for each ¢. Then for L., norm, the minimum-norm point on the hyperplane
is x = (1/d,...,1/d) while the integral optimum is z* = (1,0,...,0), so that ||2*||c/[|2|lcc = d. Nevertheless,
this relaxation is still useful, and we will give a rounding algorithm based on this relaxation that will bypass this
integrality gap issue.

We outline the main idea to help with this. First, relabel the machines so that the processing times on
different machines satisfy 0 < p; < ps < ... < pg. We consider the special cases where each p; is a power of
2; we call such instances ‘doubling instances’; it is easily seen that an arbitrary instance is 2-approximated by
some doubling instance. We show that doubling instances have the following nice property: for any symmetric
monotonic norm | - || on RY, the optimal schedule with loads 9P satisfies 2PPT > ... > 29FT > 0. This gives
an idea for an integral relaxation: for a given norm || - ||, we guess the index | € [d] such that zPPT > 0 but
aPFT = ... = aQPT = 0. Given this guess, a better convex relaxation for the problem is: min [z such that
Zi=—panday >...2>2x > x41 = ... = x4 = 0. We show that for any ordered norm || - ||, one of these

Zie[l]
d pi
relaxations has a constant integrality gap and we can round a fractional solution to an integral one.

1.1.3 k-Clustering and Uncapacitated-Facility-Location. For the k-clustering problem in a metric space
on n points with distances dist, where at most k facilities must be opened in a metric space to minimize some
norm of the vector of distance of points to their nearest open facilities. [24] first showed that their exists a solution
that opens at most O(klogn + %) facilites with approximation factor at most 9+ € for each symmetric monotonic
norm. Further, they showed that such a bicriteria solution that violates the number of open facilities by factor

klogn
€

Q(logn) is in fact necessary. [16] essentially give an algorithm with at most O ( ) facilities with an improved

approximation factor 6 + e.

In our algorithm that further improves the approximation to 3 + €, we use the following result of [§]: given a
radius R > 0, they find k facilities that cover at least as many points within radius 3R that any other set of k
facilities can cover within radius R. Given this subroutine, our algorithm is as follows: starting with a suitably
small radius Ry, we use the subroutine to find k facilities that cover as least as many points within radius 3Ry that
any other set of facilities cover in radius Ry. Then we keep increasing this radius by factor 1 4+ € and repeat this
step until the radius is large enough so that all n points are covered. Ry is chosen so that the number of iterations
in the algorithm is at most O((logn)/e), leading to the bound on the number of open facilities. Further, the
procedure is explicitly designed to have pointwise 3+ e-approximation guarantees on the distances with respect to
any solution that opens k facilities. This gives the simultaneous approximation guarantee for k-clustering. Note
that if we don’t need the result to be polynomial-time, then we don’t need to lose the factor of 3 and can further
improve the approximation to 1+ e.

We remark that [8]’s algorithm also works when facilities are only allowed to open in a subset of the points,
and consequently our algorithm works in that setting as well. As pointed out to us by a reviewer, if this restriction
is dropped (i.e. if facilities can open anywhere in X), then a linear programming-based rounding algorithm using
[31]’s technique gives an even better (2 4 €)-approximation in polynomial-time.

For the facility location problem that does not put a bound & on the number | F| of open facilities but instead
seeks to minimize the sum of |F| and the norm of the distance vector, we use the result for k-clustering as a
subroutine: first, we can search for the value |F| among the O(logn) values {29, 2% ... 2!°627} Then, we use the
corresponding |F'|-clustering solution that opens at most O(|F|logn) facilities (for any constant e € (0, 1]), thus
giving an O(logn)-approximation for the facility location objective.
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1.2 Related Work. Portfolios were explicitly first studied by [I8] who studied them for facility location
problems. Similar notions were implicit in other previous works: [16] essentially constructed O(logd)-size O(1)-
approximate portfolios for top-k norms in dimension d, [I7] used the structure of L, norms to get a similar bound,
and [0] essentially constructed poly(d)-size O(1)-approximate portfolios for ordered norms. All three techniques
rely on counting the number of unique norms (up to O(1)-approximation). In contrast, all our techniques rely on
counting vectors in the set D of feasible vectors. This shift is useful, for example, in obtaining polynomial-sizes
portfolios for symmetric monotonic norms (see Appendix .

Portfolios of size-1 or simultaneous approximations have been very well-studied, with the earliest results
going as far back as [7]. [24] [16] [I7] all studied general techniques that often involve (implicitly) obtaining
portfolios and combining them into one solution. [16] proved that a simultaneous a-approximation for top-k
norms is a simultaneous a-approximation for symmetric monotonic norms. [I7] observed that the basic structure
of [’s algorithm for the Traveling Salesman Problem (TSP) can be applied to many other problems, obtaining
logarithmic or constant-factor apporoximate simultaneous approximations. Our technique for k-clustering is
somewhat similar to this algorithm, with the main idea being to reduce the original problem to a partial problem
where only a subset of clients need to be satisfied.

[24] studied simultaneous approximations for all symmetric monotonic norms for clustering, scheduling,
and flow problems. In particular, for k-CLUSTERING, they obtained a (9 + ¢, O(logn) + €~ !)-approximation
in polynomial time. [I6] improved this to (6 4+ €, O((logn)/¢e). [16] also gave a PTAS for scheduling on identical
machines. [I] proved that this PTAS is in-fact a simultaneous 1.388-approximation. [I3] gave a simultaneous
approximation algorithm for TSP.

Optimizing for a fixed non-standard objective has been widely considered in the literature, and the list is
too long to fit here. [6] studied ordered norm and symmetric monotonic norm objectives for scheduling and
clustering problems and proved that any symmetric monotonic norm is the supremum of some ordered norms,
thus establishing ordered norms as fundamental to the study of symmetric convex functions. [29] proved that
any symmetric monotonic norm can be O(logd)-approximated by an ordered norm, further strengthening this
connection.

1.3 Preliminaries. We give formal definitions and useful preliminary results in this section. Omitted proofs
are included in Appendix Throughout, we assume that D C RZ  is a set of feasible vectors with each coordinate
representing the cost to individuals/groups in a combinatorial problem (e.g., distances to open facilities in facility
location problems or machine loads in scheduling problems). First, we define portfolios formally:

DEFINITION 1. (PORTFOLIOS) Given a domain or set of feasible vectors D C Rio, a class of objectives
C : D = Rx>p, and an approximation parameter o > 1, a portfolio X C D is a set of vectors such that for
all objectives f € C,

min f(z) < amin f(z).

When the portfolio has size 1, it is called a simultaneous a-approximation [16, [27]].
For vector € R, |z|¥ is the vector with coordinates of |z| sorted in decreasing order. oz = (z1,71 +

Za,...,21+...+x4) denotes the prefix sums of x and Az := (x1 — 3,22 — 23, ...,Tq— Tg+1), With the convention
2441 = 0. We will denote by 1 € R? the vector with k ones followed by zeros.

DEFINITION 2. (NORM CLASSES) Given a vector x € R,

1. for k € [d], the top-k norm of x is o(|z|¥)x = 1] ||}, i.e. the sum of highest k coordinates of |z|. The class of
top-k norms is denoted Top;

2. given a monzero weight vector w € R? such that wy > ... > wq > 0, the ordered norm |z||(y) is defined as
w' |z|¥. The class of ordered norms is denoted Ord;

3. a symmetric monotonic norm is a norm that is monotone in each coordinate and invariant to the permutation
of coordinates. The class of symmetric monotonic norms is denoted Sym.

For nonnegative z,y € R, we say that y majorizes z or z < y if (cat); < (oyt); for all k € [d]. The first
lemma connects symmetric norm values with majorization.
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LEMMA 1.3. ([20)) If z Xy, then ||z|| < |ly|| for any || - || € Sym.

This helps connect simultaneous approximation for Top to simultaneous approximation for Sym: if z* is
simultaneously a-approximate for Top over D, then (o|z*[¥); < a(o|y|*)s for all k and y € D, or that z* < ay
for all y € D. As an immediate consequence:

OBSERVATION 1. ([I6], THEOREM 2.3) For any D C R%O, if ¥ is a simultaneous a-approximation for Top,
then =* is a simultaneous a-approzimation for Sym.

For any D C R%O, a (1 4 e)-approximate portfolio for Top can be obtained by choosing optimal solutions

corresponding to top-k norms for k = [1+ €], [(1 + €)?],... ﬂ There are log,, .(d) = O ((logd)/e) such values,
and so:

OBSERVATION 2. For any D C R, and € € (0,1], there is a (1 + €)-approzimate portfolio of size O((logd)/e) for
top-k norms Top.

We remark that unlike Observation [l| for simultaneous approximations, portfolio guarantees do not carry
over from Top to Sym or Ord. Indeed, despite the above observation for Top, the best-known upper bound
for O(1)-approximate portfolio sizes for Ord and Sym is polynomial in d. The next lemma allows symmetric
monotonic norms to be O(log d)-approximated by ordered norms; it will be useful to convert portfolios for Ord
to portfolios for Sym:

LeMMA 1.4. ([29]) Any symmetric monotonic norm ||-|| on R? can be O(log d)-approzimated by an ordered norm
on R

COROLLARY 1.1. Given D C R%O, an a-approximate portfolio X for Ord over D is an O(«logd)-approximate
portfolio for Sym over D.

The next lemma shows that portfolios can be composed in different ways:

LEMMA 1.5. (PORTFOLIO COMPOSITION) Given class C of functions over D C RY,

1. If X1 is an aq-approzimate portfolio for C over D and X5 is an as-approzimate portfolio for C over X;, then
X5 is an ajas-approximate portfolio for C over D.

2. If D = Uepn Di and X; is an a-approzimate portfolio for C over D; for each i € [n], then g, Xi is an
a-approximate portfolio for C over D.

We restate the characterization of the class of dual norms to ordered norms and a corresponding Cauchy-
Scwarz inequality; their proofs are included in Appendix [A]

LEMMA 1.1. (DUAL ORDERED NORMS) Given a weight vector w € R%, the dual norm || - ”E(w) to ordered norm
|l lw) is given by

lyll%., = maxw
(w) keld] Zie[k] w;

LEMMA 1.2. (ORDERED CAUCHY-SCHWARZ) For all z,y € Réo,

12/l l9lfuy = 27
Further, equality holds if and only if
1. there is some order m € Perm(d) such that x,y both satisfy .

ther ot = ot o TR _ |l 1x
2. for each k € [d] either xy =z}, or ST (7.

2[16] use this proof strategy to obtain simultaneous approximations.
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2 0OrderAndCount for Machine-Loads-Identical-Jobs

In this section, we present the first application of OrderAndCount framework to the MACHINE-LOADS-IDENTICAL-
JoBs (MLI1J) problem. Recall that we are asked to assign n copies of a job among d processors or machines with
different processing times p;, i € [d]. This is the simplest model for workload distribution where some tasks must
be distributed among individuals in a workplace: processors correspond to individuals, processing times represent
their efficiencies, and balancing loads on machines corresponds to managing the workloads of the individuals.
Given a norm || - || on R%, the goal is to schedule the jobs to minimize the norm of the machine load vector. We
seek a portfolio of solutions (i.e. schedules) for ordered norms Ord and symmetric monotonic norms Sym.

First, we observe a simple example where no solution is simultaneous o(ﬂ)-approximation: suppose there
are n = d jobs and p; = 1 while p, = ... = pg = Vd. The optimal solution for L., (i.e. maximum load)
minimization assigns one job per machine to get maximum load v/d. The optimal solution for Ly (i.e. total load)
minimization assigns all jobs to the most efficient machine, i.e., machine 1, for total load of d. Therefore, any
assignment with < d/2 jobs on machine 1 is an Q(\/&)—approximation for L; norm, and any assignment with
> d/2 jobs on machine 1 is an Q(v/d)-approximation for L., norm. This motivates us to increase the portfolio
size. We prove the following results characterizing the approximation-portfolio size trade-off in this section; we
note that the guarantee for Sym follows from the guarantee for Ord using Lemma [T.4]

THEOREM 2.1. For any instance of MLIJ on d machines and any o > 4, we can find in polynomial time an

a-approximate portfolio of size or ordered norms Ord. 18 portfolio 1s also O(« log d)-approximate
‘ li 2¢ O ( 1oaetss dered Ord. Thi lio is also O(alogd '

log(«
for symmetric monotonic norms Sym.

THEOREM 2.2. For any constant o > 1, there exists an instance of MLIJ on d machines where any a-

approzimate portfolio X, for ordered mnorms Ord has size | X, = Q (m). The same bound holds

for symmetric monotonic norms Sym.

We will also prove (Theorem that there are instances of MLIJ with optimal portfolio of size 2 for Top

but with no O(1)-approximate portfolio of size o (log’lgo g d) for Ord.

We start with some notation. Since all jobs are identical, we can identify a schedule by the number of jobs on
each machine. If n; € Z>¢ jobs are scheduled on machine i, then }_, ., n; = n, and the load vector is z = x(n) =

(n1p1,...,napq). Therefore, the set of feasible vectors is D= {z € R*: 2 > 0; Y,n; =n; x; = nyp; Vi € [d]}.
We can relabel the machine indices and assume without loss of generality that 0 < p; < ... < py.

2.1 Portfolio Upper Bound. At a high level, we show that special instances of MLIJ that we call doubling
instances satisfy two key properties: (i) any instance of MLIJ is 2-approximated by some doubling instance
(Lemma [2.1)), and (ii) the optimal solution z°FT to a doubling instance satisfies 29FT > 29FT > ... > zQFT
(Lemma [2.2]). These inequalities allows us to relax the integrality constraints and look at the polyhedron
P={zx: 72— =mn;xy > ... > xq > 0}, where the coordinate-wise inequality constraints can be put in for
doubling instances. This sets up OrderAndCount: there is only one possible order for vectors x € P, which is
x1 > ... > xq > 0. Each ordered norm |||,y = w ' is a linear function over P, and so the set of vertices of P
form an optimal portfolio for ordered norms over P for the doubling instance and a 2-approximate portfolio for
the original instance. We show that we can restrict to O(log, 4 d) of these vertices, losing factor a/4. Finally,
we lose another factor 2 in carefully rounding back to the original, to get an overall approximation factor a for
ordered norms.

LEMMA 2.1. Given an instance of MLIJ with d machines and n copies of a job, we can get an instance of the
problem with d machines and n jobs such that: for any load vector x' for this modified instance, the corresponding
load vector x for the original instance satisfies

1
—z <2 <2z
V2o T T

Proof. To construct the new instance, round each p; to its closest power of 2, say p;. Then %p; < p <

V2pi. When n; jobs are scheduled on processor i, corresponding load vectors x = (nipi,...,ngpq) and
a' = (nip},...,ngp;) are within factor v/2 of each other. O
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Formally, a doubling instance is the one constructed in A Load

the proof: it has each p; equal to some power of 2. We show 2; _ 1_5 16

next that for doubling instances, optimal load vector zOFT 5 5~0

for any norm always satisfies the order x?PT > > dePT. i

Note that this is not true if the instance is not doubling; see

Figure +2

LEMMA 2.2. Suppose zOFT is the optimal load vector for

some symmetric monotonic norm || - || for a doubling in- 1

stance. We can assume without loss of generality that

.T?PT > xg)PT > > ngT. Machine

Proof. Suppose zPFT < 29T for some i. Transfer one job

from machine 7 + 1 to machine i, to get the new load vector

1 defined as: Figure 2: An example for makespan minimization
with 2 machines and 5 jobs where z9FT < z9FT

xlOPT ifl #d,i+1, for optimal load vector z°FT.
=< 2PFT +p; ifl =1,

IL’Z(«)JrPlT — Di+1 ifl =1 + 1.

OPT > J?iOPT

Since p; divides p;y1 and ;7 OPT _

, we get that 25T — 29PT > p;. Therefore,

OPT

max(z;, xi+1) = max (2077 + p;, 200" — piy1) < 2Ph" = max (2077, 2P0T)

y Lt

Further, z; + z;11 < 2977 +2PHT. That is, (2, zi41) < (22T, 228T). Since all other coordinates of « and zFT
are equal, a simple inductive argument shows that z < 2°FT. Lemma [1.3|implies that |z|| < ||zOFT||, finishing
the proof. 0

[e%

COROLLARY 2.1. For Ord, an a-approzimate portfolio for an instance of MLIJ can be obtained from a -
approzimate portfolio for the corresponding doubling instance.

For the rest of this section, we restrict ourselves to doubling instances; we will give an «/2-approximate
portfolio of size < 1+ log,, /4 d for ordered norms over doubling instances. For any weight vector w, Lemma @
allows us to relax the integer program to a linear program: while not every load vector forms a feasible
solution to Lemma shows that there is an optimal solution that is feasible for this IP.

(IP1) minw' z s.t. (LP1) minw' st

L4 .
(2:2) —=n, (2.5) Ty

3 Dbi — Di ’
. K3

(23) L Z Tit1 Vie [d - 1]’ 26) ZT; 2 Ti+1 Vie [d - 1],

T4 .
(2.4) o € Z>o Vi e [d], (2.7) x> 0.
Our next lemma characterizes the d vertices of the constraint polytope P :={z: )", % =n;Tr1>...>Tq >

0} of We omit the straightforward proof.

LEMMA 2.3. For any weight vector w, the optimal solution x* to satisfies for some l € [d] that:

* _ _ * — _ *
ri=...=x; = Ty =...=x3=0.

For [ € [d], denote the Ith vertex as z(l) := <"—1;, with [ non-zero entries. Call z(l) good if

Dliel] b

(28) 1 > i,

"
Zie[l] Di
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e., the value of each non-zero coordinate is at least the processing time corresponding to the last non-zero
coordinate. Clearly, (1) is good since n > 1, and if z(1) is good then x(l — 1) is also good. Let L be the largest
index such that z(L) is good. The next lemma says that if z(l) is good, then it can be rounded to an integral
load vector:

LEMMA 2.4. If 2(l) is good, then it can be rounded to Z(l) that is feasible for and (1) < &(1) < 2z(1).

Proof. Denote n; = % for all ¢ € [d], then nj4; = ... =ng =0 and Zie[d] n; = n. Then one can assign either
fi; = [n;] or i; = [n;] jobs to machine ¢ € [d], while ensuring that 3, i = n. The load on machine i € [d] in
this new schedule is #(1), with &(1); = p;n;.

By definition of good vertices, z(l); > p; > p; for each i € [l]. Therefore, we get n; > 1, thus implying

%ni < |ni] < n; and n; < [n;] < 2n; for all ¢ € [I]. This implies %nl < n; < 2n; for all i € [d]. Since n; = Z}%
r( )

and n; = , we get the result. a

Our next lemma shows that rounding good vertices gives a 2-approximate portfolio for ordered norms:
LeMmMA 2.5. {2(1),...,&(L)} is a 2-approzimate portfolio for Ord over the doubling instance.

Proof. Fix a weight vector w. Let 29T be the (integral) optimal load vector for || - ||(,), and let I be the largest
index such that 2PFT > 0. We will first show that there exists an index I’ < [ such that (i) z(I) is good, and
(1) ()l (w) < ||:UOPT||(w) Together with Lemma. this implies that [|2(I')||(w) < 2[|2°F7|(w), implying the
lemma.

We note first that (1) is good: since z°F7 is integral and Jc?PT = 0, we have xlOPT > p;. From Lemma
we have PP > ... > aPPT > pp. Since 35,y % =mn, weget n > Yy 2= pi Y 5 That is, z(l) is
good.

In particular, this implies that z(I’) is good for each I’ < [, so it is now sufficient to show that there is some
I <1 such that [|2(I')||(w) < [|#°FT||(w). Consider the following linear program:

(LP2) minw' z s.t.
z;
2.9 — =n,
29 >
(210) Ti 2 Tiy1 Vie [d — 1],
(2.11) Ti4+1 :...:xd:O.
xzOPT is feasible for this LP by assumption. Further, by an argument similar to Lemma we get that the
vertices of the constraint polytope for this LP are x(1),...,z(l). Therefore, there is some I’ < [ such that
[2(I)]|(w) = w " z(l") < w"xzOPT = [|zPT| (), finishing the proof. 0

We are now ready to prove Theorem We will convert the 2-approximate portfolios of size d for doubling
instances to an «/2-approximate portfolio of size ~ log, /4 d, which implies a-approximate portfolios of size
~ log, /4 d for MLLJ by Corollary @

Proof. [Proof of Theorem We claim that for all indices I,4 € [d] such that i < §I, we have z(l) =
Gx(i). Therefore, |z(1)||(w) &la(d )||(w) for all ordered norms || - ||¢,) from Lemma u implying that

{((@/4)) : j € 10,1+ 1og(a
Since p1 < ... <pgandi< %

kn « kn « )
PR kb i S AP IR

i€[l] p;

< &
= 1
L] } is an (a/2)-approximate portfolio over doubling instances.
l

we have Z]e[l] e 2 >4 Z]G[l 7+ Therefore, for all k <1, we have

Further, for k > [,

S (1), = Z m oo 0NN ) < Y )
= T <7 <7 i<T i
e B e s 4 4.

JE[k] 1] pPj

Therefore, (1) < («/4)x(i). This completes the proof. 0

hd»—*
<
m
=N
<
m
=
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2.2 Portfolio Lower Bound. We prove Theorem by giving an appropriate doubling instance with d

log a+loglogd | *
superconstant that we specify later; assume that S is an integer that is a power of 2. Let L be the largest integer
such that 1+ 52 + ... + S2L < d, then L = O(logg d). The d machines are divided into L + 1 classes from 0 to
L: there are S machines in the [th class and the processing time on these machines is p; = S'. The number of
jobs m is S3L; it is chosen so as to ensure that all vertices in the constraint polytope for are good, and can
be rounded to an integral solution that is only worse by a factor at most 2 (Lemma.
There are L + 1 weight vectors for our instance. The first weight vector is w(0) = (1,1,...,1). The second

weight vector is w(1) = (1, gz, gz, - - - , 9z ). More generally, for [ € [0, L],

machines where any a-approximate portfolio must have size O %) Given d, let S = S(d) be a

1 1 1 1 1 1 1 1
’l,U(l): 1’?""’?’?""’@""’52l72""’521*2’ﬁ""’ﬁ .

S2 g4 S20-2 remaining

With some foresight, we choose S such that % = 5a. We claim the following: for each I € [0, L — 1],
1. There is a schedule &() for this instance with [|Z()]| (@) < nlS™

2. Any schedule y that schedules more than n/4 jobs on machines in classes [+ 1 to L has [|y||(@)) > %2 - S

Combined with the above and since o < %, it cannot be an a-approximation for the w(l)-norm problem.

3. Any schedule y that schedules more than n/4 jobs on machines in classes 0 to [ —1 has ||y|| @) > % -8t
Therefore, it cannot be an a-approximation for the w(l)-norm problem either.

4. L =0(loggd) = (%)

Claims and [3] imply that any a-approximate solution for norm w(l) must schedule at least n/2 jobs on
machines in class [. Another application of claims [2] and [3] then implies that a portfolio that is a-approximate for
weight vectors {w(0),...,w(L — 1)} must have distinct solutions for each weight vector, and therefore has size at
least L. Claim [4] then implies our theorem.

Claim [4] is just computation: L = O(loggd) = O(log,; d) = O (ﬁ). If L = Q(logd), then we are

done since the target size is anyway © (%) = O(logd) for constant a. Otherwise, log L = O(loglog d)

. _ __logd ) _ _ logd
and so L =0 (1oga+logL) =0 (loga+loglogd)'

We move to claim[Il As alluded to before, n = S3L has been chosen so that each vertex x(l) of the constraint
polytope is good (see inequality (2.8])):

n NN »
I 1 1 = 5o =% ~PL
-4 +8%- 5+... +82%L. 4 — 28
With this in hand, it is sufficient to give a fractional solution z(l) with [z(])|/w@) = ©(nlS™"), since
Lemma then implies the existence of an integral solution #(I) with norm at most twice. Consider

z(l) = (a,...,a,0,...,0) where the first 1 + 5% + ... + S? coordinates are non-zero and equal to a; all other
coordinates are 0. Since a total of n jobs must be scheduled (constraint (2.9)),

1 2 1 21 1 l

so that a < % Therefore,

2]l (w@yy = a x sum of first (14 5% +... + S?') coordinates of w(l) = a1 < nlS~.

We move to claim [2} Let y schedule more than n/4 jobs on machines in classes [+ 1 to L. Irrespective of how
these n/4 jobs are distributed, they contribute a total load of at least (n/4) x S*1. Since all coordinates of w(l)
are at least <5, the contribution of these jobs to [|y||(w()) is at least

1 ns

—1
ﬁ 4 'S .

n
% 75l+1 _
4
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Since | < L = o(S5), we get ||yl (wy) = w(nlS™H).

Finally, we prove claim [3] Consider the restricted instance with only machines from classes 0,...,] — 1 and
n/4 jobs. Let x be the optimal fractional solution for this instance for top-1 norm || - [|(1,); it is easy to see that
2 must have equal loads on machines, so that from constraint :

1 1 _ _
n= ||IH(11) (1 . I +52 . g +...+S2l 2. > < 2||:L‘||(11)Sl 17

gi—1
implying [|z[/(1,) > ns ;Hl . Therefore, any integral optimal solution & to this restricted instance must also satisfy
. nSfH»l
12l a2y = 2l = =
Since y is a solution to the larger original instance, we have ||y[/(1,) > ||#[/(1,). Finally, since w(l) = 1 by

assumption, we get 11 < w(l), and so ||y|l(w@)) > |1yll1,)- Together, we get [|yll(w@)) > % - S~ This completes
the proof of the claim and of Theorem

Portfolios for Different Classes of Norms. Recall Observation[l} if 2* is a simultaneous a-approximation
for each top-k norm, then it is a simultaneous a-approximation for all symmetric monotonic norms. One might
naturally wonder if this is true for portfolios: is an a-approximate portfolio for top-k norms also an a-approximate
portfolio for all symmetric monotonic norms? Our lower bound on portfolio sizes for ordered norms (see Appendix
along with O(logd) upper bounds on portfolio sizes for top-k norms (Observation [2)) already implies that this
is not the case. We give another proof using the instance constructed for portfolio lower bound for MLIJ. The
proof is deferred to Appendix [C]

THEOREM 2.3. For all large enough d, there exists a set of vectors D C R%o such that:

1. there is an O(1)-approzimate portfolio X of size 2 for Top, and

2. any O(1)-approxzimate portfolio X' for Ord has size Q (%).

3 OrderAndCount for Covering-Polyhedra

In this section, we extend OrderAndCount to COVERING-POLYHEDRA in d-dimensions, which is defined by
P = {xr € R*: Az > b,z > 0} with nonnegative constraint matrix A € RZS? with r rows and b € RL,. As
alluded to before, such polyhedra can model workload management in settings with r splittable jobs split among
d machines that can run all 7 jobs concurrently. MLIJ corresponds to r = 1 since it had a single constraint of
the form a 'z > b. We prove the following theorem that upper bounds the portfolio size for covering polyhedra:

THEOREM 3.1. Given € € (0,1] and a covering polyhedron P = {x € R : Ax > b,x > 0} where A € R;ﬁd and
be ]R‘éo, there is an algorithm to compute a portfolio X1, of size

X1l =0 <(log(€d/e)>3rz2r>

that is (14e€)-approzimate for ordered norms Ord. This portfolio can be computed in time poly(d, logr2 (d))). Con-
2
sequently, using Lemma there is a polynomial-time algorithm to compute a portfolio of size O ((log d)?’r 72T)

that is O(log d)-approzimate for symmetric monotonic norms Sym.

We focus on the result for Ord since the result for Sym follows from Lemma Further, we assume that
b=1,=(1,...,1)T, without loss of generality by rescaling rows of A if necessary (and removing rows with b = 0
since they will be feasible anyway).

For any order 7 on [d], define the restriction P, := PN {z € R? : Tr) = ... 2> To@) > 0} Recall our
high-level plan: any ordered norm || - [|(,,) is a linear function on each P. Therefore, the minimum norm point
r(w) := argmin, cp ||z ,) must be one of the vertices of some Pr. Call X the union of vertices of P, across all
orders ; then X is an optimal portfolio for Ord. As we outlined, two main issues potentially blow up the size
| X|:
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1. Each P, can have too many vertices. For each vertex of Py, d out of r + d constraints Ar > 1,21y > ... >

Tr(q) > 0 must be tight. Therefore, P, may have (d'g") ~ d" vertices.

2. There are d! orders m € Perm(d). Since we are taking a union over all such orders, the size | X| is bounded by:

(number of vertices) % (numbcr‘l?f ordcrs) ~d" xd.

in eac x

We start with sparsification (Section [3.1) that aims to reduce the number of unique coordinates of each

T T'2
z(w) to (M) ; showing that this bound the first factor above to (M) . Bounding the second factor

€

requires bounding the number of orders that z:(w) can satisfy, which we accomplish using our primal-dual counting

technique (Section [3.2).

Algorithm 1 SparsifyPolyhedron(P)

input: covering polyhedron P = {x € R?: Ax > 1,,x > 0}, error parameter ¢ € (0, 1]

output: another covering polyhedron P = {x e R?: Ax >1,,2 >0}
3d? A

1: define y = =%~ and initialize A = 0,.xq4

2: for each row i € [r] do

3: define aj = max;¢[q) A;; to be the largest entry in the row

4:  for column j € [d] do

5: if Ai,j < %’ then

6: set A/i,j =0

7: else

8: let 1 € [0, [log(y4e/2) 1] be the unique integer such that
af e\! af €\ !+1
L(1+5) <A< (1+7)
u ( ty) =A< L *3

~ a;: . 1
9: set Al’] = 7 (1 + §)

10: return ﬁ’ P = {x e RY: Az > 1,2 > 0}

3.1 Sparsification. Denote N = O(M). We give a sparsification procedure (Algorithm
SparsifyPolyhedron) that reduces the number of distinct columns in A to N”. For each row of matrix A,
this sparsification (1) removes ‘small’ entries in the row and (2) restricts the number of unique entries in the row
to N. Since there are r rows, the number of distinct columns after sparsification is N”. In the process, we lose a
factor (1 + €) in the approximation.

LEMMA 3.1. The columns of matrix Ae R;ﬁd output by Algorithm SparsifyPolyhedron take one of N values,
i.e., |[d] can be partitioned into Si,...,Snr such that for any j,j’ € S;, the jth and j'th columns of A are equal.

Proof. Fix row i € [r]. By construction, each entry in the ith row of A is in the set {0} U

* en! € .
{%’ (1+5) :1elo, [10g (1 4e/2) MJ]} These are O(log(;4e/o) 1) = O(log(1+€/2)(d2/e)) =0 (%) = N dis-
tinct numbers. Since each column is composed of r entries, one from each row, we get a total of N" possible
values for a column. ]

The next lemma gives the approximation guarantee for the sparsified polyhedron; its proof is relatively
straightforward and we defer it to Appendix

LEMMA 3.2. P = {z : Az > 1,.,2 > 0} output by Algorithm SparsifyPolyhedron is a (1 + €)-approzimate
portfolio for Sym over P.
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Lemma, allows us to work with P = {z : Az > 1,,2 > 0} with the nice property that columns of A take
at most N distinct values (from Lemma .
will have size O(N 3T2*2T). Using Lemma this is sufficient to prove Theorem Hereafter, we will only work
with the sparsified matrix A and polyhedron P. For ease of notation, we drop the symbol A and assume that the
original matrix A and corresponding polyhedron P are already given to us in the sparsified form.

Let Si,...,Snr denote the partition of [d] based on the value of columns of A, i.e., for each [ € [N"] and
4,3' € Si, jth and j'th columns of A are the same. Further, define @ = {z € R%, : z; = 2, Vj,j' € S;, VI € [N"]},
i.e., the set of all non-negative vectors that attain the same value for all j € S;, for all ] € [N"]. Define P~ = PNQ.
Recall that for weight vector w, we define x(w) := arg min, ¢ p||z(,). Our first lemma shows that z(w) € P~:

We will give an optimal portfolio for Ord over P. This portfolio

LEMMA 3.3. Given a weight vector w, we can assume without loss of generality that for alll € [N"] and j,j' € S,
z(w); = x(w); . That is, P~ is an optimal portfolio for Sym over P.

Proof. Suppose z(w); # z(w)j/, say x(w); > x(w);. Then consider T € R? such that T = z(w); for all
k#j,j',and T, =T, = w Then it can be seen that T < x(w) and so by Lemma we get that
s < () - o

It remains to show that Z € P. Clearly Z > 0 since z(w) > 0. Denote by AU, AU") the jth, j'th columns of
A. Since they are equal,

Az(w) —7) = AV (z(w); — 7;) + AV (x(w); — Ty) = AD ((z(w); + z(w);) — (T +Ty)) = 0.
Therefore, AT = Az(w) > 1,, or that T € P. O

Given the above lemma, it is now sufficient to consider orders over [N"] instead of orders over [d]. We call
these reduced orders:

DEFINITION 3. (REDUCED ORDERS) An order p on [N"] is called a reduced order. For x € Q, define vector
2(x) € RN of unique coordinates of x, i.e., for I € [N"], define z(z); = x; for j € S;. x € Q is said to satisfy
reduced order p if 2,1y > ... > z,(nr) > 0. Given a reduced order p, define polyhedron

P, = {x € PN Q: x satisfies reduced order p}.

Suppose now that we are given some reduced order p. Then for z € P, [|#||(w) is a linear function of z.
Therefore, given a weight vector w, if z(w) satisfies reduced order p, then x(w) is one of the vertices of polyhedron
P . With this observation, the rest of the proof is organized as follows:

e For each reduced order p, P has at most N ™ 11 vertices (Lemma .

e Consider the set IT of reduced orders such that for any weight vector w, x(w) satisfies some reduced order
p €11, i.e, I = {reduced order p : Jw where z(w) satisfies p}. Then we will show that [II| < N?"("~1) (Lemma

53).

Together, these observations mean that X := pell (vertices of Pp:) is an optimal portfolio for Ord over P=.
By Lemma [3.3] P~ is an optimal portfolio for Ord over P. Therefore, Lemma [1.5| implies that X is an optimal
portfolio for Ord over P. Further,

| X| = ‘ U (vertices of Pp:) ‘ < Z ‘(Vertices of 73,):)’

pell pell
<YW 1) = IV 1) < NTOTDNT 4 1) = OV,
pell

This implies Theorem We prove Lemma [3.4 next and defer Lemma [3.5] to the next subsection.

LEMMA 3.4. For each reduced order p, P, has at most N™ +1 vertices
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Proof. For simplicity, assume (after possibly relabeling indices) that p(l) = [ for all I € [N”], and that
Sy ={1,..., |81}, S2 = {|S1| + 1,...,[S1] + [S2|} etc. Then the polyhedron P is the set of all z such that
Alz >1for all i € [r] and

Tl = ... :LIZ|51‘ > 1“51|+1 = ... =$‘51|+‘52| > .2 xd,|SNT‘+1 =...=xyq > 0.

Any vertex corresponds to a set of d (linearly independent) inequalities. The constraints of the polytope have
d— N7 equalities and N" +r inequalities. Therefore, each vertex corresponds to some N" of the N" +r inequalities
being tight. The number of such choices is (N +T). Then,

N’F
N"+7r N" +r N™\"
= <({14+—| .
()= ()= ()
For r = 1, this is at most 1 + N". For r > 2, 1 + NTT < N7 and so this is at most NT°. 0

At this point, a natural first attempt at bounding the portfolio size is to count the number of ordered norms
in the space of ‘reduced’ vectors {z(x) : x € P=} C RN". After all, the result from [6] result shows that there are
at most poly(N"/¢) ordered norms in RN up to a (1 + €)-approximation. However, to the best of our knowledge,
this approach does not directly work because ordered norms on R¢ cannot be translated appropriately into an
ordered norm on the smaller space RN".

For example, consider the covering polyhedron P = {x € R?;O cx1 > 2,29+ 23 > 4,221 + 29+ x5 > 10}. The
point (3,2,2) € P is the (unique) minimizer of the L; norm, which corresponds to weight vector w = (1,1,1).
The constraint polytope for P has two unique columns, and the corresponding ‘reduced covering polyhedron’ is
P ={2z€R?: 2 >2,20>2,21+2 >5}. A point (a,b,b) € P corresponds to the point (a,b) € P’. However,
by a majorization argument, the point (5/2,5/2) € P’ minimizes all ordered norms on P’, but the corresponding
point (5/2,5/2,5/2) € P with L; norm 7.5 is sub-optimal for the L; norm. Therefore, it is not sufficient to count
ordered norms in RV", and we need an alternate approach that we describe next.

3.2 Primal-Dual Counting. In this section, we study the set II of reduced orders such that for any weight
vector w, z(w) satisfies some reduced order p € II, i.e, II = {reduced order p : 3 w where x(w) satisfies p}. We
prove that

LEMMA 3.5. |II] < N2(r=1),

The main idea is to count reduced orders not on z(w), but in a dual space. We write the following modified
primal and dual, and denote A(w) = argminyca HAT)\H’("W):

(Primal’) min ||z],) st. Az >1.,2€ Q. (Dual) min ||AT/\||>("w) st. A€ A,

Note that (AT)\)j is simply the dot product of the jth column of A with A. Further, recall for all j, ;' € S
for any | € [N"], the jth and j’th columns of A are equal. Therefore, we have (ATA); = (ATA);: for any A. By
definition, this means that ATA € Q for all X > 0.

The next lemma establishes the crucial connection between reduced orders in [Primal’l and [Duall It uses
Lemma (Ordered Cauchy-Schwarz) along with a Lagrangian function; we defer its proof to Appendix [D]

LEMMA 3.6. Given a weight vector w, Hx(w)||(w)HAT)\(w)||’(*w) = 1. Further, there is a reduced order p such that
both z(w), AT N(w) satisfy p.

As a consequence of this lemma, we get that it is sufficient to count reduced orders in the dual:
IT = {reduced order p : 3w where z(w) satisfies p}

= {reduced order p : 3w where AT \(w) satisfies p}
C {reduced order p: I\ € A, where AT\ satisfies p}.

Denote TT* = {reduced order p : I\ € A, where AT\ satisfies p}; our goal is to show that |TT*| < N2r("=1),
From the above, this is sufficient to prove Lemma Our final lemma is a geometric counting inequality.
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LEMMA 3.7. T hyperplanes partition A, into at most T"~1 + 1 regions.

Proof. The result is trivially true for r = 1 since A is a point. For r = 2, Ay is a line segment, and T
‘hyperplanes’ partition it into < T'+ 1 regions. For r > 3, we use induction on 7. 1 hyperplane clearly divides any
convex body into at most 2 < 177! 4 1 regions. Suppose T > 1. Let the Tth hyperplane be . By the induction
hypothesis, the first T — 1 hyperplanes divide A, into at most (T — 1)"~! + 1 regions. If A, C H, then H does
not add any new regions, and we are done.

Otherwise, the number of new regions H adds is the number of regions that the first 7" — 1 hyperplanes
partition A, NH into. But A, NH can be linearly transformed into A,_; in this case, and so the number of
new regions is at most (7" — 1)"~2 + 1. Therefore, by the induction hypothesis, the total number of regions with
T hyperplanes is at most

(T-1)""'4+ D)+ (T-1)"2+1)<T'+1 VT >1,r>3.
0

We are ready to finish the proof of Lemma Partition A, into regions {R, : p € II*}, where
R, := {A € A, : AT\ satisfies p}. The size |II*| is exactly the number of such regions. Pick j,j' € [d]
such that 7,7’ belong to different sets S;,Sy. Then these regions are separated by hyperplanes of the form
{A: (ATN); = (ATN);}, ie., different reduced orders exist on different sides of these hyperplanes. There are

(A;) such hyperplanes, each corresponding to a pair of sets Sj, S;. By the above lemma, these partition A, into

at most - -
(Z\; ) + 1 — (]\7(]\;-1)) + 1 S NQT‘(T‘—l).

regions. Thus, [II| < |II*| = |{R, : p € II*}| < N?""=1. This finishes the proof of Lemma and therefore the
proof of Theorem (3.1

We finally remark that this can be converted into an algorithm that runs in time poly(N r? ,d): tracing back,
find the set II* using the above hyperplane argument, and then simply output the union of vertices of P, for all
p e II*.

4 k-Clustering and Uncapacitated-Facility-Location

In this section, we consider k-CLUSTERING and UNCAPACITATED-FACILITY-LOCATION. Recall that we are given
a metric space (X, dist) on |X| = n points (also called clients) and are required to choose a subset F' C X of
open facilities. The induced distance vector zr € RX is defined as the vector of distances between point j and
its nearest open facility, i.e., r(j) = minyep dist(j, f) for all j € X. Given a norm || - | on R", k-CLUSTERING
seeks to open set F' of at most k facilities to minimize ||zp||, while UNCAPACITATED-FACILITY-LOCATION allows
any number of facilities to open to minimize the combined objective |F| + ||z z||.

4.1 k-Clustering. The main result in this section is a bicriteria simultaneous approximation for k-
CLUSTERING: a solution F' C X is bicriteria («, 3)-approximation for k-CLUSTERING if its objective value is
within factor a of the optimal and it opens at most Sk facilities.

THEOREM 4.1. For k-CLUSTERING,

logn
€

1. there exists a simultaneous bicriteria (1 +¢0 ( ))—appmfcimation, and

2. a stmultaneous bicriteria (3 +¢0 (b%)) -approximation can be found in polynomial time.

We note that the part 1 of the theorem can also be obtained using Observation[2} take optimal k-CLUSTERING
solutions corresponding to top-l vectors for I = |1+ €], [(1 + €)?],... and combine these facilities to obtain a
single solution with O(klog;, .(n)) facilities; this was noted for € = 1 in [I6]. For a polynomial-time bound, their
technique of combining fractional solutions and rounding based on the techniques of [21] achieves a simultaneous
(6 + €)-approximation with O(klog, . n) facilities. We improve this to a 3 + e with a simple combinatorial
algorithm IterativeClustering, described next.
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Algorithm 2 PartialClustering((X,dist), k, R, a)

input: A metric space (X, dist), integer k£ > 1, radius R > 0, parameter o > 1
output: A set of k facilities C' € ()k() such that B(C,«R) contains at least as many points as contained by
any B(C’, R) with |C'| < K, i.e.,
|B(C,aR)| > max |B(C',R)|.
cre(y)

Algorithm 3 IterativeClustering((X,dist), k¢, a)

input: A metric space (X, dist), integer k > 1, parameter € > 0, parameter « > 1
output: A set C C X of O (MO%) facilities
C<+ 0 Ro = %
for 1 =0,1,...,log,, . (n/e) do
R+ Ry(1+¢)
Cy <+ PartialClustering((X,dist), k&, R, @)
C+—Cuq
return C'

At a high level, our algorithm IterativeClustering combines several solutions with k facilities each. Each
of these solutions corresponds to a radius R, and subroutine PartialClustering attempts to get the set of k
facilities that covers the largest number of points within radius R. Radius R will increase exponentially across
iterations.

For polynomial-time computations, PartialClustering cannot be solved exactly since it generalizes the k-
center problem. To get efficient algorithms, we allow it to output k facilities that cover as many points within
radius aR as those covered by any k facilities within radius R. As [24] note, [8] give an approximation algorithm
for PartialClustering for a = 3, which we state in a modified form:

THEOREM 4.2. (THEOREM 3.1, [8]) Given metric (X,dist), integer k > 1, and radius R, there ezists a
polynomial-time algorithm that outputs k facilities that cover at least as many points within radius 3R as those
covered by any set of k facilities within radius R. That is, subroutine PartialClustering runs in polynomial-time
for a = 3.

We give some notation: given nonempty F' C X and some radius R > 0, we denote by B(F; R) the set of
all points within distance R of F, i.e., B(F;R) = {z € X : 3y € F with dist(z,y) < R}. We say that a set of
facilities F' covers p points within radius R if |B(F; R)| > p.

Let D denote the k-center optimum for (X, dist). By definition, there are k facilities that can cover all of X
within radius D. Therefore, the largest radius we need to consider is D. What is the smallest radius we need to
consider? Since all of our objective norms are monotonic and symmetric, points covered within very small radii
do not contribute a significant amount to the norm value. Therefore, we can start at a large enough radius, which
has been set to % with some foresight.

We will first prove the following claim:

logn
€

CLAIM 1. IterativeClustering gives a simultaneous bicriteria (a(l + 26)70( ))—approximation for sym-

metric monotonic norms Sym.

Proof. We first show that the number of facilities output by the algorithm is O (kk’#) The number of iterations

in the for loop is log ;¢ (%) =0 (10% + M) When € > %, this expression is O (m) Since each iteration

€
adds at most k facilities to C', we are done in this case. When e < %, then klo# > n, that is, all facilities can be
opened anyway.
Fix any symmetric monotonic norm || - || on R", and let OPT denote the optimal solution for this norm
and 29PT € R™ denote the corresponding distance vector. Let the distance vector for facilities C' output by the
algorithm be z. We need to show that ||z|| < a(1 + 2¢)||zOFT|.
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By definition, (zOPT)T < (zOPT)] < ... < (2°PT)?. Let j* be the smallest index such that (xOPT)jT-* > Ry =
Le Since || -|| is symmetric, we have [|z']| = ||z|| and [|(zOFT)T|| = |z°FT||. Our twofold strategy is to show that:

1. for all j > j*,

(4.12) (@)} < (1 +e) (@M,
2. the contribution of zI, . ,z}*_l to ||z|| is small; specifically,
(4.13) H(ﬁxj_loo)H < ael|zOPT].

Consider the first part. We have Ro(1 + €)'°81+<("/9 = Ry = D. That is, in the final iteration of the for
loop, R = D. Therefore, by definition of D and PartialClustering, C in this iteration covers all of X within
radius aeD. That is, ||z]|c < oD since C; C C.

fix some j > j*, and let [ > 0 be the smallest integer such that (J:OPT); < Ro(l+e€). If 1> 1+log,, (n/e),
then (xOPT)j > Ro(1+¢€)=1 = D. Since ||7|| < aD, inequality holds in this case.

Otherwise, | < log;,.(n/e). The k facilities in OPT cover at least j points within radius R = Ro(1 + €)".
By definition of PartialClustering, in iteration [ of the for loop, C; covers at least j points within radius aR.
Since C; C C, C also covers at least j points within radius aR, so that xj < aR = Ry(1 + ¢)!. By definition of [,

(xOPT)T > Ro(1 + €)1, and so

x]T <aRy(1+¢)l <a(l+ e)(xOPT)JT-.

We move to (4.13]). By definition of j*, OPT covers at least j* — 1 points within radius Ry. In iteration 0, by
definition of PartialClustering, Cy (and therefore C) covers at least (% — 1) points within radius aRy. That

is, 33}*71 < aRp.
Denote (1,0,...,0) = e. Since | - | is monotonic and D is the k center optimum, [z°F7T| >
([[#°FT o, 0,...,0) |le|| = D|le||. Therefore,
H (xI, e ,x;*_l, 0,... ,0) H < Z x;HeH (triangle inequality)
j€li*=1]
< Y aRlle| ()., < aR)
jeli=-1]
D
< na—<|le|| (* <n)
n
< a2 (lz°F]| = Dlle])
Together, inequalities (4.12]), (4.13)) imply that
lz]| < H (m{, e ,xjt_l, o,..., 0) H + H (07 e ,07:1@*7 e ,xl) H (triangle inequality)
< ael|z°PT| + a(l + €) ’(0 0, (@O (xOPT)IL) H (inequalities ([E12), 13))
< ael| 2P T + a1 + )[|z°F T = a1 + 2¢)||z°F T (Il - |l is symmetric monotonic)

|

With this result in hand, our main theorem is simple to derive: we choose a = 1 in the claim with €/2
as the parameter for the existence result. We choose v = 3 in the claim with €/6 as the parameter for the
polynomial-time result; Theorem guarantees that the algorithm is polynomial-time.
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4.2 Uncapacitated-Facility-Location. First, we note that a single solution cannot be better than Q(y/n)-
approximate for even the L and L., norms: suppose the metric is a star metric with n leaves. The distance from
the center to each leaf is y/n. Then the optimal L; solution is to open each facility, and the cost of this solution
is n + 1. The optimal L., solution is to open just one facility at the center, the cost of this solution is 1 + /n.
Now, any solution that opens fewer than n/2 facilities has cost > n/2 + (n/2)y/n = Q(n4/n) for the Ly norm and
therefore is an Q(y/n)-approximation. Any solution that opens > n/2 facilities is an (y/n)-approximation for
the Lo, norm. A similar example was noted for the k-clustering variant in [16].

This motivates us to seek larger portfolios and get a smaller approximation. The main theorem of this section
gives an O(logn)-approximate portfolio of size O(logn) for UNCAPACITATED-FACILITY-LOCATION:

THEOREM 4.3. An O(logn)-approzimate portfolio of size O(logn) for symmetric monotonic norms Sym over
UNCAPACITATED-FACILITY-LOCATION can be found in polynomial time.

Proof. Assume without loss of generality that the number of points n is a power of 2. Choose solutions
corresponding to k = 20,2122 ... 219" with ¢ = 1 in Theorem part 2. There are clearly O(logn) of
these, and the theorem asserts that they can be found in polynomial time. We claim that these form an O(logn)-
approximate all-norm portfolio.

Fix a norm || - ||, and suppose the optimal solution OPT for this norm opens k* € [n] facilities. Let [ be the
unique integer such that 2/~ < k* < 2! i.e., I = [log, k*]. We show that the solution corresponding to k = 2! in
our portfolio is an O(logn)-approximation for || - ||. Add arbitrary 2! — k* facilities to OPT; this only decreases

the induced distance vector z°FT. For this new set of facilities, we have the guarantee from Theorem that
|lz|| < 4||z°FT||. Therefore, the objective value of the portfolio solution is

O(logn) - 2" + [|z]| = O(logn) (k* + [|z°FT||) = O(logn) - OPT.

This completes the proof. 0

5 Discussion and Open Problems

In this work, we gave the first characterization of trade-off between portfolio size and the approximation factors
for certain scheduling problems. However, questions about the design of portfolios can be asked for any setting
in optimization with a class of objectives: at their core, portfolios simply ask if the set of feasible solutions can
be represented by a smaller subset and still enjoy some guarantees for optimization for a given class of functions.
We state some open questions here:

1. General covering polyhedra: For covering polyhedra in dimension d, we improved portfolio sizes from
the general bound of poly(d) when the number of constraints r = o(y/logd/(loglogd)). We conjecture
that this is tight up to polylogarithmic factors, i.e, that there exist covering polyhedra in dimension d with
O(log d) constraints such that any O(log d)-approximate portfolios for symmetric monotonic norms must have
polynomial size.

Conversely, this raises the question of whether there are good characterizations of polyhedra that admit small-
sized portfolios for ordered norms.

2. Scheduling with unidentical jobs: We show O(1)-approximate portfolios of size O(logd) for MLI1J, i.e.,
machine load minimization on d machines with identical jobs. It is open if there exists a similar-sized portfolio
for the more general problem of machine-load minimization with unidentical jobs. We believe that this may
not be true.

3. Approximation gap between ordered and symmetric monotonic norms: Our bounds using
OrderAndCount have a factor O(logd) approximation gap between ordered norms and symmetric monotonic
norms. OrderAndCount does not tackle symmetric monotonic norms directly but instead uses the O(logd)-
approximation by some ordered norm. Improving upon the O(logd) approximation factor for symmetric
monotonic norms would be interesting.

4. Class of equity objectives: Our work focused on understanding portfolios for various families of symmetric
monotonic norms. However, many more notions of equity have been proposed in the literature, such as
lexicographically optimal solutions [24], for which such questions are largely open.
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A Omitted Proofs from Section [I.3]
Proof. [Proof of Lemma
1. For any f € C, mingex, f() < apmingex, f(z) < azay mingep f(z). The first inequality follows since X is

an ag-approximate portfolio for C over X; and the second inequality follows since X; is an aj-approximate
portfolio for C over D.

2. For each f € C,

. I - _ . .
min f(z) ;g[lg];renbnif() g[lﬁa;ren)?f() O‘xeurfﬂﬁ]x,.f(x)

Therefore, U;c[,) X; is an a-approximate portfolio for C over D.

|

Proof. [Proof of Lemma Let K = {z € R : ||z]/(y < 1}, and let K* = {y e R : y'2 < 1Vaz € K}. Also
denote K = {y € R : maxyeq) (oly s < 1}. We will show that K = K*.

“(ow)k

Suppose y € K. Then for any = € K,

y' 'z < (lylh) " alt (rearrangment inequality)
= (alyl") T (Alz[*) (alternating sum)

< (ow) " (Alz]*) (y € K)

= ||l (w) (alternating sum)
<1. (z € K)

That is, y € K*. Conversely, assume y € K* so that y'z < 1 for each 2 € K. Since K* is symmetric, assume
without loss of generality that y; > ... > yq4 > 0, other cases are handled similarly. It is easy to check that for

each k € [d], z(k) := —-(1,...,1,0,...,0) is in K. Therefore 1 > y'z(k) = Lok _ (olyl) implying that
———

(cw)k — (ow)k (cw)k
yeK. O

Proof. [Proof of Lemma This proof is similar to the previous proof. For any z,y € R?, we have

yle < (y) "zt (rearrangment inequality)
= Z (J|y|¢)k(A|xH)k (alternating sum)
keld]
< lyllfwy D (ow)r(Alz['), (definition of [y/|[(,))
ke[d]
= lyll{w) 2l w) (alternating sum).

Further, the first inequality holds if and only if x,y are order-comsistent, i.e., if and only if there exists
an order 7w such that ¥ = =z, and y* = y.. The second inequality holds if and only if for each k,

(lyl)r(Alz )k = [lyll7,) (w)s(Alz*)x, which happens if and only if Alz|" =0 or Clule [ [Fo

(ow)

B Upper and Lower Bounds on Portfolios for Arbitrary D

Given a > 1, we give worst-case upper and lower bounds for ordered norms Ord and symmetric monotonic norms
Sym.

A general upper bound of poly(d!/€) for Ord was established in [6] by a sparsification argument, by grouping
together similar ordered norms. We first show that a similar sparsification argument in the set D of feasible
vectors yields the same bound for Sym on the size of (1 + ¢)-approximate portfolios, i.e., there always exist
(1 + €)-approximate portfolios of size poly(d'/€) for symmetric monotonic norms (Theorem . The subsequent
subsection gives nearly-polynomial lower bounds, showing that these upper bounds are not far off from the true
bounds.
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B.1 Upper Bound. To get the upper bound, we use a sparsification technique that places all vectors in one
of polynomially-many ‘buckets’, with the property that any two vectors in the bucket approximately majorize
each other. This implies a portfolio of polynomial size using Lemma This technique was used by [6] to
(approximately) enumerate Ord, and their result essentially implies a polynomial-sized portfolio for Ord. Our
observation is that we can get a portfolio for Sym if we apply this argument to vectors in D instead:

THEOREM B.1. Given a set of vectors D C R%o and € € (0,1], there is always a (1 + €)-approzimate portfolio for
Sym of size at most d°(1/€).

Proof. Let v* = mingep ||7]|o0, With the corresponding vector denoted z*. Let D = {7 € D : ||z] s < dv*}.
We first claim that D is an optimal portfolio for all symmetric monotonic norms over D, i.e., for each
symmetric monotonic norm || - ||, the corresponding minimum norm point argmin,.p|lz|| € D. To see this,
let T = arg min,p||z||. Then,

1Z][ [I(1,0, ..., 0)|
<zl (Il - | is symmetric)
<||lz*|| (optimality of T)
<[z oo I(L, -, D
<v*d|(1,0,....0)].

This implies that ||| < dv*, or that T € D. Next, we will place all vectors in D in one of d°1/¢) buckets
such that for any two vector z,y in the same bucket, x < (1 + ¢)y and y =< (1 + €)x, so that by Lemma

lz]] ~14e |yl for all symmetric monotonic norms || - ||. Consequently, it is sufficient to pick just one vector in
each bucket to get a (1 + ¢)-approximate portfolio for all symmetric monotonic norms over D.
Denote T' = ﬂogH% d]. Each bucket B(ay,...,ar) is specified by an increasing sequence a1 < ag < ... <ar

of integers that lie in [0,27]. The number of such sequences is (3TT ) < 3T = d°(/¢) bounding the number of
buckets. Let ¢; = | (1 + ¢/3)?] for i € [T]. Then z lies in bucket B(ay,...,ar) where a; = [logH% (v%Hlecl)J
First, we show that this assignment is valid, i.e., each a; € [0,27]. Indeed,
1 1 d||z
Ll < —edalle < M=l < g2
v v v

The final inequality follows since 2 € D. Therefore, a; < log; +gd? < 2T. Next, we claim that for any
x,y € Blay,...,aq), x 3 (1 +¢€)y. Fix any k € [d], and let ¢ € [0,T] such that ¢; < k < ¢;41. Note that
by definition of a;, we have a; <log, ¢ (U%Hlec) < a; + 1, and the same inequality also holds for . Then,

IN

[E21EW

k k 5
CTHIHIW < c— (Uz‘ (1 +6/3) ,/+1)

_ k(L+¢/3) te/3> (U (1+e/3)" ")

k(1+¢€¢/3 k(14+¢€/3
A3y, <Frdd,,

Ci Ci

Finally, £ < C“’Cl_*l < (1+¢€/3), so that HZ”?@ <(1+¢/3)2=1+2e+ e <1+eforallee(0,1]. O
g i k

B.2 Lower Bound. We now give lower bounds on worst-case portfolio sizes for Sym, Ord in dimension d.

Theorem shows that there exist polytopes D in R‘éo such that any O(logd)-approximate portfolios for Ord

must have size d2(1/1°g108d) Since Ord C Sym, this bound is also true for Sym and recorded in Corollary
Before we prove the theorems, we need a counting lemma:

LEMMA B.1. Given L > 1, Let T be the set of mtegmljequences a = (ag, .. ';aL) such that a;—1 < a; < a;j—1+1
Jor all i € [L] and ag = 0. Then there exists a subset T C T such that (1) |T| > 2% /(2L?), and (2) for any two
sequences a,a’ € T, there exists an i such that a} < a;, and vice-versa.
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Proof. We first show that |T| = 2L. For any such sequence a, consider ¢(a) = (a; — ag,...,ar, — ar_1). Then
¢(a) maps sequences in T to binary sequences (b1, ...,br); further, ¢ is bijective. Therefore, |T| is the number of
binary sequences (by,...,br), which is 2.

Also note that > is a partial order on T: a < o’ if and only if a} > a; for all ¢ € [0, L]. For any distinct a, a’
such that a’ > a, we must have that ZiE[L] a; > 1+ Zie[L] a;. Further, Zie[L} a; < L? for all a € T. Therefore,
the length of any chain in order > on T is at most L? 4+ 1. This means that any chain decomposition of > on
T must have at least |T'|/(L? + 1) > 2% /(2L?) chains. By Dilworth’s theorem, this is also the size of the largest
antichain. But an anti-chain is exactly the set T' we are looking for. 0

THEOREM B.2. There exist set of vectors D C RY, such that any O(log d)-approximate portfolio for Ord must

have size d¥(1/10glogd)  Byrther, this bound is also true for a polytope D C RE. That is, there exist polytopes D

such that any O(log d)-approzimate portfolio for Ord over D must have size d(1/loglogd)

COROLLARY B.1. There exist D C R‘éo such that any O(log d)-approzimate portfolio for Sym must have size
d®(1/loglogd) = Byrther, this bound is also true for a polytope D.

Proof. [Proof of theorem| Let S = log® d, and let L be such that S+ S* + ...+ SY =d. Then L =0 (k’gd) =

log S
© (10§igd>, or that S/L = Q(log? d).

Let T be the set of integral sequences from the previous lemma, i.e., each sequence a = (ao, - ..,ar) is such
that a;—1 < a; <a;—1 + 1 for all i € [L] and ap = 0, and for any two sequences a,a’ € T, there exists ¢ such that
a; < a;. Define

Note that since a; > a;_1, ¥ = z. Further, since a; < a;_1 + 1, we have a; —i < a;_1 — (i — 1). Define

w(a) = (&j,sal—l,...,sal—l,...,sarL,...,saL—L).

S0 P >
Then
12(a) | wiayy = #(a) Tw(a) = Y §7u5uTIS = L.
i€[0,L]
Further, for any other a’ = (af,...,a}) € T, there exists i such that a; < a;, we get

[2(a")||(w(ayy > S S48 > S.

Since S/L = Q(log? d), this means that z(a’) is an w(log d)-approximation for || - | (w(ay)- That is, any O(logd)-
approximate portfolio for Ord over T must have size |T| > 2% /(2L?). However,

28 eltoga)/loglos g (<10g10gd>2> _ 40 (rosta) ~O(82) _ grmtra)
212 (log d)?

To prove the second part of the theorem, we claim that in fact even for conv(T), we have that any O(log d)-
approximate portfolio must have size |T| = d?(1/18logd) Let z = 3°, 7 N\pa(b) € conv(T). Fix a € T. We will
show that for all x such that 1 — X, > 1/4, [|2[|ya) = O(S/L)||7(a)|w@)- That is, the any O(log d)-approximate
minimizer & of || - ||y in conv(T) must have A, > 2, implying the claim.

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

1161



Downloaded 05/02/25 to 128.61.46.63 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

First, note that for each b, x(b)% = x(b). Therefore,

.
[2llw@ = | D Xex®) | wa) =D Ml2(5)llw)
beT beT
= ol 2(@)lwi@) + > Mll2(0)llw(a)

b#a
>Nl 48> A > 8(1—A,) > 5/4.

b#a

Where the last inequality follows by the assumption that 1 — X, > 1/4. Therefore, |||/, = ©(S/L) = w(logd).
This finishes the proof. 0

C Proof of Theorem [2.3

We show that all instances of MLIJ (d) admit O(1)-approximate portfolio of size 2 for all top-k norms. Recall
that theorem [2.2| gives instances where any O(1)-approximate portfolio for ordered norms must have size ﬁ(log d).
Combined, this implies the result with m = d. We will denote the top-k norm by || - ||1,

Recall Lemmas X"'={z(1),...,2(L)} is an O(1)-approximate portfolio for all ordered norms where
2a(l) < &(1) < 2z(l) for all I € [L]. Therefore, [|2(1)||1, is within factor 2 of ||z(I)||1, for all k € [d]. Further for
all k € [d],

= ifl <k,

2icl] by
(1 _ i€[l] p;
(D)l zk# ifl > k.
i Pi
in

Fix k. Since p; < p;41 for all 4, ST is non-increasing in [. Further, 21“7”1 is decreasing in [. Therefore, the
i€ll] py i€ll] by
smallest among ||x(1)||1,,! € [L] is either ||z(1)]]1, or ||x(L)|/1,. Therefore,

mind{{|Z(1) |1, [2(D]l1, } < 2min{[Jz(D)]1, (0]}
< 2min{|[z(1)[lag, |2(2) ][, - - ([ (L) ][, }
< dmin{[[Z(1)|1,, 1225 2L ]2,

Since {Z(1),...,&(L)} is an O(1)-approximate portfolio for all ordered norms, this implies that {#(1), (L)}
is an O(1)-approximate portfolio for all top-k norms.

We can also show that portfolios for ordered norms are not portfolios for L, norms: consider an instance
of identical jobs scheduling with p; = /i for each i € [d]. Denote p(l) = diel p% = D ieq] %; also denote
the dth Harmonic number Hy = .y 1 = O(logd). Then for each | € [d], z(l) = (%,~~,%,07~-,0)~

P p
—_———

l
Recall (Lemmas 2.5) that there exists an L € [d] such that (1) 1z(l) < &(I) < 2z(I) for all I € [L] and (2)
X' ={&(1),...,2(L)} is an O(1)-approximate portfolio for ordered norms for some L € [d]. We claim that each
x € Xl is an Q(v/Hg)-approximation for the Lo norm.

For each | € [L], p(I) < 1+2f1l % < 4/1, so that

260 2 e @l = S5 Vi=

Consider the following assignment: assign n; = 7 jobs to machine i € [d], and choose n large enough so that
each n; is integral. Then this is a valid assignment since Zie[d] n; = n by definition of H;. The machine loads

for this assignment are x; = n;p; = H" 7 The Ly norm of x is
d

Therefore, each Z(1) is an Q(v/Hg)-approximation for the Ly norm.
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D Omitted Proofs from Section [3]
We prove Lemmas [3.2] and [3.6] in this section.

D.1 Proof of Lemma-. For each i € [r],j € [d], by construction we have A;; < A4, ;, so that if = € P,
thenAx>Aa:>1r,1e P CP. _

Suppose © € P. We will claim that there is some T € P such that & < (1 + ¢)z. From Lemma this will
imply that [|Z]| < (1 + €)[|=||, and therefore that min;_5 [|Z[| < (1 + €) mingep [|z(|. This implies the lemma.

To see the claim, suppose z € P. Define 7 = (1 + %) (sc + %(1, e 1)) First, we show that < (1+¢€)z.

We have that for all k € [d],
~N € i ke(ox)q
(05 = (14 5) (o + 202,
(ox)a < (o’zi)

v 7, so that the above gives us

030 = (14 5) (s 2000 < (14 5 (ot + 9722 ) = (14 5) (14 ) (o

For all € € (0,1], (1 + %) (1 + %) < 1+e¢, sothat T < (14 €)z. Next, we show that T € P. Clearly, z > x > 0; it
remains to show that A% >1,. B B

Let B(i) denote the set of columns in row 4 such that A, ; = 0. Fix 1€ [r] denote the ith rows of A, A
respectively by A;, A;. From the algorithm, for j ¢ B(i), we have A; G2 T A ;. Therefore,

However,

A= Aya =3 A (Aij =0V € B(0),
jE[d] JEB(1)

ijT;
JéZB

=1 j_ - Z Aij (1 + %) (mj + E(gz)d>
2 \jgB)

> A+ 3d) > Aij

JEB(i) JEB(1)

Now, 3 igne) Aig = af 2 43 cp) Aig = % ¥ jep( Aij- Therefore,

e(lox)q 3d
i,j = 3d . ? . Z Ai,j > Z Ai,jxj~

JEB(1) JEB() JEB()

Together, this means that AT > Az > 1. Since this holds for all i € [r], € P. This completes the proof.

D.2 Proof of Lemma [3.6, We prove Lemma [3.6] here. We restate the relevant convex programs and the
lemma here for convenience:

(Primal”) min [|z][(p) st Ar>1.,2€ Q. (Dual) min ||AT/\||’("U,) st. AN€EA,

LEMMA 3.6. Given a weight vector w, Hx(w)H(w)HAT)\(w)wa) = 1. Further, there is a reduced order p such that
both z(w), AT N(w) satisfy p.

For j € [d], denote the jth column of A as AU) ¢ R". Recall that Si,..., Sy~ form a partition of [d] such
that for [ € [N"], and for all j,7' € 5;, A = AU, Also recall that Q is the set of all vectors x > 0 such that
xzj = xj for all j,j' € Sy, for all [ € [N7]. F‘rom Lemma B.3] z(w) € Q.
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First, for all x € P and X\ € A,., we get by ordered Cauchy-Schwarz (Lemma that ||x|\(w)||AT/\||’(kw) >
AT Aw. Since z € P, Az > 1,, and since A € A,, AT Az > 1. Now, suppose that there is some A € A, such that

||x(w)|\(w)||AT/\||>(*w) =1, i.e. equality holds. Then, since A\(w) = arg min,\eAT||/\||’(*w)7 we get that
1= [la()ll) AT Ay = l2@)llw AT Aw)][{,) > 1.
Then equality must hold everywhere, and in particular ||x(w)||(w)HAT)\(w)||{w) = 1. Further, from ordered

Cauchy-Schwarz, it is necessary that z(w), AT \(w) satisfy some order m € Perm(d).

From Lemma z(w) € Q, ie., for all 4,5/ € Sy, for all | € [N"], z(w); = z(w),7. Similarly, (AT \(w)); is
the dot product of the jth column of A with A(w), and therefore AT A\(w) € Q as well. Since z, AT A(w) both
satisfy order m, m must induce a reduced order p on Si,...,Syr. This implies the lemma.

It remains to prove that there exists A such that ||z (w)]| () ||AT/\||>(*w) = 1. Our proof is along the lines of the
proof of strong duality using Slater’s conditions [5], although we use the properties of ordered norms at several
places. We will need the following two lemmas:

LEMMA D.1. For vector y € R such that Yy1>...2yg >0, lett1 <ty <...<tp =d be indices such that

YI= o =Yty ZYti 41 = =Yty Z oo - 2 Ytr 41 =« = Ytp-

Then for any weight vector w, |[y[|7,,) = maxye(q) ((gg)))’; is achieved at some k € {t1,...,tr}.

Proof. The proof is straightforward, albeit somewhat involved. Denote tq = 0. It is sufficient to show that for all

i €[T] and t;—1 < k <'t;, we have
max{ (Uy)ti—l ’ (Uy)ti } > (Uy)k ]
(O—w)ti—l (Uw)ti (Uw)k

Denote z = yi;, ;41 = ... = y,. Consider (1 — \)(oy)s, , + Aoy), for A = tk:tt: Then X € [0,1], and

(1 - A)(Uy)ti—l + )\(Jy)ti = (Uy)ti—l + Az(tl - tifl) = (Jy)ti—l + (k - tifl)z = (Jy)k'
Further,

(1 - A)(Uw)ti—l + )\(Jw)ti = (Uw)ti—l + A(wti—1+1 +.o. wti)
Wt; 141 +...+ W,
ti —ti—1

= (O-w)ti—l + (k - tifl)

Since wy;, _,4+1 > ... > wy,, we get that

Wi, 41+ . Fwy, < W41+ ...+ wg
ti —ti—1 - k—ti1

Plugging this back in, we get (1 — A)(ow)s,_, + A(ow);, < (ow)g. Therefore,

(Uy)k < (1 - /\) (O-y)ti—l + /\(Uy) (O-y)ti—l (o-y)ti } )

(ow) = (L= N(ow),_, + Mow), max{ ow), . (ow),

|

LEMMA D.2. For p € RL,
0 ifluT Al <1

T
su Ax — ||z =
zeg a | ”(w) {oo otherwise.

Proof. Denote y = ATp. Then y € R, and y; = (AUV)Tp. If [yllf) < 1, we get from Lemma (ordered
Cauchy-Schwarz) that
y'z =zl w) < 1ylltw el = Izl < Uylit = Dllzlw) < 0.
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However, 0 € Q, and therefore for z =0, y ' — ]| (w) = 0, so that sup,¢g y e — 1zl (wy =0
Now suppose that ||y||z‘w) > 1. Note that since y; = (AW)) Ty, for all 4,j’ € S; for some I, we get y; = y;r.
Relabel the indices [N7] so that for all j € S; and j' € Si41, y; > y;r. Further, relabel indices [d] so that
Sl = {1, ey |Sl|}, SQ = {|Sl‘ + ]., ey |S1| + ‘Sg|} etc. That iS,

Y1 = = YISy ZY|Sy|+1 = -+ = Y|Sy|+[Sa] = -+ = Yd—|Syr|+1 = --- = Ya = 0.

By the previous lemma [|y|[{,,) = maxie(q) ((gg)))’; achieved at some k = |S1|+ ...+ |S;|. For brevity, denote this

number as k*.

Define x such that x1 = 290 = ... = xp+« = and zp«41 = ... = x4 = 0 where « is an arbitrarily large

(ou?)k*
number. Then 2 € Q and ||z||(,) = . Further,

y'z = (oy)" (Az) = (o) :
(ow) =

Since ((gi))’; = [lyll7,) > 1, we get that y' =z = (% - 1), which can be arbitrarily large as o grows.
This proves the second case as well. 0

We proceed to prove that there exists A such that ||a:(w)H(w)||AT)\||’("w) = 1. Let A be the set of points

(v1,...,v,,t) such that there exists an z € Q with v; > 1— Az for all i € [r] and t > ||z||(). It is easy to check
that A is convex. Next, define B = {(0,...,0,s) : s < |[z(w)|(w)}. Clearly, B is convex. It is easy to see that
——

ks
AN B =0. Therefore, there is a separating hyperplane between A, B, i.e. there exist u € R%, 4, € R such that

(D.1) plo+t>aV (v,t) € A,
(D.2) ds < aVs < [[z(w)]|(w)-

The second equation implies that 6 > 0 since otherwise we can choose s to be arbitrarily small and Js becomes
arbitrarily large. Then, we get oz (w)l|w) < a.

Further, by a similar argument, u > 0. Applying eqn. , to point (1 — Afw,...,1—Alz, ||lz]/w)) € A
that for all z € Q, 3=,y i — 1Az + 6]|3 () = o > 8]z (w)]| (w)-

Case I 4 = 0. Then ¢z ) > a > dl|z(w)|/w. Since not both u,d can be zero, 6 > 0. Further,
lz(w)]| (wy >0, so if we pick z = 0 € Q, we get a contradiction.

Case II: p # 0, so we get that all for all z € Q, >, i — p Az + )|zl (w) = a > 0l|lz(w)l|w). If 6 =0,
then Y, p; — pu' Az > 0 for all z € Q. Pick arbitrarily large = again, giving a contradiction. Therefore, § > 0;
assume without loss of generality that it is 1.

That is, for all # € Q, >, pi — p' Az + ||@|(w) = [|#(w)||(). Taking infimum on the left-hand side and

applying Lemma we get that D, p; > [|o(w)|| ) with ||MTA||E‘w) < 1. Then A := **= € A,. Therefore,

L2 (i Allfuy = D il AT Al = (@)l AT AllG,)-
4

This finishes the proof.
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